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Abstract. With the rapid development of fast data acquisition tech-
niques, 3D scans that record the geometric and photometric information
of deformable objects are routinely acquired nowadays. To track sur-
faces in temporal domain or stitch partially-overlapping scans to form a
complete model in spatial domain, robust and efficient feature detection
for deformable shape correspondences, as an enabling method, becomes
fundamentally critical with pressing needs. In this paper, we propose an
efficient method to extract local features in scale spaces of both texture
and geometry for deformable shape correspondences. We first build a
hierarchical scale space on surface geometry based on geodesic metric,
and the pyramid representation of surface geometry naturally engenders
the rapid computation of scale-space features. Analogous to the SIFT,
our features are found as local extrema in the scale space. We then pro-
pose a new feature descriptor for deformable surfaces, which is a gradient
histogram within a local region computed by a local parameterization.
Both the detector and the descriptor are invariant to isometric defor-
mation, which makes our method a powerful tool for deformable shape
correspondences. The performance of the proposed method is evaluated
by feature matching on a sequence of deforming surfaces with ground
truth correspondences.
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1 Introduction

In recent years, the rapid development of data acquisition techniques naturally
gives rise to a massive collection of 3D scans of the geometric and photometric
information of deformable objects. Comparing with 2D images that are generally
perspective projections of the scenes, 3D scans capture the shape and the pho-
tograph of objects. Feature extraction is an enabling method to organize/index
partial 3D scans of an object and track its temporal variations. Strongly moti-
vated by scientific evidences from both physics and biological vision, scale-space
features that can appear in multiple scales, are much more desirable with many
attractive properties. This paper aims to compute scale-space features directly
on deformable surfaces, with a unique application of matching and tracking sur-
faces undergoing deformation.
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photometric geometric

Fig. 1. Photometric (green) and geometric (red) features for deformable shape corre-
spondences (right). Oriented circles indicate the scales and orientations of the features.
The geometric information here is the Gaussian curvature map.

Different from 2D images, 3D scans acquired by active scanner, stereo vi-
sion, multi-view silhouette, or a mixture of them, are commonly represented as
triangular meshes, with specific challenges:

– Deformation: Besides shape geometry, consecutive scans recording deforma-
tion frequently have unpredictable changes of topology and boundary.

– Irregular grid: The triangulation of scans is typically irregular, with no re-
striction on the valence (number of connected edges) of a vertex.

– Metric: On curved surfaces, the metric is often referred to the geodesic dis-
tance rather than the Euclidean distance.

– Local access: In a triangular mesh, the global index does not reflect its con-
nectivity, and thus the data can only be accessed locally.

Such challenges create many difficulties towards developing algorithms to com-
pute scale-space features on deformable surfaces, with the purpose of shape cor-
respondence. The state of the art therefore is struggling in finding efficient and
robust algorithms for local feature extraction and representation on deformable
surfaces. For metric choices, some used the Euclidean metric [1–3] that is not
preserved under deformation. Some other [4] employed the geodesic metric that
is invariant to isometric deformation. Besides, there are also methods converting
surfaces to some intrinsic domains to address deformations, e.g., the parametric
domain [5–8] and the frequency domain [9, 10]. Parameterization-based methods
are usually accompanied by model cutting, and can be easily affected by topolog-
ical changes. Frequency-based methods decompose the surface into its globally
defined Laplace-Beltrami eigenfunctions (LBE), and thus are not applicable for
local features. Moreover, most existing methods only focus on geometric char-
acteristics (e.g., normal, curvature, spectrum, etc.). We are interested in the
concept of scalar fields on surfaces [3], which neatly combines geometric and
photometric characteristics.

In this paper, we develop an efficient method to compute scale-space features
using geodesic metric for deformable shape correspondences. Specifically, the
contributions of this paper are as follows:

– We present a hierarchical scale space using the pyramid representation, to-
gether with geodesic metric. It downsamples the surface when the scale in-
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creases, while controlling the sampling rate by a constant factor in the scale
space. This hierarchical scale space elegantly integrates photometric and ge-
ometric characteristics, and engenders the computation efficiency.

– We propose a new feature descriptor for deformable surfaces enabled by a
local parameterization. This descriptor is a gradient histogram on a local re-
gion parameterized by geodesics and polar angles in the local tangent plane.

– We evaluate the performance of feature descriptors via a matching exper-
iment on a dataset, which contains a sequence of deforming surfaces with
ground truth correspondences.

An example of photometric (green) and geometric (red) features extracted by
our method is shown in Fig. 1(left), where the deformable shape correspondences
based on these features are shown on the right. The geometric information used
here is the Gaussian curvature map.

2 Previous Work

Extracting distinctive local features for 2D images is a fundamental and long-
lasting task in computer vision. Perhaps the most influential method with great
impact is the scale invariant feature transformation (SIFT) proposed by Lowe [11].
The success of SIFT primarily lies in its effective strategies including pyramid
representation, extremum detection in scale space, orientation assignment, his-
togram of gradients, etc. According to a performance evaluation of local feature
descriptors [12], SIFT-based descriptor could reach the best performance. With
continuously-increasing interest, extensions have been made to improve the SIFT
in recent years. Ke and Sukthankar [13] applied principal components analysis
(PCA) to the normalized gradient patch instead of weighted histograms in SIFT.
The PCA-SIFT representation with top eigenvectors is more compact than the
gradient image, whereas it requires pre-computation over large amount of train-
ing data. Mikolajczyk and Schmid [12] proposed the gradient location-orientation
histogram (GLOH) descriptor, which extends the rectangular sampling grid of
SIFT to a log-polar sampling grid that is more meaningful under rotation. Tola et
al. [14] introduced the descriptor “DAISY” replacing the weighted sums of gradi-
ent norms in SIFT by convolutions with several oriented derivatives of Gaussian
filters, which can be computed even faster without degrading the performance.

Strongly inspired by the prior success of SIFT-like methods on images, some
recent work has been dedicated to compute multi-scale features for surfaces. An
intuitive idea is to “flatten” surfaces to 2D images via parameterization, and
then compute SIFT features of geometric attributes such as normal [6, 7] and
curvatures [8]. The parameterization itself, however, suffers from unpredictable
changes of topology and boundary, accompanied by domain cutting and shape
distortion. In [2], texture was projected to the tangent plane to locally flatten the
surface. This method, however, was designed for surfaces with simple geometric
shape such as walls. Purely derived from geometry, some other work constructed
scale space directly on the 3D surfaces evolving the scale domain information.
In [15], a scale space was formulated via surface variation on point-sampled



4 T. Hou and H. Qin

surfaces. Line-type features were extracted by a multi-scale classification opera-
tor that smoothes the surface at different scales. In [16], an intrinsic geometric
scale space (IGSS) of 3D surfaces was proposed for extracting scale-dependent
saliency. Using Ricci Flow, the surface gradually changes its curvature via shape
diffusion. This scale space, therefore, is invariant to conformal deformation. For
scale space on surfaces, Lee et al. [1] adopted 3D Gaussian convolution of cur-
vature maps to compute mesh saliency. The 3D Gaussian scale space is easy to
compute, nevertheless, it is based on Euclidean distance and only feasible for
rigid objects. To improve this, a geodesic scale space (GSS) [4] was introduced
using geodesic-based Gaussian convolution. The cost of computing geodesics,
however, is extremely high as the scale increases. Recently, the concept of scalar
fields defined on 3D surface has been proposed [3], which nicely combines the
photometric and geometric characteristics together. They proposed a 3D feature
detector (MeshDoG) and a descriptor (MeshHoG). The MeshDoG, however, was
computed by 3D Gaussian convolution in 1-ring neighborhood, which is compu-
tationally redundant in scale space and may vary subject to shape deformation.

Among descriptors of local features on surfaces, the spin-images [17] is per-
haps the most widely adopted. It maps a local surface patch to a 2D image by
the radial distance and the axial distance. However, its widespread use has been
limited only for rigid objects. The 3D shape context [18] has also been proved to
be a successful shape descriptor. In [19], a statistical approach was proposed to
describe surface features, where the neighbors of a feature were organized by a
spiral pathway, and modeled by a Hidden Markov Model. Others, like the LBE-
based shape signatures [9, 10], are defined globally and dedicated to describe
geometric characteristics only.

3 Hierarchical Scale Space on Deformable Surfaces

3.1 Gaussian Scale Space using Geodesic Metric

Let S be a surface, a 2D (topological) manifold embedded in R3, and let T (V,E, F )
be an irregular triangular mesh of S with vertex subset V , edge subset E and face
subset F . Irregular meshes have no restriction on the valences of vertices, engen-
dering more flexibility for complex geometric features and topology changes. A
scalar field L(v) where v ∈ V , has attributes defined on all vertices, e.g., texture,
curvature, normal, heat, density, etc.

We build a scale space of the scalar field on the surface using the Gaussian
kernel, given by

L(v, σ) = G(v, σ) ∗ L0(v), (1)

where L0(v) = L(v, 0) is the initial scalar field, and the scale space L(v, σ) varies
according to the scale σ. The Gaussian kernel on surface is defined as

G(v, σ) =
1

2πσ2
exp(−g(v)2

2σ2
), (2)

where σ is the standard deviation, and g(v) is the geodesic from vertex v to the
Gaussian center. This is a convolution of a family of isometric embeddings that
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Fig. 2. A pyramid consists of 3 octaves with geodesic neighborhoods of the same radii
on different units. It is faster to access large neighbors in higher octave of the pyramid.

preserve geodesic distances from valid neighboring vertices to the center. The
discrete Gaussian convolution is then computed in a local region of any v (set
as the center)

L(v, σ) =

∑
g(u)<Cσ G(u, σ)L0(u)∑

g(u)<Cσ G(u, σ)
, (3)

where Cσ is a sufficiently large cut-off (e.g., C = 2 in our implementation) and
the unit is the average edge length e.

3.2 Pyramid Representation

We propose a hierarchical scale space using geodesic metric. The geodesics on
arbitrary triangular meshes can be computed by the fast marching method [20].
It solves the Eikonal equation

|∇T (x)| = F (x), (4)

where the solution T (x) is the shortest time needed to travel from the source to
x with F (x) being the time cost. This algorithm has O(m logm) time complex-
ity for one-source geodesics, where m is the number of traversed vertices. In the
discrete Gaussian convolution in Eq. (3), m is related to the area of the neigh-
borhood with radius Cσ, which yields O(m) = O(σ2). Hence, the complexity
of computing geodesics for all vertices is O(nσ2 log σ), which is linear w.r.t. the
number of vertices n, but quadratic-logarithmic to the scale σ. It implies that
the computation cost could be incredibly high when the scale increases.

To address this problem, we introduce a hierarchical scale space using a pyra-
mid representation, which has demonstrated its efficiency in images [11]. A level
of the pyramid, or an octave, is obtained by subsampling the previous octave
of the pyramid. For triangular meshes, the subsampling can be accomplished by
mesh simplification. There is a large amount of literature on mesh simplifica-
tion using various error metrics. Here we favor approximately uniform sampling
during mesh simplification. Therefore, general approaches such as Progressive
mesh [21] and QSlim [22] suffice for this purpose. To make sure that the in-
put mesh is approximately uniformly sampled, we investigate the edge lengths,
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(a) (b) (c) (d)

Fig. 3. Stages of feature detection: (a) the input scalar field, (b) the initial (494)
extrema, (c) selected (150) keypoints by discarding weak responses, and (d) the final
(116) keypoints by further removing unstable (i.e., edge, boundary) responses.

and insert vertices on edges with length larger than twice of the e using linear
interpolation.

The pyramid consists of consecutive octaves [T0, T1, ..., TO], where O is the
number of octaves, and T0 is the original mesh. An octave Ti is subsampled
from the lower octave Ti−1 such that the number of faces n(Fi) is one fourth of
n(Fi−1). The unit of the i-th octave is the average edge length ei ≈ 1

2ei−1. Fig. 2
shows a pyramid of 3 octaves. It is faster to access large geodesic neighborhoods
in higher octave of the pyramid. Therefore, this computation approach is very
efficient. Though the geometry in higher octave is coarser, the lost details are not
significant for large scales. Each octave contains S scales. The sampling in the
scale space is consistent for all octaves by a constant factor k = 21/S . Besides,
the pyramid and geodesics can be computed in the pre-processing stage that
may be accomplished by the procedure of triangulation.

4 Feature Detector and Descriptor

4.1 Feature Detector

The entire pipeline of feature detection is highlighted in Fig. 3, with specific
processes presented as follows.

Local Extrema. Features are detected by finding extrema in the differences
of the scales:

D(v, σ) = L(v, kσ)− L(v, σ)

= (G(v, kσ)−G(v, σ)) ∗ L0(v), (5)

where k = 21/S is the factor in scale domain. Assuming the valence of vertex
v is nv, the local extremum of D(v, σ) are detected in (nv + 1) × (nv + 1) ×
(nv + 1) neighborhoods of samples. Weak features with small values in D(v, σ)
are discarded.

Unstable responses. Candidate keypoints with unstable responses (bound-
aries, edges) are further removed. In regular domain, the edge responses are de-
fined as large ratios of the principal curvatures. In irregular meshes, we can also
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apply this strategy using algorithms in [23] that compute curvatures in 1-ring
neighborhood. Specifically, we project the 1-ring neighbors N1(v) of v to its local
tangent plane, and use the scalar value as the third dimension to build a new
mesh structure. The mean curvature κH and Gaussian curvature κG on the new
mesh are given by{

κH(v) = 1
4Amix

∣∣∣∑u∈N1(v)
(cotαvu + cotβvu)(v − u)

∣∣∣
κG(v) = 1

Amix
(2π −

∑nv

j=1 θj)
, (6)

where Amix is the area of the generalized Voronoi region for arbitrary meshes,
cotαvu and cotβvu are the well-known “cot” coefficients (please refer to [23]
for more details), and θj is the angle of the j-th face at the vertex v. The two
principal curvatures are then given by{

κ1(v) = κH +
√
∆(v)

κ2(v) = κH −
√
∆(v)

, (7)

with ∆(v) = κ2H(v)− κG(v).
Refinement. The detected extremum leads to a local region that contains

the location of the feature. Thus, the refinement of feature localization is per-
formed to locate the accurate position. To prevent the localization from leaving
the surface, we use projected 1-ring neighbors with scalars in the previous stage.
A quadratic function on samples of D(v, σ) is fitted over spatial and scale domain
in the local coordinate system

D(x, y, σ) = a0x
2 + a1y

2 + a2σ
2 + a3xy + a4xσ +

a5yσ + a6x+ a7y + a8σ + a9, (8)

where [a0, a1, ..., a9] are a group of coefficients that can be estimated by least-
square fitting. The localization x = [x, y, σ]T is updated using

x̂ = x− ∂2D(x)

∂x2

−1
∂D(x)

∂x
. (9)

4.2 Feature Descriptor

Estimation of Vertex Gradient. For irregular meshes, the gradient of scalar
filed L(v) at vertex v, defined as a vector in its local tangent plane, is usually
estimated by solving an optimization problem using the finite element method
(FEM) [24]. Specifically, let N1(v) be the 1-ring neighbor of vertex v. The gra-
dient ∇L(v) can be estimated by minimizing the following error

∇L(v) = arg min
∇L(v)

∑
u∈N1(v)

∣∣∣∇L(v)TP (−→vu)− L(u)− L(v)

g(u)

∣∣∣2, (10)

where P (−→vu) is the projected unit vector of −→vu in the local tangent plane TvS.



8 T. Hou and H. Qin

v orientation

θ(u)
g(u)

n

TvS

S
(a) (b)

Fig. 4. Local parameterization (a) and descriptor (b). Neighboring vertices are assigned
to 9 bins according to their geodesics and polar angles in the local tangent plane TvS.
The histogram of gradients w.r.t. their directions is computed in each bin.

Orientation Assignment. The orientation of the feature is assigned by the
dominating direction of gradients in its neighborhood. This assignment makes
the detected feature invariant to rotation, which has been a common strategy [11,
3] in computer vision. We divide the local tangent plane into 36 bins, and com-
pute weighed magnitudes of gradients falling into the corresponding bins within
a 1.5σ geodesic region. The orientation of the bin with greatest magnitude is
assigned as the feature, and a second orientation may also be assigned if there
exists a second maximum that is no less than 80% of the highest peak.

Local Parameterization. Previous feature descriptors for curved surfaces
(e.g., Spin-images[17], MeshHoG[3]) are typically statistical characteristics dis-
tributed in 3D. We propose a new descriptor for deformable surfaces based on
a local bivariate parameterization enabled by geodesics and polar angles. Intu-
itively speaking, any given vertex in a 2D manifold has a neighborhood which
is homeomorphic to an open set of a 2D plane. Thus, we parameterize the local
region of the vertex v by a polar coordinate system [g(u), θ(u)] on the surface,
where g(u) is the geodesic from vertex v to u, and θ(u) is the projected polar
angle of u from the orientation of v in the local tangent plane TvS. As shown in
Fig. 4(a), this parameterization is completely local, which encodes the geodesic
of the destination on the surface and the direction projected in the local tangent
plane. Comparing with other local parameterization [25], our method preserves
geodesic distances from all neighbors to the origin, and is easy to compute.

Descriptor. A possible drawback of this local parameterization is that the
projected polar angles may change subject to severe deformations. To reduce the
dependence on the polar angle θ, we quarter the angles in the tangent plane as
shown in Fig. 4(b), which affords our shape descriptor to be invariant to most
isometric deformations. We use polar grid to cluster vertices into 9 bins, and use
tri-linear interpolations to reduce boundary effects. The histogram of gradients
w.r.t. eight directions is computed in each bin. The radii of three circles are
subject to the ratio of 1 :

√
5 : 3 with unit σ, so each bin has the same area.

The magnitudes of gradients are smoothed by a Gaussian function with 3σ.
This descriptor converts histograms of gradients in 2D to a 1D vector that is
normalized for matching purpose.
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Table 1. Comparison of SIFT-like methods on surfaces.

Methods Grid Scale Sample Pyramid Descriptor Deform. Invariance

SIFT regular σ02o+s/S yes 2D HoG no

GSS irregular σ0k
n no Spin-images no

MeshDoG regular σ
√
n no 3D HoG no

ours irregular σ02o+s/S yes 2D HoG yes (isometric)

4.3 Discussion

Most recent multi-scale methods of feature detection on surfaces are inspired by
the SIFT on images. It is therefore valuable and illustrative to compare them
to clarify their differences, as shown in Table 1. Our method is the most similar
one in spirit to the SIFT, and is invariant to isometric deformation. Although
all of these methods can produce multi-scale representation of scalar inputs, we
found that the tight coupling of samplings in scale and spatial domain is critical
to scale-dependent features. The SIFT, which has been shown effective, samples
by a constant factor k = 21/S in the scale space: σ02o+s/S , where σ0 is the initial
value, S is the number of scales per octave, o and s are the order of octave and
scale in the pyramid, respectively. By using the pyramid representation, SIFT
increases the sampling intervals by a factor 2 in the spatial domain, which allows
us to find extrema in larger neighborhoods for greater scales. The GSS method
also samples by a constant factor k in the scale space, while the sampling interval
in spatial domain remains unchanged for all scales. The MeshDoG method, which
builds the scale space by repeatedly convolving the kernel with the same scale σ,
samples in the scale domain as σ

√
n. The sampling rate gets smaller when the

scale increases, so it generate many more redundant samples, while the sampling
rate in spatial domain remains unchanged. Our method has similar sampling
strategy to that of SIFT, which makes itself both effective and robust.

5 Experimental Results

In this section, experiments are conducted to evaluate the efficiency and reliabil-
ity of different methods. The deformable surface data being used are 3D scans
from [26] acquired by real-time scanners using structured light, and spacetime
faces [27] captured by synchronized video cameras and structured light projec-
tors. Previous methods such as the GSS [4] and the MeshDoG/MeshHoG [3] that
fall into the same category as our method are used for the comparison purpose.

5.1 Efficiency Evaluation

We run the three methods on three kinds of data with different resolutions and
geometric characteristics: complete model, spacetime face, and 3D scan, and
show their results in Fig. 5. We use Gaussian curvature maps for scalar fields
(a) of data 1 and 2, and photograph for data 3. The scales of detected features
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(a) scalar fields (b) GSS (c) MeshDoG (d) ours

σmax

σmin

Fig. 5. Scale-space features on three kinds of data: (a) input scalar fields; (b) results
by the GSS; (c) results by the MeshDoG; and (d) our results in this paper. We use
Gaussian curvature maps for data 1 and 2, and photograph for data 3. Different colors
of detected features represent their scales (better viewed in color).

are represented by their colors: blue for large scale, red for small scale. The GSS
method (b) contains 32 scales, and the most features detected belong to small
and medium scales. We compute 80 scales in the MeshDoG method (c), while
the features only show up in the very small scales. For the data used in our
experiments, the two methods have redundant samples in spatial domain and
scale domain, indicated by the dense spheres and their intensively distributed
colors respectively. Our method (d) has 4 octaves (12 scales) for data 1 and
data 2, and has 3 octaves (9 scales) for data 3. The detected features by our
method appear to be more intuitive in the sense of scale. We also noticed that
the geometric features are related to the resolutions of data. It tends to find more
large-scale features for coarse meshes (e.g., data 1), and more small-scale features
for fine meshes (e.g., data 2). This fact results from the discrete computation of
Gaussian curvatures.

The computation time for the three methods in this experiment are shown
in Table 2, obtained from a PC with Quad 2.66GHz CPU and 4GB RAM. In
the pre-process (pre), we compute geodesics for the GSS, and geodesics and
pyramids for our method. And in the running-process (run) we compute feature
detectors and descriptors for all three methods. Compared with the GSS that
also uses geodesic metric, our method significantly reduces the pre-process time.
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Table 2. Computation time of three methods in the experiment of Fig. 5

Methods Data 1 (47.1k faces) Data 2 (46.9k faces) Data 3 (10k faces)

scale feature pre-(s) run-(s) feature pre-(s) run-(s) feature pre-(s) run-(s)

GSS 32 1127 5893.9 11.7 478 6252.0 5.7 38 970.9 1.2

MeshDoG 80 540 N/A 31.8 451 N/A 22.2 15 N/A 1.9

ours 12/9 274 47.5 1.8 128 33.7 0.8 36 6.3 0.2

10k faces 32k faces 10k faces 32k faces

Fig. 6. Photometric features over mesh changes and different resolutions. The results
by the MeshDoG (left two) are affected by the resolutions. Our results (right two) are
more stable under mesh changes and different resolutions.

The MeshDoG only uses 1-ring neighbors to compute Gaussian kernel for all
scales, which is actually a bad practice though it saves the pre-process time.
In terms of running-process time, our method is still much faster. In fact, for
rigid models we can use Euclidean distances to replace geodesics, this will reduce
computation time in the pre-process (e.g., about 10 seconds pre-process time for
data 1, and the total computation time is about 1/3 of that in the MeshDoG).

Another experiment is conducted to examine the scales of photometric fea-
tures over mesh changes and different resolutions, with the results shown in
Fig. 6. The original scan from [26] has high resolution (170k faces) and mod-
erate accuracy. We downsample them into scans with different resolutions (10k
faces and 32k faces). The MeshDoG (left) only finds features in the small scales,
and thus the results are unstable under resolution changes. Our method (right)
is more stable under mesh changes and different resolutions.

5.2 Reliability Evaluation via Feature Matching

The reliability of features for matching purpose can be evaluated by feature
matching with ground truth, as in [12, 13]. Thus, we use the spacetime faces
which have ground truth correspondences to evaluate the feature descriptors via
feature matching. In this experiment, we use the photometric scalar fields, and
evaluate two descriptors: MeshHoG and ours. Since the descriptor employed in
the GSS is the Spin-images for geometric features on rigid models only, it is not
appropriate for our purpose. The matching strategy is a basic nearest neighbor
algorithm with cross validation as in [3]. A pair of candidate matches {f1i , f2j }
from S1 and S2 is identified if they are the nearest neighbor to each other in the
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frame 1 - frame 2 frame 1 - frame 5 frame 1- frame 9

Fig. 7. Selected frames from our evaluation of the MeshHoG (first row) and our method
(second row). We match frame 1 to all other frames. Green lines represent correct
matches, while black lines represent false matches

Euclidean space of descriptor. And only matches that are discriminative (i.e.,
the distance of the closest neighbor is γ or less to that of the second-closest
neighbor) can be finally accepted.

The spacetime face data has a sequence of a deforming face, where 34 frames
are selected for evaluation which last about 5 seconds. We fix thresholds for
the two methods respectively, which maintain about (120 ∼ 160) features de-
tected for each frame. Then we match features in the first frame to the ones
in other frames to evaluate the reliability of feature descriptors under deforma-
tion. The parameter for matching algorithm is set as γ = 0.9 for both methods.
Some selected frames are shown in Fig. 7, where green lines represent correct
matches while black lines represent false matches. The complete result (up to 50
frames) can be found in the supplementary material (in the interest of space).
Three criteria are employed: effectiveness, recall, and 1-precision. The effective-
ness is defined as the ratio between the number of correct matches and the
number of detected features, which reflects how effective for the method to find
correct matches. The correct matches are identified if the matched feature is
within one unit of e of the ground truth. The recall and 1-precision are defined
conventionally as that in [13]. The number of positives is determined for the
detected features using the same way as correct matches. The evaluation results
are shown in Fig. 8. The MeshHoG performs well for the first two frames with
small deformation, and its performance severely deteriorates for large frame in-
dices (i.e., large deformation) in our experiment. This is primarily because the
detected features by the MeshDoG are not distinctive, and the MeshHoG is not
deformation-invariant. Our method is more reliable in terms of high effectiveness,
recall, and low 1-precision, and is stable even for large deformations.
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Fig. 8. Evaluation results on reliability of descriptors. The performance of the Mesh-
HoG (blue) severely deteriorates for large deformation, while our method (red) is more
stable in terms of high effectiveness, recall, and low 1-precision both consistently and
simultaneously.

6 Conclusion

In this paper we have detailed an efficient method to compute scale dependent
features on surfaces for deformable shape correspondences, which is a natural
generalization of the SIFT. The proposed feature detector and descriptor are
invariant to isometric deformation. Unlike previous methods on rigid surfaces,
our method takes the 3D scans as scalar fields on deformable manifolds using
geodesic metric. By employing a hierarchical scale space and a pyramid shape
representation, our method is both efficient and stable, as shown in the experi-
mental results. We have also conducted the comprehensive evaluation of the reli-
abilities of descriptors via matching features on a sequence of deforming surfaces
with ground truth correspondences. Compared with existing work, our method
is much more robust and effective under natural deformations. Our on-going
research efforts will continue to center on the comprehensive studies on shape
matching and registration of deformable surfaces, with new research directions
including shape completion in both temporal and spatial domains.
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