
Interactive Volumetric Image Manipulation for
Patient-specific Soft Tissue Deformation and Cutting

Abstract

This paper systematically advocates an
interactive volumetric image manipulation
framework, which enables physically plausible
modeling of patient-specific soft tissues such
as: large-scale deformation, arbitrary cutting,
synchronized collision handling, and realistic
anatomical visualization. We present a set of
seamless technical elements that allow material-
aware proxy structure generation, Non-linear
Finite Element Method (NFEM) based sim-
ulation, fitting based up-sampling of sparse
displacement field, and dynamic visualization
of the evolved volume, which are all relevant
to the instant utilization of clinical images
in patient-specific and subject-centric virtual
surgery. In particular, the entire framework
is built upon CUDA, and thus can achieve
interactive performance even on a common
laptop. The detailed implementation, timing
tests, and physical behavior measurements
show its practicality, efficiency, and robustness.

Keywords: volumetric image manipulation,
patient-specific medical simulation, physics
based modeling, deformation and cutting,
CUDA.

1 Introduction and motivation

The accurate and efficient deformation/cutting
simulation of soft tissues plays a vital role in
medical simulation. Many iso-surface related
generic models, ranging from simple spring-
mass structure to complex finite element repre-
sentations, have been employed to achieve this
goal. However, although the interior anatomi-

cal structures can greatly affect the behavior and
appearance of soft tissues, most of the state-of-
the-art methods have little concern over the wide
range variability of patient-specific datasets,
which usually adopt common geometric model
and do not afford instant data replacement. In
sharp contrast, a great amount of patient-specific
volumetric medical images have been routinely
collected. Thus, the strong demand for medi-
cal simulation has been evolving rapidly from
being solely operation-oriented to a higher level
of being patient-specific and subject-centric [1].
Meanwhile, it also requires synchronous explo-
ration of the real internal anatomical structures
and interactive feedback. Therefore, there is still
a large gap between the flexible manipulation of
patient-specific volumetric images and the sim-
ulation with physical and physiological reality.
Specifically, the technical challenges are con-
cluded as follows.

First, since volumetric image in nature com-
prise a densely-sampled 3D scalar field and has
no explicit inner geometric structures, surface
appearance, and accompanying physical prop-
erties, state-of-the-art surgery simulators high-
ly depend on time-consuming manual interme-
diate steps to reconstruct object-specific physi-
cal and geometric models from volumetric med-
ical images. This is the major reason that pre-
vents patient-specific simulations from being ef-
ficiently and extensively used in clinical set-
ting [2].

Second, surface based models are not well
suited for realistic visualization of arbitrary cut-
ting surfaces, since it remains difficult to real-
time synthesizing and mapping a plausible tex-
ture onto the dynamically-generated cutting sur-
face, not to mention the representation of de-

Figure 1: The pipeline of our framework.

formable anatomical structures. This unavoid-
ably downgrades the role of patient-specific vol-
umetric medical images and limits the realis-
tic experience of clinicians during surgical re-
hearsal [3, 4].

Third, although voxel based volume edit-
ing approaches can produce simple transform-
ing/sculpting/drilling results in local regions [5],
they are usually susceptible to global aliasing ar-
tifacts. Besides, due to abundant computation
time from massive voxels, it is not feasible to
employ them to conduct large-scale deformation
and arbitrary cutting simulation of soft tissues.

Fourth, the constitutive behavior of soft tis-
sues should be rigorously modeled with non-
linear kinematic formulations [6], and the phys-
ical structure changes, accompanying collision,
user intervention, and visualization must be dy-
namically handled during cutting simulation,
which in all are very time-consuming. Thus, to
achieve interactive efficiency, it requires sophis-
ticated algorithms and unified parallel computa-
tion framework.

To tackle the aforementioned challenges, we
focus on a unified CUDA-based framework
to directly utilize clinical volumetric medical
images for instant patient-specific simulation.
Fig. 1 intuitively illustrates the pipeline of our
framework. It contributes to the state of the
knowledge in volumetric image based anima-
tion, physics-based modeling, and medical sim-
ulation. Specifically, the salient contributions
can be summarized as follows:

(1) We systematically articulate a versatile
framework for direct volumetric image manip-
ulation while avoiding rebarbative manual ge-

ometry processing, which seamlessly covers the
dominating processes of patient-specific images
based surgical simulation.

(2) We generate an adaptive material-aware
physical proxy from volumetric images to drive
the nonlinear deformation and cutting simula-
tion of soft tissues, and design a fitting based s-
parse displacement field up-sampling algorithm
for dynamic volume rendering of deformed/cut
anatomical structures.

(3) We synchronously integrate cutting sim-
ulation, collision detection, and collision re-
sponse into a NFEM-based deformable model,
and design a parallel algorithm for the explicit
solving of the physical equations.

(4) We implement the framework within the
parallel computing architecture of CUDA to
guarantee the interactive efficiency. At the tech-
nical fronts, all the CUDA-based algorithms can
contribute to other relevant applications.

2 Related work

Closely relevant to the central theme of this pa-
per, we briefly review previous work in the fol-
lowing categories.

Volumetric Image Manipulation. Direc-
t volumetric image manipulation has the ad-
vantage of faithfully preserving contents. Most
of the earlier studies address this issue as
geometry-based image morphing. Driven by
the demand of arbitrary exploration of inter-
nal structures, some more complex geometric
manipulation strategies were successively pro-
posed. Masutani et al. [7] achieved interactive
deformation plausible manipulation by simply

controlling the vertices of textured proxy object-
s. Correa et al. [8] presented an efficient vol-
ume deformation method by moving the proxy
points placed on the cross sections to desirable
positions. However, such methods are only suit-
able for geometry based volume-editing defor-
mation, and thus lack physical reality and effi-
ciency. Most recently, Nakao et al. [2] extended
the proxy points [8] to automatically-generated
proxy tetrahedral mesh according to the original
image curvature, and then they further refined
the proxy mesh by taking adaptive optimization
algorithm into account [1] in the pre-processing
stage. However, it can’t produce material-aware
mesh elements, ignores the element topological
changes due to cutting and collision.

Fem-based Deformation And Cutting.
Most of real-time FEM approaches are based
on linear formulations. To enable large defor-
mation, Christian [9] extended the co-rotated
strain formulation to hexahedral elements and
achieved linear time complexity by introducing
a multi-grid solver. However, its constitutive
law remains linear. The TLED method proposed
by Miller et al. [10] rigorously formulated the
non-linear constitutive law, which was also
employed as a deformable model to conduct
non-rigid registration in [11]. By integrating
the visco-hyper-elastic model, TLED was
extended to handle anisotropic viscoelastic de-
formation [12]. Despite of the success of TLED
in large deformation simulation, it has not been
generalized to handle cutting simulation. Most
recently, similar to diffusive regularization
in image registration, Fortmeier et al. [13]
proposed to conduct volumetric soft tissue de-
formation by relaxing ChainMail algorithm on
the inverse of the displacement field; however,
it can only simulate local deformations caused
by needle insertion.

FEM-based cutting simulation is still chal-
lenge in dynamic topological update and real-
istic cutting surface visualization [14]. Finite el-
ement subdivision based method [15] is usual-
ly used to handle topological update, but it can
create severely ill-conditioned simulation ele-
ments. Wicke et al. [16] improved it by us-
ing arbitrarily-convex finite elements, but it is
even more involved in numerical integration. In
sharp contrast, Molino et al. [17] proposed a
virtual node algorithm to avoid element split-

ting by duplicating the cut elements and redis-
tributing material components. However, since
each fragment is required to contain at least one
FEM node, arbitrary cutting is strictly limited.
To avoid re-meshing, Jin et al. [18] propose an
image based meshless algorithm for soft tissue
cutting, but currently it can only afford 2D cut-
ting simulation. Most recently, adaptive regu-
lar hexahedron approximation is used to sim-
ulate the cut in linear elastic deformable bod-
ies [9], and Jerabkova et al. [14] achieved inter-
active FEM-based cutting simulation by remov-
ing the finest level voxels from multi-resolution
volumetric images; however, both of them ig-
nore the synchronized collision handling and re-
alistic cutting surface visualization.

Brief Summary. From the view point of the
physical fidelity and visual reality for direct im-
age manipulation, although most of the curren-
t algorithms are competitive, but they are lone-
some, and still require a trade-off between phys-
ical (or visual) plausibility and speed. There-
fore, a unified and efficient framework that af-
fords instant image utilization, physics based
large-scale deformation, arbitrary cutting simu-
lation, synchronized collision handling, realistic
cutting surface texturing is urgently needed.

3 Framework overview

As shown in Fig. 1, we first focus on the frame-
work overview as follows:

Multi-label tissue segmentation: It designs
Volumetric Gaussian Mixture Model (V-GMM)
algorithm to automatically conduct multi-label
segmentation, and chooses the target tissues
with little user interaction.

Physical proxy generation: In a user-
transparent way, it succeeds to build a material-
aware tetrahedral mesh according to the multi-
label segmentation, which will serve as a proxy
to encode the geometry structure and physical
properties based on NFEM.

Physical simulation: In each simulation cy-
cle, based on CUDA, it computes the internal
and external forces according to user interaction
and self-collision, updates the proxy structure
and its accompanying properties such as dis-
placement, velocity, position, etc.

Dynamic volume rendering: Based on CU-

DA, the cut/deformed volume is driven to e-
volve by resorting to super-resolution of the dis-
placement field resulted from proxy structure
and serves as a dynamic 3D texture for the in-
teractive volume rendering.

In the following sections, we will describe the
algorithms involved in our framework together
with their CUDA implementation in detail.

4 Physical proxy generation

4.1 Multi-label segmentation of images

To analyze the physical structure of an organ and
its surrounding tissues, we should first perfor-
m multi-label segmentation on the original vol-
umetric image, which is represented by a stack
of 2D image slices in 3D space, and where the
material variations of tissues give rise to vary-
ing colors. To achieve the goal of instant u-
tility of patient-specific 3D images, it is neces-
sary to integrate an automatic image segmenta-
tion method in our integrated framework. To the
best of our knowledge, Gaussian Mixture Mod-
el (GMM) serves this purpose very well for 2D
images.

Figure 2: Multi-label segmentation.

Given patient-specific volumetric images, we
extend GMM to V-GMM to conduct automat-
ic multi-label segmentation. Then, we further
pick the target organs by manually indicating

the color-coded labels. It should be noted that,
this is the only required manual input in our
framework. As shown in Fig. 2, the first col-
umn shows the original volumetric images, the
second column shows the multi-label segmenta-
tion results by using V-GMM, and the third col-
umn shows the segmentation results of the tar-
get tissues. Meanwhile, we also document the
3D Level Set based segmentation results in the
fourth column for comparison. The results state
that V-GMM method is more accurate than 3D
level set for images with low color contrast such
female heart and male heart. As a preprocess-
ing step, our experiments state that V-GMM can
usually obtain the volumetric segmentation re-
sults within tens of seconds.

4.2 Material-aware proxy generation

Figure 3: Material-aware proxy generation.

Based on the multi-label segmentation results
(Fig. 3(A, B)), we continue to generate a prox-
y mesh to encode the physical topology and
properties in a user transparent way. As shown
in Fig. 3(C), we first hierarchically divide the
working space by way of an adaptive octree. For
any sub-cuboid at the current level, whether to
perform further space partitioning is determined
by the voxel colors contained in the sub-space.
And the material type (encoded with different
colors in Fig. 3(C)) of the sub-cuboid can be de-
termined according to the voxel labels. We then
decompose each leaf cuboid into five tetrahedra.
To avoid edge intersection between neighboring
tetrahedra, we define two different partitioning
schemes (Fig. 3(D)). By taking the 3D adja-
cency relations of the leaf cuboid into account,

we can easily determine the partitioning type of
each cuboid. Fig. 3(E) demonstrates the gen-
erated material-aware tetrahedral mesh over a
segmented liver dataset, where each tetrahedron
will serve as a material-aware finite element for
the subsequent physical modeling.

4.3 NFEM-based Physical Modeling

Given material parameters of the target tissue
such as density ρ , Young’s modulus E, and Pois-
son’s ration ν , we first compute the mass of each
tetrahedron according to its volume, and dis-
tribute each tetrahedron’s mass to its four ver-
tices. Meanwhile, we calculate the time step
△t that can guarantee the stability of the explicit
time integration by{

△t = Le
c

c =
√

E(1−ν)
ρ(1+ν)(1−2ν)

, (1)

where Le is the smallest edge length among the
tetrahedra and c is defined as the dilatational
wave speed of the material.

Similar to TLED, we measure the deforma-
tion at time t with respect to its un-deformed
configuration at time 0, which is defined by de-
formation gradient tensor t

0X

t
0Xi j =

∂ txi

∂ 0x j
. (2)

Then the second Piola-Kirchhoff stress t
0S is em-

ployed to measure the stress, which is defined as

t
0S =

0ρ
tρ

(0
t X)(tT)(0

t XT), (3)

where tT represents the Cauchy stress per unit
area in the deformed geometry, 0

t X = (t
0X)−1,

and the mass density ratio 0ρ/tρ = det(t
0X).

With the help of the discrete tetrahedral proxy
mesh, we use the shape functions to interpolate
relevant physical quantities.

h1 = (1− r)(1− s)(1− t)/8
h2 = (1+ r)(1− s)(1− t)/8
h3 = (1+ s)(1− t)/4
h4 = (1+ t)/2

(4)

of which h1, h2, h3, and h4 are respectively the
shape functions of the four vertices in each tetra-
hedron. Thus the stiffness matrix needs not to be

Algorithm 1: Physical proxy generation.
input : segmented image fs, ρ , E, ν ,

and the maximal octree depth nd .
output: void.

1: Create adaptive octree based on fs,nd ;
2: Generate tetrahedral proxy mesh;
3: Compute Le, △t, and perform mass
distribution;
4: Allocate memory for Ai, Bi, Ci, tUi,
t+△tUi, and the shape function derivative
lists on GPU;
5: Invoke a CUDA kernel to precompute
Ai, Bi, Ci ;
6: Invoke a CUDA kernel to precompute
the derivatives of shape functions;

dynamically assembled anymore, which can be
directly computed at the element level by

K(U)U = ∑
e

tF(e), (5)

tF =
∫

0V
(t

0BT
L)(

t
0Ŝ)d0V, (6)

where t
0Ŝ is the vector form of the second Piola-

Kirchhoff stress, t
0BL is the strain-displacement

matrix, whose i-th sub-matrix can be obtained
by transforming 0BL0 using the deformation gra-
dient t

0X throught
0B(i)

L = 0B(i)
L0

t
0XT . And 0B(i)

L0 can
be computed by means of the spatial derivatives
of the shape functions:

0B(i)
L0 =



∂hi
∂ 0x 0 0
0 ∂hi

∂ 0y 0

0 0 ∂hi
∂ 0z

∂hi
∂ 0y

∂hi
∂ 0x 0

0 ∂hi
∂ 0z

∂hi
∂ 0y

∂hi
∂ 0z 0 ∂hi

∂ 0x


(i = 1, . . . ,4). (7)

Suppose that all the nodal forces tF and the
external forces tR have been obtained, we can
further iteratively update the displacement for
each vertex in the proxy mesh by

t+△tUi = Ai(
tRi − tFi)+Bi

tUi +Ci
t−△tUi. (8)

And Ai, Bi, Ci can be pre-computed in a

vertex-wise fashion as
Ai =

1
Dii/(2△t)+Mii/△t2

Bi =
2Mii/△t2

Dii/(2△t)+Mii/△t2 =
2Mii
△t2 Ai

Ci =
Dii/2△t−Mii/△t2

Dii/(2△t)+Mii/△t2 =
Dii
△t Ai − Bi

2

(9)

To sum up, the pseudo-code of physical proxy
generation is documented in Algorithm 1.

5 CUDA based simulation

5.1 Deformation

Since the external force tRi can be directly ob-
tained, at each time step we only need to re-
compute tFi according to Eq.(6). In fact, tFi

transitively depends on t
0Ŝ and t

0X. For t
0Ŝ, we

compute it using a hyperelastic neo-Hookean
model given by

t
0Ŝ = µ(δi j − t

0C−1
i j)+λ (tJ)(tJ−1)(t

0C−1
i j),

(10)
where µ and λ are the Lamé constants, δi j is the
Kronecker’s delta. As for t

0X, it can be com-
puted by way of shape-function-based interpo-
lation:

t
0X = tuT

e ∂H+ I, (11)
tue is a 4×3 matrix consisting of the vertex dis-
placements of each tetrahedron, ∂H is a 4× 3
matrix consisting of the pre-computed shape
function.

Then, by summing all the corresponding
forces in the tetrahedra that share vertex i, we
can finally get the internal force tFi for the ver-
tex i in the proxy mesh. And the vertex-wise dis-
placement updating is well suitable for CUDA-
based parallel computation, which is detailed in
Algorithm 2.

5.2 Cutting and collision

Figure 4: Cutting and collision handling.

Algorithm 2: CUDA based simulation.
input : user interaction.
output: void.

for each cycle of the simulation loop do
if cutting mode is switched on then

1:Invoke a CUDA kernel for
collision detection;
2:Invoke a CUDA kernel to
update 0V,m, Ai,Bi,Ci;

for i=1:iteration number do
1:Compute tRi;
2:Invoke a CUDA kernel for tFi;
3:Invoke a CUDA kernel for tUi;

end
1:Invoke a CUDA kernel to construct
grid cell indices;
2:Invoke a CUDA kernel to collect
the nearby element indices and
assign them to grid cells;
3:Invoke a CUDA kernel to conduct
collision detection and label the
affected vertices to be constrained;
4:Invoke a CUDA kernel to add
constraints to tFi.

end

As shown in Fig. 4(A), during the cutting pro-
cedure, since the inter-frame time interval △t f is
usually very short, the moving direction of the
operating tool (e.g., knife) can be considered to
be constant, and the surface swept by the knife
can be approximated as a plane with a parallelo-
gram ♢p1 p2 p3 p4 , where the edges p1 p2, p3 p4 re-
spectively represent the current and the last po-
sitions of the knife. Thus, we can easily deter-
mine the number of cut edges in each tetrahedral
element, and then we extend the tetrahedra topo-
logical updating method [15] on CUDA to refine
the cut tetrahedral mesh. Furthermore, accord-
ing to the refined mesh, we need to update the
volume 0V , the mass distribution, Ai,Bi,Ci, and
the shape function derivatives for all the affect-
ed tetrahedra. Meanwhile, the integral time step
△t should also be updated according to the new
smallest edge length Le. Since the cut process
can be handled per tetrahedron, its CUDA-based
parallel computation is natural.

As shown in Fig. 4(B), we employ a regu-
lar grid to assist CUDA-based collision detec-

tion. In each cycle of simulation loop, to rapid-
ly exclude a large majority of tetrahedron-pairs
that are impossible to collide with each other
in advance, we first assign each deformed tetra-
hedron to some grid cells according to the cur-
rent positions of its four vertices. As shown in
Fig. 4(C), we extend the fast tetrahedron overlap
testing algorithm [19] to CUDA, whose central
idea is: let e be an edge shared by faces f0, f1,
p0, p1 be half-planes extending those faces, and
W be the resulting wedge containing the tetrahe-
dron, then if the other tetrahedra intersect with
W there can not be a separating plane contain-
ing e. Thus, taking the tetrahedra allocated in
the same grid cells as a group, we can parallelly
conduct collision detection in an element-wise
fashion. The collided tetrahedra are shown in
red in Fig. 4(B). If a tetrahedron collides with
others, we add a punishment force to its four
vertices in the opposite direction of their own
movement. And the CUDA-based implement-
tation of cutting and collision handling is docu-
mented in Algorithm 2.

5.3 Dynamic volume rendering

So far, in each simulation cycle, we can get the
sparse vertex displacement of the proxy mesh.
We first up-sample the sparse displacement field
at each voxel position p of the evolving dense
field. Similar to collision handling, the regular
grid can also be used to assist the fitting-based
up-sampling. Given the second-order monomi-
al basis b, we locally fit a polynomial function
around each cell p by minimizing the following
energy function:

∑
v∈N(p)

(bT · c− tU(v))2ωp(v), (12)

N(p) represents the vertex set in the supporting
domain of the spatial Gaussian kernel function
ωp. Then, the evolved voxel color should be
further indexed based on its deformed position
from the original volumetric images.

Although all the runtime computation are ex-
ecuted on CUDA, in each cycle, conventional-
ly it needs to transfer the evolved 3D images to
host memory first and then copy them to GPU
texture cache through graphics API, where the
greatest bottleneck is the bandwidth and texture

Figure 5: GPU data flow of rendering pipeline.

Algorithm 3: CUDA based rendering.
input : slice number ns, 3D texture

cache tex, transfer function Tf .
output: visualization.

for each cycle of the simulation loop do
if the first cycle then

1:Initiate a pbo;
2:Initiate a vbo according to ns;
3:Allocate memory for primitive
vertex array Ar;

1:Update Tf with user control;
2:Invoke a CUDA kernel to
up-sample tU;
3:Map pbo to deformed image I;
4:Invoke a CUDA kernel to compute
I(p);
5:Transfer data from pbo to tex;
6:Map vbo to Ar;
7:Invoke a CUDA kernel to generate
Ar;
8:Invoke the rendering function;

end

cache coherency. As shown in Fig. 5, our strate-
gy is to employ a pixel buffer object (PBO) as a
bridge to transfer image data from CUDA buffer
to texture cache, which can perform fast pixel
data transfer through direct memory access (D-
MA) without involving any CPU cycle.

Besides, since image-order approaches such
as GPU-based ray casting, usually need many it-
erations to fetch 3D texture and blend the color
for a single pixel, it cannot be afforded here due
to the already-existed expensive NFEM simula-
tion. Thus, 3D texture is not enough, we should
create object-order primitives by decomposing
the volume into slice stacks of textured polygon-
s, and we always create a 6-vertex polygon for
each slice in order to improve the uniformity of

CUDA-based data structure. Then, the generat-
ed polygon data is directly mapped to a vertex
buffer object (VBO) from CUDA buffer, which
can drastically increase the rendering efficiency.
Finally, with the transfer function controlled by
the user, we can achieve the interactive volume
rendering during physics based image manipu-
lation, and CUDA-based rendering implementa-
tion is detailed in Algorithm 3.

6 Experimental Results

We implement a prototype system using C++
and CUDA. All the experiments run on a laptop
with NVIDIA GeForce 330M GPU, Intel Core
(TM) i7 CPU (1.6GHz, 4 cores) and 4G RAM,
where all the volumetric images are from our co-
operative hospitals.

Figure 6: Partially fixed deformation.

Figure 7: Deformation due to free falls.

Fig. 6 shows the deformation results of par-
tially fixed organs (marked in red) under the in-
fluence of gravity. Here and in all the follow-
ing experiments, we set the density parameter to
1000kg/m3, and the parameters µ and λ are re-
spectively set to be 400 and 49000. It shows that
our method can support large deformation while
keeping accurate anatomical structures during
deformation. Since strain in nature is a tensor,

we employ volume/strain to measure the defor-
mation change of each element as

Me =
Ve
tJ

=
Ve

det(t
0X)

, (13)

Me describes each element’s mass change ra-
tio with respect to its un-deformed configura-
tion. We scale each tissue into a cube of 8 cu-
bic dm, the volume of each element is very s-
mall and thus the value of Me corresponding-
ly appears in a small scale. The measuremen-
t results are color-coded in the fourth colum-
n, while the stress distribution is shown in the
third column. It can be seen that tissues nearby
the fixed parts usually have bigger stress, which
coincides well with the fact. Besides, Fig. 7
shows the deformation results under the influ-
ences of gravity and ground constraints. Due
to the collision with the constrained plane, the
stress should spread quickly and cause large de-
formation. The deformed 3D images correctly
present such visual effects.

Figure 8: Partially fixed Cutting simulation.

Fig. 8 demonstrate the cutting simulation of
partially fixed tissues, where the cut parts will
have a free fall due to gravity. The result-
s state that our method can accurately demon-
strate the patient-specific anatomical structures
on the deformed cutting surfaces, which are cur-
rently hard to achieve in most of the existing
surgery simulators. Meanwhile, it shows that
our method is stable and robust to sustain arbi-
trary multiple cuts. During the cutting process,

since the cut parts are not rigid bodies and tend
to undergo deformation, collision may occur and
induce local deformation nearby the cut sur-
faces. The integration of collision handling can
effectively simulate these cases, which can be
seen from the color-coded quantitative element-
wise stress and strain measurements. In the in-
terest of space, for more vivid results, please re-
fer to our supplementary video.

Table 1: Time performance(in millisecond)

Images NFEM# PG FEM TU CH DVR
M-liver 6775 578 14 14 1 48
M-heart 7515 577 15 16 2 49
F-liver 11940 890 17 17 2 74
F-lung 10095 795 17 17 2 71
F-heart 8630 655 15 17 2 53

To fully analyze the time performance of
our method, Table 1 documents the time test-
ing for most of the dominating steps, including
proxy generation (PG), NFEM simulation (N-
FEM), topological updating (TU), collision han-
dling (CH), and dynamic volume rendering (D-
VR), wherein PG is only executed in the pre-
processing stage. It shows that DVR is a little
time-consuming. However, even on a common
laptop, we can still achieve interactive perfor-
mance. Therefore, with the help of more power-
ful computer or multi-GPU scheme, our frame-
work has great potentials to afford even more fi-
nite elements and achieve higher physical fideli-
ty, real-time performance efficiency.

7 Conclusion and Discussion

We have detailed a comprehensive and fully
CUDA-accelerated volumetric image manipula-
tion framework to address a suite of research
challenges in image based interactive surgical
simulation. Our framework supports instan-
t utilization of patient-specific clinical images,
physics based large-scale non-linear deforma-
tion, arbitrary cutting simulation, synchronized
collision handling, and realistic cutting surface
visualization, which collectively have a broad-
er appeal to both image based animation and

physics based simulation. Extensive experi-
ments on various medical images together with
their quantitative physical behavior measure-
ments demonstrated its superior performance.

Meanwhile, although the paper’s current foci
are on the seamless image manipulation frame-
work for physically plausible soft tissue defor-
mation and cutting simulation, our technical vi-
sion is to achieve material-aware and even phys-
iological property coupled surgical simulation
directly over clinical images in the near future.
However, there are still some open problems
yet to be solved. First, it is difficult to accu-
rately capture and register material parameters
of heterogeneous tissues. Second, given volu-
metric images, it remains hard to automatically
get accurate multi-label segmentation. Besides,
our immediate efforts are geared towards incor-
porating blooding and suturing simulation into
our current framework, and then propelling its
demonstrated applications in clinical setting.

References

[1] K. W. C. Hung, M. Nakao, K. Yoshimura,
and K. Minato. Background-incorporated
volumetric model for patient-specific sur-
gical simulation: A segmentation-free,
modeling-free framework. International
Journal of Computer Assisted Radiology
and Surgery, 6(1):35–45, 2011.

[2] M. Nakao, K. W. C. Hung, S. Yano,
K. Yoshimura, and K. Minato. Adaptive
proxy geometry for direct volume manip-
ulation. In Proceedings of IEEE Pacific
Visualization Symposium, pages 161–168,
2010.

[3] R. M. Satava. Historical review of surgical
simulation: A personal perspective. World
Journal of Surgery, 32(2):141–148, 2008.

[4] A. Plass, H. Scheffel, H. Alkadhi, P. Kauf-
mann, M. Genoni, F. Volkmar, and
J. Grüenfelder. Aortic valve replacemen-
t through a minimally invasive approach:
Preoperative planning, surgical technique,
and outcome. Annals of Thoracic Surgery,
88(6):1851–1856, 2009.

[5] K. Burger, J. Kruger, and R. Westerman-
n. Direct volume editing. IEEE Trans.
on Visualization and Computer Graphics,
14(6):1388–1395, 2008.

[6] Z. A. Taylor, M. Cheng, and S. Ourselin.
High-speed nonlinear finite element anal-
ysis for surgical simulation using graphic-
s processing units. IEEE Transactions on
Medical Imaging, 27(5):650–663, 2008.

[7] Y. Masutani, Y. Inoue, F. Kimura, and
I. Sakuma. Development of surgical simu-
lator based on fem and deformable volume
rendering. In Proceedings of the SPIE,
pages 500–507, 2004.

[8] C. D. Correa, D. Silver, and M. Chen. Vol-
ume deformation via scattered data inter-
polation. In Proceedings of IEEE VGTC
Workshop on Volume Graphics, pages 91–
98, 2007.

[9] C. Dick, J. Georgii, and R. Westermann.
A hexahedral multigrid approach for sim-
ulating cuts in deformable objects. IEEE
Transactions on Visualization and Com-
puter Graphics, 17(11):1663–1675, 2011.

[10] K. S. Miller, G. R. Joldes, D. Lance, and
A. Wittek. Total lagrangian explicit dy-
namics finite element algorithm for com-
puting soft tissue deformation. Commu-
nications in Numerical Methods in Engi-
neering, 23(2):121–134, 2007.

[11] K. O. Noe and T.S. Sorensen. Solid
mesh registration for radiotherapy treat-
ment planning. Lecture Notes in Computer
Science, 5958:59–70, 2010.

[12] Z. A. Taylor, O. Comas, M. Cheng, J. Pas-
senger, D. J. Hawkes, D. Atkinson, and
S. Ourselin. On modelling of anisotrop-
ic viscoelasticity for soft tissue simula-
tion: Numerical solution and gpu execu-
tion. Medical Image Analysis, 13(2):234–
244, 2009.

[13] D. Fortmeier, A. Mastmeyer, and H. Han-
dels. Gpu-based visualization of de-
formable volumetric soft-tissue for real-
time simulation of haptic needle inser-

tion. Bildverarbeitung fr die Medizin 2012,
pages 117–122, 2012.

[14] L. Jerabkova, G. Bousquet, S. Barbier,
F. Faure, and J. Allard. Volumetric mod-
eling and interactive cutting of deformable
bodies. Progress of Biophysics and Molec-
ular Biology, 103(2-3):217–224, 2010.

[15] C. Forest, H. Delingette, and N. Ayache.
Cutting simulation of manifold volumetric
meshes. In Proceedings of Medical Image
Computing and Computer-Assisted Inter-
vention, pages 235–244, 2002.

[16] M. Wicke, M. Botsch, and M. Gross. A
finite element method on convex polyhe-
dra. Comput. Graph. Forum, 26(3):355–
364, 2007.

[17] E. Sifakis, K. G. Der, and R. Fedkiw. Ar-
bitrary cutting of deformable tetrahedral-
ized objects. In Proceedings of Eurograph-
ics Symposium on Computer Animation,
pages 73–80, 2007.

[18] X. Jin, G. R. Joldes, K. Miller, K.H.
Yang, and A. Wittek. Meshless algorith-
m for soft tissue cutting in surgical simu-
lation. Computer Methods in Biomechan-
ics and Biomedical Engineering, PMID:
22974246, 2012.

[19] F. Ganovelli, F. Ponchio, and C. Rocchi-
ni. Fast tetrahedron-tetrahedron overlap al-
gorithm. ACM Journal of Graphics Tools,
7(2):17–26, 2002.

