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Figure 1: Main steps of the reconstruction. (a) Input model with boundary surfaces. (b) A set of direction vectors are prede-
termined as the constraints. (c) Corner points are manually selected to determine the domain structure. (d) In a frame field
optimization procedure, an as-smooth-as-possible frame field is generated while maintaining the given constraints. (e) A volu-
metric parametrization.

Abstract
In this paper, we propose a novel approach that transforms discrete volumetric data directly acquired from scan-
ning devices into continuous spline representations with tensor-product regular structure. Our method is achieved
through three major steps as follows. First, in order to capture fine features, we construct an as-smooth-as-possible
frame field, satisfying a sparse set of directional constraints. Next, a globally smooth parametrization is computed,
with iso-parameter curves following the frame field directions. We utilize the parametrization to remesh the data
and construct a set of regular-structured volumetric patch layouts, consisting of a small number of patches while
enforcing good feature alignment. Finally, we construct trivariate T-splines on all patches to model geometry and
density functions simultaneously. Compared with conventional discrete data, our data-spline-conversion results
are more efficient and compact, serving as a powerful toolkit with broader application appeal in shape modeling,
GPC computing, data reduction, scientific visualization and finite element analysis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

For volumetric scalar fields defined over a set of discrete
samples, the reconstruction of the data is a fundamental
problem with very significant applications. For instance in
visualization, the size of volume data we have been dealing

with increases dramatically to 10243 voxels commonly or
even larger. This trend of ever-increasing data size poses a
great challenge in terms of both storage and rendering costs
thus model reconstruction is required.

An appropriate reconstruction should follow several qual-
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ity requirements: Accuracy The reconstructed model should
faithfully preserve the density function. Feature alignment
In regions with well-pronounced feature directions, paramet-
ric lines should guide and follow the shape feature. Com-
pactness The number of patch layout as well as the degree
of freedom (e.g., control points/coefficents) for each patch
should be as few as possible. Structured regularity Lo-
cally, each 3D patch is a subdivided cube-structured domain;
Globally, the gluing between patches should avoid singular-
ity. As-homogenous-as-possible The density distribution in
one single patch should be narrowed in favor of approxi-
mation accuracy. Continuity A continuous representation
supports high-order derivatives for high quality visualization
and physical analysis [HCB05].

An ideal reconstruction framework should optimize the
output simultaneously with respect to all above criteria.
However, existing techniques typically prefer offering a
tradeoff between above conflicting requirements. For ex-
ample, [RZNS03] has developed super splines to recon-
struct discrete samples but the parametric domain is tetrahe-
dral mesh; Other regular hierarchical structure methods like
[BNS01], [LHJ99] have only produced axis-aligned cube
block (i.e.,“flat block”) without feature alignment; Hexa-
hedral mesh [She07] is another widely used reconstruction
technique but it always leads to complicated domain with a
lot of singularities.

Contributions and overview We provide a novel frame-
work to reconstruct a discrete volume data into regular
patches and spline representations. Our representation has
significant advantages: Each patch has regular structure
while maintaining the shape features. The whole data is
compactly represented by a very small number of patches.
The density in each patch is as-homogenous-as-possible thus
both the shape and density function can be accurately ap-
proximated by a high-order spline representation.

In order to achieve these advantages, our approach con-
sists of the following major steps: (1) Starting with local
direction vectors as constraints, we generate an optimized
frame field to respect the shape feature (Section 2). (2) A
regular structured parametrization of (u,v,w) is generated,
whose gradients align with the generated frame field ev-
erywhere. Then we produce a set of volumetric patches
through remeshing (Section 3). (3) We construct on each
patch a trivariate T-spline to approximate the shape and den-
sity function using as-few-as-possible control points (Sec-
tion 4).

2. Frame Field

In order to generate the frame field, we start from selecting
the most important features as constraints, which our frame
field must respect. We operate all the user interaction in this
step (Section 2.1); In the second step we compute the opti-
mization of a 3-direction frame field (Section 2.2).

2.1. Feature Constraints

In order to generate a feature aligned frame field, we must
pre-compute the most important features as the direction
constraints. Furthermore, in order to get a simple and reg-
ular parametric domain structure, we also need to determine
the domain shapes as well as alignment of each constraint di-
rections (i.e., along gradient ∇u,∇v or ∇w direction). Both
tasks are discussed as follows:

Boundary surfaces and constraints It is natural to take
features on the boundaries of all segmentations as con-
straints, because the final parametrization result must re-
spect the shape of boundaries. Moreover, each sub-space in
a boundary always tends to be as-homogenous-as-possible,
which is an ideal property for final shape and density approx-
imation. Therefore, we extract the boundary of segmentation
and take the normal directions as our direction constraints.

Frequently, input datasets contain multiple structures and
segments that need to be differentiated. However, if those
features have the same density and gradient values, exist-
ing clustering methods are limited at effectively classifying
those similar features accurately. Thus, we apply the texture-
based classification method for the boundary surface extrac-
tion. First, statistical attributes can be extracted following
the metrics defined in [HSD73], and each attribute is nor-
malized into the range [0,1]. Then, for the sake of fast com-
putation and easy programming, we use k-mean clustering
in this texture-based high-dimension parameter space to au-
tomatically detect different volumetric components as seg-
ments. Consequently, we choose the normal directions one
all boundary surfaces as the direction constraints.

Domain and direction alignment After determining di-
rection constraints, we need to decide the alignment of each
direction. In particular, it means that we choose one para-
metric direction from ∇u,∇v or ∇w for each direction con-
straint. This preprocessing has a huge advantage in favor of
generating parametric cube domain, as demonstrated in Fig-
ure 2: We construct a 2D frame field which respects the di-
rection constraints on boundary edges. In Figure 2(a), we do
not have any alignment requirement and the resulted frame
field represents a complicated domain with central singular-
ity; In Figure 2(b), we use 4 corners to divide the boundary
into 4 segments and each segment corresponds to one bound-
ary edge on the rectangular domain. Naturally, we align the
direction constraint orthogonal to the iso-parameter on the
boundary edge. Consequently, the resulted frame field rep-
resents a rectangular domain.

Motivated by the above 2D illustration, our preprocessing
includes the following interactive operation. (1) We prede-
termine the shape of the cube domain by manually construct-
ing a group of cube domain to approximate the boundary
shape. (2) On the boundary surfaces, we choose 8 corners
for each cube domain. Figure 6 (Column 1) shows our cube
domain construction and corner selection for every input.
Consequently, the shortest paths between corners partition
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Figure 2: Two frame fields: The boundary direction con-
straints are not aligned (a) / aligned (b).

the boundary surfaces into patches, and each patch corre-
sponds to an iso-parametric cube face. (3) For each direction
constraint on one patch, we decide that it is aligned with the
parametric coordinate gradient, which is orthogonal to the
iso-parametric cube face.

2.2. Field Smoothing

[RVLL08] has studied the energy of a 2D cross field and
simplified it to a linear representation. In our 3D volume, the
challenge lies at smoothing 3 vectors in separate directions
while maintaining their orthogonality. Another huge chal-
lenge for smoothing is “jump matching”. It means all permu-
tation cases of direction alignment. Figure 3(a) shows all 4
“jump matching” cases for a 2-direction field. Similarly, we
can have 24 “jump matching” cases for a 3-direction field. A
“smart” optimization algorithm should dynamically change
direction alignment to get the best result. Figure 3(b) shows
a simple frame smoothing with two adjacent neighbors. It
demonstrates that using jump matching we are able to get a
better smoothing result between neighbors, while traditional
method fails.

(a) (b)
Figure 3: (a) Jump matching: The smooth energy between
4 cases should be zero ideally. (b): The smoothing results
with/without considering period jump.

To overcome these problems, our key idea is to com-
pute the registration energy [BM92] between center frame

Figure 4: Major steps of optimization: (1) Union of end-
ing points. (2) ICP-registration. (3) Compute rotation to get
updated frame.

and its neighbor frames. Each frame gives 6 end positions
{P(vi)}= {p0, . . . ,p5} at the end of 3 frame lines.

1. Get the union of all frame end positions on neighboring
voxels: {S2}=

∪
v j∈N (vi)P(v j).

2. The original point set {S1} = {P(vi)} is the frame
ending positions of vi. Using the ICP-based registra-
tion [BM92], we compute a matrix T that approximately
transforms voxels of {S1} to those of the approximated
set {S2}.

3. Decompose the transformation matrix T into a rotation
matrix R and a shear matrix S using polar decomposition.
Add the rotation R to the frame of vi.

The above algorithm is computed on each local frame itera-
tively until we get a promisingly smooth field. For any frame
with a predetermined direction constraint, we first apply the
above algorithm without considering constraints. Then we
search for the closest direction d⃗ in the updated frame and
rotate the frame to project d⃗ onto the direction constraint.

3. Volumetric Parametrization

In order to follow the generated frame field, the parametriza-
tion is computed as a solution to the following energy mini-
mization problem:

E = ∑
vi∈V

||∇ui − u⃗i||2 + ||∇vi − v⃗i||2 + ||∇wi − w⃗i||2, (1)

where ui,vi,wi are the unknown parameters and u⃗i, v⃗i and w⃗i
are 3 frame field directions. In practice, our parametrization
algorithm has following steps:

1. Parameter constraints: Our previous preprocessing (Sec-
tion 2.1) partition boundary surfaces to iso-parametric
patches mapping to cube faces. Now we set parameter
constraints to guarantee that the nodes on each patch have
the same parameter on u,v or w.

2. Energy minimization: Add these parameter constraints
into the energy minimization equation. Compute the min-
imization to get the final parametrization result.
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3. Remeshing: Guided by the generated parameter, we trace
the iso-parametric lines and generate a small set of volu-
metric patches.

3.1. Energy Minimization

In order to minimize Equation 1, we have to design a linear
formulation of the gradient operator ∇. In order to get a local
polynomial function IH(u,v,w) around center voxel vi, we
assign a local parameter value (u0,v0,w0) to vi. For each
of its adjacent k-ring neighbor voxels v j ∈ N (vi), the local
parameter is (u j,v j,w j) = (u0 + x j − xi,v0 + y j − yi,w0 +
z j −zi). Then our fitting cubic polynomial can be formulated
as:

IH(u,v,w) =
i+ j+k≤3

∑
i, j,k≥0

cmuiv jwk = P⃗(u,v,w)C⃗T , (2)

where C⃗ denotes the vector of unknown coefficients cm. P⃗ is
the vector of uiv jwk. Similarly, we can also describe deriva-
tives of u,v,w. For instance,

IH
u (u,v,w) =

i+ j+k≤3

∑
i, j,k≥0

cmiui−1v jwk = P⃗u(u,v,w)C⃗T , (3)

where P⃗u is the vector of iui−1v jwk (we set um = 0 if m < 0).
In the same way, we can also describe other derivatives IH

v
and IH

w .

In order to describe the currently unknown coefficients C⃗,
we construct a fitting equation:

QC⃗T = I⃗D, (4)

where Q is the fitting matrix. Each row Q j: in the matrix
depends on a voxel Q j: = P⃗(u j,v j,w j), j ∈ i

∪
N (i). I⃗D is

the vector of discrete value ID
j on each voxel. Because the

size of unknown variables is very small, we can solve this
linear least-square problem through multiplying the matrix
Q by its transpose:

C⃗ = (QT Q)−1QT I⃗D. (5)

We notice that (QT Q)−1QT is constant for every local func-
tion if we choose the same k for k-ring neighbors of each
voxel.

Equation 3 and 5 together describe the gradient operator.
For instance, we represent ∇ui as :

∇ui = (P⃗uC⃗, P⃗vC⃗, P⃗wC⃗) = (P⃗u, P⃗v, P⃗w)(QT Q)−1QTU⃗D, (6)

where U⃗D represents the vector of unknown scalar value u
on vi and its neighboring voxels. Then, we substitute them
into the energy equation, for example:

∑
vi∈V

||∇ui− u⃗||2 = ∑
vi∈V

||(P⃗u, P⃗v, P⃗w)(QT Q)−1QTU⃗D− u⃗i||2.

(7)

Equation 7 is a typical fitting problem, which can be con-
verted into a linear system AUT = B through computing
∂E
∂u = 0, where UT is the vector of unknown value u on all
voxels. We can simply solve it by least square method.

Modified norm It is obvious that feature orientation is
more important than exact edge length. The orientation can
be improved by less penalizing stretch which is in the di-
rection of the desired iso-lines. In order to achieve this,
[BZK09] has introduced an anisotropic norm and we extend
it to 3D vector computing:

||(u,v,w)||(α,β,γ) = αu2 +βv2 + γw2.

This norm penalizes the deviation along the major directions
with different weights. Then we modify the energy equation
to the new form:

∑
vi∈V

||∇ui− u⃗i||(ε,1,1)+||∇vi− v⃗i||(1,ε,1)+||∇wi−w⃗i||(1,1,ε),

(8)
with ε ≤ 1.

4. Spline Approximation and Experimental Results

The previous steps generate a set of regular structured para-
metric patches thus it is very straight forward to define a reg-
ular high-order representation to approximate the shape and
the density function of each patch. In our framework, we uti-
lize T-splines [SCF∗04] for final approximation. A trivariate
T-spline [WLL∗11] can be formulated as:

F(u,v,w) = ∑wipiBi(u,v,w)
∑wiBi(u,v,w)

, (9)

where (u,v,w) denotes parameter coordinates, pi =
(Xi,Yi,Zi, Ii) denotes each control point, wi and Bi are the
weight and blending function sets. Each pair of < wi,Bi >
is associated with a control point pi. Each Bi(u,v,w) is a
blending function given by Bi(u,v,w)=N3

i0(u)N
3
i1(v)N

3
i2(w),

where N3
i0(u), N3

i1(v) and N3
i2(w) are cubic B-spline basis

functions along u,v,w, respectively. The detailed approxima-
tion techniques are discussed in [WLL∗11].

4.1. Experimental Results

Table 1 summarizes the statistics of the performance of our
processing on four models. It showcases that our system ef-
fectively reconstructs the model with lower number of con-
trol points without sacrificing visual quality. Figure 5 visual-
izes the continuous representation results. It shows that our
reconstructed models are able to preserve the shape and den-
sity information of the object. Figure 6 shows more details
about our parametrization: the corner points, parameter do-
main, surface parametrization and volumetric parametriza-
tion respectively.

Limitation Our framework does not perform well for
highly textured scenes, or over-partitioned objects. It fails
to handle highly branched models and fluid-like simula-
tion. “Cracks” [PB06] may also occur when adjacent object
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Figure 5: Left column: Volume visualization using input dis-
crete models; Right column: Reconstructed models.

Table 1: Statistics of various test examples: Nd , # of voxels;
RMS, root-mean-square fitting error (density only, 10−2);
Nc, # of corners; N′

c, # of control points.

Model Nd RMS Nc N′
c

Atom 2563 0.122 12 1.5∗104

Fuel 643 0.877 16 7.2∗104

Ankle 1283 0.422 12 1.6∗104

Tooth 2562 ×161 0.393 24 5.1∗104

boundaries do not coincide precisely. Meanwhile, for some
complicated input, interactive corner selection and domain
construction is very time consuming.

5. Conclusion and Future Work

We have proposed a method that reconstructs the discrete
volumetric data into the regular continuous representation.
Our conversion promises a lot of properties such as feature-
alignment, compactness, regular structure, high-order repre-
sentation and as-homogenous-as-possible. These modeling
advantages naturally prompt us to explore its uncharted po-
tential in the near future. We anticipate further novel GPU-
accelerated visualization techniques based on our high-order
regular representations. Meanwhile, the conjunctions be-
tween material-based physical analysis/simulation and our
continuous hyper-volume shape functions are of great inter-
est for potential physics-based applications.
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Figure 6: Left: Corners and cube domain. Middle: Surface parametrization. Right: Interior parametrization.
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