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Abstract—This paper develops a new trivariate hierarchi-
cal spline scheme for volumetric data representation. Unlike
conventional spline formulations and techniques, our new
framework is built upon a novel parametric domain called
Generalized PolyCube (GPC), comprising a set of regular
cubes being glued together. Compared with the conventional
PolyCube (PC) that could serve as a “one-piece” 3-manifold
domain, GPC has more powerful and flexible representation
ability. We develop an effective framework that parame-
terizes a solid model onto a topologically equivalent GPC
domain, and design a hierarchical fitting scheme based
on trivariate T-splines. The entire data-spline-conversion
modeling framework provides high-accuracy data fitting and
greatly reduce the number of superfluous control points. It is
a powerful toolkit with broader application appeal in shape
modeling, engineering analysis, and reverse engineering.

Keywords-Trivariate Spline; Generalized PolyCube; Volu-
metric Parameterization.

I. INTRODUCTION

The engineering design industry frequently pursues data
conversion from discrete 3D data to compact and con-
tinuous spline formulations in scientific computing and
industrial applications (e.g., reverse engineering). Com-
pared with surface splines, trivariate splines can represent
both boundary shape and real volumetric physical/material
attributes. This is vital and highly desirable in many
physically-based applications including mechanical anal-
ysis [4], physically-based shape editing, virtual-surgery
training, etc.

To model an arbitrary 3-D manifold using conven-
tional trivariate splines, current approaches decompose the
model to many simple solid primitives first, and then
design trivariate spline representations for each sub-region
respectively. Separate splines must glue together along
shared boundaries in order to ensure continuity of certain
degree. For models with non-trivial topology and compli-
cated geometry, the entire partitioning and patching/gluing
process is primarily performed manually, and it requires
intensive labor from users with domain knowledge. To
overcome this difficulty in modeling general data, we forge
ahead with our research efforts in PolyCube mapping, and
construct the trivariate splines over the volumetric Gen-
eralized PolyCube (GPC) domain. The solid PolyCube-
shaped domain is regular and offers a cuboid structure. It
has many advantages over other parametric domains (See
Table II and Section IV for more discussions) and is ideal
for trivariate spline construction.

In this paper, we design algorithms to construct trivari-
ate T-splines over GPC for general volumetric data and
demonstrate their efficacy as the global “one-piece” rep-
resentation with hierarchical fitting capability.

Contribution and Overview. The main contributions
of this work include:
(1) We develop an effective framework to compute
the Generalized PolyCube (GPC) parameterization.
Compared with the conventional PC, GPC is a more
natural parametric domain to represent 3-manifolds with
complicated topology.
(2) We present a global “one-piece” trivariate spline
scheme without stitching/trimming for general volumetric
models. GPC provides parametric representation for
topologically-complex models using very few cubes.
(3) We design an efficient trivariate T-spline fitting
algorithm, that supports hierarchical refinement with
improved accuracy and reduced number of control points.

II. GENERALIZED POLYCUBE

A global one-piece parametric representation for shape
with nontrivial topology is highly desirable for many geo-
metric modeling and processing tasks, because it prevents
artifacts caused by stitching/trimming over shared bound-
aries of solid primitives. The PolyCube representation is
of particular interest toward this ambitious goal since it
has perfect local regularity (i.e., local homogeneity) for
tensor-product spline design. The idea of parameterizing
a shape onto a conventional PolyCube (PC) is introduced
by Tarini et al. [9]. A PolyCube is glued by a set of
unit cubes. Therefore, consistent sets of knot intervals
can be devised on a PolyCube straightforwardly. PolyCube
parameterization has been studied by different researchers
for various shape modeling tasks [9], [10]. In this work,
we propose a novel concept called Generalized PolyCube
(GPC), where the gluing direction of two faces shall be
explicitly identified and a cube is even allowed to glue
to itself (see Section II-A for details). Moreover, cube
primitives are not enforced to have a true 3D embedding
with principal axis alignment. In essence, a GPC domain
consists of a set of cubes with connectivity information.

What inspires the design of GPC is that not all vol-
umetric data can be parameterized effectively by PC.
Figure 1 illustrates some examples. If we look at a
solid torus (S1 ×D2) (a), topologically, the most concise
representation is simply a cube with two opposite sides
glued together (b); geometrically, the number of cubes
required for low-distorted parameterization is related to
the shape of the torus. However, a commonly-used PC
representation typically requires eight cubes (c) to form
a handle. Furthermore, if the solid torus is twisted, like
a solid Möbius band (d), conventional PC can no longer
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Figure 1: PolyCube (PC) vs Generalized PolyCube (GPC). A solid torus (a) is topologically equivalent to a cube with two opposite faces glued together (b), but in PC
representation it needs at least eight cubes to comprise a handle. The twisted shapes such as a thick Möbius band (d) cannot be effectively represented by PC, yet can be
easily represented in GPC, (e) shows the corresponding GPC-graph.

encode such information in any intuitive means. In con-
trast, GPC affords an efficient intrinsic representation of
these shapes to intuitively encode topology of 3-manifolds
correctly, while generally using far fewer cubes than PC
as well. As a parametric domain that is both intrinsic
and homogeneous, the GPC may not have a real global
embedding in R3, but it indeed offers a local embedding
for each cube primitive, and therefore, sufficiently serves
as a desirable parametric domain for trivariate spline
construction.

A. GPC and GPC-Graph

The global structure of a Generalized PolyCube can be
abstracted in a graph, which we call it a GPC-graph. Each
node of the GPC-graph represents a local cube in GPC
while each edge between two adjacent nodes indicates the
gluing of corresponding cubes. Figure 1(e) visualizes a
typical GPC-graph. In each node (which represents a cube
primitive), we have six boundary faces, which are arranged
for better visualization: the middle square corresponds to
the top face in the (u, v, w) parametric domain. A face
could be glued to a part of another face, namely, cubes
could have different sizes (see Section II-B). When two
cubes are glued via certain faces, the graph generates an
edge (gray link) between them, and a transition function
must then be formulated to enable the subsequent spline
construction. A critical issue is the orientation to glue the
shared face and this dictates the transition function that ac-
tually bridges between local cube domains. Corresponding
faces from different cubes can be properly glued with the
help of arrows, indicating the gluing orientation.

B. Partial Gluing

Figure 2: Parameterizing the hand model to GPC with Partial Gluing. From left
to right: the original model, its GPC, and the GPC graph.

Conventional PC typically consists of cubes of uniform
size, hence each cube face glues to another cube face in its
entirety. This limits the valence of a cube cell to six. It is
more flexible to allow the size of cubes to be non-uniform
and a small cube can be glued to a part of a face of a big
cube. Adjacent sub-regions with different solid volumes

can then be parameterized to two cubes of different sizes,
guaranteeing coherent parameterization. For example, in
Fig. 2, cubes of fingers are partially glued to the cube of
the palm. The parameterization and gluing are also clearly
illustrated on the GPC-graph. In the interest of space, we
refer interested readers to [5] for more implementation
details on partial gluing.

C. GPC Construction and Parameterization
Given a solid model as a general input, the GPC-graph

and GPC parameterization can be computed simultane-
ously in the following procedure:
1.Topological Decomposition. Partition the model to
several components so that each component has trivial
topology. A homology basis of a closed genus-g surface
can be computed automatically [1], and the surface can
be canonically decomposed into a set of 2g − 2 pants
patches [6]. The volumetric primitive bounded by each
pants patch can be further decomposed into four topolog-
ical cubes.
2. Geometric Decomposition. For each volumetric prim-
itive, detect long and thin branches using the shape skele-
ton [11], then remove each long branch and parameterize
it to a single cube domain.
3. Cube Parameterization. Parameterize each sub-region
using a cube domain.

Intuitively, in Steps 1 and 2, each handle of the original
model is parameterized to a “T”-shaped GPC, composed
by four cubes. Long and thin branches (like antennae)
are also parameterized to cube primitives separately. The
algorithm of cube parameterization is as follows: (3.1) 8
vertices on the boundary are either selected or derived
(from adjacent primitives to ensure the consistency), and
they are mapped to the corners of the cube; shortest paths
connecting pairs of corner vertices partition the boundary
into 6 quadrilateral regions; (3.2) compute the harmonic
surface map [2] for each quadrilateral region that can map
to one of the cube’s faces, subject to all the curve boundary
constraints; (3.3) solve the 3D Laplacian equation [12] to
arrive at the interior volumetric parameterization.

III. TRIVARIATE GPC-SPLINES

A. Point-Based Splines
Tensor-product trivariate B-splines are usually defined

over the parametric cube domain. In order to allow hierar-
chical and adaptive fitting, without significantly increasing
the number of control points, T-splines (that allows T-
junctions for knots and control points) have been pro-
posed [8]. T-splines are point-based splines whose control



points form a T-mesh and have no regular connectivity
with surrounding ones. In this paper, as a natural gen-
eralization of our work of designing bivariate T-splines
on Polycube surface domain [10], our ambitious goal is
to design the trivariate T-splines over GPC for general
volumetric data. We shall highlight the idea of our spline
construction by fitting C2-continuous parametric solid,
while generalizing it to globally Cn-continuous represen-
tation is straightforward.

Each control point Ci (located in parametric cube
Dj with local coordinate c

j
i ) is associated with three

knot vectors along three principal axis directions:
r = [r1, r2, r3, r4, r5], s = [s1, s2, s3, s4, s5], t =
[t1, t2, t3, t4, t5], where r3 = 0, s3 = 0, and t3 = 0.
For any sample point with (u, v, w) as its parameter, the
blending function is

Bi(u, v, w) = Nr(u)×Ns(v) ×Nt(w), (1)

where Nr, Ns, and Nt are cubic B-spline basis functions
associated with the knot vector r, s, and t respectively.
The formulation for a PB-spline on this point is

P (u, v, w) =

∑n

0 CiBi(u, v, w)∑n

0 Bi(u, v, w)
. (2)

By parameterizing the solid model to a GPC, PB-
splines defined on cubes can achieve a globally continuous
representation for any input model. The global parametric
domain is equivalent to a collection of coordinate charts in
all constituting local cube primitives via cube parameter-
ization, and these local charts are then glued coherently
to form the entire GPC parametric domain, enabled by
the GPC-graph. As a result, the global PB-splines are
piecewise rational polynomials defined on GPC, whose
transition functions between adjacent cube primitives are
compositions of translations and rotations of nπ/2. Note
that unlike the PolyCube surface splines, trivariate splines
defined on GPC do not have singularities in solid interior.

Given an arbitrary parameter u in cube Dj (also denoted
as u

j), the spline approximation can be carried out as
follows:
(1) Find all the neighboring cubes {Di} that support u
(i.e., it contains control points Ck that may support u);
(2) The spline function is:

P (u) =

∑n

k=0 C
i
kBk(φ

ij (uj)− c
i
k)∑n

k=0 Bk(φij(uj)− c
i
k)

, (3)

where u
j is the local parametric coordinate of point u in

the cube domain Dj , φji is the transition function from
cube domain Dj to Di, Ci

k denotes the control point k in
the cube domain Di, and c

i
k is its local coordinate.

The transition function φij from cube domains Dj to
Di is a composition of translations and rotations following
the consecutive path where we glue cube Dj to cube
Di. In the GPC-graph, if we assign the weight on each
edge [Di, Dj ] to be the length of the translation vector
that transforms one local frame to the other, then this
transition function can be easily derived by navigating
through the shortest path D̃iDj from node Di to Dj .

Figure 3: Hierarchical spline fitting results at levels 0, 1, and 2, respectively.

(a) (b)

Figure 4: Knots Traversal illustrated on a quad-tree.

Suppose D̃iDj := D1(= Di) → D2 . . . → Dn(= Dj),
and the transition function Φ(i,i+1) (derived by way of
cube-gluing) from Di+1 to Di is known, then φij is
formulated by

u
i = φij(uj) = Φ1,2(Φ2,3(. . .Φn−1,n(u

j))).

B. Hierarchical Fitting

A key advantage for defining T-splines upon GPC is
that the evaluation of each node relies on just a union
of general cubes in nearby regions. Moreover, the hierar-
chical fitting and level-of-detail control can be efficiently
developed, which have two attractive properties: eliminat-
ing a large percentage of superfluous control points by
introducing T-junctions; and providing adaptive control to
users for properly balancing between fitting accuracy and
efficiency.

The spline fitting is defined as follows. We have
the parameterized solid model being generated from the
boundary representation. The sample point in the model
is f(ui), where ui is the parametric coordinate for each
sample point. We minimize the following equation:

Edist =

n∑

i=0

||P (ui)− f(ui)||
2, (4)

where P (ui) is the approximation of each sample point
acquired from Eq. (3). Given a sample parametric point
u in GPC, we measure the root-mean-square error (rms)
σ(u) between its spatial position f(u) and its spline
approximation P (u).

In each cube domain, we start from a coarse represen-
tation, denoted as T-mesh H0, and assign a control point
for each vertex. Then from level k to level k + 1, a cell
on Hk is subdivided into 8 sub-cells in Hk+1 if the fitting
error of this cell is larger than a given tolerance. The cell
fitting error is the maximal error σ(u) of sample points u
in this cell. Algorithm 1 offers a high-level sketch for the
hierarchical fitting procedure.



Algorithm 1 Hierarchical Spline Fitting

for all cube domain Di do
Initialize H i

0 and control points, k = 0
end for
loop

1. Traverse and get knot vectors for all control points.
2. Evaluate P (u) in Eq.(3) for all sample points.
3. Spline Fitting: Minimize Edist in Eq.(4).
4. Compute the fitting error of each cell:
for all cells Hk

j in level k do
if Error(Hk

j ) ≥ tolerance then
Subdivide Hk

j and add new control points.
end if

end for
if No cell is subdivided then

Stop.
end if
k = k + 1

end loop

C. Implementation based on Octree Structure

Traversing Knot Vectors. We use the method of “Ray-
Traversing” [8] to generate 3 knot vectors for each con-
trol point. Unlike surface splines, enabling T-junctions in
volumetric domains can result in much more complicated
data structure and very time-consuming knot computation.
We implement the octree data structure for efficient knots
traversing. However, we restrict that a cube can only be
divided to 8 sub-cells of equal size during refinement (note
that, originally [8] allowed dividing a cell to 2 or 4 cells of
different sizes, which becomes extremely complicated in
3D), because it greatly reduces the implementation com-
plexity and improves the efficiency of knots traversing.

In Fig. 4, we only highlight our idea for efficient knots
traversal in a 2D layout using quad-trees. This idea can
be directly generalized to 3D using octrees. In a quad-
tree, let L, R, T, and B denote the current cell that locates
at the left, right, top, and bottom (in 3D, also front and
back) w.r.t. its parent cell, respectively. In (a), suppose
we traverse a ray starting from the red point (on cell
Cs) to right, and need to know the cell Ct that contains
the yellow point on its right face (because once we have
Ct, the knots vector can be computed directly). The first
step is to locate the smallest common ancestor Cst (or
up to level-0, the GPC-graph) of cells Cs and Ct. Cs and
its parent cells should be always on the “Right” of their
parent cells. This is because once it becomes a “Left”
cell, that parent cell is the smallest common ancestor Cst.
The path from Cs to Cst, as the red path shown in (b),
can be encoded as a string Ts = {RT,RB,RT,RT}.
The path from Cst to Ct can be efficiently traced by first
reversing Ts (to {RT,RT,RB,RT}), then replacing all R
with L (because we are traversing towards right), resulting
in the encoding Tt = {LT,LT, LB,LT}. Tt indicates the
traversal from Cst to Ct, plotted as the blue path in (b).
More implementation details can be found in [5].

Figure 5: Volumetric T-spline representation of the Femur model. (a) The
volumetric parameterization; (b) the spline fitting result; (c) the zoom-in structure
of control points.

Figure 6: Splines for the Solid Greek. (a) The fitting result; (b,c) the T-junction
on the surface and on the cross-section.

IV. EXPERIMENTAL RESULTS

(a) (b) (c)

Figure 7: T-splines for the Solid Homer Model. (a) The fitting result; (b) the
zoom-in of head with T-meshes; (c) GPC-graph.

Model Bimba Femur Kitten Greek Homer
S # 25,000 12,250 40,000 31,300 22,400
C # 1,905 1,430 2,304 4, 365 3, 070

rms (avg) 0.096% 0.077% 0.35% 0.53 % 0.21%

Table I: Spline Construction Runtime Table. The S#, C#, and rms are the
number of sample points, control points, and the average rooted mean square errors,
respectively.

We demonstrate the efficacy of our framework by
converting several solid models into trivariate spline rep-
resentations. Fig. 5 shows the spline representation of a
solid Femur model. Its GPC parameterization is shown in
(a), the fitted T-spline result is illustrated in (b), and the
control point structure is visualized in (c). Fig. 6 shows
the spline representation of the solid Greek model whose



Figure 8: The spline fitting error of Kitten, Bimba, and Femur models. The
fitting error is color-coded from blue (minimum) to red (maximum).

Property GPC PC Cylinder [7] SC [3]
Regularity Yes Yes Singularity No
C-Valence n 6 2 n

Hierarchy Easy Easy Hard Easy
Automatic Not
Decomposition Easy Easy Hard Hard

Table II: Comparison of Different Parametric Domains.

boundary surface is of genus-4. (a) shows the fitting result;
(b) shows the hierarchical T-junctions on the model’s
boundary surface, and (c) illustrates the side view from
the right arm, highlighting the interior fitting result with
T-junctions. Fig. 7 illustrates the T-spline representation
of the Homer model. (a) is the global fitting result, (b)
zooms in the head region with T-junctions illustrated, and
(c) shows its GPC-graph.

Fitting errors (rooted mean square errors, with models
normalized to a unit box) on several models are color-
encoded and illustrated in Fig. 8. The statistical results
are given in Table I. In most of our experiments, approxi-
mation with good quality can be obtained after 3 iterations
of hierarchical refinement.

A comparison among GPC and some other parametric
domains is given in Table II. The grid structures of GPC,
PC, and Cylinder domains are orthogonal. In cylindric
parameterization [7], the central line is singular, and on
PC or GPC parameterization there is no singularity point.
These three parameterizations have regular control nets,
leading to simple and efficient evaluations, in contrast,
simplicial complex splines are built upon irregular trian-
gular structures. Each cell of PC has up to six adjacent
cells and cylindric cell can have at most two adjacent
cells, these limit the way that different sub-regions can
connect and increase the difficulty of designing effective
decomposition on general models. Simplicial complex
splines do not have such a limitation, and by allowing
non-uniform sized cubes, GPC also has the flexibility
to glue many cubes. Simplicial complex supports local
subdivision easily, while for regular structures such as
cylinders, this is difficult. By allowing T-junctions, PC and
GPC afford efficient hierarchical refinements as well.

V. CONCLUSION

We have presented a global “one-piece” trivariate hier-
archical spline construction framework based on General-
ized PolyCube (GPC) parameterization. The GPC concept
enables a novel and desirable mechanism that facilitates
the “one-piece” spline representation. We have articulated
the decomposition and parameterization procedure. Global
trivariate T-splines can be constructed on GPC and transi-
tion functions can be effectively computed using the GPC-
graph. The entire spline construction framework affords
hierarchical refinement and level-of-detail control. Our
GPC trivariate T-splines have great potential in various
shape design and physical analysis applications.
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