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a b s t r a c t

This paper systematically studies the well-known Mexican hat wavelet (MHW) on
manifold geometry, including its derivation, properties, transforms, and applications. The
MHW is rigorously derived from the heat kernel by taking the negative first-order deriva-
tive with respect to time. As a solution to the heat equation, it has a clear initial condition:
the Laplace–Beltrami operator. Following a popular methodology in mathematics, we
analyze the MHW and its transforms from a Fourier perspective. By formulating Fourier
transforms of bivariate kernels and convolutions, we obtain its explicit expression in the
Fourier domain, which is a scaled differential operator continuously dilated via heat diffu-
sion. The MHW is localized in both space and frequency, which enables space-frequency
analysis of input functions. We defined its continuous and discrete transforms as convolu-
tions of bivariate kernels, and propose a fast method to compute convolutions by Fourier
transform. To broaden its application scope, we apply the MHW to graphics problems of
feature detection and geometry processing.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

One long-lasting task in geometry processing is to
develop functional analysis tools on curved surfaces. With-
out Euclidean metric, it is extremely challenging to explic-
itly define functions on manifolds. Many existing methods
are hinged upon differential geometry, where surface
parameterization is frequently unavoidable. In this work,
we study and develop functional analysis tools in fre-
quency domain via spectral decomposition. Functions that
have no closed-form expression on manifolds may have
explicit formulations in frequency domain. The fundamen-
tal goal of this paper is to articulate this spectral approach
with mathematical rigor, by studying the Mexican hat
wavelet (MHW) and its transforms on manifolds.

Wavelet transforms are important tools for functional
analysis and processing. One way to construct discrete
. All rights reserved.
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wavelets on surfaces is via subdivision. As a regular
domain with refining schemes, subdivision is convenient
for subsampling and filter banks, which iteratively refine
mesh geometry and functions. Subdivision wavelets
heavily rely on subdivision connectivity of the mesh, which
limits the application scope to data compression and level-
of-detail rendering. The regularly-refined hierarchy is,
however, computationally expensive and perhaps hard to
build. Consequently, it gives rise to a strong demand in
flexibly adapted wavelet tools without building the subdi-
vision explicitly, which can be used for fast space-fre-
quency analysis. For data compression, orthogonality is a
crucial property of wavelets, while for space-frequency
analysis, localization in both space and frequency is much
more desirable. This requires wavelets are localized in
space and frequency. It also implies the significance of ana-
lyzing functions in frequency domain.

In this paper, we advocate the well-known MHW on
manifold geometry that is rigorously derived from heat dif-
fusion. Analogous to the Euclidean MHW, the manifold
MHW is defined as the negative first-order derivative of
the heat kernel with respect to time. As a solution to the
heat diffusion partial differential equation (PDE), it takes
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the Laplace–Beltrami operator as the initial condition. By
defining Fourier transforms of bivariate kernels and convo-
lutions, we further reveal that in the Fourier domain, the
MHW is a product of the Laplace–Beltrami operator and
the heat kernel. It is, therefore, a scaled differential opera-
tor continuously dilated through heat diffusion. It has
Gaussian decays in both space and frequency, which im-
plies it can extract information in a space-frequency win-
dow. We discuss some important properties of the MHW,
such as admissibility, convergence, informativeness, and
stableness. Moreover, we define its continuous and dis-
crete transforms as convolutions of bivariate kernels.
Similar with the case in signal processing, we propose a
method to compute convolutions by Fourier transform,
which significantly improves the computational time of
wavelet transforms, without reducing their accuracy.
Applications in feature detection and spectral geometry
processing will immediately follow suit after we reveal
the MHW’s theoretic insights and document its most
important properties. As an analog on manifold geometry,
it is poised to excite more applications. While the central
theme of this paper is studying the MHW and its trans-
forms on manifolds, other contributions can be summa-
rized as follows:

� We study Fourier transforms of bivariate kernels and
convolutions on manifolds, with the purpose for func-
tion design in the Fourier domain.
� We approach the MHW transforms via Fourier decom-

position. We show this Fourier method significantly
reduces the complexity while preserving the accuracy.
� Based on the MHW theory, we formulate inverse trans-

forms of continuous and discrete MHWs, which are con-
cise and fast to compute.
� We devise immediate applications of the MHW in

space-frequency analysis, including feature detection
and spectral geometry processing.
� The proposed mechanism can be extended to other self-

adjoint (differential) operators for functional analysis
on manifolds.

2. Related work

This section briefly reviews previous work of Fourier
transforms and wavelets adapted to manifold geometry.

2.1. Adapted Fourier transforms

Local areas of curved surfaces are homogeneous to 2D
planar patches, where the Euclidean Fourier transform
can be applied for spectral processing [20]. In terms of
adapting the Fourier transform on manifolds, basis func-
tions are critical for orthogonally decomposing the space
to a series of shape spectra. In [2,13], eigenfunctions of
the symmetric Laplacian of the connectivity graph are
adopted as a Fourier basis, which is derived from the mesh
topology but not the geometry. Analogous to the Fourier
basis in Euclidean metric, manifolds have similar orthonor-
mal basis formed by eigenfunctions of the Laplace–Beltrami
operator [15]. Accordingly, Vallet and Lévy [27] defined the
manifold harmonic transform (MHT) that is a fully adapted
manifold Fourier transform, expanded on manifold har-
monics (i.e., Laplace–Beltrami eigenfunctions). For applica-
tions, Rong et al. [22] employed this spectral decomposition
to perform mesh editing on the base domain with low fre-
quencies and reconstruct details with high frequencies. The
Fourier basis, consisting of functions repeatedly oscillating
over the entire domain, does not have localization in space.
Therefore, adapted Fourier transforms only allow global
operations of input functions.

2.2. Adapted wavelets

Defining wavelets on manifolds is never an easy task.
One construction on meshed surfaces is achieved via expli-
cit subdivision, which relies on the subdivision connectivity
of the mesh. In [24], the lifting scheme is introduced for
constructing subdivision wavelets on sphere. Lounsbery
et al. [16] studied multiresolution analysis of wavelets con-
structed on surfaces of arbitrary topological type. In [3],
B-spline wavelets are combined with the lifting scheme
for biorthogonal wavelet construction. To avoid remeshing,
Valette and Prost [26] extended the subdivision wavelet for
triangular meshes using irregular subdivision scheme that
can be directly computed on irregular meshes. On spherical
domains, Haar wavelets [19] are constructed over nested
triangular grids generated by subdivision. Recently, the
spherical Haar wavelet basis was improved to the SOHO
wavelet basis [14] that is both orthogonal and symmetric.
In subdivision wavelets, the dilation of scaling functions
strictly follows the subdivision scheme, which depends on
the meshing. The subdivision wavelets have been fre-
quently used for geometry compression and level-of-detail
data visualization. It requires constructing the subdivision
hierarchy before defining wavelets, which may limit its
application scope. The regularly-refined hierarchy is com-
putationally expensive and perhaps even harder to build.

Other than subdivision, a bottom-up construction of
discrete diffusion wavelets [7] has been proposed on
graphs and manifolds. They use a diffusion operator and
its powers to build the nested subspaces, where scaling
functions and wavelets are obtained by orthogonalization
and rank-revealing compression. However, the constructed
scaling and wavelet functions are not localized. In [18], the
biorthogonal diffusion wavelets are introduced, relieving
the excessively-strict orthogonality property of scaling
functions. Rustamov [23] studied the relation between
mesh editing and diffusion wavelets by introducing the
generalized linear editing. The diffusion wavelets, itera-
tively constructed by matrix powers, are inconvenient for
low-frequency processing.

In recent research results, mathematicians studied gen-
erating wavelets through the use of spectral theory.
Hammond et al. [10] addressed graph wavelets through
spectral graph theory. The graph wavelets are generated
by a wavelet operator expanded on eigenfunctions of the
graph Laplacian. In [1], Antoine et al. also studied continu-
ous wavelet transforms on graphs, constructed by a gener-
ator in spectral domain. As an example, they introduced
the Mexican hat wavelet formulated by the generator
u2e�u2 that is the Fourier transform of the Euclidean
MHW. A similar result on compact manifolds was given



Table 1
Some manifold functions and kernels under the Fourier transform.

Function/Kernel Space Fourier

Dirac function dx(y) /k(x)
Fourier basis function /j(x) dj(k)
Convolution h(x, y)⁄f(x) ĥðkÞf̂ ðkÞ
Laplace–Beltrami kernel DM(x, y) kk

Heat kernel ht(x, y) e�kkt

Mexican hat wavelet wt(x, y) kke�kk t

Biharmonic wavelet kernel w2
t ðx; yÞ k2

k e�kk t
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in [8]. In this paper, instead of adopting the generator, we
derive the MHW from the negative first derivative of the
heat kernel with respect to time. Since the heat kernel, as
a fundamental solution to the heat equation, has an expan-
sion with separated components of space and time, this
derivation is easy to perform. Moreover, it has meaningful
relations with the heat kernel and is relevant to the La-
place–Beltrami operator from the perspective of physics-
based partial differential equations.

3. Bivariate kernel and convolution on manifolds

In this section, we introduce Fourier transforms of
bivariate kernels and convolutions on manifolds, which
are necessary in defining our wavelets. In Euclidean do-
main, the Fourier transform of an integrable function f(x)
is defined as

f̂ ðxÞ ¼
Z 1

�1
f ðxÞe�ixxdx; ð1Þ

where e�ixx is the Fourier basis, and x is the frequency. By
Euler’s formula, the Fourier basis ends up with sine and co-
sine functions, which are orthonormal and oscillating over
the domain. They can be interpreted as eigenfunctions of
derivative operators with respect to x. For example, e�ixx

is the eigenfunction of the second-order derivative opera-
tor associated with the eigenvalue x2, because of

d2

dx2 e�ixx ¼ x2e�ixx: ð2Þ

That is, by taking the Fourier basis as eigenfunctions of the
second-order derivative operator, the eigenvalues are real
numbers corresponding to the squares of frequencies.

For a compact manifold M, the Laplace–Beltrami opera-
tor DM is negative and formally self-adjoint, which has a
well-defined eigen-system {kk, /k}:

DM/kðxÞ ¼ �kk/kðxÞ; ð3Þ

where kk and /k(x) are the kth eigenvalue and the kth
eigenfunction, respectively. Analogous to the Fourier basis
in Euclidean domain, eigenfunctions {/k} form an orthogo-
nal and complete basis for the Hilbert space L2(M). There-
fore, a function f(x) 2 L2(M) can be expanded on this basis,

f ðxÞ ¼
X1
k¼0

f̂ ðkÞ/kðxÞ; where f̂ ðkÞ ¼ hf ðxÞ;/kðxÞi: ð4Þ

With a slight abuse of language, we call f̂ ðkÞ the Fourier
transform, or Fourier coefficient, of function f(x) on mani-
fold M. In [27], it is also called as the manifold harmonics
transform (MHT).

With the purpose for space-frequency analysis and fil-
ter design for novel wavelet formulation, we consider a
bivariate kernel h(x, y) of a self-adjoint operator H, and
explicitly employ such kernel to compute the convolution

hðx; yÞ � f ðxÞ ¼ Hf ðxÞ ¼ hhðx; yÞ; f ðyÞi: ð5Þ

The bivariate kernel can be expanded on the Fourier basis

hðx; yÞ ¼
X1
k¼0

ĥðkÞ/kðxÞ/kðyÞ; ð6Þ
where ĥðkÞ is the Fourier transform defined as

ĥðkÞ ¼ hhhðx; yÞ;/kðxÞi;/kðyÞi: ð7Þ

Note that off-diagonal entries in frequency are ignored, be-
cause of the orthogonality of the Fourier basis.

Table 1 documents some important examples of func-
tions and kernels under the Fourier transform. A Dirac
function and a basis function are dualities under the Fou-
rier transform. The impulse function in space has infinite
bands in frequency, and vice versa.

We extend the Fourier transform to the convolution by
the following theorem.

Theorem 1 (Convolution Theorem). The Fourier transform
of a convolution h(x, y) � f(x) is the point-wise product of
Fourier transforms ĥðkÞf̂ ðkÞ.
Proof. By definition, we have the Fourier transform of the
convolution

hhhðx; yÞ; f ðyÞi;/kðxÞi ¼ hhhðx; yÞ;/kðxÞi; f ðyÞi

¼ hĥðkÞ/kðyÞ; f ðyÞi ¼ ĥðkÞf̂ ðkÞ:

Hence, the statement is proved. h

This theorem facilitates designing functions on mani-
folds in Fourier domain by concatenation. Functions with
complex forms on manifolds may have simple expression
in the Fourier domain. One can design new functions by
concatenations of known functions in the Fourier domain.
For example, our Mexican hat wavelet is formulated as the
product of the Laplace–Beltrami kernel and the heat kernel
in the Fourier domain: ŵtðkÞ ¼ kke�kkt .

As introduced in [10], the graph Fourier transform satis-
fies the Parseval’s relation. It is easy to see that this relation
also holds on manifolds. We give the theorem and proof of
this relation below for completeness.

Theorem 2 (Parseval’s Theorem [10]). For any functions
f(x), g(x) 2 L2(M), the following relation holds

hf ðxÞ; gðxÞi ¼
X1
k¼0

f̂ ðkÞĝðkÞ: ð8Þ
Proof. By definition, we have

X1
k¼0

f̂ ðkÞĝðkÞ ¼
X1
k¼0

hf ðxÞ;/kðxÞiĝðkÞ ¼ hf ðxÞ;
X1
k¼0

ĝðkÞ/kðxÞi

¼ hf ðxÞ; gðxÞi:
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Hence, the statement is proved. h

This theorem implies the energy conservation in space
and frequency. It is an important property of the manifold
Fourier transform, which will be used for the perturbation
analysis of quantities defined in spectral domain.

4. Mexican hat wavelet and its Fourier transform on
manifolds

4.1. Derivation

We derive the MHW on manifolds directly from the
heat equation:

@uðx; tÞ
@t

� DMuðx; tÞ ¼ 0: ð9Þ

The fundamental solution to this PDE is known to be the
heat kernel htðx; yÞ : Rþ �M �M ! Rþ, given by formula-
tions in space and Fourier domain

htðx; yÞ ¼
X1
k¼0

e�kkt/kðxÞ/kðyÞ

ĥtðkÞ ¼ e�kkt :

8><>: ð10Þ

The heat kernel in Fourier domain ĥtðkÞ is a Gaussian offfiffiffiffiffi
kk
p

. This implies that, although the heat kernel has no
closed-form expression in space, it has an explicit expres-
sion as a Gaussian in the Fourier domain.
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Fig. 1. Left: two MHW functions on a 1D manifold with 400 uniformly sampled
scale (red curves), the MHW has a wider window in space, but a narrower wind

Fig. 2. Mexican hat wavelets on a box at t = 10, 20, 40, 80, 160, 320. The centers
corner point and a planar point.
Recall that the Euclidean MHW is defined as the nega-
tive first-order derivative with respect to t (or, equivalently
second-order derivative with respect to x) of the Gaussian.
We define the MHW wtðx; yÞ : Rþ �M �M ! R on mani-
fold geometry as the negative first-order derivative of the
heat kernel:

wtðx; yÞ ¼
X1
k¼0

kke�kkt/kðxÞ/kðyÞ

ŵtðkÞ ¼ kke�kkt ¼ bDMðkÞĥtðkÞ:

8><>: ð11Þ

This is a solution to the heat equation with the Laplace–
Beltrami operator as the initial condition. By the Convolu-
tion Theorem 1, the MHW in Fourier domain is the product
of the Laplace–Beltrami kernel and the heat kernel, as
shown in Table 1. This means that it is a scaled differential
operator dilated by heat diffusion.

Here, t is related to ‘‘frequency’’. Different from the fre-
quency index k in Fourier transform, the index t is contin-
uous, leading to a continuous wavelet. Small values of t
correspond to high frequencies, while large values corre-
spond to low frequencies, which is opposite to Fourier in-
dex k. In the same spirit of diffusion wavelets [7], the
MHW uses diffusion for dilation and scaling. Diffusion
wavelets smooth the space by discrete powers of a diffu-
sion operator, while the MHW performs this task by con-
tinuous heat diffusion subject to the heat equation.
0 100 200 300 400

x 10−3

t=100
t=200

points. Right: their Fourier transforms in frequency domain. For a larger
ow in frequency.

of functions are marked by black balls. The MHW behaves differently at a



Fig. 3. Some Mexican hat wavelets on a 2D manifold visualized by color plots, at t = 50 (Top) and t = 100 (Bottom). Wavelets are attenuated and oscillating
on the manifold.

Fig. 4. Visualizing wt(x, x) at t = 80 (Top) and t = 640 (Bottom) on
deformable shapes. It is relevant to shape geometry, and invariant to
isometric deformation.
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Driven by different applications, the diffusion wavelets do
not have oscillating and attenuated shapes.

Fig. 1 shows two MHWs on a 1D manifold with 400 uni-
formly sampled points, and their Fourier transforms in fre-
quency domain. The MHW has Gaussian decays in both
space and frequency. The figure illustrates that for a larger
scale (red curves), the MHW has a wider window in space,
but a narrower window in frequency. This indicates both
space and frequency resolutions cannot be arbitrarily high.
The sampling of the MHW in space and frequency follows
the Heisenberg principle [12]. Fig. 2 shows some Mexican
hat wavelets on a box. The MHW behaves differently at a
corner point and a planar point. In Fig. 3, we show some
wavelets on a 2D manifold by color-coding. The center
points are shown as dark balls. The red-to-blue color illus-
trates the shown wavelets have similar shapes of the 1D
wavelets, which are oscillating and attenuated on the man-
ifold. Fig. 4 visualizes wt(x, x) at different values of t on
deformable shapes. The MHW is relevant to shape geome-
try, and invariant to isometric deformation.

This above scheme for defining wavelets can be ex-
tended to other self-adjoint operators. For instance, we de-
fine the pth MHW as,

wp
t ðx; yÞ ¼

X1
k¼0

kp
ke�kkt/kðxÞ/kðyÞ: ð12Þ
 The order p > 0 has a damping effect to the exponential

attenuation of the wavelets in Fourier domain. Specifically,
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for p = 2, it is the biharmonic wavelet, with respect to the
biharmonic operator (D)2, as shown in Table 1.

4.2. Properties

We further elaborate some important properties of the
MHW on manifolds.

4.2.1. Symmetry
The MHW is symmetric in space, i.e.,

wtðx; yÞ ¼ wtðy; xÞ: ð13Þ
4.2.2. Zero-mean
The MHW has a zero mean, given byZ

M
wtðx; yÞdlðyÞ ¼ 0; for all t > 0; ð14Þ

where l(y) denotes the Riemannian volume of y on the
manifold. This is a direct consequence of a property of
the heat kernel on stochastically complete manifolds [11],Z

M
htðx; yÞdlðyÞ ¼ 1; for all t > 0: ð15Þ

It implies that the wavelet wt(x, y) vanishes at
zero-frequency in its Fourier transform. In fact, as k0 = 0
for the Neumann Laplace–Beltrami operator [5], the Fou-
rier transform has ŵtð0Þ ¼ 0.

4.2.3. Gaussian-decay
The MHW has Gaussian decays in both space and fre-

quency. In frequency, the Fourier transform ŵtðkÞ ¼ kke�kkt

has a Gaussian decay. In space, the heat kernel and its deriv-
atives have a Gaussian upper bound [4], which implies a
Gaussian decay on the manifold with given t. Hence, the
MHW drops exponentially to zero along the manifold. This
is also related to the multiscale property of the heat kernel,
which states that for small value of t, the heat kernel ht(x, �)
is mostly determined by a small neighborhood of x. The
Gaussian decay indicates that, although not locally-sup-
ported, the MHW is localized in space and frequency [21].

4.2.4. Admissibility
The admissibility condition of wavelets is to ensure the

function can be inversely recovered after transforms. We
first formally define the admissibility condition for wave-
lets on manifolds as follows:

Definition 1 (Admissibility Condition). On compact
Riemannian manifolds, a wavelet w is admissible, or equiv-
alently satisfies the admissibility condition, if and only if
X1
k¼0

jŵðkÞj2

k
<1:
Theorem 3 (Admissibility Theorem). The manifold Mexi-
can Hat Wavelet is admissible.
Proof. We have the Fourier transform of the MHW:
ŵtðkÞ ¼ kke�kkt . By recalling the Weyl’s Theorem [5],
eigenvalues have an asymptotic formula. It yields that,
for a 2-manifold M, the eigenvalue kk can be approximated
by ck, with some positive constant c determined by l(M).
Therefore, we have

jŵðkÞj2

k
¼ k2

k e�2kkt

k
< c1ke�c2kt

;

with positive constants c1 and c2, andX1
k¼0

jŵðkÞj2

k
<
X1
k¼0

c1ke�c2kt
<

c1

c2t
<1:

Hence, the WHW is admissible. h
4.2.5. Convergence
The long-time wt(x, y) converges to a stable state,

lim
t!1

wtðx; yÞ ¼ 0; for all x; y 2 M: ð16Þ

It means for large value of t, wt(x, y) converges to zero
everywhere on the manifold, which is the state of
zero-frequency. It is based on the fact that, for a manifold
with bounded geometry l(M) <1, we have a stable state
of the heat kernel [9]

lim
t!1

htðx; yÞ ¼
1

lðMÞ ; for all x; y 2 M: ð17Þ

which is constant everywhere on M.
The short-time wt(x, y) converges to the Laplace–Beltra-

mi kernel

lim
t!0þ

wtðx; yÞ ¼
X1
k¼0

kk/kðxÞ/kðyÞ ¼ DMðx; yÞ: ð18Þ

This convergence once again demonstrates the deep bond
between the MHW and the Laplace–Beltrami operator.

4.2.6. Informativeness
Similar to the heat kernel, the wavelet wt(x, y) is also

informative. This property is abstracted as the following
statement.

Theorem 4 (Informative Theorem). Let T:M ? N be a
bijective map between manifolds M and N. If wM

t ðx; yÞ ¼
wN

t ðTðxÞ; TðyÞÞ for all x,y 2M and all t > 0, then we have
hM

t ðx; yÞ ¼ hN
t ðTðxÞ; TðyÞÞ, and T is isometric.
Proof. By definition, we haveZ t

0
wtðx; yÞdt ¼ h0ðx; yÞ � htðx; yÞ:

By the Dirac condition [9], we have h0(x,y) = d(x,y). Consid-
ering that T is a bijective map, if wM

t ðx; yÞ ¼ wN
t ðTðxÞ; TðyÞÞ

for all x, y 2M and all t > 0, then we have hM
t ðx; yÞ ¼

hN
t ðTðxÞ; TðyÞÞ. And by the Proposition 2 in [25], T is

isometric. h

This theorem implies that the isometric geometry can
be completely determined by the MHW. Hence, it is infor-
mative. It captures the geometry up to isometry.
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4.2.7. Stableness
The construction of wavelets wt from their Fourier

transforms ŵt in spectral domain is stable. That is, pertur-
bations of wavelets in frequency will not be amplified after
inverse Fourier transform.

Theorem 5 (Perturbation Theorem [10]). For two Fourier
transforms ŵtðkÞ; ŵ0tðkÞ, if

P1
k¼0 ŵtðkÞ � ŵ0tðkÞ
� �2

6 �ðtÞ, then
for any x 2 M; kwtðx; yÞ � w0tðx; yÞk

2
6 �ðtÞ.
Proof. By the Parseval’s Theorem 2, we have

wt�w0t
�� ��2¼h wt�w0t

� �
; wt�w0t
� �

i¼
X1
k¼0

ŵtðkÞ� ŵ0tðkÞ
� �2

6�ðtÞ: �

This property means the computation of MHW is stable
under perturbations of its Fourier coefficients, and hence
the Laplace–Beltrami eigenvalues.
5. MHW transforms: a Fourier perspective

In this section, we analyze continuous wavelet trans-
form (CWT) and discrete wavelet transform (DWT) of the
MHW from a Fourier perspective.

Theorem 6 (CWT of the MHW). For any function
f(x) 2 L2(M), the CWT and its Fourier transform are given by

Ww
f ðx; tÞ ¼ wtðx; yÞ � f ðxÞcWw
f ðkÞ ¼ ŵtðkÞf̂ ðkÞ

8<: : ð19Þ

The inverse CWT is given by

f ðxÞ ¼
Z 1

0
Ww

f ðx; tÞdt þ Rf ; ð20Þ

where Rf ¼ f̂ ð0Þ/0ðxÞ is a residual constant.
Proof. Eq. (19) is a direct consequence of the Convolution
Theorem 1. For Eq. (20), we haveZ 1

0
Ww

f ðx; tÞdt ¼
Z 1

0

X1
k¼0

kke�kkt f̂ ðkÞ/kðxÞdt ¼
X1
k¼1

f̂ ðkÞ/kðxÞ

¼ f ðxÞ � f̂ ð0Þ/0ðxÞ:

Hence, the statement is proved. h

In the CWT, x and t are localized in space and frequency,
respectively, and Ww

f ðx; tÞ is also called the wavelet coeffi-
cient of f(x). It records detail information of f(x) at different
scales. The convolution-based expression is analogous to
the Fourier transform. Its time complexity is quadratic to
the data size, since point-to-point function values are re-
quired. However, through its Fourier transform, we obtain
a spectral expression of the CWT

Ww
f ðx; tÞ ¼

X1
k¼0

kke�kkt f̂ ðkÞ/kðxÞ; ð21Þ

which is only linear to the data size. This is consistent with
the case in signal processing, that convolutions can be fast
computed by the Fourier transform.
Similarly, we can define the DWT, which will be useful
in some applications. Assume we have a discrete sequence
of samples [t0, t1, . . . , tJ]. For the ease of formulation, we
always let t0 = 0, and [t1, t2, . . . , tJ] form a geometric
sequence. We define the discrete MHW as

wtj
ðx; yÞ ¼ htj�1

ðx; yÞ � htj
ðx; yÞ

ŵtj
ðkÞ ¼ ĥtj�1

ðkÞ � ĥtj
ðkÞ;

(
ð22Þ

for j = 1, 2, . . . , J.

Theorem 7 (DWT of the MHW). For any function
f(x) 2 L2(M), the DWT and its Fourier transform are given by

Ww
f ðx; tjÞ ¼ wtj

ðx; yÞ � f ðxÞcWw
f ðkÞ ¼ ŵtj

ðkÞf̂ ðkÞ;

8<: ð23Þ

The inverse DWT is given by

f ðxÞ ¼
XJ

j¼1

Ww
f ðx; tjÞ þ Rf ðx; tJÞ; ð24Þ

where Rf ðx; tJÞ ¼ htJ ðx; yÞ � f ðxÞ is the residual function.
Proof. Eq. (23) is a direct consequence of the Convolution
Theorem 1. For Eq. (24), we haveXJ

j¼1

Ww
f ðx; tjÞ ¼ ht0 ðx; yÞ � f ðxÞ � htJ ðx; yÞ � f ðxÞ

¼ f ðxÞ � htJ ðx; yÞ � f ðxÞ:

Hence, the statement is proved. h

We also obtain a spectral expression for the DWT:

Ww
f ðx; tjÞ ¼

X1
k¼0

ðe�kktj�1 � e�kktj Þf̂ ðkÞ/kðxÞ: ð25Þ

The aforementioned (continuous and discrete) inverse
transforms imply that we can, without loss of any informa-
tion, recover a signal from its wavelet coefficients and a
residual function. Therefore, they can be used in function
approximation and analysis.

6. Applications and experiments

6.1. Implementation and evaluation

For meshed surfaces, we approximate wavelets and their
transforms by a relatively small number of eigenfunctions.
The eigen-system has a scale problem derived from the La-
place–Beltrami operator. We adopt the scaling method in
[28], which uses the mean vertex area as a unit. It makes
the selection of t meaningful, such that t = 1 results in an
average influence region of about 1-ring. In Fig. 5, we show
accuracy curves of wt(x, x) on a 400-point 1D manifold, com-
puted with different percentages of eigenfunctions. A high
accuracy can be achieved by increasing the number of used
eigenfunctions. High frequencies (with small t) require
more eigenfunctions to maintain the accuracy. This is be-
cause in Fourier transform, high frequencies correspond to
large values of k. The determination of the number of eigen-
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Fig. 5. Accuracy of wt(x, x) on a 400-point 1D manifold, computed with
different percentages of eigenfunctions. A high accuracy can be achieved
by increasing the number of eigenfunctions used. High frequencies (small
t) require more eigenfunctions to maintain accuracy. The determination
of the number of eigenfunctions depends on t and the data size.

Fig. 7. CWT of vertex coordinates at t = 10 (Left) and t = 400 (Right),
whose half normal is convergent to the mean curvature as t ? 0+.
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functions depends on t and the data size. This experiment
implies a way to choose proper t in applications.

Assume the number of vertices is V, and the number of
used eigenfunctions is K. The time complexity to compute
all wavelets wt(x, y) at a t is then O(KV2), and so is the con-
volution-based CWT in Eq. (19). This is, however, extre-
mely inconvenient for practical use, since V is usually at
the order of tens, maybe even hundreds of thousands. Sim-
ilar to the case in signal processing, the proposed Fourier
method with a spectral expression significantly improves
the computation. It has O(KV) time complexity, with the
same accuracy of the convolution. Fig. 6 shows the time
performance of a wavelet transform computed by convolu-
tion (Left) and Fourier transform (Right), with 10% eigen-
functions used. The horizontal axis denotes data size. The
performance of the spectral expression is approximately
linear to the data size, which significantly improves the
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Fig. 6. Time performance of computing wavelet transform by convolution (Left) a
axis denotes data size. The Fourier method significantly improves the time perf
time performance. The spectral expression also enables
an efficient method to compute the heat transform and
solve the heat equation. Table 2 documents time perfor-
mance for computing eigen-decomposition (Eigen) and
wavelet transform (WT) on selected data in our experi-
ments. Here, we use K = 300 for all experiments.
6.2. Feature detection

One important application of the MHW is feature detec-
tion, since it is sensitive to second derivatives of inputs. For
a given function f(x) 2 L2(M), features are recognized as lo-
cal extrema of its wavelet coefficients Ww

f ðx; tÞ, which are
zero-crossings of second-order derivatives. On 2D images,
this method is known as the scale invariant feature trans-
form (SIFT) [17].

Specifically, when inputs are vertex coordinates v = [vx,
vy, vz] of a meshed surface, the half normal of wavelet coef-
ficients in three dimensions of R3 is convergent to the mean
curvature as t ? 0+. This is because the short-time MHW
converges to the Laplace–Beltrami operator, and half nor-
mal of DMv is the mean curvature. Fig. 7 shows CWT maps
of vertex coordinates at t = 10 and t = 400 on the Armadillo.
Fig. 8 gives some results of feature detection, where features
are shown as green balls whose sizes depend on their scales.
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Fig. 8. Examples of feature detection.

Fig. 9. Top: residual shapes Rv(x,tJ) at different scales with tJ = 0, 10, 40, 16
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In these examples, only features with wavelet coefficients
larger than a threshold r ¼mean Ww

v

�� ��� �
are shown.
6.3. Spectral geometry processing

Spectral geometry processing is referred to mesh filter-
ing in frequency domain [27]. The filtering of mesh geom-
etry can also be achieved by solving a Poisson equation [6].
In this application, we use the DWT. An input shape is
decomposed to wavelet coefficients at different scales,
and a residual shape Rv(x, tJ). Fig. 9 shows residual shapes
and magnitudes of wavelet transforms. Details are gradu-
ally ‘‘peeled off’’ from the residual shape, and ready for
analysis. With the spectral expression, we can rapidly com-
pute spectral decomposition at any scale. Wavelet coeffi-
cients extract geometry information at different scales. A
common spectral processing is to apply filters to coeffi-
cients at different frequencies. The output shape is ob-
tained by inverse DWT of filtered wavelet coefficients
and a residual shape.

Consider results shown in [27], shapes are usually pro-
cessed with low-pass, enhancement, and band exaggera-
tion filters, resulting in global effects of smoothing,
enhancing, and mixture, respectively. The same effects
can be achieved by the MHW, with some results shown
in Fig. 10. Only for the MHW, we do not need to compute
full eigen-system of the Laplace–Beltrami operator, since
0, 640. Bottom: magnitudes of wavelet transforms Ww
v ðx; tÞ

�� �� along t.



Fig. 10. Global filtering of input shapes, from Left to Right: original shapes, enhanced shapes, and smoothed shapes.

Table 2
Time performance (in s) for computing eigen-decomposition (Eigen) and
wavelet transform (WT).

Data V Level Eigen WT

Armadillo (Fig. 7) 50,000 5 139.93 1.09
Woman (Fig. 8) 9971 3 28.36 0.11
Rocker (Fig. 9) 10,044 5 30.16 0.12
Eros (Fig. 10) 25,651 3 69.62 0.26
Lion (Fig. 11) 23,889 4 64.38 0.29
Fish (Fig. 11) 24,975 4 67.59 0.34
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a small number of eigenfunctions are accurate enough for
selected scales. As shown in Table 2, our computation is
very fast. Moreover, the decomposition by DWT is lossless,
with all high-frequency information stored in Ww

v ðx; t1Þ.
Moreover, the processing can be spatially different by

the MHW, since it has localization in both space and fre-
quency. It can perform space-frequency analysis on geom-
etry. Accordingly, we can apply space-frequency filters in
geometry processing, given by

vðxÞ ¼
XJ

j¼1

Cðx; tjÞWw
v ðx; tjÞ þ Rf ðx; tJÞ; ð26Þ

where C(x, tj) is a filter localized in place x and frequency tj.
This allows local operations of spectral processing on
geometry. In this paper, we design some space-frequency
filters along with some lower-frequency Laplace–Beltrami
eigenfunctions and show some results, in Fig. 11. Precisely,
a linear filter along /k(x)

Cðx; tjÞ ¼
1:5ð/kðxÞ �minð/kðxÞÞÞ

maxð/kðxÞÞ �minð/kðxÞÞ
þ 0:5; ð27Þ

is applied to all Ww
v ðx; tjÞ. Using these filters, the input

shape is gradually morphed from smoothing to enhance-
ment. Other types of filters can also be designed according
to specific applications.
7. Discussion and conclusion

In this paper, we have detailed the MHW and its trans-
forms on manifold geometry. It is solely derived from the
heat equation. By means of formulating bivariate kernels
for differential operators and their Fourier transforms, we
obtain an explicit spectral expression of the MHW. This
strongly advocates a novel approach to developing func-
tional analysis tools in Fourier domain. The MHW has
localization in both space and frequency, hence having a
strong appeal to applications in space-frequency analysis.
The proposed Fourier method for computing convolutions
of wavelet transforms is stable and efficient, which is con-



Fig. 11. Space-frequency filtering of input shapes. From Left to Right: original shapes, and two columns of filtered shapes. The filters are linear to some
lower-frequency Laplace–Beltrami eigenfunctions.
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sistent with the case in signal processing. Closely related to
the Laplace–Beltrami operator, the MHW captures impor-
tant information in geometry. Therefore, it has the poten-
tial to serve as a good descriptor for shape representation
and comparison.

Several other issues that require further comprehensive
studies, include boundary conditions, eigen-problems for
other types of initial-value partial differential equations
and their corresponding operators, and more and broader
applications. For partial shapes with boundaries, imposing
stochastic completeness leads to inconsistent values of the
MHW near boundaries. And the affected area becomes lar-
ger when t increases. Fast solving the eigen-problem of the
Laplace–Beltrami operator is another challenge. Particu-
larly, for the Fourier transform and derived spectral
expressions, they require the eigenfunctions to be strictly
orthonormal. For applications, we plan to broaden their
scope in space-frequency analysis of deformable shapes.
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