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Abstract Matching vehicles subject to both large pose transformations and ex-
treme illumination variations remains a technically challenging problem
in computer vision. In this chapter, we first investigate the state-of-the-
art studies on vehicle matching, inverse rendering by which illumination
can be factorized from the light reflectance field, and applications of
the Near-IR illumination in computer vision. Then a 3D model-driven
framework is developed, towards matching and recognizing vehicles with
varying pose and (visible or Near-IR) illumination conditions. We adopt
a compact set of 3D models to represent basic types of vehicle. The pose
transformation is estimated by using approximated vehicle models that
can effectively match objects under large viewpoint changes and partial
occlusions. Second, with the estimation of surface reflectance property,
illumination conditions are approximated by a low-dimensional linear
subspace using spherical harmonics representation. By estimated pose
and illumination conditions, we can re-render vehicles in the reference
image to generate the relit image with the same pose and illumination
conditions as the target image. Finally, we compare the relit image
and the re-rendered target image to match vehicles in the original ref-
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Figure 1.1. Images of the same vehicle taken from different viewpoints and lightings,
subject to large pose and illumination variations.

erence image and target image. Furthermore, no training is needed in
our framework and re-rendered vehicle images in any other viewpoints
and illumination conditions can be obtained from just one single in-
put image. In our experiments, both synthetic data and real data are
used. Experimental results demonstrate the robustness and efficacy of
our framework, with a potential to generalize our current method from
vehicles to handle other types of objects.

Keywords: vehicle matching, 3D model-driven method, inverse rendering, spherical
harmonics, near-IR illumination.

1. Introduction

Object matching and recognition remain an important and long-term
task with continuing interest from computer vision and various appli-
cations in security, surveillance, and robotics. Many types of represen-
tations have been exploited to match and recognize objects by a set of
low-dimensional parameters, such as shape, texture, structure, and other
specific feature patterns. However, when it comes to unconstrained con-
ditions such as highly varying pose and severely changing illumination,
the problem becomes extremely challenging. As shown in Figure 1.1,
object appearance may be tremendously different with varying pose and
illumination conditions. Although the texture of a vehicle is consistent,
its appearance indeed varies a lot under different lightings. Thus, such
clues like shape and texture are weak in this case.

Currently, popular approaches in object recognition focus on two
trends: the appearance-based methods (Murase and Nayar, 1995; Fer-
gus et al., 2006) and the model-based methods (Gardner and Lawton,
1996; Romdhani et al., 2002). In appearance-based methods, objects are
typically represented by a group of feature vectors, and a set of positive
and negative examples is adopted to train a classifier spanning on the
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Figure 1.2. Our vehicle matching framework. Given input images, the model and
pose transformation are first determined. Then we estimate reflectance property
(albedo) of objects. The illumination is recovered by spanning given image to basis
images, and the re-lit image is generated by transferring illumination. Finally, objects
are compared in a shared domain with recovered illumination.

principle component analysis (PCA) subspace or feature subspace. In
practice, technical issues arise from appearance variation due to different
pose and lightings. Model-based methods require a set of 3D models to
provide geometric constraints. Ideally, when object domain is known,
the explicit utilization of 3D models can largely alleviate the problem of
feature matching. However, it stands on two basic assumptions: first,
the 3D model can precisely fit to the input images; second, pose estima-
tion is accurate enough. To estimate appearance of objects, global and
local clues have been used to simulate texture of the 3D model. Despite
the progress, it still has limited success in illumination variations, since
illumination conditions can dramatically affect appearances as shown in
Figure 1.1.

The union of model and illumination is appealing, since appearances
can be decomposed and reassembled by them. It provides a pose and
illumination invariant view to examine the problem of matching and
recognition. However for general objects, it is hard to obtain their 3D
models from single image. To alleviate this restriction, we choose vehicle
as object domain with simple geometric structure. The illumination can
be visible spectrum or Near-Infrared (IR) spectrum. The Near-IR light
can also be reflected by objects since it is close to the visible light in
spectrum. One benefit of Near-IR illumination is to allow our method
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work in low-luminance environment with active Near-IR light sources.
Thus the primary contribution of this chapter lies in a 3D model-driven
framework towards vehicle matching and recognition working under vis-
ible or Near-IR illumination, which can handle large pose transforma-
tions and illumination variations simultaneously. Our vehicle matching
framework is shown in Figure 1.2. Given original input images, the
pose transformation is first estimated by using approximated 3D vehicle
models that can effectively match objects under large viewpoint changes
and partial occlusions. Second, we estimate reflectance property of ob-
jects, taking advantage of the fact that the body of a vehicle has unified
color and material. After that, we compute their spherical harmonic
basis and recover illumination conditions both in the reference image
and target image. By effectively estimating both pose and illumination
conditions, we can re-render vehicles in the reference image to generate
the relit image with the same pose and illumination conditions as the
target image. Finally, we make comparisons between the relit image and
the re-rendered target image to match vehicles in the original reference
image and target image.

2. Previous Work

In this section, we will investigate previous related work in vehicle
matching, inverse rendering and Near-IR illumination.

Vehicle Matching

Vehicle matching has been studied in many areas of computer vi-
sion, with different purposes such as detection, identification, tracking,
and recognition. Appearance-based methods are well applied on vehi-
cles, with no difference with other objects. Recently, Shan et al., 2005
exploited an embedding vector to represent each vehicle image by exem-
plars of vehicles within the same camera. Each component of this vector
is a non-metric distance computed by oriented edge maps. The measure-
ment they defined describes the appearance-based same-different prob-
abilities of two vehicles. The extended work was done by Guo et al.,
2007; Shan et al., 2008 for vehicle matching. Here, we pay more atten-
tion on model-based methods, since 3D model can connect appearances
from multiple views. And thus large pose variation can be easily han-
dled. A vehicle has concise shape that can be easily represented by
a simple 3D model. Koller et al., 1993 represented vehicles by a gen-
eral 3D model parameterized by 12 length parameters. Their method
needs to calibrate a moving plane from video sequences. Kim and Malik,
2003 used a simple sedan model to detect vehicle, and used probabilis-
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tic feature grouping for vehicle tracking. Guo et al., 2008 proposed a
model-based approach to match vehicles. They used approximate 3D
models to handle pose transformation, and a piecewise Markov Random
Field (MRF) model to guess texture of occluded parts. However, their
method has limitations on sensitive model fitting and varying illumina-
tion. Another benefit for model-based methods is that illumination as
a higher dimension is possible analyzed when the 3D shape is known.
In the work of Hou et al., 2009, a vehicle matching framework was pro-
posed using a compact set of vehicle models and spherical harmonics
representation of illumination.

Inverse Rendering

Illumination can be interpreted as one of the attributes of light re-
flectance field. Its analysis and manipulation can be fulfilled by fac-
torizing illumination from images, which is named “inverse rendering”.
Inverse rendering which measures rendering attributes: lighting, tex-
ture, and bidirectional reflectance distribution function (BRDF) from
photographs, continues to be an active research area with interest from
both computer vision and computer graphics. In previous work, tremen-
dous progress has been made in the recovery of these three render-
ing attributes with one or two unknowns (Sato et al., 1997; Yu et al.,
1999; Debevec et al., 2000). In general cases where lighting, texture,
and BRDF are all unknown, this problem becomes ill-conditioned until
strong assumptions and requirements on input data have been made.
Ramamoorthi and Hanrahan, 2001 presented a signal processing frame-
work for inverse rendering with known geometry and isotropic BRDFs.
In their work, the reflected light field was expressed as a convolution of
the lighting and BRDF using spherical harmonics. As a frequency-space
convolution, spherical harmonics has been used as a tool to represent
lighting. In the work of Basri and Jacobs, 2003, it is shown that the re-
flected light field from a Lambertian surface can be characterized using
only its first 9 spherical harmonic coefficients, where geometry is as-
sumed to be known. Later, Zhang et al., 2005; Zhang and Samars, 2006
integrated the spherical harmonic illumination representation into the
Morphable Model approach, by modulating the texture component with
the spherical harmonic bases. They used PCA to initialize geometry and
texture from a large set of training data, and estimate lighting and basis
images independently through iteration. To alleviate the strong require-
ments on geometry and texture, Wang et al., 2007 proposed a subregion
based framework that uses a MRF to model the statistical distribution
and spatial coherence of texture. Though lighting in a small region is
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more homogeneous, it is hard to segment an image into homogeneous
regions. Their method still needs training data to compute PCA texture
model.

Near-IR Illumination

Low-cost infrared cameras make it possible to address computer vi-
sion problems in a larger range of the electromagnetic spectrum (Morris
et al., 2005). Here, we only focus on the near-infrared illumination with
wavelength varying from 0.7µm to 1µm. It is very close to the visible
spectrum, and thus it can be reflected by objects, generating IR images
similar with images under visible spectrum. Novotny and Ferrier, 1999
used active IR to measure distance. They proposed a method of deter-
mining the reflectance property of a surface under infrared illumination
using Phong model, since IR LEDs are well approximated as a point light
source. Ji and Yang, 2002 studied real time 3D face pose discrimination
based on active IR illumination. The IR is adopted since pupils in IR
images are more clear and stable than images under visible illumination.
In the work of Zhu et al., 2002; Zhao and Grigat, 2006, active Near-IR
illumination was employed in eye detection and eye tracking. Zou et al.,
2005 used active Near-IR illumination projected by LED light source to
illumination invariant face recognition. The Near-IR light source can
provide constant illumination, and produce images with higher quality
than images under ambient illumination. More work on face recogni-
tion using active Near-IR illumination can be found in the work of Pan
et al., 2007; Li et al., 2007. Wang et al., 2008 presented a method for
relighting faces for reducing the effects of uneven lighting and color in
video conference. Their setup consists of a compact lighting rig and
two cameras. The IR camera is 8 times (120fps/15fps) faster than the
color camera. They used active IR lights to obtain an illumination bases
of the scene, and thus they can image relighting. In the work of Fre-
dembach and Süsstrunk, 2009, illuminant was detected and estimated in
Near-IR images by simply looking at the ratios of two images: a stan-
dard RGB image and a Near-IR only image. As the differences between
illuminants are amplified in the near-infrared, this estimation proves to
be more reliable than using only the visible band.

3. Vehicle Matching Framework

In this section, we will introduce our framework of vehicle matching
under various pose and illumination conditions.
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Figure 1.3. Some 3D vehicle models adopted in our framework. Models are selected
from the Princeton Shape Benchmark.

Model Determination

Our dataset contains 5 representative models that stand for 5 dif-
ferent categories of vehicles including compact-size car, full-size sedan,
small pickup truck, SUV, and big truck. These 3D models are selected
from the Princeton Shape Benchmark 1, with some of them shown in
Figure 1.3. Unlike the approach by Guo et al., 2008, which requires
each vertex in 3D model has its semantic ownership, we take the body
of a vehicle as an object and ignore some parts (windows, wheels, and
lights) for such reasons: (1) typically, the body has uniform color and
material, which leads to uniform reflectance property to illumination;
(2) the removed parts have different patterns and properties. For exam-
ple, windows could have mirror reflection, wheels may turn right or left
with the same pose of the body, and lights could be on or off.

For each input image, we will first determine which model best rep-
resents the vehicle that appears in the image. Considering the fact that
pose estimation is easily trapped into local minimum in the searching
space, we select three different initial poses for each vehicle model with
reasonable projection. For each model, we compute edge maps under
these three initial fittings and use chamfer distance (Shan et al., 2005)
to measure the similarity with edge maps of the original input image, as
shown in Figure 1.5. Finally, we select the top two matched models as
candidates for the next step.

Pose Recovery

Here, pose recovery refers to aligning a 3D model to a object in the
image. This task is easier to perform if the 3D model and the image
have similar features. A few correspondences will be enough to perform
the alignment, since the objects are rigid. However, the visual contents
of geometric models are unknown at this stage. We only have their
geometric information, i.e. 3D coordinates and normals. So it comes to
a simple question: How to compare geometry with texture?

An intuitive idea is to utilize the geometric edges, i.e., silhouettes and
intersecting lines of two smooth surfaces, which happen to appear in
the edge maps of images. We employ an approach inspired by the one
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Figure 1.4. Flow chart of pose recovery. Please refer to texts for more details.

in Guo et al., 2008 that used an Iterative Closet Point (ICP)-directed
search to iteratively align the geometric edges to the image edges. The
searching space is spanned by six independent components: three trans-
lation elements and three rotation angles along three axes, by isometric
sampling. By making this simplification, we assume that the intrinsic
parameters of cameras are fixed.

The flow chart of our pose recovery is shown in Figure 1.4. For a
current pose of a candidate model, we search for the next better pose
with minimal average closet point distance d, given by

d =
1

N

N∑

i=1

di, (1.1)

where di denotes the distance between pixel i in the geometric edges and
its closet pixels in the image edges. We sample the searching space of
translation and rotation respectively by perturbing a sampling distance.
In 3D translation, we use 3 samplings for each direction, with positive,
zero, and negative distance, that is, 27 samplings, and similarly in rota-
tion, 27 samplings in 3 angles along 3 axes. The scale of geometric edges
can be adjusted through the translation in the direction of depth. Fur-
thermore, we employ adaptive sampling distances αtd and αrd, where
αt and αr are scaling parameters of translation and rotation. Thus, the
speed of searching can be controlled in the way that when it is getting
close to the minimum distance, the sampling distance is getting smaller
to achieve a more precise search.

The searching will stop when the average closest point distance d
reaches a threshold. However, when the searching gets stuck at some
point, which means it keeps choosing zero sampling distance, while the
threshold has not been reached, the sampling distance will jump to Ds,
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Figure 1.5. Pose estimation. Edge detection in the original image is shown on the
left. Initial fitting between 3D vehicle model and the original image is shown in the
middle. The alignment is shown on the right. Green lines are image edges and red
lines are geometric edges of the 3D vehicle model.

Figure 1.6. Lambertian reflectance with point light source: Light (green) is scattered
equally to every direction regardless of the observer’s angle of view, and the intensity
is subject to the Lambertian Cosine Law.

where D is a large factor to pull the searching out of the local minimum.
Finally, the best 3D object model is selected with minimal average closest
point distance from candidate models. Figure 1.5 shows an example
of pose recovery, where green lines are image edges and red edges are
geometric edges of the 3D vehicle model.

Estimation of Reflectance Fraction

Albedo is the fraction of light that a surface point reflects when it is
illuminated, which is an intrinsic property that depends on materials of
the surface. There are some approaches in literature to estimate albedo
from a single image (Biswas et al., 2007). In previous work of applying
spherical harmonics (Zhang et al., 2005), the brightness of a pixel is
taken as albedo. In our framework, taking the observation that the
body of a vehicle has uniform texture and materials, we estimate albedo
in RGB channels for visible spectrum.

For Lambertian objects, the diffused component of the surface reflec-
tion satisfies Lambertian Cosine Law (as shown in Figure 1.6), given
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by

I = ρmax(nT s, 0), (1.2)

where I is the pixel intensity, s is the light source direction, ρ is the
reflectance fraction of the surface (albedo), and n is the surface normal
of the corresponding 3D points. The expression implicitly assumes a
single dominant light source placed at infinity, which is the most common
case where vehicle images are taken. Note that Lambertian law in its
pure form is nonlinear due to the max function, which accounts for
the formation of attached shadows. Shadows and specularities do not
reveal any information about their reflectivity. Thus they should not be
included in the computation of estimation. In most cases, vehicle images
are taken outside where the primary light source is the sun, and thus
the estimation is realistic.

By collecting 3D points with positive (nT s) and the corresponding im-
age pixels excluding shadows and specularities, we can obtain a reflective
equation for each point in the 3D model, written as:

nTρs = I. (1.3)

Note that s is almost the same for each point in the 3D model, since the
only dominant light source is placed at infinity. Therefore, we can get a
formula for all reflective equations as (for example in the red channel):

Nρrs = Ir, (1.4)

where N is the n×3 matrix that consists of surface normals of n points,
ρr is the albedo in the red channel, and Ir is intensity value of the red
component of n corresponding pixels in the image. And so are the green
and blue channels. We then take ρrs together as a variable and estimate
it by the method of least squares. Since ρr is a positive fraction in the
range [0, 1], and s is the normalized direction vector whose length equals
1, we can compute ρr by

ρr =
|ρrs|
|s| = |ρrs|. (1.5)

Similarly, we can compute albedo in green channel ρg and albedo in
blue channel ρb. Figure 1.7 shows that albedo maps in the second row
are estimated from 3 input images in the first row. The two left images
are taken from the same car and the right-most image is from another
car. Despite varying illuminations, the albedo estimation is accurate
and robust.
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Figure 1.7. Reflectance fraction (albedo) estimation. The input images are shown in
the first row and estimated albedos are shown in the second row. The two left images
come from the same car and the right-most image comes from another car.

Illumination Recovery

As described by Basri and Jacobs, 2003; Ramamoorthi and Hanrahan,
2001, any image under arbitrary illumination conditions can be approx-
imately represented by a linear combination of spherical harmonic basis
as:

I ≈ bl, (1.6)

where b is the spherical harmonic basis and l is the vector of illumination
coefficients. The set of images of a convex Lambertian object obtained
under a wide variety of lighting conditions can be approximated accu-
rately by a 9-dimensional linear subspace (Basri and Jacobs, 2003; Ra-
mamoorthi and Hanrahan, 2001; Zhang and Samars, 2006). They are
the sphere analog of the Fourier basis on the line or circle. The first 9
spherical harmonic basis images of an object can be computed by:

b00 =
1√
4π
λ, be10 =

√
3
4πλ. ∗ nz,

bo11 =
√

3
4πλ. ∗ ny, be11 =

√
3
4πλ. ∗ nx,

b20 =
1
2

√
3
4πλ. ∗ (2nz2 − nx2 − ny2),

bo21 = 3
√

5
12πλ. ∗ nyz, be21 = 3

√
5

12πλ. ∗ nxz,

bo22 = 3
√

5
12πλ. ∗ nxy, be22 =

3
2

√
5

12πλ. ∗ (nx2 − ny2),

(1.7)

where the superscripts e and o denote the odd and the even components
of the harmonics, respectively, λ is the vector of the object’s albedo,
nx, ny, nz are three vectors of the same length that contain the x, y, and
z components of the surface normals. Further, nxy is a vector such that
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Figure 1.8. An example of the first 9 spherical harmonic basis images with RGB
channels. Light colors represent positive values and darker colors represent negative
values.

the ith element nxy,i = nx,iny,i, and λ. ∗ v denote the component-wise
product of λ with any vector v.

In our framework, we use unified estimated albedo for the body of the
vehicle model. The visible part of a 3D vehicle model, which is projected
to the input image due to recovered pose, provides us normal vectors,
estimated albedo, and appearances with illumination effects for each
visible 3D point associated with corresponding 2D pixels. Therefore, we
can compute the first 9 spherical harmonic basis using Equation (1.7),
and estimate the illumination coefficients l by using the method of least
squares in Equation (1.6). Figure 1.8 shows an example of the first 9
spherical harmonic basis images with RGB channels where light colors
represent positive values and darker colors represent negative values.

Re-lighting

Re-lighting is used to generate new images of the object from the ref-
erence image by transferring illumination effects in the target images (
Wang et al., 2007; Wen et al., 2003; Zhang et al., 2005). In our frame-
work, we use this technique to render the reference object under illumi-
nation conditions of the target image. In the work of Wang et al., 2008,
re-lighting was constructed on basis images obtained under various ac-
tive IR illumination. Our basis images are from the spherical harmonic
bases. By Equation (1.6), we obtain two illumination representations of
both the reference image and the target image:

Ir ≈ brlr, It ≈ btlt, (1.8)
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(a) (b) (c)

(d) (e) (f)

Figure 1.9. Examples of illumination recovery and re-lighting. (a) and (d) are two
input images. (b) and (e) are re-rendered images of (a) and (d) after illumination
recovery. (c) is the relit image by transferring both pose information and illumination
effects from (d) to the 3D vehicle model estimated from (a). (f) is the relit image
by transferring both pose information and illumination effects from (a) to the 3D
vehicle model estimated from (d). The relit images (c) and (f) are very similar to the
re-rendered images (e) and (b), respectively.

where the subscript r denotes the reference object, and subscript t de-
notes the target object. By re-lighting, we can transfer the illumination
effects from the target image to the reference object if they are subject
to the same pose:

Irelit ≈ brlt, (1.9)

where Irelit is the relit images of the reference object with the illumina-
tion conditions of the target image.

With this re-lighting technique, we can render an object under any
pose and illumination conditions associated with one single input image.
Figure 1.9 shows examples of illumination recovery and re-lighting. From
the results, we can see that the relit image Figure 1.9(c) is very similar
to the re-rendered image Figure 1.9(e) and The relit image Figure 1.9(f)
is very similar to the re-rendered image Figure 1.9(b). Therefore, we
just compare the relit image with the re-rendered target image to match
vehicles in the original reference image and target image despite large
variations of pose and illumination.
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Vehicle Matching

In order to match two images, we use the normalized matching dis-
tance (NMD), defined as

NMD =
Σn
i=0‖Iirelit − Iit‖

Σn
j=0I

j
t

, (1.10)

where Irelit is the relit image and It is the re-rendered image of target
objects. NMD describes the difference between the reference object and
the target object, despite the affect of pose and illumination variations.
A smaller distance stands for higher similarity, and vice versa.

The vehicle matching algorithm in our framework can be summarized
as follows:

1) Determine 3D vehicle models and recover their poses in both the
reference image and target image.

2) Estimate reflectance fractions (albedos) from two input images by
Equation (1.5).

3) Compute the spherical harmonic basis and illumination coefficients
for each input image, respectively, by Equation (1.7) and Equation (1.6).

4) Re-render the target object by Equation (1.8) and re-lighting the
reference object by Equation (1.9).

5) Compare the relit image and the re-rendered image by computing
the normalized matching distance by Equation (1.10) to match vehicles
in the original reference image and target image.

4. Near-IR Illumination

Surfaces of objects have similar reflectance property under active
Near-IR illumination and visible illumination. Therefore, the framework
proposed above can also be applied on images under Near-IR illumina-
tion. One benefit of using Near-IR illumination is that it can provide
constant illumination, and work in low-luminance environment without
conspicuous light. Besides, specular reflection, which is not considered
by our illumination model, is significantly reduced in Near-IR image.
The disadvantage of Near-IR illumination is that it does not have any
color information. It is not significant to objects like human face, but is
important to vehicle, since vehicle has plentiful colors that can be dis-
criminated easily in visible illumination. Figure 1.10 shows two image
pairs of Near-IR image and color image of the same scenes, obtained
from the work of Fredembach and Süsstrunk, 2009. Near-IR images are
very close to gray images under visible spectrum.

Objects may appear unnatural under IR illumination, since many ma-
terials do not have the same reflectance fraction under visible or Near-IR



3D Model-Driven Vehicle Matching and Recognition 15

Figure 1.10. Near-IR and color image pairs of the same scenes. Images are from the
data in Fredembach and Süsstrunk, 2008.

Figure 1.11. An example of Near-IR vehicle image and its estimated reflectance
property.

spectrum, e.g., a surface with green color becomes brighter in Near-IR
illumination than in the visible spectrum. Therefore, we do not compare
images across spectral bands, which means we only match images both
under visible illumination, or both under Near-IR illumination. We also
assume the diffuse reflectance of Lambertian surface has a constant ratio
(i.e., albedo in visible spectrum) in the same spectral band. In visible
illumination, the albedo of surface has 3 channels, while in Near-IR il-
lumination, the reflectance property has only one channel. Figure 1.11
shows an example of Near-IR vehicle image and its estimated reflectance
property. There is no much difference with image under visible illumi-
nation.
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Figure 1.12. Comparison on synthetic data. 1 is the reference image and 2, 3, 4, 5,
6 are target images (1, 4, 5, 6 are from the same car and 2, 3 are from another car).
The second row are relit images by our method with their matching distances shown
below. The third row are relit images by the method without illumination recovery
by Guo et al., 2008. Our method matches the reference image with the correct target
images (4, 5, 6) with lower matching distances, while the method without illumination
recovery matches it to the wrong target images (2, 3).

5. Experimental Results

In this section, we will evaluate our framework using both synthetic
and real data subject to various pose and illumination conditions. The
dataset contains N galleries (2 to 7 images in each gallery) of vehicle
images. Images in the same gallery are obtained from the same vehicle
under different pose and varying lightings. The evaluation schema is
to take one probe image to recognize which gallery (object) it matches.
We also compare our methods with the method without illumination
recovery by Guo et al., 2008 both on synthetic data and real data.

Matching Experiments

Before our recognition experiments, we conduct matching experiments
on both synthetic data and real data to show how illumination condi-
tions will affect matching and recognition results. First, we use our 3D
car models to synthesize 6 vehicle images rendered by OpenGL with one
diffuse light source and global ambient light, as shown in Figure 1.12.
Image 1, 2, 3 are rendered by different cars with the same pose. Images
1, 4, 5, 6 are rendered by the same car with different pose and lightings.
We match image 1 (as the probe image) to the other 5 images. The
matching performances of our method and the method without illumi-
nation recovery are shown in the second row and the third row with their
matching distances, respectively. From experimental results, we can ob-
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Figure 1.13. Comparison on real data. Original images are shown in the first row.
The right image (reference image 2) and the middle image (target image) are from
the same SUV, while the left image (reference image 1) is from another vehicle. The
results of our method are shown in the second row, and results of the method without
illumination recovery are shown in the third row. Numbers above yellow arrows
connecting two images are their matching distances.

serve that our method can correctly match image 1 to target images (4,
5, 6) with lower normalized matching distances. However, the method
without illumination recovery matches the reference image to wrong tar-
get images (2 and 3) due to the effect of illumination. Even in the same
illumination condition, there is still a mismatch due to viewpoint vari-
ations. For example, images 1 and 5 are under the same illumination
condition but taken from different viewpoints. The method without illu-
mination recovery uses symmetry to guess the texture of vehicles. This
is not correct because one side of the car is illuminated while the other
side is shaded.

Figure 1.13 shows matching experiments on real data. Three input
images are in the first row (2 reference images are in the left and right,
1 target image is in the middle). The right image (reference image 2)
and the middle image (target image) are from the same SUV, while the
left image (reference image 1) is from another vehicle. The matching
results of our method are shown in the second row, and the results of
the method without illumination recovery are shown in the third row.
According to their matching distances experimental results, our method
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Figure 1.14. Similarity matrices for our method (left) and the method without illu-
mination recovery (right). The x and y coordinates are these 9 images. The value
of each entry is illustrated by a color, which can be specified in the color index bar:
1.0 indicates highest similarity and 0.0 indicates lowest similarity. The diagonal has
similarity 1.0 where an image matches itself.

correctly matches the reference image 2 and the target image, while the
method without illumination recovery fails due to extreme variations of
pose and illumination.

Recognition Experiments

Synthetic Data. Our synthetic data for recognition contains 9
image galleries synthesized from 9 vehicle models, each of which consists
of 6 images under large variations of pose and lighting. First, in order to
test the robustness of our framework, we randomly pick up 9 images be-
longing to 3 different vehicles from our synthetic dataset, and compute
a similarity matrix among these 9 images. Figure 1.14 shows results by
our method (left) and the method without illumination recovery (right),
where the x- and y-coordinates are these 9 images. We take the first
image in each row as probe image and match it to the other images.
Each entry of the matrix stands for a similarity between the probe im-
ages (y-coordinate) and the target images (x-coordinate). The value of
each entry is illustrated by a color, which can be specified in the color
index bar: 1.0 indicates highest similarity and 0.0 indicates lowest sim-
ilarity. The diagonal has similarity 1.0 where an image matches itself.
An ideal similarity matrix would have a block diagonal structure with
consistently high scores on the main diagonal blocks and consistently
low scores elsewhere. From results, we can see that our method pro-
vides more distinguishable bands of rows and columns between different
vehicles, indicating that it has a better capability to recognize objects
subject to various pose and illumination conditions. However, there is
no distinct diagonal block in the right matrix, which clearly suffers from
the variation of illumination.
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Figure 1.15. Recognition results on synthetic data: The x-coordinate denotes the
size of each gallery from 1 to 5, and the y-coordinate denotes the recognition rates.

For recognition, we conduct our recognition experiments on 9 image
galleries (6 images in each gallery) with rank from 1 to 5 (the number
of images in each gallery is from 1 to 5). Here, we test the following
algorithms: (1) the method without illumination recovery by Guo et al.,
2008, (2) the method using average texture of vehicle body as albedo (no
albedo estimation), and (3) our framework. Figure 1.15 shows the recog-
nition results, where the x-coordinate denotes the size of each gallery
from 1 to 5, and the y-coordinate denotes the recognition rates. From
the results, we can see that our framework always achieves the highest
recognition rates among these methods. Besides, the performance of our
framework is robust to the size of each gallery while the method without
illumination recovery does not perform well when the size of the gallery
is very small. This is because they do not consider the illumination
variations, and thus it needs many more images to discern illumination
changes. Furthermore, their method is also more restricted under some
extreme poses, for example, an image taken from the front of a vehicle
can never provide texture information on two sides and the back. How-
ever, our framework tremendously improves the recognition performance
in these aspects, by which we can still recognize vehicles under limited
inputs with unconstrained pose and illumination conditions.

Real Data. Our real data consists of 30 image galleries captured
from 30 vehicles (24 under visible illumination, and 6 under Near-IR
illumination). For visible illumination, each gallery has 7 images under
various viewpoints and lightings, while for IR illumination, there are 5
images in each gallery. All 6 galleries in Near-IR illumination are from



20

1 2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Rank

R
ec

og
ni

tio
n 

R
at

e

 

 

Illumination Recovery
Without Albedo Estimation
Without Illumination Recovery

Figure 1.16. Recognition result on real data (visible spectrum).

the same category of vehicle, since we have a small-size dataset. The
image resolution is from 310 × 233 to 640 × 480. Our experiment is
conducted by the same schema as we did on synthetic data, and we
do not mix up color images and Near-IR images since they apparently
different.

Figure 1.16 shows the recognition result of real data under visible
illumination by the following methods: the method without illumination
recovery, the method using average texture as albedo, and our framework
with illumination recovery under different ranks. And Figure 1.17 shows
the Near-IR part. The x-coordinate denotes the rank (number of images
involved per gallery), and the y-coordinate denotes the recognition rates.
From results, we can see that by illumination recovery, the recognition
results of our methods are significantly improved and stable when the
number of images involved per gallery changes. However, the other two
methods use semantic ownership of vehicle model and the symmetry of
vehicle body to represent texture information. These are not accurate
due to the effect of illumination conditions, especially when the size of
the gallery is small.

6. Conclusion

We have detailed a 3D model-driven framework to match vehicles sub-
ject to large variations of both pose and lightings in visible or Near-IR
illumination. By estimated pose and albedo, the illumination condition
can be approximately recovered by using spherical harmonics represen-
tation. This will also allow us to re-light the reference object under any
target condition of pose and illumination. Based on algorithmic compo-
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Figure 1.17. Recognition result on real data (Near-IR spectrum).

nents, matching between two input images is conducted in a common
domain by computing the distance from the re-rendered images. Ex-
perimental results demonstrate that our framework has improved the
matching and recognition performance, especially when objects are un-
der both large pose and illumination variations. Besides vehicles, our
framework can also be generalized to handle other types of objects.

There are also some limitations in our framework. When the ap-
proximated fitting is coarse and inaccurate due to non-standard types
of vehicles and camera distortion, the recognition suffers and reduces
to vehicles subject to the same category. Besides, the real illumination
condition is much more complicated than the current assumption, i.e.,
a dominating light source in infinity. For example, in indoor auto-shows
sometimes the highlight area can affect the recognition results. The first
limitation can be further improved by the morphable model, which has
been successfully applied in face recognition; while the second limitation
requires more techniques in the illumination model, which are the future
tasks we expect to undertake.
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