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Most of Focus+Context visualization methods, such

as [4], differentiate the magnification unit only by simply

assigning each voxel/cell with an importance value while

ignoring the shape content embedded in the volume data.

In this paper, we take the volumetric structure information

as important cue to facilitate Focus+Context visualization,

which can homogeneously or non-homogeneously scale the

volume data in a structure-sensitive way.

I. METHOD

A. Local Feature Specification. Given the volume data

and the transfer function, we first filter out the voxels whose

opacity are less than 0.1. Then we compute the structure

tensor on the remaining voxels, and denote them as Ri =
{pi, ni}, where pi is the position of i-th voxel and ni is

the eigen-vector corresponding to the largest eigen-value of

the structure tensor. Inspired by [1], we choose a subset of

voxels Γ close to the i-th voxel as the cutting plane voxel

set. We minimize E = min
∑

pi∈Γ,‖v‖=1
(ni · v)2 to find a

vector v that is perpendicular to all the gradient directions

in Γ as much as possible. We use v as the normal vector of

the cutting plane, and then re-estimate voxels close to the

current cutting plane, and alternate between the two steps

until the iteration converges.
B. Adaptive Tetrahedron Mesh. We establish a tetra-

hedral grid over the volumetric data, and formulate the

magnification problem as a mesh deformation problem.

The importance value of each tetrahedron is determined

by summing the interior voxel’s opacity, which is further

divided by the tetrahedron volume to normalize itself to fit

into [0,1]. The weight of a point is assigned as the average

weight of its adjacent tetrahedra. Each line’s weight is set

as the average weight of the two endpoints. Each time, we

choose the line with minimal weight and merge the two

endpoints into one to collapse the edge and tetrahedron. If

the merged result leads to self-intersection, we re-select a

line to merge. After decimating the tetrahedral grid to a

user-specified resolution, we average the direction of all the

inner points as the direction of the tetrahedron.
C. Deformation Energy. We denote the input and output

tetrahedron sets as T I and TO respectively. Each tetrahedron

will be assigned a scaling factor as Si =

⎛
⎝
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⎞
⎠. S-

ince the display space is limited, some of the tetrahedra may

be rotated or sheared. We denote the expected deformation

of the i-th tetrahedron as RiSi, where Ri is the rotation

component.

Each input tetrahedron T I
i can be deformed to TO

i by a

4x4 matrix Di. The linear portion of Di is a 3x3 Jacobian

matrix Ji involving scaling, rotation, and shearing transfor-

mations. Because we sample the initial position of control

points on the grid, the elements of matrix Ji are linearly

dependent on the vertices in TO
i . Thus, we can define the

deformation energy as Ed =
∑
i∈T

ω (i) ‖ Ji − RiSi ‖ 2
F ,

where ‖ · ‖F is the Frobenius norm, and ω (i) is the weight

of i-th tetrahedron. Introduced in [2], this energy function

can be rewritten in terms of the coordinates of the original

grid and the deformed grid vertices [3].

The system initially sets Ri and the context regions as

identity matrices, and gets ROIs scaling factor Si from

user specification. After that, we compute Ji, which is then

decomposed into a rotation matrix RJ
i and a scaling matrix

SJ
i using polar decomposition. We set Ri to RJ

i . For the

context regions, we set Si to the average of the diagonal

elements in SJ
i . For ROIs, we do not change the scaling

factor Si. Then we iteratively compute Ji, and use Ji to

compute Ri and Si until Ed is convergent.

D. Smoothness Energy. To increase the smoothness of

results, we limit the deformation between adjacent tetrahedra

by Es =
∑

i,j∈T

Ψ(i, j) ‖ RiSi − RjSj ‖ 2
F . Here i, j are

adjacent voxels and Ψ(i, j) = (ω (i) + ω (j)) /2. Thus, the

total energy can be defined as the weighted sum of two

energies: E = λEd + μEs, and λ and μ are the weights.

E. Constraints. Since the size of volume data is fixed,

for a control point P on the left plane of V I , we enforce

that Px equals to zero, and for a control point Q on the right

plane of V I , we enforce that Qx equals to the width of the

volume data. The y-axis and z-axis boundary constraints are

similar. Since tetrahedron flip will lead to self-intersection

and produce messy results, we require that det(RJ
i ) > 0.

Otherwise, we reverse the sign of the vector corresponding

to the smallest singular value of Ji, and recompute RJ
i .

By optimizing above energy functions, we can get the

position of the deformed tetrahedral mesh. Then we use the

trilinear interpolation to get the density of inner points of

the tetrahedra which can be accelerated on GPU.

II. EXPERIMENTS

In Fig. 1, we can see the ROI is magnified and other

regions are compressed to retain the original volume bound-
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Table I
PERFORMANCE STATISTICS (IN SECOND).

dataset volume size
initial tetrahedra reduced tetrahedra

pre-computation time deformation time
points tetrahedra points tetrahedra

aneurism 256x256x256 4096 14576 2000 5216 230 0.12
foot 256x256x256 9261 48000 5000 29276 410 0.27

bonsai tree 512x512x189 3969 19200 3969 19200 10 0.24

Figure 1. The original grid and the corresponding deformed grid. The
grid color from blue to red indicates the weight range from 0.0 to 1.0.

(a) original foot (b) deformed foot

Figure 2. The magnified results corresponding to different scaling
directions on foot dataset. The black ellipses indicate the user-specified
ROIs, and the blue arrows indicate the scaling direction.

ary. Compared with existing methods, our method can not

only magnify the features in ROIs, but also magnify them in

an anisotropic way. For the tubular-shaped objects, we can

magnify them along or perpendicular to the gradient direc-

tion. For volumetric data having explicit local directions, our

system can set different scaling factors along different tensor

directions. As shown in Fig. 2, with user-specified ROIs, our

system can coarsen the toes while keeping their length (or

elongate the toes while keeping their diameters). Our method

also preserves the structure well and automatically excludes

self-intersection when simultaneously magnifying multiple

ROIs with large scaling factors. By zooming the magnified

(a) original bonsai dataset (b) magnified result of (a)

Figure 3. The magnified result of user-specified ROIs on bonsai dataset.

regions in Fig. 3, it shows that our method can clearly

magnify the local features and well preserve the details.

Besides, compared with the cubic grid [4], tetrahedral grids

are more flexible when being manipulated. We can clearly

see how the local feature changes and avoid edge flip with

the help of Jacobian matrix.

To evaluate the efficiency of our method, we document

the timing performance in Tab. I. The local structure tensor

computation is done in pre-processing stage, whose time

consumption mainly depends on volumetric data size, and

the scale of sampling points in volume rendering. In our

experiments, we always use 600×600×500 sampled points

for ray-casting based volume rendering, however, the time

cost in pre-computation is relatively little.

III. CONCLUSION

We have presented a framework for interactive anisotropic

magnification of volumetric data. The fundamental idea

is the integrated strategy of local anisotropic tensor mea-

surement and global deformation over 3D grids. In this

way, we are able to transform a visualization problem of

magnification/shrinking to the space deformation problem.

Our experimental results demonstrate that the anisotropic

magnification is both meaningful and works extremely well.
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