
Computer-Aided Design 42 (2010) 95–108
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Physically based modeling and simulation with dynamic spherical volumetric
simplex splines
Yunhao Tan a, Jing Hua a,∗, Hong Qin b
a Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
b Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

a r t i c l e i n f o

Article history:
Received 26 June 2008
Accepted 20 February 2009

Keywords:
Physically based modeling
Heterogeneous models
Biomechanic simulation
Biomedical imaging

a b s t r a c t

In this paper, we present a novel computational modeling and simulation framework based on dynamic
spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-
zero objects with real physical properties. In this framework, we first develop an accurate and efficient
algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric
simplex splines which can represent with accuracy geometric, material, and other properties of the
object simultaneously. With the tight coupling of Lagrangianmechanics, the dynamic volumetric simplex
splines representing the object can accurately simulate its physical behavior because it can unify the
geometric andmaterial properties in the simulation. The visualization can be directly computed from the
object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines
during simulation without interpolation or resampling. We have applied the framework for biomechanic
simulation of brain deformations, such as the brain shifting during surgery and brain injury under
blunt impact. We have compared our simulation results with the ground truth obtained through intra-
operative magnetic resonance imaging and real biomechanic experiments. The evaluations demonstrate
the excellent performance of our new technique.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling, simulation and assessment of digital representations
of heterogeneous objects acquired from the real world are very
challenging research tasks and have many potential applications.
The fundamental objectives are to unambiguously model high-
dimensional heterogeneous objects, accurately and effectively
simulate their behaviors, and rigorously analyze their dynamic
natures. Among many important aspects of physically based
modeling and simulation, accuracy is of the utmost importance
since only physically realistic simulations can be used to represent
true reality and provide valuable information for simulation-based
assessment and analysis. In existing approaches, several different
representations are typically required throughout the simulation
of real-worldmodels in computerized environments. That is to say,
each stagewithin the entire physical simulation pipeline, including
modeling (e.g., meshing, material modeling), simulation, analysis,
visualization, typically takes as input a different representation
of the modeled object, which requires costly and error-prone
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data conversions throughout the entire simulation process. It
will certainly introduce error into the pipeline. For instance, in
order to simulate the brain deformation, a linear solid mesh
needs to be generated for finite element methods (FEMs) from
the voxel-based representation of the brain representing the
geometry of the brain (which has a highly convoluted cortical
surface and many subtle sub-cortical structures). Then, manual
material editing needs to be conducted to assign material
properties to solid meshes. The FEM properties are linearly
interpolated during simulation and resampled once again to
the voxels’ intensities for visualization. Certainly, conversions
among volumetric datasets, solid meshes, finite elements, and
voxels based on linear interpolation or resampling will introduce
error. In addition, more errors will be brought into the pipeline
as the constructed linear solid mesh may not well represent
both geometry and material distribution simultaneously. The
geometric, physical, and mechanical properties are not tightly
integrated into the simulation. As a result, current practice
impedes the accuratemodeling and simulation of digital models of
real-world objects. With ever-improving computing power comes
the strong demand for more accurate, robust, and powerful solid
modeling and simulation paradigms that are efficacious for the
modeling, simulation, analysis, and visualization of digital models
of real-world objects.
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In order to bridge the gap and overcome the aforementioned
deficiencies, we develop an integrated computational framework
based on dynamic spherical volumetric simplex splines (DSVSS)
that can greatly improve the accuracy and efficacy of modeling
and simulation of heterogenous objects since the framework
cannot only reconstruct with high accuracy geometric, material,
and other quantities associated with heterogeneous real-world
models, but also simulate the complicated dynamics precisely
by tightly coupling these physical properties into the simulation.
The integration of geometric modeling, material modeling, and
simulation is the key to the success of the simulation of real-
world objects. In contrast to existing techniques, our framework
uses a single representation that requires no data conversion. The
advantages of our framework result from the many attractive
properties of multivariate splines. In comparison with tensor-
product NURBS, multivariate simplex splines are non-tensor-
product in nature. They are essentially piecewise polynomials of
the lowest possible degree and the highest possible continuity
everywhere across their entire tetrahedral domain. For example,
given an object of simplex splines with degree n, it can achieve
Cn−1 continuity. Furthermore, C0, other varying continuities, and
even discontinuity can be accommodated through different knot
and control point placements and/or different arrangements of
domain tetrahedra in 3D. Furthermore, simplex splines are ideal to
represent heterogeneous material distributions through the tight
coupling of control points and their attributes. From a dynamic
simulation’s point of view, they are finite elements which can
be directly brought into finite element formulations and physics-
based analysis without losing any information. Finite elements
can be derived directly from the simplex spline representation,
which can also be visualized via volumetric ray-casting without
discretization [1]. Trivariate simplex splines are obtained through
the projection of n-dimensional simplices onto 3D. Projecting them
one step further onto 2D for visualization results in bivariate
simplex splines of one degree higher than the original solid model,
therefore, simplex splines facilitate the visualization task with an
analytical, closed-form formulation. It is not necessary to perform
any resampling and/or interpolation operations. Local adaptivity
and local/global subdivision via knot insertion can be readily
achieved.
On the application front, in recent years, tremendous efforts

from biomedical research communities have been devoted into
brain simulation since accurate simulation of brain deformations
can have many potential applications, e.g., computer-aided sur-
gical planning/surgery, computer-assisted disease/injury position-
ing, accurate radiation therapy, and many other medical benefits
[2]. Various methods are emerging for the simulation of brains
in different physical environments. However, most brain volume
simulation techniques still depend on linear geometric represen-
tation and FEMs as we have already described above. No advanced
computationalmodels are available for better simulation. Aswe all
know, the brain is a highly convoluted organ rich with geometric,
anatomical, and material variations. In order to obtain a realistic
deformation simulation of the brain, it is very important to con-
struct a digital model which can simultaneously represent its ge-
ometry, imaging intensities, and material properties, and then in-
tegrate the properties into the biomechanic simulation. Consider
that the human brain is topologically equivalent to a solid sphere,
our proposed dynamic spherical volumetric simplex splines are
perfect for modeling, simulation, and analysis of such an object.
The spherical volumetric simplex splines are defined over a solid
spherical tetrahedralization. In this paper, we apply and evaluate
our simulation framework on various human brain deformations.
As depicted in Fig. 1, the developed framework is fully

automated without human intervention. The spherical domain is
constructed from the subdivision of an icosahedron and harmonic
Fig. 1. Illustration of the pipeline of our DSVSS framework. The rectangles inside
the pipeline indicate tasks, and the icons with text under them denote the inputs
and outputs of tasks.

volumetricmapping.With spherical domain and harmonic volume
parameterization, the continuous volumetric representation of the
modeled object is obtained through fitting spherical volumetric
simplex splines to the real-world volume data. Physical properties
can then be integrated into the system to unify the geometric
representation as well as the physical representation. With
Lagrangian dynamics essentials integrated into the pipeline, the
powerful framework yields the dynamic representation of the
digital model. The dynamic representation of the digital model can
facilitate multiple tasks such as model assessment, biomechanic
simulation, and visualization.
Our contributions in this paper can be summarized as follows:

• Wedevelop a physical simulation frameworkwhich seamlessly
integrates geometric properties, physical properties, and dy-
namic behaviors together. The consistent, uniform representa-
tion throughout each stage of modeling and simulation is a sin-
gle degree n spherical volumetric simplex spline. It is ideal for
simulating complex, heterogenous real-world objects.
• The heterogenous model reconstructed from the digitalization
of a real-world object is faithful and of high-fidelity in
terms of its geometry and material distribution. The model
reconstruction procedure is automatic, and the maximal
fitting error to the original data can be controlled by user’s
specification interactively.
• During the simulation, the geometry and physical properties
of the volumetric model can be computed using the analytic
representationwithout any need for numerical approximations
such as cubic interpolation or quadratic resampling. Hence,
physical simulation, including all downstream processes, such
as analysis and evaluation, can be achievedmore accurately and
robustly.
• We apply the dynamic spherical simplex splines scheme in the
simulation and analysis of brainmodels. The unified scheme can
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achieve a very accurate simulation compared with the ground-
truth results because it can tightly integrate the geometric
and material properties in the simulation. Our framework has
great potential to provide simulation-based assessment for
innovative computer-aided diagnosis of brain injury cases.

2. Previous work

This section reviews the previous work related to the theory
and application of multivariate simplex splines and physically
based modeling and simulation. In particular, we provide a
brief background regarding brain simulation and its potential
applications.

2.1. Multivariate simplex splines

From a projection’s point of view, univariate B-splines can
be intuitively formulated as volumetric shadows of higher
dimensional simplices, i.e., we can obtain B-splines of arbitrary
degree n by taking a simplex in the (n + 1)-dimensional space
and volumetrically projecting it onto R1. Motivated by this idea of
Curry and Schoenberg, C. de Boor [3] presented a brief description
of multivariate simplex splines. In essence, multivariate simplex
splines are the volumetric projection of higher dimensional
simplices onto a lower dimensional space Rm. Simplex splines
have many attractive properties such as piecewise polynomials
over general tetrahedral domains, local support, higher-order
smoothness, and positivity, making them potentially ideal in
engineering design applications [4]. From the point of view of
blossoming, Dahmen et al. [5] proposed triangular B-splines. Later,
Greiner and Seidel [4] demonstrated their practical feasibility in
graphics and shape design.
In contrast to theoretical advances, the application of simplex

splines has been rather under-explored. Pfeifle and Seidel devel-
oped a faster evaluation technique for quadratic bivariate DMS-
spline surfaces [6] and applied it to the scattered data fitting of a
triangular B-spline [7]. Recently, Rössl et al. [8] presented a novel
approach to reconstruct volume from structure-gridded samples
using trivariate quadric super splines defined on a uniform tetra-
hedral partition. They used Bernstein–Bézier techniques to com-
pute and evaluate the trivariate spline and its gradient. Hua andQin
presented a volumetric sculpting framework that employs trivari-
ate scalar nonuniform B-splines as an underlying representation
[9,10]. More recently, they applied trivariate simplex splines to the
representation of solid geometry, the modeling of heterogeneous
material attributes, and the reconstruction of continuous volumet-
ric splines from discretized volumetric inputs via data fitting [11].
Tan et al. applied the hierarchical simplex splines to volume recon-
struction from planar images [12].

2.2. Physically based modeling and biomechanic simulation

Free-form deformable models were first introduced to the
modeling community by Terzopoulos et al. [13], and they have
been improved by a number of researchers over the past
20 years. Celniker and Gossard developed an interesting prototype
system [14] for interactive free-form design based on the finite-
element optimization of energy functionals proposed in [13].
Bloor andWilson developed related models using similar energies
and numerical optimization [15]. Welch and Witkin extended
the approach to trimmed hierarchical B-splines for interactive
modeling of free-form surfaces with constrained variational
optimization [16]. Terzopoulos and Qin [17,18] devised dynamic
physically based generalization of NURBS (D-NURBS). Later, they
further developed a dynamic triangular B-splines [19] paradigm
for high topology surface modeling. The new paradigm on simplex
spline finite elements is substantially more sophisticated and is
expected to produce even more true-to-life simulation results.
As for simulation of digital models of real-world objects,

researchers have focused on FEM meshing, which can represent
the shape of the objects, and physical laws and properties, which
govern the model’s behavior. Zhang et al. presented a method for
3Dmesh generation from imaging data [20]. They further designed
an algorithm for automatic 3D mesh generation for a domain with
multiple materials. In general, the main objective of FEM meshing
is to construct nicely-shaped elements which can represent both
the geometry and material of real-world models for accurate and
robust simulation. However, due to its linear representations in
general, it cannot accurately represent the geometric and physical
properties of real-world objects. For simulation-based assessment
of real-world objects, e.g., the brain, these FEM representations are
not able to obtain an accurate and objective analysis result [21].
Biomechanic simulation of brain behaviors such as brain

shifting and brain injury gains ever-increasing importance in
recent years while these behaviors remain an unclear problem
for public health professionals. Although impeded by that fact
that brain material properties cannot be retrieved directly from
the human brain in vivo, there is a certain amount of research
which has been done either using animal brains ormodifying brain
biomechanic parameters to approach the real situation. Margulies
et al. studied the relationship between non-preconditioned and
preconditioned biomechanic response of brain tissue from pigs
[22]. Later they further investigated the homogeneity of gray
matter by measuring the stiffness of the cerebral cortex and
comparing it to the thalamus of the porcine brain [23]. Many
investigations have been conducted using mathematical finite
element modeling [24,25,21]. In general, the cerebral tissues in
their models were represented by homogeneous materials. Recent
studies started to make distinctions between gray and while
matter. In terms of applications, brain deformation simulation
facilitates researchers and clinicians new prospects in clinical
practice [2].

3. Dynamic spherical volumetric simplex splines

In this section, we first briefly review the theoretical back-
ground of volumetric simplex splines. Then, we formalize them
to the spherical volumetric simplex splines with details on spher-
ical domain construction. We further generalize the splines with
physical dynamics and develop dynamic spherical simplex splines
which can be used formodeling and simulation of real-worldmod-
els.

3.1. Volumetric simplex splines

A degree n volumetric simplex spline, M(x|x0, . . . , xn+3), can
be defined as a function of x ∈ R3 over the half open convex hull
of a point set V = [x0, . . . , xn+3), depending on the n + 4 knots
xi ∈ R3, i = 0, . . . , n+ 3. The volumetric simplex splines may be
formulated recursively, which facilitates point evaluation and its
derivative and gradient computation. When n = 0,

M(x|x0, . . . , x3) =


1

|VolR3(x0, . . . , x3)|
, x ∈ [x0, . . . , x3),

0, otherwise,

and when n > 0, select four pointsW = {xk0 , xk1 , xk2 , xk3} from
V, such thatW is affinely independent, then

M(x|x0, . . . , xn+3) =
3∑
j=0

λj(x|W)M(x|V \ {xkj}), (1)

where
∑3
j=0 λj(x|W) = 1 and

∑3
j=0 λj(x|W)xkj = x.



98 Y. Tan et al. / Computer-Aided Design 42 (2010) 95–108
a b

Fig. 2. (a) A domain tetrahedron demonstrated with its knot clouds assigned and labeled. The underlying tetrahedron, (p, q, r, s), is rendered as a shaded tetrahedron; (b)
The virtual tetrahedra of the domain tetrahedron are visualized in different colors with the opacity value of 0.4. In (a) and (b), the degree of the domain is cubic hence each
vertex of the tetrahedron has three sub-knots. The primary-knots are presented with yellow dots while sub-knots are depicted with blue dots. The red lines connecting
the primary-knots indicate the underlying tetrahedron. Each green line here denotes the association between the primary-knot and the sub-knot. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
The directional derivative of M(x|V) with respect to a vector d
is defined as follows:

DdM(x|V) = n
3∑
j=0

µj(d|W)M(x|V \ {xkj}), (2)

where d =
∑3
j=0 µj(d|W)xkj and

∑3
j=0 µj(d|W) = 0.

3.2. Spherical simplex spline volume

Generally, a volumetric simplex spline can take as input any
domain with arbitrary geometry and topology due to its non-
tensor-product nature. The spherical simplex spline volume is
defined by volumetric simplex splines over a spherical volumetric
domain. Here, we choose the sphere domain since mapping most
organic objects in the biomedical research field to a sphere results
in less distortion andmore uniformdistribution of sampling points,
which reduces the difficulty in the fitting procedure. Note that, our
volumetric simplex spline volumes represent not only boundary
geometry, but also interior geometry. They can represent physical
or material attributes over the entire solid as well.

3.2.1. Spherical volumetric simplex splines
Now let S3 = {x ∈ R3, ‖x‖ ≤ c} denote a solid sphere

in R3. Without loss of generality, let S3 be a unit solid sphere,
i.e., c = 1. Let T be an arbitrary ‘‘proper’’ tetrahedralization of
S3. Here, ‘‘proper’’ means that every pair of domain tetrahedra are
disjoint, or share exactly one vertex, one edge, or one face. To each
vertex t of the tetrahedralization T, we assign a knot cloud, which
is a sequence of points [t0, t1, . . . , tn], where t0 ≡ t. We call t
primary-knot and [t1, . . . , tn] sub-knots. Fig. 2(a) shows 4 vertices
with cubic knot clouds associated, which are labeled as p, q, r, or
s group, respectively. The primary-knots are rendered with yellow
dots and sub-knots with blue dots. We will use these two colors
to differentiate the primary-knots and sub-knots in the rest of the
illustrations.
For every tetrahedron I ∈ T, assume I = (p, q, r, s) =

(p0, q0, r0, s0). We call (p, q, r, s) the underlying tetrahedron.
All the other tetrahedra [pi, qj, rk, sl] with 0 < i + j + k +
l ≤ n are called the virtual tetrahedra. Fig. 2(a) shows the
underlying tetrahedron with shading. Fig. 2(b) demonstrates the
virtual tetrahedra rendered with different shading colors.
Then for every tetrahedron I , we require
• all the tetrahedra [pi, qj, rk, sl] with i + j + k + l ≤ n are
non-degenerate, i.e., the underlying tetrahedron and virtual
tetrahedra should be valid.
• the set

Ω = interior

( ⋂
i+j+k+l≤n

[pi, qj, rk, sl]

)
(3)

is not empty.
• if I is a boundary tetrahedron, the sub-knots assigned to the
boundary vertices must lie outside of S3.

The condition that Ω is nonempty states that the sub-knots
associated with different vertices of I are all separated from each
other. The underlying tetrahedron I and its virtual tetrahedra have
the same orientation. As shown in Fig. 2(a), in our framework,
the orientation of the tetrahedron is defined as, observing from
pi, the triangle formed by (qj, rk, sl) is clockwise-oriented where
i+ j+ k+ l ≤ n.
The formation of Ω can be intuitively described as: starting

from the underlying tetrahedron, we chop it using the triangle
faces from each virtual tetrahedron, and only keep the part inside
of the triangle faces. As the starting shape of the underlying
tetrahedron is convex, the chopping operation will not affect its
convexity. Hence the final shape ofΩ is a convex, solid polyhedron
if nonempty.
Fig. 3(a) and (b) depicts the Ω of a cubic domain tetrahedron,

with and without virtual tetrahedra rendered, respectively. Note
that if Ω 6= ∅, Ω must be a convex solid polyhedron formed by
the interior of the underlying tetrahedron and virtual tetrahedra.
Fig. 3(a) and (b) illustrate the Ω as a blue, convex, and solid
polyhedron.
We then define, for each tetrahedron I ∈ T and i+ j+ k+ l = n

(in the following, we use β to denote 4-tuple (i, j, k, l)), the knot
sets are

V Iβ = [p0, . . . , pi, q0, . . . , qj, r0, . . . , rk, s0, . . . , sl]. (4)

For an example in Figs. 2 and 3, as the degree of the domain is
cubic, V Iβ has 16 elements: 4 primary-knots and 12 sub-knots.
The basis functions of normalized simplex splines are then

defined as

N Iβ(u) = | det(pi, qj, rk, sl)|M(u|V
I
β). (5)
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Fig. 3. (a) The Ω of a domain tetrahedron, formed by the interior of the underlying tetrahedron and virtual tetrahedra, is rendered with a blue polyhedron. The virtual
tetrahedra are visualized in different colors with the opacity value 0.1; (b) The virtual tetrahedra are removed to better visualize theΩ . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
a b

Fig. 4. (a) The spherical domain with assigned knot clouds for defining spherical volumetric simplex splines. The yellow and blue dots denote primary-knots and sub-knots,
respectively; (b) The spherical simplex spline volume defined upon the domain in (a). The green dots denote the control points. The evaluated spherical volume simplex
volume is scaled to show its nonempty interior property. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
These basis functions can be shown to be all non-negative and to
form a partition of unity. The volumetric spherical simplex spline
volume is the combination of a set of basis functions with control
points cIβ :

s(u) =
∑
I∈T

∑
|β|=n

cIβN
I
β(u). (6)

The ‘‘generalized’’ control points cIβ are now (k + 3)-dimensional
vectors, including control points (px, py, pz) for the solid geometry,
and control coefficients (g1, . . . , gk) for the attributes, where k
denotes the number of attributes associated with the geometry.
The spherical simplex splines are ideal to model genus-zero,
heterogeneous solid objects. The number of physical properties is
application-oriented. For a concise expression of the formulation,
without loss of generality, we will deal with only one physical
attribute in the following formulas.
Fig. 4(a) illustrates a spherical volumetric simplex spline and

its domain with its cubic knot clouds associated. As observed in
the figure, the sub-knots assigned to the boundary vertices of the
sphere domain are positioned outside of the sphere. Fig. 4(b) shows
the control space and the evaluated spherical volumetric simplex
volume.
3.2.2. Initial construction of spherical volumetric domain
Theoretically, domain tetrahedralization, T, can be an arbitrary

tetrahedralization of a unit solid sphere, S3, as aforementioned in
Section 3.2.1. However, in practice, two important aspects of the
domain tetrahedralization should be carefully considered:

• T should be as uniform as possible, i.e., minimize max(VolI∈T)
min(VolI′∈T)

.
Uniform tetrahedralization at the same hierarchical level will
decrease the recursion time while a hierarchical structure is
needed.
• T should avoid bad-shaped tetrahedra in Delaunay tetrahedral-
ization. Bad-shaped tetrahedra, for instance, slivers, will in-
crease numerical error during the evaluation.

Constrained Delaunay tetrahedralization [26] can observe the
second requirement, but it will introduce very large and very small
tetrahedra thus cannot comply with the first requirement. Instead,
we tetrahedralize a regular icosahedron and then make use of
harmonic volumetric mapping to map the tetrahedralization to
a solid sphere. As a result, the solid sphere tetrahedralization is
uniform and its quality is better than what constrained Delaunay
tetrahedralization can offer.
Fig. 5 shows the flow of domain establishment and the knots

distribution. Note that, in Fig. 5(d), the sub-knots associated with
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Fig. 5. (a) A regular icosahedron, which is the best approximation of a solid sphere among all regular polyhedra; (b) Tetrahedralization of (a) is uniform and it is easy to
implement; (c) Harmonic mapping from (b) to a unit solid sphere yields the domain tetrahedralization, consisting of uniform andwell-shaped tetrahedra; (d) A domain with
cubic knot clouds assigned to (c); (e) A close view of the domain picked from (d).
boundary vertices are placed outside of the sphere. The uniform
tetrahedralizationmay be subdivided and refinedwhen necessary,
e.g., modeling discontinuity as described later.

3.3. Model reconstruction by data fitting

Besides constructing the initial unit sphere tetrahedralization
as the parametric domain, another preliminary step prior to the
reconstruction of the continuous volumetricmodel using spherical
simplex splines is to find a volumetric parameterization between
the physical model and domain space.

3.3.1. Volumetric parameterization
To find a volumetric parameterization of a genus-zero solid,

harmonic volumetric mapping facilitates a viable solution. Har-
monic volumetric mapping was first implemented for applications
by Wang et al. [27,28]. They successfully exposed its merits by
applying the approach to brain mapping which can be consid-
ered as a genus-zero volume. Recently Li et al. [29] further ex-
tended the scheme to high-genus harmonic volumetric mapping
and employed it in solid modeling applications. Harmonic volu-
metric mapping can be formulated as follows:
Given two solid objectsM1 andM2, and their boundary surfaces

∂M1 and ∂M2, and suppose that Ef ′ is the conformalmapping [30,31]
between ∂M1 and ∂M2, which is pre-computed. The harmonic
volumetric mapping Ef : M1 7−→ M2 satisfies:{
∇
2Ef (v) = 0, v ∈ M1 \ ∂M1,
Ef (v) = Ef ′(v), v ∈ ∂M1,

where the∇2 is the Laplacian operator defined continuously in 3D
as
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
,

and ∇2Ef = 0 for Ef = (f0, f1, f2) is equivalent to ∇2fi = 0 for all
i = 0, 1, 2.
The harmonic volumetric mapping f here minimizes a har-

monic energy E(f ) [28], which is defined as

E(f ) =
∑
(u,v)

k(u, v)(f (u)− f (v))2, (7)

where k(u, v) is the string constant defined in the edge between u
and v. Here, f can be solved using a steepest descent algorithm.
The algorithmic procedure of harmonic volumetric mapping is

concisely summarized as follows:

(1) For each boundary vertex, v, v ∈ ∂M1, let Ef (v) = Ef ′(v); for
each interior vertex, v, v ∈ M1 \ ∂M1, let Ef (v) = E0, compute
the harmonic energy E0 using Eq. (7).

(2) For each interior vertex, v, v ∈ M1\∂M1, compute its derivative
DEf using a steepest descent algorithm, then update Ef (v) by
δEf (v) = −DEf (t)δt , δt is the step length.

(3) Compute the harmonic energy E; if E − E0 is less than user
specified threshold δE, the algorithm stops; Otherwise assign
E to E0 and repeat step (2) through step (3).

Fig. 6 shows the harmonic volumetric mapping from one brain
to a solid unit sphere. After the mapping has been established, the
point parameterization and correspondence between the domain
and the object can now be stored as the input of our spherical
simplex spline model reconstruction algorithm.

3.3.2. Fitting with spherical volumetric simplex splines
After harmonic volumetric mapping, a finite number of dis-

cretized sampling points of the physical object, (xi, yi, zi, ρi)mi=1,
and their parametric coordinates in the domain, (ui, vi, wi)mi=1, can
be retrieved. ρi denote a physical attribute. Note that, there could
bemultimodality physical attributeswithmore dimensions. In this
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c d
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Fig. 6. (a) The discretized point set in the spherical domain space; (b) The discretized data point set in the physical space, from the same angle of view as (a); (c–f) The
shapes are cut into halves sagittally (c–d) and axially (e–f) in order to show the interior mapping between the parametric domain and the physical object.
case, allwe need to do is to increase the dimensions and add the ad-
ditional variables into the sampling. All the computation remains
the same. Without loss of generality, we only consider one type of
attribute here in order to simplify the mathematical notation. The
sampling point pairs indicates the parameterization from the solid
sphere domain to the to-be-modeled object. Volumetric simplex
spline is an ideal tool for fitting the geometry aswell as the physical
properties of the volumetric object. In this section, wewill describe
how to fit spherical volumetric simplex splines to the real-world
model.
The problem of model reconstruction in our system can be

stated as follows: given a set P = {pi}mi=1 of points, pi = (xi, yi,
zi, ρi) ∈ R4, and G = {gi}mi=1, gi = (xi, yi, zi) ∈ R3 denoting the
pure geometry extracted from the sampling points, find a volumet-
ric simplex splines volume s : R3 → R3 that approximates G.
Since we are interested in reconstructing the model with

respect to its solid geometry, our spherical simplex spline volumes
are vector functions, i.e., the control points cIβ ∈ R3 are vectors.
Unlike the existing fitting algorithms with simplex splines which
usually find the parametric domain which is close to the original
geometry of the to-be-fitted dataset [1,11], we use the position
(ui, vi, wi)within the solid sphere as the data point gi’s parametric
value. Therefore, we need to minimize the following objective
function:

min Edist(s) =
m∑
i=1

(gi − s(ui, vi, wi))2. (8)

Eq. (8) is a typical least squares problem. If the control points
are treated as free variables, it falls into a very special category of
nonlinear programming, i.e., unconstrained convex quadratic pro-
gramming, which has the following form:

Edist =
1
2
xTQx+ cTx+ f ,

where x = (. . . , cIβ , . . .)
T,
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Fig. 7. Modeling discontinuities with separated domain triangles. Even though
A and A′ are co-located, and B and B′ are co-located, the domain triangles in red
and green belong to two different domains. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Q =


...

. . . 2
m∑
i=1

N Iβ(ui, vi, wi)N
I ′
β ′(ui, vi, wi) . . .

...

 ,

c =

(
. . . ,−2

m∑
i=1

giN
I
β(ui, vi, wi), . . .

)T
,

and f =
∑m
i=1 g

2
i . Note that, Q is a positive definite, symmetric

and sparse matrix. The interior-point method can solve this prob-
lem very efficiently.
After the reconstruction procedure, we can achieve an inte-

grated representation incorporating the object’s solid geometry, s,
and its material attribute, d, at the same time. The scheme can be
expressed as[
s
d

]
(u) =

∑
I∈T

∑
|β|=n

[
c
dc

]
N(u|V Iβ), (9)

where c and dc are the control points and control coefficients for
solid geometry and material attributes, respectively.
To model discontinuity in an attribute field, we first detect

where the discontinuity occurs, then decompose the original
domain into two separated new domains with shared vertices
and edges as the 2D illustration in Fig. 7. This simple mechanism
maintains the consistent structure of the domains. The evaluation,
hierarchy structure, and data structure all remain the same.
Therefore, we can perform the same evaluation on these two
domains simultaneously as if the evaluation were performed
on a single domain. With the association of different control
coefficients, the functional evaluation can output a discontinuity
in material field corresponding to the shared edges. This change
will not affect the geometry of the DSVSS volume as long as the
associated control points remain the same.

3.4. Dynamic spherical simplex splines

In this section, we formulate our dynamic spherical volumetric
simplex splines. We integrate mass, dissipation, and deformation
energy into static simplex spline models, and employ Lagrangian
dynamics to derive their equations of motion. Consequently, the
static control points of the geometric model become generalized
time-varying physical coordinates in the dynamic model.
3.4.1. Geometry and kinematics of simplex spline volumes
The dynamic simplex splines further extend the geometric sim-

plex splines by incorporating time into the volume representation.
Now the function of representation bears both parametric variable
u and time t as follows:

s(u, t) =
∑
I∈T

∑
|β|=n

cIβ(t)N
I
β(u). (10)

For simplicity of formulation expression, we define the vector
of generalized coordinates of control points cIβ as:

c = [. . . , cIβ
>
, . . .]>, (11)

where> denotes transposition.We then express Eq. (10) as s(u, c)
in order to emphasize its dependence on c whose components
are functions of time. Hence, the velocity of the dynamic simplex
splines is:

ṡ(u, t) = Jċ, (12)

where the overstruck dot denotes a time derivative and Jacobian
matrix J(u) is the concatenation of the vectors ∂s/∂cIβ . Assuming
there is m tetrahedra in the parametric domain, β traverses k =
(n+ 1)(n+ 2)(n+ 3)/6 possible tetrads whose components sum
to n. Because s is a 4-vector and c is an M = 4mk dimensional
vector, J is a 4×M matrix, which is expressed as

J =

. . . ,

N Iβ 0 0 0
0 N Iβ 0 0
0 0 N Iβ 0
0 0 0 N Iβ

 , . . .
 , (13)

where N Iβ(u) =
∂sx
∂cIβ x
=

∂sy
∂cIβ y
=

∂sz
∂cIβ z
=

∂sd
∂cIβ d

.

The subscripts x, y, z and d denote derivatives of the compo-
nents of the 4-vector: Cartesian coordinates and physical property,
respectively. Apparently, the solid volume can be presented as the
production of the product of the Jacobian matrix and the general-
ized coordinate vector,

s(u, c) = Jc. (14)

3.4.2. Lagrange equations of motion
Lagrange dynamics are widely used in physics-based shape

design. In this section, we derive the equations of motion of
dynamic simplex splines by applying Lagrangian dynamics [32].
We express the kinetic energy due to the prescribed mass
distribution function µ(u, v, w), and a Raleigh dissipation energy
due to a damping density function γ(u, v, w). Both energy
functions are defined over the parametric domain of the volume.
The mass distribution function and damping density function are
reconstructed with spherical volumetric simplex splines as well,
as described in Section 3.3.2. A 3D thin-plate-like energy under
tension energy model [14,33,16,34] is employed here in order to
define an elastic potential energy,

U =
1
2

∫∫∫
(α1,1s2u + α2,2s2v + α3,3s2w + β1,1s

2
uu + β1,2s

2
uv

+β1,3s
2
uw + β2,2s

2
vv + β2,3s

2
vw + β3,3s

2
ww)dudvdw. (15)

The subscripts on s denote the parametric partial derivatives.
The αi,j(u, v, w) and βi,j(u, v, w) are elasticity functions which
control tension and rigidity, respectively. Other energies, requiring
greater computational cost, are also applicable, for instance, the
non-quadratic, curvature-based energies in [35,36]. Applying the
Lagrangian formulation, we obtain the second-order equations of
motion

Mc̈+ Dċ+ Kc = fc, (16)
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where the mass matrix is

M =
∫∫∫

µJ>Jdudvdw, (17)

the damping matrix is

D =
∫∫∫

γJ>Jdudvdw, (18)

and the stiffness matrix is

K =
∫∫∫

(α1,1J>u Ju + α2,2J>v Jv + α3,3J>wJw

+β1,1J
>

uuJuu + β1,2J
>

uvJuv + β1,3J
>

uwJuw

+β2,2J
>

vvJvv + β2,3J
>

vwJvw + β3,3J
>

wwJww)dudvdw. (19)

M, D and K are all M × M matrices. fc is the generalized force,
which is obtained through the principle of virtual work [32] done
by the applied force distribution f(u, v, w, t). fc can be computed
as follows:

fc =
∫∫∫

J>f(u, v, w, t)dudvdw. (20)

4. Finite element framework

The evolution of the vector of generalized coordinates, c(t), is
determined by the second-order nonlinear differential equation.
Eq. (16) with physical parameter dependent matrices, does not
have an analytical solution. Instead, we obtain an efficient
numerical implementation using finite-element techniques.
Standard finite element methods explicitly integrate the

individual element matrices into the global matrices that appear
in the discrete equations of motion [37]. Although applicable in
some environments, it is infeasible in our infrastructure because
of its unacceptably high computational cost. Instead, we pursue
an iterative matrix solver to avoid the cost of assembling the
global matrices M, D, and K, working instead with the individual
dynamic simplex spline element matrices. We construct finite
element data structures, similar to [19], which facilitates the
parallel computation of element matrices.

4.1. Data structures for dynamic simplex spline finite elements

We define an element data structure which contains the
geometric specification of the tetrahedron patch element along
with its physical properties. In each element, we allocate an
elemental mass, damping, and stiffness matrix, and include the
quantities such as the mass µ(u, v, w), damping γ(u, v, w),
and elasticity αi,j(u, v, w) and βi,j(u, v, w) functions. A complete
dynamic simplex spline consists of an ordered array of elements
with additional information. The element structure includes
pointers to appropriate components of the global vector c.
Neighboring tetrahedra will share some generalized coordinates.
The physical parameters, such as mass µ(u, v, w), damping

γ(u, v, w), and elasticity, αi,j(u, v, w) and βi,j(u, v, w), need to
be measured and computed before the calculation of element
matrices. In this paper, as the goal of the applications is to simulate
the biomechanical behavior of the brain, we directly adopt µ and
γ from the brain study conducted by Zhang et al. [38]. According to
the relationship of elasticmoduli of elastic isotropicmaterials [39],
α and β can be computed from Bulk modulus and Poisson’s ratio
as follows:

α = 3B(1− 2υ), (21)

β =
3B(1− 2υ)
(2+ 2υ)

, (22)
where B is the Bulk modulus and υ is the Poisson’s ratio of brain
tissue. After we get the physical parameters for different types
of brain tissues, we then take these coefficients into the fitting
procedure to integrate them into our DSVSS framework. Now the
volume representation can be described as follows:

s
µ
γ
α
β

 (u) =∑I∈T
∑
|β|=n


c
µc
γc
αc
βc

N(u|V Iβ), (23)

where c and µc, γc, αc, βc are the control points and control
coefficients for solid geometry and material physical attributes,
respectively. Homogeneously taking the parameters into the
element without fitting may sound feasible. However, it is the
fitting procedure that takes attribute field discontinuity into
account to achieve a model of high fidelity.

4.2. Calculation of element matrices

We employ Gaussian quadrature [40] to numerically evaluate
the integral expressions for the mass, damping, and stiffness
matrices associated with each element. In this section, we explain
the expression of the element damping matrix in detail; the
expressions of mass and stiffnessmatrix will follow suit. Assuming
the parametric domain of the element is I(v0, v1, v2, v3) where
vi denotes the vertex, the expression for entry dij of the damping
matrix takes the integral form

dij =
∫
I∈T

∫
I(v0,v1,v2,v3)

γ(u, v, w)fij(u, v, w)dudvdw, (24)

where fij is evaluated using the recursive expression in Eq. (1).
Given integers Ng , we can find the corresponding Gauss weights
ag , and parametric abscissas ug , vg , and wg such that dij can be
approximated by

dij ≈
Ng∑
g=1

agγ(ug , vg , wg)fij(ug , vg , wg). (25)

In our system, we chooseNg to be 10 for cubic dynamic simplex
splines. Because of the irregularity of the knot distribution,many of
the fij vanish over the sub-space of I(v0, v1, v2, v3). We can further
subdivide the I(v0, v1, v2, v3) to minimize the numerical error.

4.3. Discrete dynamics equations

In this section, we will derive the discrete dynamics equations
based on Eq. (16). In order to integrate it in a simulation system,
e.g., tissue simulation during surgery, it is important to provide
users with visual feedback about the evolution state of the DSVSS
model. Rather than using computation-intensive time integration
methods which may traverse the largest possible time steps,
it is more crucial to provide a smoothly simulated display by
maintaining the continuity of the dynamics form one step to the
next. Therefore, it is very desirable to employ less costly yet stable
time integration methods that take reasonable time steps.
The state of the dynamic simplex splines at time t + 1t is

integrated using prior states at t and t − 1t . To maintain the
stability of the integration scheme, especially for high stiffness
configurations with large elasticity functions, we use an implicit
time integration method, which employs discrete derivatives of c
using backward differences. The velocity expression is

ċt+1t ≈ (c(t+1t) − c(t−1t))/21t (26)



104 Y. Tan et al. / Computer-Aided Design 42 (2010) 95–108
a b c

Fig. 8. (a) An axial view of a high-resolution brain SPGR MRI dataset; (b) Volume visualization of the reconstructed DSVSS volume; (c) The volume is split to show its
reconstructed interior intensities.
and the acceleration expression is

c̈t+1t ≈ (c(t+1t) − 2c(t) + c(t−1t))/1t2. (27)

Then the time integration formula can be expressed as

(2M+1tD+ 21t2K)c(t+1t)

= 21t2fc + 4Mc(t) − (2M−1tD)c(t−1t) (28)

where the superscripts denote evaluation of the quantities at the
indicated times. The matrices and forces are evaluated at time
t . Our extensive experiments have shown that this discretization
scheme produces satisfactory results. Instability due to large
transient applied forces can be reduced by shortening the time
integration step adaptively.
The equations of motion allow a physically realistic simulation

of real-world models with complex dynamics. However, it is
possible to make simplifications to the equations of motion to
further reduce the computational cost of solving Eq. (28) when
we simulate some more complicated volumes which bear more
tetrahedra in its domain. In certain solid modeling and simulation
applications where the inertial terms are not taken into count, the
Eq. (16) can be simplified by setting the mass density function to
zero. Without computation of the acceleration terms or storage
of mass matrices, the algorithm is more efficient. With zero mass
density, Eq. (16) simplifies to

Dċ+ Kc = fc . (29)

Discretizing the corresponding derivatives of c in Eq. (29) with
backward differences, the integration formula becomes

(D+1tK)c(t+1t) = 1tfc + Dc(t). (30)

5. Brain simulation using DSVSS volume

With the reconstruction of brainmodel from bothMRI data and
material map using our spherical volumetric simplex splines, we
can obtain an analytic representation simultaneously describing
both geometric and physical properties of the brain. Thus, brain
simulations, such as brain shifting, deformation, and brain injury
predication, can be achieved via the simulation-based analysis.
In this section, we present the accurate brain reconstruction
and simulation using our unified scheme, DSVSS volume. The
reconstruction process is fully automated, and for brain simulation,
the user only needs to initialize a few environmental parameters,
e.g., the gravity and the resected skull in the brain shifting
simulation.
5.1. Fitting spherical volumetric simplex splines to brain data

Taking a set of high-resolution brain SPGR MR scans, we first
strip away the skull and only retain the brain volume as shown in
Fig. 8(a). With the initial tetrahedralization of the brain model and
harmonic volumetric mapping, we can obtain the parameteriza-
tion of the data points of the brain tetrahedralization as described
in Section 3.3, i.e., the parameterization describes the correspon-
dence between the brain data points and parametric coordinates in
the sphere domain. Fitting spherical volumetric simplex splines to
the geometric representation, we can reconstruct the geometry of
the brain nicely as shown in Fig. 6. To model the intensities (for vi-
sualization purpose) andmaterial distribution (for simulation pur-
pose), we can start with the same spherical tetrahedral domain,
and then subdivide and refine the domain [12], when necessary,
to model more sophisticated material variations or discontinuities
as described in Section 3.3.2. Note that, the intensities and mate-
rial of brain structures are related since the imaging procedure can
be considered as a function mapping of the material maps to the
scanned images. So the required domain for intensities and mate-
rial distributions are very similar. Fig. 8 shows the reconstruction
result with different rendering techniques and Eq. (31) shows the
reconstructed representation,[s
d
I

]
(u) =

∑
I∈T

∑
|β|=n

[ c
dc
Ic

]
N(u|V Iβ), (31)

where s denotes the solid geometry of the brain, d denotes the
reconstructed physical attributes of the brain, and I denotes the
reconstructed image intensities from the high-resolution SPGR
MRI sequence. c, dc and Ic are the control points and control
coefficients. The accuracy of the data fitting is documented in
the experimental result section. After obtaining a high-quality
DSVSS volume representation of the brain model, we can use it to
simulate brain deformation during surgery for computer-assisted
surgical planning/surgery, or even for an innovative simulation-
based diagnosis for brain injury under blunt impact.

5.2. Brain shifting during surgery

As is known by brain surgery professionals, after a patient’s
skull is open, the brain will behave with increasing deformation,
known as brain shifting, during ongoing surgical procedures, pre-
dominantly due to gravity and the drainage of cerebrospinal fluid.
This will inevitably lead to the repositioning of the surgical tar-
gets embedded in brain. As a compensation to increase the spa-
tial accuracy of modern neuronavigation systems, intraoperative
magnetic resonance imaging (IMRI) is widely used for quantitative
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Fig. 9. (a) One slice view of IMRI image; (b) The reconstructed DSVSS volume, where the cross-sectional view displays the DSVSS-captured image intensities reconstructed
from the pre-operative high-resolution SPGR images; (c) The brain deformation simulated using our system, where the cross-sectional view is captured, from the same
view angle as (b), to show the displacement from (b), and the green contour indicates the extent of displacement at the boundary. In (b) and (c) the red arrow denotes the
orientation of gravity, and its position denotes the resected skull. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
a b c d e
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Fig. 10. (a) The color map used to describe the deformation scale. The red arrow on the ISO-surface indicates the position where the skull is resected; (b–h) Brain shifting
simulation with a time interval of 75 ms; (i–j) To better visualize the deformation, cross-section views of the first key frame (b) and last one (h) are retrieved. Deformed
junction between the two hemispheres indicates the global brain shifting. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
analysis and visualization of this phenomenon [41]. Nevertheless,
despite its virtually real-time aspects, IMRI only provides very low-
resolution intraoperativeMR imagewhich can never substitute the
high-resolution pre-operative SPGR MR image used to determine
with high accuracy key dimensions of the brain and the locations
of the surgical targets embedded in the brain. We employ our dy-
namic spherical volumetric simplex splines model into the brain
simulation to compute brain shifting.
In our framework, brain shifting can be simulated by applying a

constant gravity force EG to the brain. The material properties that
we used in our experiments were obtained from the biomechanics
group at Wayne State University (WSU). After setting up the
physical parameters of an individual brain, we also need to take the
natural boundary of the brain, the skull, into consideration. The fact
is that no matter how the brain behaves due to deformation, it lies
inside the skull, i.e., its natural boundary will not exceed the skull.
Therefore, spatial geometric constraints need to be enforced. We
add the soft constraints with forces. When there is shifting outside
the boundary, we insert corresponding forces along the opposite
direction of the movement to the simulation procedure.
Fig. 9 illustrates the brain shifting simulation using our frame-

work when taking out the resected skull over the right temporal
lobe. The green contour shows the deformation clearly. Our shift-
ing simulation results agree highly with the fact captured by IMRI.
The experiments show that it is effective to use our model to re-
cover motion and deformation from image data. Based on 20 sim-
ulation experiments, quantitative comparisons between the IMRI
volumes and our simulated brain volumes by co-registration show
that our system can achieve an excellent accuracy of 92.2%. The
accuracy of a single simulation, denoted by A, is calculated as the
normalized sum of squared differences between the two volumes,

A = 1−

∑
a
‖S − R‖2∑
a
‖R‖2

, (32)

where S is the volume obtained from our shifting simulation re-
sults and R is the registered IMRI volume. To make the comparison
substantial and intra-sequence, we first register theMRI volume to
the IMRI volume. Fig. 10 depicts another brain shifting simulation.
The skull is resected over the left temporal lobe. The color map is
blended into the figure to better visualize the deformation scale.
Note that, when surgical tools are operating in the brain, there will
be larger shifting and deformation.
As demonstrated from the available comparison and evaluation,

our framework can accurately simulate the deformation of the
brain (e.g., s(t)) and simultaneously present high-quality and
high-resolution visualization using the transformed SPGR image
intensities, I, modeled in the reconstructed simplex spline volume
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Fig. 11. (a) The color map used to describe the stress field. The red arrow on the ISO-surface indicates the position where the blunt impact occurs; (b–j) Brain injury
simulation with a time interval of 3 ms. The blunt impact occurs at the front lobe. Simulation results indicate that in addition to the spot directly under the impact, there
are some other positions where bleeding may happen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 12. Comparison of stress evolutions of the right thalamus under a blunt
impact. The green one is the simulation curve obtained from the real biomechanic
experiments and the red one is the result simulated using our framework. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

(see Eq. (31)). It is very promising to use the framework in both
surgical planning (e.g., predicting the shifting of the targets) and
computer-assisted surgery (e.g., repositioning the targets with
high-resolution display, I, automatically computed based on the
realistic deformation of the reconstructed brain, s(t)).

5.3. Brain injury prediction

Here, we refer the brain injury prediction as a procedure
of finding out the extent and location of an injury in the
brain during a blunt impact. This injury frequently occurs to
automobile drivers during a collision and sports players during
acute sports activities such as football. Current brain surgeons and
professionals rely indispensably on these modern neuroimaging
and neuronavigation systems to pinpoint the injury. Clinically,
the identification of the site and extent of an injury within the
brain without subjecting the patient to imaging scanning, has its
advantages. For instance, head injured patients are difficult to
control and may not remain still long enough for the completion
of the scanning. In some severe cases, time is so limited that
patients cannot even afford such a pre-operative scanning. Thus
the demand of simulation-based Computer Aided Diagnosis (CAD)
solution goes up to high gear. Often, the solution is referred as
‘‘brain injury modeling’’.
One critical issue about the BIM technique is to derive a patient-

specific brain model based on a template model, thus skipping
neuroimaging and neuronavigation, and saving computational
time as well as pre-operation time. One widely employed
way is to modify the exterior surface of each substructure
from a general brain model followed by re-generation of the
mesh. Ferrant et al. [42] and Miga et al. [43] developed their
approaches respectively using this approach bymeshing the entire
brain without considering anatomical structures and material
differences. Obviously, this approach is not accurate since the
brain geometry, structures, and heterogeneous material variations
are not considered. We employ our dynamic spherical simplex
splines-based simulation framework to handle the situation. As
for developing a patient-specific model, our method can quickly
modify the control points/coefficients according to the data fitting
of the available data or information of the patient.
In our framework, we compute the stress field of the human

brain under blunt impact using our DSVSS volume. The human
brain has highly heterogenous physical properties in different
areas of the brain, such as the white matter, the gray matter,
the cerebellum, the brainstem, the lateral ventricles, the third
ventricles, the bridge veins, and so on. From this perspective, brain
structures under direct impact are not necessary the parts where
brain injuries occur. With our unified solid representation through
dynamic spherical volumetric simplex splines, blunt-impact
injury can be simulated using our framework by applying an
instantaneous impact to the brainmodel under given approximate
impact conditions. The model incorporated in our framework
cannot only assist the physician in identifying the location and
extent of the damaged area without pre-operative scanning but
also enable the designer of automobiles and helmets to improve
the human-centered design of head-protective facilities.
Fig. 11 demonstrates a brain injury prediction with a blunt

impact on the frontal lobe. Time interval here is 3 ms. Note that,
we assume that the brain always lies inside the skull during the
simulation. As in a brain shifting simulation, we add corresponding
contacting forces into the simulation when the brain is shifting
outside the boundary. The corresponding contacting forces is
along the opposite direction and linear to the extent of the brain
movement. Fig. 11(b–j) shows the stress fields of the brain in each
time step. The redder area indicates higher stress, which is a sign
for a higher possibility of injury and bleeding. In the figure, the
thalamus is under bigger stress as well beside the place under the
direct blunt impact. The result complies with the ground truth
captured from the real biomechanic experiments on a human
corpus model. Quantitative evaluation of our simulation result is
obtained through a comparison with the ground truth.
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Fig. 13. (a-f) Another brain injury simulation with a time interval of 3 ms. The blunt impact occurs at the left front lobe; (g) Comparison of stress evolution of the right
thalamus under the blunt impact.
Table 1
Statistics of 3D reconstruction of brain models. The fitting error is presented by root-mean-square error.

Subject Degree Data points Tetrahedra Control points Knots Fitting error

A 2 60298 2500 3871 1683 3.0375× 10−4

B 3 72357 2500 12431 2244 2.1483× 10−4

C 2 79593 4320 6525 2769 1.9743× 10−4

D 3 86226 4320 21117 3682 1.5290× 10−4
Table 2
Physical parameters and statistics of brain biomechanic simulations.

Application µ (kg/m3) γ (1/s) α (GPa) β (GPa) 1t (ms) Time (hh:mm:ss)

Shifting simulation 1.04× 10−6 400 0.6570 0.2266 75 00:24:20
Impact simulation 1.04× 10−6 400 0.6570 0.2266 3 00:22:33
Fig. 12 shows two stress evolution curves of one landmark
inside the right thalamus under the specified blunt impact in
Fig. 11. The green one is the ground truth obtained from the real
biomechanic experiments and the red one is the result simulated
using our framework. The result curves demonstrated that our
simulation can obtain an accurate and satisfactory result, which
has great potential for computer-aided diagnosis of brain injury
under blunt impact.
Fig. 13 illustrates another experiment regarding brain injury

prediction. A different patient is undergoing a similar blunt impact
on the left frontal lobe. The simulation shows that besides the
spot under the direct impact, the thalamus is another area where
bleeding may happen, which also coincides with the ground truth
fact.

6. Experimental results

We have implemented a prototype system on a Dell Precision
Workstation T7400, which has dual Xeon CPUs with Quad Cores
and 4GB RAM. The system is written in VC++ and VTK 4.2. We
performed experiments on several brain datasets. In order to
compare the reconstruction qualities for patient-specific cases, we
uniformly sample the brain geometric and physical fields into a
unit cube.
Table 1 shows the configuration of DSVSS volumes recon-

structed from different datasets. The performance statistics of our
fitting algorithm is also included. From the table, one can observe
that, compared with discrete mesh representation, our spherical
volumetric simplex spline based representations have low storage
requirements and can achievehigh accuracy, e.g., fitting r.m.s. error
≤ ×10−4. The high computational cost is the challenging aspect of
our algorithm. However, in practice, by applying multiresolution
and multi-thread implementation of the geometric elements, the
time cost can be greatly reduced.
Table 2 shows the performance of a DSVSS framework applied
to brain datasets. Both brain biomechanic behaviors, brain shifting
and brain injury, are simulated. Note that all the units in this
table are metric. In the table, only the physical properties of white
matter are listed. For the physical properties of different type of
brain tissues, readers are referred to [38]. The averaged, overall
computational time for the entire simulations demonstrated in
Fig. 10 (brain shifting) and Fig. 11 or 13 (brain injury simulation)
are listed in the table. Faster overall computations can be achieved
by increasing the simulation time interval. The simulation results
on brain shifting and brain injury prediction have been already
illustrated in Section 5. Overall, our brain simulation results exhibit
a reliable approximation of how brain shifting behaves and how
brains could be injured in the real world when inputting the real
material parameters.

7. Conclusion

In this paper, we have developed a novel simulation framework
based on dynamic spherical volumetric simplex splines. We
have introduced an automatic and accurate algorithm to fit
the digital models of real-world objects with a single spherical
volumetric simplex spline which can represent with accuracy
geometric andmaterial properties of objects simultaneously. With
the integration of Lagrangian mechanics, a dynamic volumetric
simplex spline representing the real-world object can accurately
simulate its physical behavior.We have applied the framework in a
biomechanical simulation of the brain, such as brain shifting during
surgery and brain injury under sudden impact. We have compared
the simulated results with the ground truth obtained through
interactivemagnetic resonance imaging and the ground truth from
real biomechanical experiments. The experimental results have
demonstrated the excellent performance of our technique, which
can be effectively used in deformation-based brain simulation
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and simulation-based diagnosis/assessment. The robustness and
accuracy result from the tight integration of the geometric and
material properties into the simulation. In the near future, we
will investigate more powerful simulation schemes based on our
novel digital representations. Hierarchical simulation will also be
explored to speed up the simulation for real-time applications. On
the application side, we will develop a DSVSS model of an entire
head, which allows us to simulate more sophisticated behaviors of
the brain.
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