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Abstract
This paper presents an efficient method for feature definition and classification on shapes. We tackle this challenge
by exploring the weighted harmonic field (WHF), which is also the stable state of a heat diffusion regulated by an
anisotropic diffusion tensor. The technical merit of our method is highlighted by the elegant integration of locally-
defined diffusion tensor and globally-defined harmonic field in an anisotropic manner. At the computational front,
the partial differential equation of heat diffusion becomes a linear system with Dirichlet boundary condition
at heat sources (also called seeds). We develop an algorithm for automatic seed selection, enhanced by a fast
update procedure in a high dimensional space. Various experiments are conducted to demonstrate the ease of
manipulation and high performance of our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Feature definition and classification have been of great prac-
tical importance in many graphics tasks and applications.
Extensive studies on feature extraction, while continuing
for more than ten years, have been gaining momentum be-
cause multi-type features can assist registration, segmenta-
tion, shape analysis and understanding, and many more. Fea-
tures can be classified into multiple types that may include
point feature, curve feature, patch feature, etc. [KCL09]. The
fundamental goal of this paper is to advocate an integrated
strategy for feature identification and region clustering, and
develop a robust and efficient method to classify multi-type
features of curved geometry.

Multi-type (e.g., point, curve, and patch) features offer
much more general and convenient tools for shape analysis
than point features alone. Defining multi-type features is ex-
tremely challenging due to the diversity of features scattered
across arbitrarily curved geometry. Most existing work is fo-
cusing on point features, while some recent research starts
to address curve features [SJW∗11] by connecting points,
or multi-type features by using tensor voting [KCL09]. The
theory of tensor voting has demonstrated great advantages
in modeling tasks such as clustering and feature recogni-
tion [MTL00, PSK∗02, LDB05, KCL09]. Since the voting
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Figure 1: Multi-type feature classification on the Fandisk
with Gaussian noise (σ = 5% of mean edge length). Patch
features are shown in different colors, while curve and point
features are colored in red. Our method can detect weak fea-
tures and smooth transition features (left). The connected
curve features are highlighted as a wire-frame representa-
tion (right).

tensor is only a local quantity, it is very sensitive to noise,
resulting in degraded performance when being employed to
distinguish weak features from noise. Due to the lack of
knowledge for global shape information, tensor voting alone
falls short in finding large-scale patch features. This paper
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serves for this urgent need. Our novel idea lies at the inte-
grated strategy that aims to unite a global diffusion process
with a local tensor-voting method. Fig. 1 highlights multi-
type features extracted by our method.

Diffusion process, which is intrinsically related to the
probability of random walk [LHMR09, ZZC11], is a power-
ful toolkit in combating noise. Recent years have witnessed
a great accomplishment in the rapid development of heat
diffusion and relevant algorithms on manifolds [DMSB99,
SOG09, SCV10]. It elegantly bridges the large gap between
local and global geometry via time scale. Recent work of-
tentimes concentrates on dynamic solutions of the partial
differential equation (PDE) of heat diffusion, which typi-
cally requires eigenfunctions of the Laplace-Beltrami oper-
ator and convolutions of heat kernels. When the diffusion
arrives at its final stable state (i.e., a harmonic field), the
PDE degenerates to a linear system. A direct usage of the
diffusion process will naturally give rise to the smooth tran-
sition among nearby regions without having evident clues
on various feature types and their meaningful classification.
Furthermore, most previous heat diffusions are isotropic. In
essence, anisotropic diffusion, which is much more power-
ful than the standard isotropic diffusion, can control the dif-
fusion direction by assigning weighted diffusion operators
spatially to different regions.

In this paper, we explore the definition and classification
of multi-type features based on diffusion tensor weighted
harmonic fields, which collectively inherit the advantages
of local geometric tensors and global harmonic fields. The
local geometric tensor we formulated is a versatile diffu-
sion tensor, which can well control the anisotropic diffusion,
and properly distinguish weak features from noise, cluster
curve features by using their principal diffusion directions,
etc. Fig. 2 illustrates the pipeline of our approach. We use
normal voting tensor and diffusion tensor to obtain a pri-
mary classification. After calculating the WHF, we further
classify the vertices into different type features by consider-
ing the values of the high dimension harmonic field which
will be introduced in Section 2.4. Note that our seeds are
automatically selected during the iterative classification pro-
cedure which will also be introduced in Section 2.4.

2. Feature classification based on WHFs

Given a triangular mesh, our method classifies all the ver-
tices into features with different types. Our new method
is founded upon the computation of anisotropic harmonic
fields, and comprises four steps: diffusion tensor calcula-
tion, initial feature analysis, numerical construction of the
anisotropic diffusion process, and feature classification.

2.1. Diffusion tensor

The normal voting tensor T(vi) of a vertex vi can be
computed by the sum of the weighted covariance matri-
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Figure 2: The functional pipeline of our new method. We
use normal voting tensor to distinguish weak features from
noise, and design anisotropic diffusion to determine different
types of features.

ces [MTL00, PSK∗02],

T(vi) = ∑
t j∈Nt (vi)

µ jnt j n
T
t j , (1)

where t j is a triangle, Nt(vi) denotes the set of neighboring
triangles of vi, nt j is the normal of triangle t j, and µ j is the
weight. To accommodate meshes with long and narrow tri-
angles, we modify the weight µ j as

µ j =
area(t j)

areamax
exp

(
− ∥c j − vi∥

∥c j − vi∥max

)
, (2)

where area(t j) is the area of triangle t j, areamax is the max-
imum area among Nt(vi), c j is the barycenter of triangle t j ,
and ∥c j −vi∥max is the maximum value among the neighbor-
ing triangles of vi.

Since the normal voting tensor is a positive semi-definite
tensor with second order, it can be diagonalized by eigen-
values (λ1 > λ2 > λ3 ≥ 0) and reformulated by a spectral
representation

T(vi) = λ1e1eT
1 +λ2e2eT

2 +λ3e3eT
3 , (3)

where ek is the corresponding eigenvector of λk. The three
eigenvectors of a normal voting tensor are orthogonal, and
the eigenvalues characterize the diffusion velocities along
the corresponding directions. Directly adopting the normal
voting tensor as the diffusion tensor will lead to rapid diffu-
sion when cutting across the sharp edges and slow diffusion
when traveling along them. This is opposite to our goal, thus,
we construct our anisotropic diffusion tensor as

D(vi) = λ̃1e1eT
1 + λ̃2e2eT

2 + λ̃3e3eT
3 , (4)

where λ̃i = exp(− λi
δD
), i = 1,2,3, with diffusion parame-

ter δD that controls the diffusion velocities. According to
the theory of Rayleigh quotient [HJ85], the diffusion veloc-
ity from the vertex vi along a vector e can be expressed as

vel(vi,e) =
eT D(vi)e

eT e . It can be viewed as the length of the
vector projected onto the ellipsoid.
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Usually, the principal diffusion direction is the most infor-
mative one, which is defined as the direction corresponding
to the maximal diffusion velocity. The principal diffusion di-
rections are also used to distinguish weak features and noise,
and guide the feature curve growing and merging.

2.2. Initial feature assignment

According to the eigen-analysis [KCL09] and the neighbor-
ing relationship, we assign vertices to different initial types
: face, strong-edge, weak-edge, corner, and noise. Since the
relative difference between eigenvalues is crucial for classi-
fying vertices, the eigenvalues are normalized to bring con-
sistency into different data, using λi√

λ2
1+λ2

2+λ2
3
, i = 1,2,3. For

convenience, all the eigenvalues mentioned later are normal-
ized, and we still denote as λi.

The types of corner, face, and strong-edge can be easily
determined by the corresponding eigenvalues. For each ver-
tex, if (λ3 > 0.1), mark the vertex corner vertex; if (λ2 <
0.02), mark the vertex face vertex; if (λ2 > 0.1 & λ3 < 0.02),
mark the vertex strong-edge vertex. To separate weak-edge
vertices and noise vertices, we design a criterion, called
neighboring vertex coincidence (NVC), by considering more
neighbors. It utilizes the phenomenon that the neighboring
vertices of a noise vertex usually have different principal
diffusion directions. Specifically, given a vertex vi not be-
longing to face vertices, we put it into a front set. Along
its principal diffusion direction, we find non-face vertices
in its neighbors, which have similar principal diffusion di-
rections (intersecting angle less than 15∘). If such coinci-
dent vertex exists, we mark it as the new front and keep this
front tracking procedure going. If the number of found coin-
cident vertices is larger than 2, we call vertex vi satisfies the
NVC criterion. Then the weak-feature vertex is identified, if
(0.02≤ λ2 ≤ 0.1 & λ3 < 0.02 & NVC). The rest vertices that
are not marked are noise vertices. Note that these parameters
are chosen through our experiments.

After the initial feature assignment, we mark corner ver-
tices as point features, and add noise vertices into the set
of face vertices, which will be further classified into patch
features or curve features. The weak-edge vertices will be
enhanced through merging, and then connected into the set
of strong-edge vertices, which are considered as the con-
stituents of curve features. The separate process of weak-
edge vertices is helpful to distinguish weak curve features
from noise. Since the diffusion is a global PDE that has a
built-in resistance to noise, a simple enhancement procedure
by way of merging suffices for our goal. We can enhance the
weak-edge vertices by simply enlarging the second eigen-
value of the voting tensor λ2 = αλ2, where α is a parameter
that is set as α=10. As a result, the gap between features
and noise are magnified, which is necessary for classifica-
tion purpose.

2.3. Weighted harmonic fields

It is well known that the heat diffusion over a manifold M is
governed by the heat equation. We formulate the weighted
diffusion process as⎧⎨⎩

∂u(v,t)
∂t =−div(D̃∇u(v, t)), t ∈ R+,

u(v, t) = c(v), v ∈ S,
u(v,0) = 0, v ∈ others,

(5)

where the diffusivity D̃ is a 3 × 3 symmetric matrix, S is
the set of seeds, and c(v) is the fixed value of seed v. The
weight matrix D̃ serves for two purposes: encoding diffusion
tensor D, and characterizing geometric difference between
neighboring vertices. These local attributes are crucial for
our feature classification, which will be addressed next.

From the entire model’s perspective, we allow heat propa-
gation to reach its global equilibrium and consider the stable
stage of the weighted diffusion in Eq. (5). When the diffu-
sion has reached its final stable state, time t is omitted in the
notation. Then, Eq. (5) reduces to{

div(D̃∇u(v)) = 0,
u(v) = c(v), v ∈ S,

(6)

whose solution is a WHF. The discrete formulation of
Eq. (6) can be written into matrix form LF = 0, subject
to Dirichlet boundary condition F(v) = c(v),v ∈ S, where
L is the n × n Laplace matrix, and F is the harmonic
field. The Laplace matrix L has elements Li j = −K(vi,v j),
Lii = ∑ j∈N(i) K(vi,v j), with the kernel given by K(vi,v j) =

exp(− (vi−v j)
T (wi j(D(vi)+D(v j))

−1(vi−v j)
δk

), where δk is a con-
trol parameter and is set to the inverse of the maximal eigen-
values of diffusion matrices D(vi) and D(v j). The weight

is defined as wi j = exp(−∥NCCi−NCC j∥
δG

), where NCCi de-
notes normal-controlled coordinates [WHSQ11] of vertex vi
and δG is a parameter. In such a way, we can very well
characterize the geometric differences of neighboring ver-
tices. Since the symmetric matrix D(⋅) is positive definite
and wi j = w ji is a positive constant, the value of K(⋅, ⋅)
is within interval (0,1]. Moreover, it is easy to obtain that
K(vi,v j) = K(v j,vi), which satisfies the symmetry of heat
diffusion.

The above-documented formulation is a linear system
with boundary condition at seeds. For large meshes, it is
necessary to avoid solving the linear system every time
after we update seeds. We adopt the popular Penalty
method [XZCOX09] to fast update the seeds. Specifically,
L is symmetric which admits fast Cholesky factoriza-
tion and fast updating of Cholesky [DH09]. As a result,
adding/removing seed constraints can be written as matrix
additions. On the other hand, we want to utilize the harmonic
field for clustering. We let each harmonic field associate with
one seed valued as 1, and the other seeds valued as 0. The re-
gion where the values are most similar to the current seed in
the harmonic field is treated as a patch feature. Hence, we put
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Algorithm 1: Classification

for i=1:n do
find [ fi j, j] = max j(Fi j);
if vi is a non-face vertex || fi j < 0.5 then

continue;
end
add the vertex vi to the j-th patch feature;
assign it the color value j;
fi = ∑ j Fi j;
if fi is the local extremum in the direction
perpendicular to its principal diffusion direction
(the common boundary of two patch features) then

mark vi as a vertex of curve features;
end

end

seeds in a high dimensional space Rd , where d is the number
of seeds. Now F becomes a n× d unknown matrix, which
represent d harmonic fields. Then, Eq. (6) can be rewritten
as

(L+ P̄)F = P̄B, P̄ = P+UUT −DDT , (7)

where the n×n penalty matrix P, the n×n modification ma-
trices U and D, and the n× d constraint matrix B have the
following entries:

Pi j =

{
α i = j ∈C,
0 otherwise,

Ui j =

{ √
α i = j ∈Cins,

0 otherwise,

Di j =

{ √
α i = j ∈Cdel ,

0 otherwise,
Bi j =

{
1 i is the jth in C̄,
0 otherwise,

with α being the penalty factor, C the indices for the previous
seeds, Cins the indices for newly-inserted seeds, Cdel the in-
dices of seeds to be deleted, and C̄ the indices for the updated
seeds. As for the penalty factor, we choose α = 1.0×108 for
all the examples in our current implementation. It may be
noted that, the penalty method only handles soft constraints,
so α value must be large enough to confine the values at
seeds within the desirable range.

2.4. Feature classification

With the harmonic fields obtained from the diffusion PDE in
Eq. (7), one can easily classify the vertices by their values of
each element in Rd . Since in the initial feature assignment,
most types of the vertices have already been classified ex-
cept for the face vertices, we only need to handle the face
vertices V f , and classify them into different patch features
or curve features via Algorithm 1. The main idea is to clus-
ter the face vertices with the most similar field values into a
patch feature.

We devise a scheme to automatically select the seeds
for the feature classification (documented in Algorithm 2).
The seeds are randomly selected from the unclassified face

vertices, during the iterative procedure. In principle, since
our method is solely based on the global diffusion and its
anisotropic nature, it is insensitive to the exact location of
seeds. Note that, the number of seeds is the number of patch
features. The proposed method is efficient, since the updat-
ing of Cholesky factorization is very fast.

Algorithm 2: Automatic seed selection
input : Cholesky factorization of the Laplacian matrix

L, face vertices VF .
output: Classification result.
Initialize: C = ∅, C̄ = ∅, Cdel = ∅.
while VF is not empty do

1: set Cins = ∅, randomly select a seed from VF , and
add it to Cins and C̄.
2: fast update the Cholesky via Eq. (7), and obtain
the updated F.
3: classify the face vertices using Algorithm 1, and
set C=C̄.

end

After this step, the vertices have already been classified
into different features. For curve features useful in down-
stream graphics applications, it generally requires a concise
representation by ordering the vertices and forming a link
among them. In our work, this can be easily handled using
the principal diffusion directions. Smooth feature curves are
found by edge-tracking along the principal diffusion direc-
tions. For an edge of M, if both endpoints belong to point
features or curve features, and at least one of the princi-
pal diffusion directions is close to the edge (intersecting an-
gle less than 15∘), the two endpoints are connected to form
a line segment contributing to a feature curve. Our merg-
ing method is easy and effective, with no post-processing
needed.

3. Experimental results and discussions

In this section, we demonstrate the performance of our
method by conducting various experiments. All the exper-
iments shown below are conducted on a computer with
1.6GHz Intel Core (TM, 4Core/8Threads) i7 CPU with 4G
RAM, where both synthetic and scanned meshes are utilized.
Most computational tasks of our method can be carried out
in the pre-processing stage, such as the diffusion tensor, ini-
tial feature assignment, and Cholesky decomposition of the
Laplace matrix.

Fig. 1 and Fig. 3 show the feature classification on noisy
meshes. We add Gaussian noise with σ = 5% of mean edge
length to the input data. Since both the local diffusion ten-
sors and the global harmonic fields are utilized, our method
inherits the robustness to noise from the diffusion.

In Fig. 4, we compare our method with two other related
methods: the random walk (RW) [LHMR09] (b), and the
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Figure 3: Feature classification on noisy meshes: The Octa-
flower (top) and the Stamp (bottom).

Table 1: Time (second) comparison of different methods.

Data (# V ) RW TV Ours
Fandisk (6477) 0.44s 3.54s 0.15s

Tre-twist (12800) 1.78s 5.13s 0.29s
Pawn (68000) 8.64s 24.16s 1.24s

Canstick (170000) 38.25s 86.47s 5.58s

tensor voting (TV) [KCL09] (c). The RW method fails to
find weak features, and it also has difficulties in clustering
vertices along a curve feature. Moreover, since the matrix
of a random walk is not symmetric, fast Cholesky factor-
ization is not applicable, which greatly reduces its compu-
tational speed. The TV method can detect weak features
and smooth transition regions, but the clustering is sensi-
tive to noise. Consequently, much post-processing effort is
unavoidable. Besides, neither can distinguish different patch
features. Instead, they consider the entirety collectively as
one single patch. Our method is able to classify the vertices
into different types of features, with both weak features and
smooth transition features detected on noisy meshes (Fig. 1
and Fig. 4 (d)). Table 1 summarizes the running time of these
algorithms. Note that the pre-processing time is not listed for
all three methods. Our method performs better than those
methods in terms of both speed and clustering results. More
experimental results are shown in Fig. 5 to further demon-
strate the performance of our method. The connected curve
features are highlighted on the bottom row.

Certain limitations may still exist, which call for further
improvement. From the feature’s perspective, meshes with-
out closed curve features do not have separated patch fea-
tures in principle. This is because the heat diffusion can not
be easily stopped when propagating across the connected
regions. The proposed method, which aims at feature clas-
sification, does not further segment the connected patches.

(a) Noisy mesh (b) Random walk

(c) Tensor voting (d) Our method

Figure 4: Comparison of different methods on the Fandisk
with noise.

Such challenge is further compounded by model uncertainty
and noise, especially for generally near smooth models. To
address this challenge, one would require separate segmen-
tation algorithms for further classification, such as multi-
objective segmentation [SNKS09], which is one of our fu-
ture research direction.

4. Conclusion and future work

In this paper, We have articulated a new method for multi-
type feature classification on meshes, based on diffusion ten-
sor weighted harmonic fields. A diffusion tensor has been lo-
cally designed to collectively control the global anisotropic
behavior of heat diffusion. Such diffusion tensor has also
been utilized for forming feature curves along its princi-
pal diffusion directions. The novelty of our method centers
at the elegant integration of locally-defined diffusion tensor
and globally-defined harmonic field in an anisotropic man-
ner. The proposed algorithm is capable of rapidly updating
the underlying harmonic fields with real-time performance.
Our feature classification method is also insensitive to seed
selection and robust to noisy meshes.

For immediate future work, we are planning to extend our
method to handle diverse types of geometric and scientific
data, such as point clouds in urban architecture modeling,
volumetric data in medical imaging, and higher dimensional
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(a) Tre-twist (b) Block (c) Cosine plane (d) Cup (e) Pawn (f) Canstick

Figure 5: More examples. Top: Feature classification results. Bottom: The connected curve features.

manifolds in scientific disciplines. Moreover, applying this
approach to vector field design and non-photorealistic visu-
alization deserves further investigation, which can broaden
our method’s application scopes.
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