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Abstract—This paper presents a volumetric modeling framework to construct a novel spline scheme called restricted trivariate
polycube splines (RTP-splines). The RTP-spline aims to generalize both trivariate T -splines and tensor-product B-splines; it uses solid
polycube structure as underlying parametric domains and strictly bounds blending functions within such domains. We construct
volumetric RTP-splines in a top-down fashion in four steps: 1) Extending the polycube domain to its bounding volume via space filling;
2) building the B-spline volume over the extended domain with restricted boundaries; 3) inserting duplicate knots by adding anchor
points and performing local refinement; and 4) removing exterior cells and anchors. Besides local refinement inherited from general T -
splines, the RTP-splines have a few attractive properties as follows: 1) They naturally model solid objects with complicated topologies/
bifurcations using a one-piece continuous representation without domain trimming/patching/merging. 2) They have guaranteed
semistandardness so that the functions and derivatives evaluation is very efficient. 3) Their restricted support regions of blending
functions prevent control points from influencing other nearby domain regions that stay opposite to the immediate boundaries. These
features are highly desirable for certain applications such as isogeometric analysis. We conduct extensive experiments on converting
complicated solid models into RTP-splines, and demonstrate the proposed spline to be a powerful and promising tool for volumetric
modeling and other scientific/engineering applications where data sets with multiattributes are prevalent.

Index Terms—Trivariate splines, polycube splines, polycube mapping.

Ç

1 INTRODUCTION

VOLUMETRIC data of massive size are now available in a
wide variety of scientific and research fields, because of

the rapid advancement of modern data acquisition technol-
ogies. A recurring problem is how to convert acquired 3D
raw data of discrete samples into a continuous representa-
tion upon which simulation and analysis processes can be
efficiently developed and accurately computed. The major-
ity of traditional solid modeling techniques in the past four
decades have been established upon the following theoretic
foundations: constructive solid geometry (CSG), boundary
representation (B-reps), and cell/space decomposition. Most
of these representations lack the ability of smoothly
modeling solid geometry. Smooth modeling of solids is
critical for modern engineering design that requires direct
and efficient applying physical simulation on volumetric
regions, without the expensive procedures of remeshing
finite-element structure, and converting from discrete
representations to continuous ones and from linear finite
elements to higher degree piecewise splines.

In practice, many real-world objects have complex
geometries and nontrivial topologies. Constructing efficient
representations for general solid objects in favor of physical

simulation and engineering design is therefore highly
challenging. Trivariate simplex splines [2] have been
developed to model multidimensional, material attributes
of volumetric objects. However, computing blending func-
tions and their derivatives on simplex splines is not
straightforward and much less efficient compared with
nonuniform B-splines (NURBS) and tensor-product B-
splines. Also, how to place boundary knots to avoid
numerical degeneracies remains open. Trivariate simplex
splines are defined over an unstructured tetrahedral mesh,
which can be generated from boundary triangular meshes
(e.g., using [3]). Although solid object of complex topologies
and geometries can be modeled by trivariate simplex
splines upon such unstructured structure, the majorities of
simulation solvers prefer regular grids. Low-quality tetra-
hedral meshes usually cause large simulation errors and
numerical instability. Motivated by current industrial
practice in engineering design and analytic systems, we
focus on designing a volumetric spline modeling frame-
work based on structured grid domains. Tensor-product
splines have the potentials to become an ideal representa-
tion scheme for this purpose.

In the framework of isogeometric analysis [4], [5], trivariate
tensor-product B-splines/NURBS are directly used to
model smooth geometry and material attributes of solid
objects for physical simulation. Martin et al. [6] convert
solid models to cylindrical trivariate B-splines by para-
meterizing models on solid cylinders. Due to the topologi-
cal limitation of the cylindrical domain, the constructed
trivariate tensor-product splines cannot model solid objects
with bifurcations and arbitrary topologies, without enor-
mous patch gluing/trimming efforts and imposing smooth-
ness constraints along patch boundaries. Furthermore,
tensor-product splines do not support local refinement
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and level-of-detail modeling because refining their basis
functions will introduce many superfluous control points
across the entire domain. As an extension of NURBS, T-
splines [1], [7] solve this problem on semiregular grid
domains. To the best of our knowledge, T-splines have not
been generalized for 3D, multiattribute volumetric geome-
try, and data modeling.

Generalization of T-splines from surface to volumetric
data is nontrivial. A general T-spline function defined over
a bivariate domain can be formulated as

Fðu; vÞ ¼
Pn

i¼1 wipiBiðu; vÞPn
i¼1 wiBiðu; vÞ

ðu; vÞ 2 IR2; ð1Þ

where pi are control points associated with weights wi, and
Biðu; vÞ denotes the basis function. Two pieces of T-spline
patches can be stitched together by blending boundary basis
functions, and form a new T-spline that preserves smooth-
ness across the boundary. Trivariate T-splines inherit such
nice features, and T-splines defined on polycube volumetric
domains can be similarly constructed by gluing a group of
T-spline cubes. However, the calculation of this T-spline
function and its derivatives requires dividing blending
functions by the sum of all the contributing ones. This
makes the evaluation computationally inefficient. On the
other hand, Semistandard T-splines introduced recently in [1]
guarantee

Pn
i¼1 wiBiðu; vÞ � 1 in (1) across the entire

domain. In this setting, the computation of Fðu; vÞ and its
derivatives can be much more efficient.

However, constructing a semistandard T-spline is
challenging over nontrivial parametric domains. Also,
conventional T-splines are defined with floating bound-
aries, i.e., the support regions of blending functions may go
beyond the domain boundaries. Such a floating-boundary
scheme upon a polycube domain causes control points to
unnecessarily contribute to extra domain regions. Two
examples are illustrated as red regions in Fig. 1. This might
cause geometric inconsistencies in modeling the underlying
solid objects and in physical simulations. Therefore, it
would be ideal to have a trivariate spline inherit from T-
splines, that 1) is defined within the largest visible region
inside the domain, and 2) has the property of semistandard-
ness. Such splines will greatly facilitate direct modeling and
physical simulation of arbitrary solid objects with complex
geometries and sophisticated topologies. The spline con-
structed in this paper has these properties, and we call it the
Restricted Trivariate Polycube Spline (RTP-spline).

This paper presents a framework of RTP-spline con-
struction and the data conversion of volumetric models to

this spline representation. It has the following major
contributions:

. We formulate a new spline (RTP-spline) scheme
over a polycube domain, restricting blending func-
tions inside the domain boundaries. The RTP-spline
has the following advantages:

- It is capable of local refinement.
- Its function and derivative evaluations are much

more efficient than that of traditional T-spline
surfaces.

- Its polycube domain enables natural modeling
of arbitrary solid objects, and the domain shape
mimics the geometry and topology of the model
and introduces low parameterization distortion
and few singularity points

- Its restricted boundaries ensure that the physical
modeling and simulation adhere to geometry of
underlying objects.

. We develop a novel framework to construct RTP-
splines in an effective top-down fashion.

. We construct RTP-splines on several volumetric
models with both geometry and synthesized tex-
tures (to mimic material properties), which demon-
strates that our RTP-splines can model not only
geometry but also multiattribute fields within a
unified paradigm.

The remainder of this paper is organized as follows: we
review the related literature in Section 2, then introduce
preliminaries and define necessary notations in Section 3.
The methodology of RTP-spline construction is illustrated
in Section 4. The entire process of converting discrete
volumetric data into the spline representation is then
explained in Section 5. We demonstrate experimental
results in Section 6 and conclude the paper in Section 7.

2 RELATED WORKS

Research on spline-based volumetric modeling has gained
much attention recently. Four-dimensional uniform ra-
tional cubic B-spline volume is used to constructively
model FRep solids defined by real-valued functions [8].
Martin and Cohen [9] model physical attributes across a
trivariate NURBS volume. It is more desirable in engineer-
ing design to have an integrated modeling framework that
can represent geometry and material and conduct simula-
tions simultaneously. Trivariate NURBS are used to model
skeletal muscle with anisotropic attributes [4], on which
NURBS-FEM analysis is directly conducted. Martin et al.
[6] parameterize a volumetric solid into a solid cylinder
upon which a trivariate B-spline is constructed. Hua et al.
develop a framework based on triangular simplex splines
[2] to model and render multidimensional material
attributes of solid objects with complicated geometries
and topologies.

The splines proposed in this paper are founded upon the
T-spline technique [7]. The T-spline is a generalization of
NURBS, but permits T-junctions on its control mesh and
enables local insertion of additional knots without introdu-
cing superfluous control points. A local refinement method
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Fig. 1. Extra support regions. On a concave domain, if the supporting
box of a blending function intersects with the domain boundary (e.g.,
boxes of v1 and v2), extra control points (e.g., in red regions) could
contribute to the function blending unnecessarily.



is proposed in [1] and [10] to simplify NURBS surfaces into
T-spline representations by removing superfluous control
points. Ipson [11] thoroughly discusses how to merge B-
spline patches defined over different local domains to get a
single T-spline representation on manifold domain.

Bazilevs et al. [12] propose an isogeometric analysis
framework based on T-splines. Its main focus is on planar
T-splines for surfaces, and volumetric T-splines are only
briefly mentioned without offering any technical details.
Generalized trivariate T-splines (whose control points are
associated with weights) are employed by Song and Yang
[13] to model free-form deformation fields. For the purpose of
shape metamorphosis, 3D level sets represented by T-splines
are adopted in [14], [15], [16], and [17] for its efficiency. This is
because, the distribution of T-spline control points can be
made adaptive to the geometries of the morphing objects.

Our work relies on the construction and parameterization
of a polycube domain. The parameterization on polycubes
originated for seamless texture mapping with low distortion
[18]. Polycubes serve as nice parametric domains because
they approximate well the geometry of the model and possess
great regularity. A polycube mapping can be constructed
either manually [18], [19], [20] or automatically [21], [22].
Based upon specially designed surface parameterization,
Wang et al. [19] build manifold bivariate T-spline over a
polycube that can handle models with arbitrary topology. A
few recent works [23], [24], [25], [26], [27], [28] study the
parameterization of a solid object to canonical domains such
as spheres, polycubes, star-shaped volumes, etc. Volumetric
parameterization typically starts from a given surface
mapping, and parameterizing volumetric data onto a solid
polycube domain serves as an important preprocessing step
for the conversion of any solid model to RTP-splines.

3 PRELIMINARIES AND NOTATIONS

In this section, we introduce a general algorithm to construct
trivariate T-spline with duplicate knots on a regular box
domain, review the theory of basis function refinement, and
define necessary notations for the rest of the paper.

3.1 Trivariate T-Splines with Duplicate Knots

Defined on a grid structure that allows T-junctions (or T-
mesh), the T-spline proposed in [7] is a generalization of
nonuniform B-splines. When considering a simple cube
domain, the definition of T-spline surfaces can be straight-
forwardly extended to three dimensions and generate
trivariate T-splines on T-lattice grids, where “T-junctions”
are referred to the intersections between faces and/or lines.

Let T ðV; C;FÞ denote a rectilinear grid structure that
permits T-junctions, where V, C, and F are sets of vertices,
cells, and faces, respectively. K � V � f�1; 0;þ1g3 denote a
set of anchors attached to vertices. At most 27 anchors are
allowed at each vertex, and they can be visually imagined to
be organized on a 3� 3� 3 grid of infinitesimal size, as
shown in Fig. 2. We require that each vertex has a master
anchor at the center of the local grid, while the others are
optional and called subanchors. In the rest of the paper, we
denote an anchor at vi as kið�;�;�Þ, in which the triplet
ð�; �; �Þ indicates a unique nodal position on the local grid.
Given vi ¼ ðv0

i ; v
1
i ; v

2
i Þ, all the corresponding anchors kið�;�;�Þ

share the same coordinator ðv0
i ; v

1
i ; v

2
i Þ in parametric space.

To distinguish these anchors in T-spline construction, we
define �kið�;�;�Þ ¼ vi þ ð�; �; �Þ� as the coordinator of við�;�;�Þ
in construction space, where � is an infinitesimal with respect
to the minimal cell size. In the rest of this paper, we
sometimes represent an anchor by a simpler notation kj,
where j indicates the index of kjð�;�;�Þ in K.

Given T and K, a trivariate T-spline can be defined as

Fðu; v; wÞ ¼
PjBj

i¼1 piBiðu; v; wÞPjBj
i¼1 Biðu; v; wÞ

ðu; v; wÞ 2 IR3; ð2Þ

where ðu; v; wÞ denotes 3D parametric coordinates, pi are
control points, and B ¼ fBiðu; v; wÞg is the collection of
blending functions. Each Biðu; v; wÞ is a tensor product of
three B-spline basis functions written as

Biðu; v; wÞ ¼ N3
i0ðuÞN3

i1ðvÞN3
i2ðwÞ; ð3Þ

where N3
i0ðuÞ, N3

i1ðvÞ, and N3
i2ðwÞ are defined along u, v, and

w directions, respectively. In the case of cubic T-spline, the
univariate function N3

ij is constructed upon the knot vector
�j
i , which is deduced from T and a collection of anchors K.

We refer the knot vector in construction space by
notation �j

i ¼ ½��
j
i0;

��ji1;
��ji2;

��ji3;
��ji4� for the rest of the paper,

unless mentioned otherwise. In the case of cubic T-splines,
each blending function must be associated with an anchor,
which coincides with the middle knot of its three knot
vectors in the construction space.

To infer knot vectors from a T-lattice is essentially the

same as that for T-mesh, except that the searching is

conducted in construction space. Starting from an anchor
�k ¼ ð��0

i2;
��1
i2;

��2
i2Þ, ��0

i3 and ��0
i4 are found by shooting a ray

LðtÞ ¼ ð��0
i2 þ t; ��1

i2;
��2
i2Þ in the construction space. �0

i3 and �0
i4

are the corresponding coordinate values of the first two

intersections where LðtÞ comes across either an anchor or a

face in F . If LðtÞ does not make two intersections before

traveling outside T , the last coordinate value is repeated,

e.g., �0
i3 ¼ �0

i4 or �0
i2 ¼ �0

i3 ¼ �0
i4 (see Fig. 3). The knots along

other directions are determined in a similar fashion.

3.2 Refinement of B-Spline Functions

To refine blending functions on trivariate T-splines, we
need to review the knot insertion algorithm for univariate
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Fig. 2. A vertex vi can have at most 27 anchors organized on a 3� 3� 3
virtual grid. The central one (red) is the master anchor and the rest
(black) are subanchors.



B-spline functions. Let � ¼ ½�0; �1; �2; �3; �4� be a knot vector

and Nð�Þ denote the cubic B-spline basis function defined

on it. If there is an additional knot k 2 ½�0; �4� inserted into �,

Nð�Þ can be written as a linear combination of two scaled B-

spline functions

Nð�Þ ¼ c1N1ð�Þ þ c2N2ð�Þ; ð4Þ

where c1, c2, and knot vectors for N1ð�Þ and N2ð�Þ are all

determined by the rules in Table 1.

4 CONSTRUCTING RTP-SPLINES

The construction of RTP-splines includes four major steps

(see Fig. 4):

1. Extending given polycube P domain to a box
domain.

2. Building trivariate B-splines with restricted bound-
aries.

3. Introducing duplicate knots by inserting additional
anchors, and performing local refinement to separate
interior and exterior blending functions.

4. Producing RTP-splines by removing structures/
anchors outside P .

4.1 Extending Polycubes to Bounding Boxes

Following the notations introduced in Section 3.1 on the

trivariate T-spline domain, let P ¼ ðVP ; CP ;FP Þ be a given

polycube structure, where VP , CP , and FP denote vertices,

cubes, and cell faces, respectively. In order to extend P to a

box volume with rectilinear grids, P should not have T-

junctions or intersections between its cell faces. Our

parametric polycube domains (see Section 5.1) do not

contain T-junctions. If other polycube mapping methods

are used to construct the parametric domain and the

generated domain has T-junctions, we can always eliminate

them simply by splitting the cells across the domain,

through the extended planes of these intersecting cell faces.

Now, P can be extended to its bounding box domain

T ðV; C;FÞ by filling in some solid cuboid structures

G ¼ ðVG; CG;FGÞ, where VG ¼ V � VP , CG ¼ C � CP , and

FG ¼ F �FP . G represents the exterior structure of P and

we call its domain the ghost region. Note that there is a

rectilinear grid embedded in the space of T , and the grid

coordinates in k-axis direction are represented by

Sk ¼
�
sk1; s

k
2; . . . ; sknk

�
k ¼ 0; 1; 2;

where nk is the resolution of rectilinear grid along k-axis.

4.2 Building the B-Spline Volume with Restricted
Boundary

With the bounding box domain T constructed, it is not

difficult to construct a trivariate tensor-product B-spline on

it. We may use Ks as the knot vectors to define the trivariate

B-spline. However, Ks must be augmented to ensure that

the definition is valid and covers the entire domain T . One

method is to add extra knots outside the domain region,

generating a floating-boundary scheme. In this paper, we

duplicate the knots at both ends of Sk in order to restrict the

B-spline blending function within the domain T , i.e., Sk
turns into

Sk ¼
�
sk1; s

k
1; s

k
1; s

k
1; s

k
2; . . . ; sknk�1; s

k
nk
; sknk ; s

k
nk
; sknk

�
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Fig. 4. RTP-spline construction pipeline. (1) Extend polycube domain to its bounding box. (2) Build B-spline volume with bounded boundaries.
(3) Insert anchors and refine blending functions. (4) Remove exterior regions.

TABLE 1
Refinement of Nð�Þ by Inserting k into Knot Vector
½�0; �1; �2; �3; �4�, Which Generates Two Basis Functions
N1ð�Þ and N2ð�Þ, Scaled by c1 and c2, Respectively

Fig. 3. Knot vectors are derived from a T-lattice associated with a set of
anchors (dots). The knot vector from ka is ½0; 0; 1; 2; 2� in þu direction,
where 2 repeats twice because L0 intersects once with the rightmost
boundary. The knot vector from kb toward �w direction has 0 repeated
three times because L1 intersects nothing from T or K except kb.



in which three extra knots are added to each end. Therefore,
the trivariate tensor-product B-spline defined on T is
formulated as

Fðu; v; wÞ ¼
Xn
i¼1

piBiðu; v; wÞ ðu; v; wÞ 2 IR3; ð5Þ

where n ¼ ðn0 þ 2Þ � ðn1 þ 2Þ � ðn2 þ 2Þ is the number of
control points, and Biðu; v; wÞ are blending functions
defined in (3).

Alternatively, we can obtain F by constructing blending

functions similar to T-splines (Section 3.1), instead of
computing them from three global knot vectors. We let

S ¼
�
s0

1; s
0
1 þ �; . . . ; s0

n0
� �; s0

n0

�
�
�
s1

1; s
1
1 þ �; . . . ; s1

n1
� �; s1

n1

�
�
�
s2

1; s
2
1 þ �; . . . ; s2

n2
� �; s2

n2

�
and choose the anchor set K ¼ fkið�;�;�Þj�kið�;�;�Þ 2 Sg, then
build blending functions associated with each anchor. K
contains subanchors that only exist at corner, edge, and face

vertices (see their configurations in Fig. 5a). These subanchors
guarantee partition of unity of F and limit the influential
regions of blending functions within the domain T .

4.3 Local Refinement and Anchor Insertion

Let internal and ghost blending functions refer to the
blending functions associated with anchors in P and G,

respectively. In this section, we seek to refine existing
blending functions with knot insertion and local refinement,
so that the resulting internal and ghost blending functions
are isolated and restricted boundary forms along the

surface of P . More precisely, our goal is to enforce the
following rules to the blending function set:

1. No ghost blending function influences any part of
the polycube domain.

2. Semistandardness is preserved on the internal
blending function set if G and all the ghost anchors
are removed.

3. No internal blending function influences any region
outside the polycube domain if G and all the ghost
anchors are removed.

To achieve this goal, we systematically add new anchors

in two steps. First, add subanchors at the polycube
boundary vertices (Section 4.3.3). Second, keep inserting
subanchors to refine those blending functions that violate
the above rules, until no violation exists. Adding new

subanchors ultimately introduces duplicate knots into knot
vectors, which serves for two purposes: 1) reducing the

influential region of a blending function and 2) degenerat-
ing the continuity of a blending function to C0 at desired
places (Section 4.3.2). Moreover, as new anchors may lead to
disagreements between existing blending functions and
underlying knot vectors implied by T and new K, an
algorithm (Section 4.3.1) is necessary to resolve these
inconsistencies after new anchors have been inserted.

4.3.1 Local Refinement of Blending Functions

We need to introduce an algorithm to update blending
functions B accordingly, once there occurs any change in
the anchor set K and/or the domain structure T . The
refinement algorithm proposed in [1] and [10] is designed
for surface editing, the primary goal of which is to preserve
the shape of a T-spline surface whenever new control points
are inserted. In this paper, we extend this algorithm to 3D
and enhance it to support trivariate T-spline with duplicate
knots. By interpreting the B-spline volume previously
obtained as a general trivariate T-spline, we can rewrite
its representation from (5) to

Fðu; v; wÞ ¼
PjBj

i¼1 wipiBiðu; v; wÞPjBj
i¼1 wiBiðu; v; wÞ

ðu; v; wÞ 2 IR3; ð6Þ

where wi is the weight associated with each blending
function Bi. Note that the T-spline so far is essentially a B-
spline volume:

PjBj
i¼1 wiBiðu; v; wÞ � 1 for any ðu; v; wÞ and

wi ¼ 1 for any i.
Let K� denote the updated anchor set and T �ðV�; C�;F�Þ

be the new grid structure after vertex insertion or cell
splitting. Given K�, T �, W, and B, Algorithm 1 generates
new blending function set B� with new corresponding
weights W�, as well as the updated versions of K� and T �.

In Algorithm 1, the superscript indicates the index of the
original blending function from B, with which a variable is
associated, and the subscript indicates the index of the
associated central anchor. For example, Bt

i is a blending
function associated with anchor ki and originates from the tth
blending function from B. The star superscript indicates that
the variables are obtained from the modified domain T �, e.g.,
��i denotes the knot vectors deduced from T � and centered at
k�i (i.e., the three middle knots of ��i coincide with k�i ).

The basic idea of Algorithm 1 is as follows: first, we
decouple blending functions from T and K. Then, by
either inserting new anchors or refining basis functions
(Section 3.2), we keep resolving the inconsistencies
between B and the local knot vectors implied by K� and
T �. A cell splits into half if there are vertices on its edges
forming an axis-aligned plane. Finally, any blending
functions arising from different refinements but having
equivalent knot vectors in parametric space are combined
into a single one with their weights being added together.

Note that any blending function introduced by Algo-
rithm 1 must center at a certain anchor, but not vice versa,
i.e., there could be anchors not associated with any blending
functions. Moreover, the new T-spline after refinement is
still semistandard, because the denominators in (6) remain
unchanged in Algorithm 1, because of the fact

wtiB
t
i � wti � c1B

t
j þ wti � c2B

t
i � ~wtj

~Bt
j þ ~wti

~Bt
i:
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Fig. 5. (a) Knot configurations at corner, edge, and face vertices for
restricted boundaries. (b) Examples of extraordinary corners on a
polycube.



Algorithm 1: Refinement of trivariate T-spine blending
functions in support of duplicate knots

4.3.2 Modifying Blending Functions with Anchor

Insertions

The anchor operation is our fundamental tool to modify
existing blending functions of trivariate T-splines in order
to get rid of all violations against rules 1, 2, and 3. As
blending functions of trivariate T-splines are tensor
products of three univariate cubic B-spline bases, let us
illustrate this method in 1D by using two examples given
in Fig. 6. In Fig. 6a, N0 ¼ N ½�2;�1; 0; 1; 2� represents an
internal basis which apparently violates rule 2. If two extra
knots 0s are inserted, N0 is refined into two internal bases
N1 ¼ N½�2;�1; 0; 0; 0� and N2 ¼ N½�1; 0; 0; 0; 1�, one ghost
basis N3 ¼ N ½0; 0; 0; 1; 2�, such that N0 ¼ 2

3N1 þ 2
3N2 þ 2

3N3

according to the refinement algorithm in Section 3.2. Once

the ghost region is gone, N1 and N2 change to N�1 ¼
N½�2;�1; 0; 0; 0� and N�2 ¼ N ½�1; 0; 0; 0; 0�, respectively,
and we still have N0ðuÞ ¼ 2

3N
�
1 ðuÞ þ 2

3N
�
2 ðuÞ on u 2 ½�2; 0�,

as shown in the bottom of Fig. 6a. Therefore, the violation
against rule 2 is successfully eliminated. Fig. 6b depicts a
scenario where N0 ¼ N ½�3;�2;�1; 0; 1� violates rule 1
overlaps with the domain region at ½0; 1�. By inserting
two duplicate knots at 0, we may replace N0 with two
resulting ghost bases N1 and N2, both of which abide with
rule 1. For trivariate T-splines, knot insertions are replaced
by anchor insertions conducted on T-lattice, and a much
more complex refine algorithm (see Section 4.3.1) is
employed instead.

4.3.3 Anchor Insertions on Polycube Boundary

It is easy to see that the blending functions associated with
those master anchors either on, or adjacent to the interfaces
betweenP andG are in violation of rule 2. Therefore, we need
to insert subanchors to boundary vertices. The basic idea is
analogous to that in Section 4.2 where subanchors are added
on the surface of a box domain to ensure its restricted
boundary. However, a variety of corner types may be found
on polycube surfaces (see Fig. 5b); thus, we have to handle all
of them for proper anchor insertions. To exhaust all possible
corner types, then choose subanchors to insert is tedious and
inefficient. Instead, we develop a general algorithm to
determine which subanchors to be inserted at arbitrary
boundary vertex. Given a boundary vertex vi, we first add
the master anchor to it, along with all the subanchors that lie
within the domain of T in construction space. Then, the
subanchors lying within the domain of P in construction
space are colored red, and the others are blue. If there exists
kið��;�;�Þ 2 K for all kið�;�;�Þ 2 K and colorðkið��;�;�ÞÞ ¼
colorðkið�;�;�ÞÞ for � 2 f�1; 1g �; � 2 f�1; 0; 1g, we delete
fkið	1;�;�Þg fromK, that is, the subanchors on the first and the
third layers in 0-axis direction of the 3� 3� 3 grid at vi that
match in color pattern are deleted. Then, this operation is
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Fig. 6. Examples of eliminating violations against rules 1 and 2 in the
case of cubic B-spline basis functions. Suppose x ¼ 0 is the boundary
and the ghost region covering ð0;1Þ in (a), N0 represents an internal
basis against rule 2. After two extra knots 0 are inserted, N0 is refined to
N1 and N2 which comply with rule 2. In (b), the ghost region covers
ð�1; 0Þ and ghost basis N0 violates rule 1. After inserting duplicate
knots, it is replaced by N1 and N2 in ghost blending functions. Thus, no
violation against rule 1 exists.



performed similarly in the other directions. The intuition of
this method is to generate C0 continuities at the boundaries
with as few subanchors as possible, in order to keep the
smoothness along the other directions. An example is given
in Fig. 7 in which subanchors are inserted at a boundary
vertex on 2D mesh. After all the required subanchors are
added at the interface between P and G, Algorithm 1 is then
applied to generate a new set of blending functions and a new
set of weights.

4.3.4 Other Anchor Insertions

Section 4.3.3 has resolved most violations against rules 1
and 2 arising from the blending functions that are
associated with the master anchors close to the polycube
boundary. Nevertheless, there are still other violations left.
They can be categorized into four types as follows:

1. (See Fig. 8a) Ghost blending functions associated
with subanchors violate rule 1. For example, the
support region of the blending function associated
with kið1;0Þ (the other index is omitted for conciseness
reason) overlaps with P . A pair of anchors kað1;1Þ and
kað1;�1Þ can be added to reduce the support region to
the boundary while no further violations being
introduced. The violation arising from kjð1;�1Þ is
treated in the same fashion. In the case of kkð1;1Þ, only
one subanchor kkð1;�1Þ is required to eliminate the
violation.

2. (See Fig. 8b) Internal blending functions associated
with subanchors violate rule 2. For example,
removal of the ghost region and ghost anchors will
change the shape of the blending function associated
with kið1;0Þ because its knot vector goes into the ghost

region. Similar to case 1, kað1;1Þ and kað1;�1Þ can be
added to cut off the blending function from outside.
Only one anchor insertion is necessary to resolve the
violation arising from kjð1;�1Þ. Even though the new
blending functions after refinement still covers
nearby ghost region, they do not violate rule 2
anymore. This has been explained in Section 4.3.2
(Fig. 6a).

3. (See Fig. 8c. We illustrate four different cases together
in Fig. 8c. Thus, we consider the existence of only one
blue anchor each time.) Ghost blending functions
near a convex corner of P violate rule 1. For example,
in spite of its knot vectors being apart from P and any
internal anchors, the blending function associated
with kað0;0Þ still influences the internal corner region.
To remedy this violation, two subanchors kcð1;0Þ and
kbð0;1Þ are added to the extended surfaces of the
convex corner, reducing the support region of the
blending function centered at kað0;0Þ to separate it
from P . Similarly, kcð1;0Þ and kbð�1;1Þ are added for
kað�1;0Þ, kcð1;�1Þ, and kbð0;1Þ for kað0;�1Þ and kcð1;�1Þ and
kbð�1;1Þ for kað�1;�1Þ.

4. (See Fig. 8d. There are also four independent cases
presented in Fig. 8d.) Internal blending functions
near a concave corner of P violate rule 3. This type of
violation is similar to case 3 except that the domain
region and the ghost regions are interchanged and
the purpose of eliminating this kind of violations is
to ensure restricted boundary of P .

Once new subanchors are inserted, we apply the
refinement algorithm given in Section 4.3.1 and obtain
new sets of blending functions, weights, and anchors along
with the updated T-lattice structures. Since extra anchors
may be introduced by the refinement, we have to search for
new violations and resolve them again. These two steps are
repeated until no violation is found. We notice in our
experiment that it only takes one or two iterations in
practice to eliminate all violation cases. On the other hand,
the proposed anchor insertion method is guaranteed to
terminate due to the fact that no vertex is added during
refinement, and there are only a finite number of sub-
anchors that can be added to T . In the worst case, each cube
of T turns into a small Bézier volume.

4.4 Generating RTP-Spline Function

By removing G and all ghost anchors from K, we obtain an
RTP-spline, which is a single-piece smooth function,
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Fig. 7. Inserting subanchors to a boundary vertex. Red dots denote
anchors inside P and blue ones are those in G. As the color patterns on
the leftmost and rightmost grid layer match, all subanchors on both
layers are removed.

Fig. 8. Violation cases. The blue dots represent the associated anchors of violating blending functions. The anchors added to remedy the
corresponding violations are colored red. (a) and (c) show the violation cases against rule 1; (b) shows the cases against rule 2; and (d) shows the
cases against rule 3. Note that in (c), we illustrate four independent violation cases in one figure. In (d), we also show four independent cases.



defined over a polycube domain P . Our anchor insertion

method guarantees that the resulting RTP-splines have a

restricted boundary. Furthermore, the refinement algorithm

proposed in Section 4.3.1 ensures semistandardness of the

obtained RTP-splines from the original B-spline volume.

Since the denominator remains 1 over the entire domain P ,

we can rewrite (6) in a simpler formulation:

Fðu; v; wÞ ¼
XjBj
i¼1

wipiBiðu; v; wÞ ðu; v; wÞ 2 IR3: ð7Þ

5 MODELING SOLID OBJECTS

It is a challenging task to build single-piece and smooth

spline representations for arbitrary solid objects, especially

for those with bifurcations and high genus. This section

addresses how to construct an RTP-spline for a given solid

model. In this work, an input solid model is represented as a

dense tetrahedral mesh M ¼ fV; T g. Its geometry and other

material attributes are discretely represented on vertices V,

and are interpolated linearly within each tetrahedron of T .

Note that our volumetric mapping algorithm is a meshless

method with a closed-form mapping representation, and it

works for other volumetric data representations such as

point clouds and voxel grids. Therefore, the entire RTP spline

construction pipeline can be easily generalized to handle

other volumetric data formats.
We first construct a polycube P following the geometry

and topology of M and compute a volumetric mapping f :

P !M (see Section 5.1), then construct an RTP-spline

function Fðu; v; wÞ over the polycube domain P (using the

algorithm proposed in Section 4), and finally fit it to a group

of data point chosen from M.

5.1 Parameterization on Polycube Domains

Computing volumetric parameterization is an important

issue for the RTP-spline construction. Tensor-product

trivariate splines usually need to be defined over a

parametric (box) domain, and the quality of the parameter-

ization can affect the fitting efficacy of splines. Therefore,

we choose to use the polycube parametric domain which

possesses great regularity while well approximating the

geometry of the original object.
A volumetric parameterization of a solid model M

embedded in IR3 on a polycube P is a bijective mapping

f : P !M;P;M 
 IR3. The polycube P can be constructed

either manually [19], [20], [29] or automatically [21], [22].

These techniques also provide the boundary mapping g

from the polycube boundary surface (denoted as @P ) to the

boundary of M (@M). We use such surface mapping g :

@P ! @M as the boundary condition of f . The volumetric

parameterization is then defined as the seeking of a

harmonic energy minimizer:

�fðxÞ ¼ 0; x 2 P;
fðxÞ ¼ gðxÞ; x 2 @P;

�

where � is the 3D Laplace operator, defined for each real

function f in IR3 as

�f ¼ r � rf ¼ @
2f

@x2
þ @

2f

@y2
þ @

2f

@z2
:

�f ¼ 0 for f ¼ ðf1; f2; f3Þ is equivalent to �fi ¼ 0 in all the
i ¼ 1; 2; 3 coordinate directions. We compute the volumetric
polycube mapping using the method of fundamental
solutions (MFS) [24], [30]. We recap the basic algorithm
here and refer more details to [24].

Based on the maximum principal of harmonic functions,
critical points of harmonic functions exist only on the
boundary. Furthermore, function values in the interior
region of P are fully determined by the boundary values
fðxÞ;x 2 @P and can be computed by Green’s functions.
Specifically, the real harmonic function value fðxÞ can be
computed as the integration of its boundary values and the
kernel function (i.e., fundamental solutions associated with
the 3D Laplacian operator �). The kernel function of � has
the following formula:

Kðx;x0Þ ¼ 1

4�

1

jx� x0j ;

which matches the electrostatistics. In other words, solving
a harmonic function can be converted to designing a
specific electric field determined by an electronic particle
system, whose electric potential mimics f and shall satisfy
the boundary condition g on @P .

The computation pipeline is to first place a set of charge
points fqsg outside the domain qs 2 @ eP; P 
 eP 
 IR3. Then,
we conduct a boundary fitting which solves the charge
distribution fwsg on these points fqsg. The harmonic
function fðxÞ is represented using the MFS equation:

fðx;W;QÞ ¼
XNs

s¼1

ws �Kðx; qsÞ;x 2 P; qs 2 @ eP;
where f is guaranteed harmonic, and we need to enforce
the boundary condition on @P . For boundary fitting, we
sample Nc collocation points on the domain boundary @P to
set up the constraint equations. If we have Ns charge points
and Nc collocation points, for a real harmonic function f
(e.g., along an individual axis direction), we only need to
solve an Ax ¼ b linear system where A is an Nc �Ns matrix.
The system can be efficiently solved by a truncated singular
value decomposition [24], [31].

The parameterization of a general solid model on its
adaptive polycube domain can get lower distortion than
that on a single box domain, since the polycube can be
constructed to have the same topology and similar
geometry as the model. In fact, in RTP-spline construction,
the parameterization without fully satisfying the conform-
ality and equivolume property does not have side effects to
the volume fitting, as long as the overall parameterization
mapping is continuous and smooth. Therefore, the current
parameterization is efficient and sufficient, i.e., the shape
(angle) distortion and volume distortion of our volumetric
mapping are satisfactory.

Along the following two directions, we would like to
also explore volumetric mapping techniques for parameter-
ization with higher quality: 1) We can use more compli-
cated/general parametric domains such as manifold
domains (directly represented by tetrahedral meshes),
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polytubes [29], and so forth, which may more flexibly
approximate the shape and yield lower distortion. How-
ever, on such domains, it becomes more challenging to
construct regular splines providing the same favorable
features of RTP-splines. 2) The current volumetric mapping
is fully determined by the boundary constraint, i.e.,
the\bigpolycube surface mapping [19]. We can reduce the
distortion by conducting relaxation of boundary surface
mapping [32], now driven by the volumetric mapping
distortion. However, this makes the mapping computation
a nonlinear optimization which is inefficient.

5.2 RTP-Spline Volume Fitting

Given f : P !M, we evenly select a group of points U ¼
fu1;u2; . . . ;umg from the polycube parametric domain p;
hence, their counterparts in the real-world domain are
X ¼ fxi ¼ fðuiÞ; i ¼ 1; . . . ;mg. The problem of fitting the
RTP-splines Fðu; v; wÞ resorts to minimizing the following
equation using U and X, with respect to control points pi

Xm
i¼1

ðFðuiÞ � xiÞ2: ð8Þ

Alternatively, it can be represented in format of

1

2
PTBTBP�XTBP; ð9Þ

in which Pj ¼ pTj , Xi ¼ xTi , and Bij ¼ I3�3BiðujÞ. This is a
typical least-squares problem, and we solve it for P using
the optimization package MOSEK [33].

If the fitting results do not meet the requirement, we can
improve them by refitting after adaptively subdividing cells
where large fitting errors occur. Each cell from P is split
into two, four, or eight smaller ones, depending on its
aspect ratio. Once vertices, faces, and cells are added,
Algorithm 1 is employed to refine existing RTP-spline and
introduce additional degrees of freedom (DOFs) for better
fitting. Note that Algorithm 1 is originally devised to work
on a box domain, it can be however straightforwardly
applied to RTP-splines defined on polycube domains, with
a slight modification. That is, whenever a new boundary
vertex is added, we have to insert a few subanchors in
addition to the master anchor by following the way
described in Section 4.3.3, in order to preserve the restricted
boundary on the resulting RTP-splines.

Compared with the number of degrees of freedom in the
optimization problem (8), U normally contains a much

greater number of parametric points evenly distributed
inside the polycube domain. So, the optimization problem is
well posed and the resulting linear equations form a
nondegenerate system. If there are too many subdivisions,
the increased number of DOFs may lead to degenerate
systems. In this case, we will first enlarge U by adding
more points on the parametric domain near the regions
where subdivisions take place and then recalculate X.

6 RESULTS AND DISCUSSION

We implement the entire volumetric parameterization, RTP-
spline construction, and data fitting framework in C++ and
perform experiments on a 3 GHz Pentium-IV PC with 4 G
RAM. Our experimental data include solid models of
Bimba, Beethoven, eight (genus 2), kitten (genus 1), hand
(five bifurcations), and head (with brain being excavated),
which are represented as tetrahedral meshes. We success-
fully convert them into representations of single-pieced
smooth RTP-splines using our proposed algorithms. The
experimental results are given in Fig. 11.

The RTP-splines construction is efficient and usually
takes only a few seconds, which consists of deducing knot
vectors, building blending functions, calculating weights,
and initializing necessary data structures. In all our
experiments, this step takes at most 6 seconds (for the
Beethoven model at level 3). In contrast, fitting RTP-splines
to volumetric data sets is compositionally more expensive.
The statistics of volumetric fitting are documented in
Table 2, where the data points are parameterized on
polycube domains, the fitting quality is measured by RMS
errors, and the fitting errors are normalized by the overall
sizes of solid models. From Table 2, we find that the
volumetric fitting of the RTP-splines can be achieved
efficiently and yield reasonable results. In addition, RTP-
splines enable local subdivision of cells over desired
regions to improve fitting qualities. As shown in the
Beethoven model, the initial error is 1:80� 10�3 without
subdivisions and is reduced to 7:18� 10�4 after two levels
of subdivisions. The geometric details of Beethoven are also
gradually revealed with the increasing level of subdivision
(see Fig. 10).

RTP-spline is semistandard and hence computing blend-
ing functions and their derivatives on the domain is much
more efficient than on traditional T-splines. To empirically
prove this, we compared computational cost on the models
Bimba, Kitten, and two-hole torus with both kinds of spline
representations. To ensure the fairness in comparison, we
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TABLE 2
Statistics of Volumetric Fitting

Fig. 9. RTP-spline function considered as a deformation function
describing transformation from polycube to solid object. The Jacobians
of the deformation gradients are colorized to illustrate smoothness of
derivatives of the splines.



use the same source codes of RTP-splines to compute

blending functions and derivatives for traditional T-splines,

by including calculation of denominators. The comparison

results are given in Table 3. As a result, the costs of the

calculations of B̂, B̂0, and B̂00 using traditional T-splines are

roughly reduced by 47, 46, and 58 percent, respectively, if

RTP-splines are used instead.
We can model other attributes in addition to geometry in

RTP-splines by increasing the vector sizes of control points.

In one of our experiments, we synthesize a scalar field on the

head model, and then successfully recover a single RTP-

spline representation of both the geometry and scalar values

as shown in Fig. 12. Two kinds of scalar fields are involved in

the experiment. One is the distance field to both the head

surface and the brain surface inside (see Fig. 12d). The fitting

results for the distance field and the corresponding fitting

error map are demonstrated in Figs. 12e and 12f, respectively.

Note that the fitting errors shown here are also normalized

RMS errors as the distances are related to the model

geometry. The other type of scalar field is a synthesized

procedural 3D texture, generated using the fractal sum of

Perlin noise [34] as T ðpÞ ¼
P4

i¼1
1
i noiseðipÞ;p 2 IR3) (see

Fig. 12g). In the experiment, the value of T ðpÞ varies from 0.8

to �1:33. And the absolute RMS fitting error to T ðpÞ is 7:3�
10�4 (see Figs. 12h and 12i).

As an RTP-spline function is continuously and smoothly
defined over a polycube, we can evaluate any properties
that depend on function values and derivatives anywhere
over the domain. If we interpret the RTP-spline function F
obtained from data fitting as a deformation from a polycube
to the shape of the fitted solid model, the deformation
gradient tensor is G ¼ F�r and its Jacobian detðGÞ
measures the volume changes produced by the deforma-
tion. In Fig. 9, the Jacobian values for the hand and Bimba
model are directly evaluated from function value and
derivatives of F and there are no abrupt changes in color
due to the smoothness and continuity of RTP-splines.

Linear independence of blending functions. It has been
proven in [35] that linear independence is not a guaranteed
property on general T-splines, and the property of linear
independence can be inherited from T-splines with coarser
T-meshes through refinement operations, as long as new
anchors are added in certain ways.

The RTP-spline is an extension of the trivariate T -spline,
but its construction does not follow the rules proposed in
[35] when new anchors are inserted. So, the question of
whether the blending functions of an RTP-spline are
linearly independent remains open. For this reason in this
paper, we call Bi (in (7)) a blending function instead of a basis
function.

The volume fitting problem is solved in a least-squares
system, which does not require the linear equations involved
to be linearly independent. Therefore, the fitting results will
not be adversely affected even if the RTP-spline blending
functions are linear independent or not. In our experiment,
we observed that if there is no subanchor introduced in the
refinement step as discussed in Section 4.3.1, the blending
functions of the RTP-splines thus constructed would remain
linear independent. So, it is possible to have a modified RTP-
spline construction scheme using adaptive subanchor inser-
tion that guarantees the linear independence property. We
will explore this direction in the near future.

7 CONCLUSION

In this paper, we have proposed the concept and construc-
tion algorithm of RTP-splines and presented an effective
framework to transform volumetric data (both geometries
and associated attributes of solid objects) into representa-
tion of RTP-splines. Because of the topological flexibility of
the polycube domain, RTP-splines can naturally model
solid objects with bifurcations and high genus as a single-
piece smooth function with restricted boundary, while
ensuring lower parameterization distortion in comparison
with traditional splines defined over standard box domains.
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Fig. 10. Adaptive fitting of Beethoven. From top to bottom: fitting with 0,
1, and 2 levels of subdivision.

TABLE 3
Computational Costs in Calculating Blending Functions and Their Derivatives: RTP-Splines versus General T-Splines

The time includes total computation spent on blending functions values and their derivatives at all sample points. The blending functions used in
comparison are defined as B̂iðu; v; wÞ ¼ wiBiðu; v; wÞ for RTP-splines, and B̂iðu; v; wÞ ¼ wiBiðu; v; wÞ=

PjBj
j¼1 wjBjðu; v; wÞ for T-splines, respectively.



The semistandardness on the initially constructed RTP-

spline, which allows the efficient computation of spline

functions and their derivatives, without any division

overhead. The proposed RTP-spline supports local refine-

ment, and a refinement algorithm has been developed to

preserve the semistandardness when the RTP-splines

undergo anchor insertion and local subdivision. The

particular restricted boundary requirement of RTP-splines

prevents control points from affecting domain regions

spanning across nearby boundaries.
We demonstrate the efficacy of our RTP-splines as a

powerful solid modeling tool in various experiments. This
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Fig. 11. From left to right: original solid models represented by tetrahedral meshes, polycube domains, and hex-mesh generated by RTP-spline
functions. (The edges of the hand tetrahedral model are omitted without being displayed due to the fact that their significantly large number will
deteriorate the rendering quality.)



unified paradigm enables the transformation from dis-
crete solid models (represented by tetrahedral meshes)
into continuous RTP-spline representations, accurately
modeling both geometry and possibly multidimensional
attributes.

At present, one unclear property of the RTP-spline is the
linear independence of its basis functions, and we shall
explore possible constraints during the RTP-spline con-
struction and propose necessary or sufficient conditions
that could guarantee such property. When the linear
independence problem is solved, we would also like to
explore the isogeometric analysis founded upon RTP-
splines. Moreover, the particular polycube domains of

RTP-splines can be naturally decomposed into a set of
regular structures, which will enable GPU-friendly comput-
ing and image-based geometric shape processing. We are
planning to investigate the aforementioned topics.
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Fig. 12. Fitting results for the head model associated with synthesized scalar field (red denotes high value while blue denotes low value). (a)
Polycube in parametric domain; (b,c) are the volumetric meshes reproduced from fitted RTP-splines; (d) synthesized distance field texture; (e)
texture generated from the fitted RTP-spline; (f) fitting error map, where the maximum error is 0:92�10�2 and the average is 6:0�10�4; (g) texture
synthesized as a Perlin noise function. In addition, (h,i) show the fitting errors and the error map, respectively. The maximum fitting error for noise
texture is 0.066 and the average is 7:3�10�4.
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