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ABSTRACT

The natural image prior has been shown as a powerful tool
for image deblurring in recent work, while its performance
against noise and various applications have not been thor-
oughly studied. In this paper, we present a multigrid natural
image prior for image deconvolution that enhances its robust-
ness against noise, and furnish three applications of image
deconvolution using this prior: deblurring, super-resolution
and denoising. The prior is based on a remarkable property
of natural images that derivatives with different resolutions
are subject to the same heavy-tailed distribution with a spatial
factor. It can serve in both blind and non-blind deconvolu-
tions. The performances of the proposed prior in different
applications are demonstrated by corresponding experimental
results.

Index Terms— Image deblurring, natural image prior,
super-resolution, image denoising

1. INTRODUCTION

Image deconvolution is a common and important problem
with consistently intensive attentions in image processing
and computational photography. While people from different
fields have different focuses on this problem, we are mainly
interested by the recent progress in image deblurring us-
ing the natural image prior [1, 2, 3, 4], which refers to the
heavy-tailed distribution of image gradient magnitudes. Nev-
ertheless, it still remains challenging and hard to understand
in many respects [5].

Recently, the natural image prior has been successfully
applied to a variety of applications in image processing and
computational photography. The intrinsic property of this
prior is that, most pixels of natural images have very small
gradient magnitudes, while only a few pixels have large gra-
dient magnitudes. The strength of this prior lies in its remark-
able consistency over various types of natural images. This
prior penalizes pixels with great gradient magnitudes in such
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a way to reduce ringing and preserve sharp edges. There are
some representations appearing in the previous work [1, 2, 3],
where we found that the sparse prior [2] is concise and effec-
tive, which is also referred as the hyper-Laplacian prior in [4].
Due to a recent evaluation of deconvolution algorithms [5],
the sparse prior has been shown to achieve the best perfor-
mance in the non-blind deconvolution process.

In this paper, we propose a new multigrid prior that em-
bodies the hyper-Laplacian priors in multi-resolutions, which
inherits the advantage of natural image prior on artifacts con-
trol, and enhances the robustness of deconvolution against
noise. We apply this prior to deconvolution-based methods
working on three problems: deblurring, super-resolution and
denoising. In the experiments, we compare our method only
with deconvolution-based methods, as we are focusing on im-
prove the performance of image deconvolution. An exception
can be found in the experiment of denoising, since the convo-
lution kernel here is degenerated to a delta function.

2. DECONVOLUTION WITH MULTIGRID
NATURAL IMAGE PRIOR

2.1. Multigrid natural image prior

Natural images have an intrinsic property on the statistics of
their gradient magnitudes, i.e., the “heavy-tailed” distribu-
tion. In our observation, magnitudes of multi-resolution gra-
dients are also subject to this property. Fig. 1 shows two natu-
ral images and their statistical responses of three derivative fil-
ters with different resolutions, which are selected from 1-ring
(red), 2-ring (blue) and 3-ring (green) neighbors of the central
pixel (black). It illustrates that the responses of derivative fil-
ters within a certain size of local neighborhood (7× 7 in this
example) have the similar distributions. Moreover, the tails
of response distribution become lighter when the distance of
derivative filter increases, which indicates that the space vari-
ation affects the distribution of filter outputs.

Inspired by the above observations, we propose a new
prior in image deconvolution based on a series of derivative
filters: {Fd} with (d = 1, ..., nw) which computes the multi-
grid discrete derivatives of a pixel in its w×w neighborhood,
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Fig. 1. Two natural images and their statistical responses of
three derivative filters with different resolutions, which are
selected from 1-ring (red), 2-ring (blue) and 3-ring (green)
neighbors of the central pixel (black). The patterns of these
three filters are shown at the down-right of left images.

given by

p(x) =

nw∏

d=1

e−φ(Fd,x), (1)

where nw = w×w−1
2 is the number of filters, and φ(Fd, x) is

the potential function. We adopt the hyper-Laplacian prior for
representation of the natural image prior, and embody a spa-
tial factor sd in the potential function to reflect spatial affects,
which yields

φ(Fd, x) = sd|Fd ∗ x|α, (2)

where ∗ is the convolution operator, and α is a positive expo-
nent value set in the range of [0.5, 0.8] as suggested by [2, 4].
The spatial factor of a filter Fd is given by

sd =
1

|Fd|2 , (3)

where |Fd| is the distance of two non-zero elements of Fd.
This prior reflects the intrinsic characteristic of natural images
with concise expression.

2.2. Bayesian image deconvolution

Here we consider the process of image convolution as a la-
tent image x convolves a shift-invariant kernel k with additive
noise n, written by

y = k ∗ x+ n. (4)

And the goal of non-blind deconvolution is to restore latent
image x with known kernel k from blurred image y.

The Bayesian probability model is adopted by popular ap-
proaches of image deconvolution, given by

p(x|y, k) ∝ p(y, k|x)p(x), (5)

where the marginal probability p(x) is defined in Eq. (1) in
our method. The likelihood term p(y, k|x) is defined as

p(y, k|x) = e−(k∗x−y)2 , (6)

subject to the assumption of Gaussian noise. The solution
can be found by the Bayesian inference, and a straightfor-
ward strategy is the maximum a posteriori (MAP), which is
equivalent to minimizing an objective function. By taking
the negative logarithm of posteriori, we can get the objective
function as

E(x) = (k ∗ x− y)2 + λ

nw∑

d=1

sd|Fd ∗ x|α, (7)

where λ is a coefficient of the image prior. To solve this
non-convex minimization problem, we adopt the iterative re-
weighted method in [2] by defining a weight function as

wd(x) = sd|Fd ∗ x|α−2, (8)

and substitute it into the Eq. (7). Then the remaining problem
can be solved by the conjugate gradient method for a given
weight wd. As an iterative re-weighted strategy, the weight
wd(x) will be updated after x is estimated in each iteration,
and so on and so forth.

3. APPLICATIONS AND EXPERIMENTS

3.1. Deblurring

Image blur is very common in photography, which occurs
when the camera shake emerges due to long exposure, or the
fast-moving object. The blur is usually modeled by image de-
convolution with shift-invariant kernel, where our deconvolu-
tion method can be directly applied. For known blur kernels,
e.g., coded aperture in [2], the application is straightforward.
For unknown blur kernels, our method requires an estimation
of blur kernel, which can be provided by blurred/noisy image
pairs [6] or Fergus’s method [1].

Particularly, we consider the noise in deconvolution,
which comes from many sources such as photon noise, quan-
tization error and kernel estimation error. It is thoroughly
different with conventional image denoising, because the
noise will be exaggerated and cause artifacts during deconvo-
lution. Fig. 2 shows different strategies running on a blurred
image with Gaussian noise (σ = 0.03). The sperate usage
of deblurring [2] and denoising [7] with different orders are
shown in (c) and (d) with PSNR 16.41dB and 21.36dB. Our
method tends to enhance the robustness of deconvolution
against noise, as shown in (b) with PSNR 27.55dB. The ex-
periemntal results of image deblurring are shown in Fig. 3,
where our results contain fewer ringing artifacts and noise
than the results by the sparse prior [2].



Fig. 3. More deblurring results, from left to right: original images, blurred images with Gaussian noise (σ = 0.03), results by
sparse prior [2], and our results.

(a) blurred image with noise (b) our method

(c) deblur-then-denoise (d) denoise-then-deblur

Fig. 2. Comparison of different strategies for image deconvo-
lution with noise. The blurred image is corrupted by Gaussian
noise (σ = 0.03). The PSNR values for (b-d) are 27.55dB,
16.41dB, 21.36dB, respectively.

3.2. Super-resolution

In recent work of image/video upsampling by deconvolu-
tion [8], a low-resolution image L is expressed by convolu-
tion:

L = (f ∗H) ↓d, (9)

where f denotes the discretized PSF, H is the high-resolution
image and ↓d is a decimating (subsampling) operator with
factor d. The PSF is commonly approximated by a Gaussian
filter.

A single low-resolution image is first upsampled by bicu-

PSNR: 30.65dB
(a) FoE

PSNR: 31.48dB
(b) GSM FoE

PSNR: 31.16dB
(c) our method

Fig. 5. Denoising result on the “Einstein” image [9] compared
with the FoE and GSM FoE models.

bic interpolation, which will blur the image. Then a decon-
volution with Gaussian kernel is applied, to obtain a sharp
high-resolution image. We adopt the setting of Gaussian
kernel in [8], which depends on the factor of upsampling.
Fig. 4 shows some results of super-resolution. We add 1%
random noise on input low-resolution images. Shan’s de-
convolution [3] generates a lot of artifacts, and exaggerates
the noise level. In their super-resolution [8], they use the
same deconvolution method iteratively to refine the upsam-
ling result. Hence, their results (third column in Fig. 4) are
smoothed. Our method only performs deconvolution with
the multigrid prior, and have sharper results without artifacts.
The “zigzag” artifacts indicate that it may not be the best
way to perform super-resolution by deconvolution. As a fast
and effective approach, our method, however, can sharpen
the high-resolution image, and enhance the robustness of
deconvolution-based super-resolution.

3.3. Denoising

Image denoising is also active in image processing. Image
deconvolution has been applied to denoising, by taking it as a



Fig. 4. Super-resolution (4 times) results of noisy images, from left to right: low resolution images with 1% random noise,
results by Shan’s deconvolution [3], results by Shan’s super-resolution [8], and our results.

degeneracy of deconvolution with kernel as a delta function.
Therefore Eq. (7) can be reduced to:

E(x) = (x− y)2 +

nw∑

d=1

wd|Fd ∗ x|2, (10)

with weight wd defined as in Eq. (8). This is similar with pre-
vious Field of Experts (FoE) models [10] and Gaussian Scale
Mixture (GSM) FoE models [9]. In contrast to previous work
using nonintuitive trained filters, we exploit a series of multi-
grid derivative filters, which is much faster to compute and
achieves competitive performance. Fig. 5 shows a denoising
result on the “Einstein” image from [9] compared with the
FoE and GSM FoE models. Our method achieves competi-
tive PSNR value, but takes about 1/20 running time of the
FoE and GSM FoE models.

4. CONCLUSION

We have proposed a multigrid natural image prior that en-
hances the robustness of image deconvolution against noise.
This prior follows an intrinsic property of natural images,
with a special effect on anisotropic smoothing. Three applica-
tions of deconvolution with our multigrid natural image prior
are given in this paper: deblurring, super-resolution and de-
noising. Experimental results show that our method enhances
the robustness of deconvolution against noise. In the future,
we will continue to study good priors for image deconvolu-
tion, and the evaluation of visual quality.

5. REFERENCES

[1] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and
W. T. Freeman, “Removing camera shake from a single

photograph,” ACM Trans. on Graph., vol. 25, no. 3, pp.
787–794, 2006.

[2] A. Levin, R. Fergus, F. Durand, and W. T. Freeman,
“Image and depth from a conventional camera with a
coded aperture,” ACM Trans. on Graph., vol. 26, no. 6,
pp. 70–77, 2007.

[3] Q. Shan, J. Jia, and A. Agarwala, “High-quality deblur-
ring from a single image,” ACM Trans. on Graph., 2008.

[4] D. Krishnan and R. Fergus, “Fast image deconvolution
using hyper-laplacian priors,” in NIPS, 2009.

[5] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman,
“Understanding and evaluating blind deconvolution al-
gorithms,” in CVPR, 2009.

[6] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image de-
blurring with blurred/noisy image pairs,” ACM Trans.
on Graph., vol. 26, no. 3, 2007.

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in ICCV, 1998, pp. 839–846.

[8] Q. Shan, Z. Li, J. Jia, and C-K. Tang, “Fast im-
age/video upsampling,” ACM Trans. on Graph. (SIG-
GRAPH ASIA), vol. 27, 2008.

[9] Y. Weiss and W. T. Freeman, “What makes a good
model of natural images?,” in CVPR, 2007.

[10] S. Roth and M. J. Black, “Fields of experts: A frame-
work for learning image priors,” in CVPR, 2005, pp.
860–867.


