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Figure 1: (a) The input is a triangular mesh of genus 4. (b) Our approgeherates &> smooth surface using hyperbolic structure. The
red curves in (c) show the images of the triangulation. (djvehthe control points overlaid with the smooth surface. iBbphotes in (f)

demonstrate the high quality of the constructed surface.

Abstract

Constructing smooth freeform surfaces of arbitrary togglawith
higher order continuity is one of the most fundamental peptd in
shape and solid modeling. Most real-world surfaces are meth
ative Euler characteristiy < 0. This paper articulates a novel
method to construaf’> smooth surfaces with negative Euler num-
bers based on hyperbolic geometry and discrete curvatuveAlo-
cording to Riemann uniformization theorem, every surfadth w
negative Euler number has a unique conformal Riemanniarianet
which induces Gaussian curvature-ef everywhere. Hence, the
surface admits hyperbolic geometry. Such uniformizatiatria
can be computed using the discrete curvature flow methoderhyp
bolic Ricci flow. Consequently, the basis function for eaohteol
point can be naturally defined over a hyperbolic disk, andubh
the use of partition-of-unity, we build a freeform surfadeedtly
over hyperbolic domains while having> property. The use of
radial, exponential basis functions gives rise to a truehtess
method for modeling freeform surfaces with greatest fléitibs,
without worrying about control point connectivity. Our akithm

is general for arbitrary surfaces with negative Euler ctismastic.

Furthermore, it is”>° continuous everywhere across the entire hy-

perbolic domain without singularities. Our experimentasults

demonstrate the efficiency and efficacy of the proposed new ap

proach for shape and solid modeling.
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1 Introduction and Motivation

Real-world objects are oftentimes of complex structure arii-
trary topology. One fundamental goal of solid and physicatim
eling is to seek accurate and effective techniques for tinepeat
representation of smooth freeform shapes with higherrardeti-
nuity and without any singularity (that would require sp¢dare

otherwise). To date, tremendous efforts have been devotexbi-
structing freeform splines on surfaces with complicatgubtogies
by generalizing conventional spline schemes from Eucfidéa-
mains to arbitrary manifolds. In a recently-developed rfuddi
spline framework, [Gu et al. 2006] pointed out that convemei
spline schemes are based on polar forms [Seidel 1993] teat ar
parametric affine invariant. Therefore, defining manifofdires
based on polar form is equivalent to defining affine geometry o
the surface. Unfortunately, due to the topological obsitong sur-
faces with non-zero Euler number do not admit affine geometry
The recent result by Gu et al. showed that the number of exirao
nary points of manifold splines with gengs> 1 can be reduced
to as small as one [Gu et al. 2008]. This is the intrinsic reaso
why the conventional polynomial-based approach cannoeaeh
global continuity, while the singularity point cannot begaetely
avoided.

Due to the existence of extraordinary points in polynorbased
manifold splines, the current state of the art is far fromopdee
mainly because of the two following aspects. First, theterise
of extraordinary points requires a great deal of specia caich
as hole filling from users (e.g., filling the holes using a safm
spline surface [Gu et al. 2008], or using recursive subidiiso
shrink the size of the vicinity of hole regions [Wang et al02Q or
other strategies). All of these delicate strategies reqoimendous
amount of human intervention and labor. Second, higheerardn-
tinuity cannot be easily satisfied without explicitly inasing the
degree of the underlying polynomial basis functions, assalte
polynomials must be degree-elevated in order to satisftimuaity-
varying (in both spatial and temporal domains) design andetio
ing requirements, which is not flexible and far from ideal.

From the practical and algorithmic standpoint, it is higtiésirable
to construct smooth surfaces without singularities. Tlug fea-
sible way is to get rid of the polynomial or rational polynathi
requirements and directly use non-polynomial smooth fonst
such as exponential functions, to define the shape geon@inam
and Hughes [1995] pioneered a method to constilfetontinuous
parametric surfaces over triangle and quadrilateral needfalow-
ing this direction, there has been extensive research foifald
construction [Navau and Garcia 2000; Ying and Zorin 2004I- Ga
lier et al. 2009; Vecchia et al. 2008; Siqueira et al. 2009].



In this paper, we present a new method to construct smooth
freeform surfaces with negative Euler characteristic nemmpb < 0.
Most real-world surfaces are of gengis> 1, i.e. with negative Eu-

ler number. Here, we focus on high genus surfaces. Surfaites w
boundaries can be converted to closed surfaces by doubégicgv
[Gu and Yau 2003]. The constructed surfaces can be defined on
arbitrary triangular meshes with < 0 and areC*® continuous
everywhere. Our approach is based on the following observat
that the Riemannian metric of these surfaces can be conligrma
deformed by Ricci flow such that the Gaussian curvaturesteven
ally become constant1 everywhere, namely, the final Riemannian
metric is hyperbolic. Therefore, hyperbolic geometry campbten-
tially utilized for defining basis functions. More specifigain or-

der to effectively compute all basis functions, we use Pariadisk

as the underlying domain for 2 dimensional hyperbolic sgéite
Given a surfacésS, g) with a hyperbolic metrig, we can compute

an open covering of the surfa¢é€/,. }, S C |J_, Ua. Then we map
each open sdf,, onto the Poincaré disk,,, : U, — H?. The atlas

A = {(Ua, o)} gives a hyperbolic structure [Jin et al. 2008], the
local parameter transitions

$ap = 050 Ga' : ba(Ua( \Us) = ¢5(Ua (| Us)

must be rigid motions in the hyperbolic space. All the hypéith
geometric quantities can be directly measured on the hyfienna-
rameter domain, and the measurement is independent of digech
of the chart. Therefore, hyperbolic geometry is well definadhe
surface via the hyperbolic structure. In addition, thisinaily paves
the new way for us to define scalar functions directly overenyp
bolic geometry. Because of many intrinsic properties (o#oret-
ical and computational) associated with hyperbolic geoyrsttuc-
ture, it is both natural and necessary to define vector-dafuac-
tions and use control points to blend with these functiores -
perbolic geometry. As a result, parameterization-cedtéeeform
surfaces can be naturally defined, manipulated for surfamketing
and representation. Our method has the following advastage

e The transition function is a hyperbolic rigid motion a6t°
continuous. Thus, the constructed surface is affine invaria
from hyperbolic geometry point of view.

e The constructed surface hé§° continuity without any sin-
gularity.

e The approach is general for arbitrary surfaces with negativ
Euler number and does not vary with triangulation.

2 Previous Work

There are some related work on defining singularity-freetions
on manifold. Grimm and Hughes constructed an atlas of an arbi
trary mesh in [1995], where the chart transition functions -
tation, translation, projective and spline blending fimas. Navau
and Garcia [2000] introduced another method to construcifioid
based on subdivision surface, the chart transitions aneredffine
or polynomial. The construction of the atlas depends on ¢ineld-
natorial structure of the mesh. Ying and Zorin [2004] useal @it
functions as chart transition to build an analytic atlase €bnstruc-
tion is also determined by the mesh structure. Parameteiadus
manifolds (PPM'’s) have been used for smooth surface catiirnu
from polygonal meshes in [Gallier et al. 2009] and [Siqueiral.
2009], where the atlas construction is also determined ®éyrtesh
structure. Rational blending manifold is constructed iedthia
et al. 2008], where all the chart transitions are rationatfions.

These methods share similar construction procedures whicloe
summarized as follows:

1. Find an atlagU;, ¢} to cover the domain manifold/, with
transition functions;; = ¢; o ¢; '. All transition functions
are required to be smooth.

. Define functional basis on each chart ¢;(U;) — R.

3. For each poinp € M, normalize these functions and define
the basis function®; as

) _ fi(p)
B = S r ey

. Define the functions a&'(p) = >, C;Bi(p) whereC; are
the control points.

Our method follows the same framework but different in that

1. Allthe above methods construct atlas based on the mesh str
ture. In contrast, the atlas in our method is solely deteechin
by the geometry of the surface, more rigorously, the confor-
mal structure of the surface. In theory, it is independerthef
triangulation. Therefore our method is more intrinsic.

. Our free-form surface is constructed by using hyperhgdic
ometry, this requires that all the chart transitions areeiyp
bolic rigid motions. Namely, we define hyperbolic geometry
on general surfaces. Most of the above approaches use smooth
functions for the transition functions. There is no asseda
geometry defined on the surface.

Furthermore, the local parameters in our atlas are conforma
to the original surface, therefore the atlas is determinetthé
conformal structure of the surface. The transitions of thesa

in [Ying and Zorin 2004] are also analytical functions, but
it is solely determined by the combinatorial structure af th
mesh, and irrelevant to the conformal structure of the paili
surface.

. The functional basig; is an exponential function defined on
hyperbolic disk. The existing approaches define the funatio
basis on eitheR? or C2.

Note that both the transition functions and functional sasdiour
approach are”°°-continuous, thus, the resulting surfaceGs®
continuity everywhere. Furthermore, our approach appbesi-
angular meshes with arbitrary triangulation.

3 Theoretic Background

This section briefly introduces the theoretic backgrouncessary
for the current work. For details, we refer readers to [R.kfes
1984] for algebraic topology, [Schoen and Yau 1994] foredigh-
tial geometry and [Jin et al. 2008] for Ricci flow.

3.1 Fundamental group and representative of homo-
topy class

Let S be a topological surface, and jebe a point ofS. All loops
with base point are classified by homotopy relation. All homo-
topy equivalence classes form themotopy groupor fundamental
group m1 (.S, p), where the product is defined as the concatenation
of two loops through their common base point.

SupposesS is a genusg closed surface. Acanonical set of
generatorof 7(S, p) consists of a1, b1, az, b2, - ,ag,bg}, SUCh
that the paim; andb; has one intersection point, the pafis;, a; },

{bi,b;} and{as,b;}, have no intersections, wheie# j. See



Figure 2 for an example of canonical basis on a genus twocirfa

3.2 Universal cover

A covering spacef S is a space5 together with a continuous sur-
jective maph : § — S, such that for every € S there exists an
open neighborhood of p such that = (U) (the inverse image of
U underh) is a disjoint union of open sets ifi each of which is
mapped homeomorphically ontd by h. The maph is called the
covering map A simply connected covering space isiaiversal
cover.

A deck transformatiorf a coverh : S — S is a homeomorphism
f: S — Ssuchthath o f = h. All deck transformations form

a group, the so-calledeck transformation groupA fundamental
domainof S is a simply connected domain, which intersects each
orbit of the deck transformation group only once.

3.3 Uniformization metric

Let S be a surface embedded k. S has a Riemannian metric
induced from the Euclidean metric B, denoted byg. Suppose
u: S — Ris a scalar function defined ofi. Theng = e*“g is
also a Riemannian metric ghand is conformal to the original one.

The uniformization theorenfor surfaces says that any metric sur-
face admits a Riemannian metric of constant Gaussian cuwejat
which is conformal to the original metric. Such metric isledlthe
uniformization metric

For surface with negative Euler characteristic, the Ganssiirva-
ture is -1 under uniformization metric. Uniformization metcan
be solved using Ricci flow, where the Gaussian curvaturesi@re
formed by the following PDE:

K =e " (—Agu + K),

where Ag is the Laplacian-Beltrami operator under the original
metricg. The above equation is called tivamabe equationBy
solving the Yamabe equation, one can design a conformaianetr
e?*g by a prescribed curvaturg .

3.4 Poincar é disk model

(a) homotopy group  (b) fundamental domain (c) portion of UCS
Figure 2: Computing the hyperbolic structure of genus-2
model. (a) Compute a set of canonical fundamental groupsbasi
{a1,b1,az2,b2}; (b) Compute the hyperbolic uniformization metric
using hyperbolic Ricci flow. The fundamental domain is idame
cally embedded ontH? under the hyperbolic metric; (c) Compute
the Fuchsian group generators. Any finite portion of the ersal
covering space (UCS) can be constructed using these gengrat

In this work, we use Poincaré disk to model the hyperbolacsp
H2, which is the unit diskz| < 1 on the complex plane with the
metric

4dzdz

ds? = P9
ST

The rigid motion is the Mobius transformation

zZ— 20

ei@
1— 2oz ’

zZ —

wheref andz, are parameters. The geodesic of Poincaré disk is a
Euclidean circular arc, which is perpendicular to the uiitle as
shown in Figure 3 (a).

ug

(b)

Figure 3: (a) Hyperbolic line and circles on Poincaré disk. (b)
Discrete surface Ricci flow.

SupposeS is a high genus closed surface with the hyperbolic uni-
formization metricg. Then its universal covering spa(;é, g) can

be isometrically embedded if2. Any deck transformation of

is a Mobius transformation, and calledrachsian transformation
The deck transformation group is called fhechsian groupf S.

The geodesics, or hyperbolic lines, are circular arcs petipalar
to the unit circle. Let; andz2 be two points inside the Poincaré
disk, then there exits a unique geodesic passing threugimd z.
Suppose the geodesic intersects the unit circie &k, &1 is closer
to z; and¢; is closer toze, then hyperbolic distance between z,
is given by

log[z1, 225 €1, &) Y,

where the complex cross ratio

(21 = &1)(22 = &2)
(22 = &1) (21 — &2)

is a real number, because four points z2, &1, &2 are on the same
circle.

[21,22;&1,62] =

A hyperbolic circleq ¢, r) on the Poincaré disk, wherds the cen-
ter,r is the radius, is a Euclidean circléS, R), where

2 — 22 2

1= p?[c]?

lc|* — p

R*=c]? - L

O =
wherey = 2 cosh(r).

3.5 Discrete Hyperbolic Ricci Flow

In practice, all surfaces are approximated by triangulastres. Let
M be atriangular mesHup1, va, - - - , v, } be the vertex sety;, v;]
be an edge connecting andv;, [v;, v;, v ] be a face. Then thais-
crete metricof M is the edge lengths. Léﬁ’“ be the corner angle at
vertexw; in the face{v;, v;, vi]. We treat each fack;, v;, v as a
hyperbolic triangle, therefo@k is determined by the edge lengths
using hyperbolic cosine law. Thdiscrete Gaussian curvaturis
defined as the angle deficit,

2 — S 07%

:{w—zazf’“

We define circle packing metric o/ in the following way. Let
M be a triangular mesh. We associate each vertexith a disk
with radius~;. On edgee;; = [vs,v;], the two circles intersect at

vlgéaM

K;
v; € OM



the angleg;;. Then the edge length;of e;; is determined by the
hyperbolic cosine law:

cosh l;; = cosh «y; cosh v; + sinh y; sinh v; cos ¢35. (1)
A circle packing metriés denoted aéM, T, ), wherel™ : v; — ~;
represents the radiu® : e;; — ¢;; represents the intersection
angle. See Figure 4.

Figure 4: Circle packing metric.

Letu; = logtanh %, u = (u1,u2,--
Ricci flowis defined as

,un), thenthe discrete

dui (t)
dt

= —-K;, @

whereK; is the discrete Gaussian curvatur@atThe convergence
of the discrete hyperbolic Ricci flow is proven by Chow and Luo
[Chow and F.Luo 2003].

TheRicci energyfor circle packing metri¢ M, I", ®) is defined as

E(u) = /“ Z(Kz — Ki)dus,

0 =1

@)

whereuy = (0,0, --,0).

The discrete hyperbolic Ricci energy is convex. It has a wmiq
global minimum, which induces the target curvatéife Therefore,

in order to compute the uniformization metric, we can setdhnget
curvature; = 0 for all vertices, and optimize the Ricci energy
using Newton’s method.

4 Construction of (C°-Continuous Surfaces

The basic idea of this work is straight forward. Most surfaegth
complicated topologies are with negative Euler charastieri Al-
though they do not admit affine geometry, they do admit hyglerb
geometry. Given a triangular medif with negative Euler charac-
teristic, M serves both the domain manifold and control net. Our
construction has the following two steps:

1. Computing the hyperbolic structure of M We compute the
uniformization metric using discrete Ricci flow and isonetr
cally embed the mesh onto the hyperbolic disk using Poacar
model. This constructs hyperbolic atlas, such that allllooa
ordinate transitions are hyperbolic rigid transformasgioire.,
Mobius transformation.

2. Defining the basis functionWe associate a basis function for
each control point; € M. The basis function is &°°-
continuous function defined on a hyperbolic diSkc;, ;) €
M, centered at; and with radiug-;, and thus, has finite sup-
port. Given a pointp € M on the domain manifoldV/,
the evaluation ap can be carried out by finding all control
points whose supporting functions coygrand then take the
weighted sum of their basis functions.

4.1 Computing the hyperbolic structure

We compute the hyperbolic uniformization metric using hjgodic
Ricci flow, compute the fundamental group generators anddhe
responding Fuchsian group generators. Figure 2 illustréte
pipeline. Suppose we are given a mesh with negative Eulebagm
as shown in frame (a).

1. Use hyperbolic Ricci flow introduced in the previous satti
to compute the hyperbolic metric, such that all vertex curva
ture equals to zero.

2. Compute a set of canonical fundamental group generators
through a base vertex, as shown in frame (b). We use the
method from Ericson [Erickson and Whittlesey 2005]. We
denote the generators %, b1, a2,b2, - ,aq,b4}.

3. Slice the mesli/ along the fundamental group generators to
get an open mesh/. The boundary of\f is

OM = alblaflbfl . agbgaglbgl.

Isometrically embed\/ onto the Poincaré disk using the hy-
perbolic uniformization metric to get a fundamental domain
still denoted asVZ. As shown in frame (c). The embedding
method is similar to that in [Jin et al. 2008].

4. Compute the Fuchsian group generators correspondittng to t
fundamental group generators. Lbebe a fundamental group
generator. Becausk/ has been embedded onto the Poincaré
disk,v € OM, we treaty as a curve segment on the Poincaré
disk. We compute the unique Fuchsian transformaticsuch
that¢ mapsy~! to . First a Mobius transformation can be
calculated such that the starting vertexyols mapped to the
origin, the ending vertex is mapped to a positive real number
Similarly we find another Mobius transformation fer*.
The composition of the second map with the inverse of the
first map is the desired Fuchsian transformation. We denote
the Fuchsian transformations as corresponding ta, G;
corresponding to;.

Figure 5: Hyperbolic structures of the genus-4 fertility model. The
colored circles show the support of base functions. Notg tha
perbolic circles on Poincaré disk looks like Euclideanctas, but
the centers do not coincide with the Euclidean circle centdthe
control points are at the centers of the hyperbolic circl€se dot-
ted poly-lines show the two ring neighbor of the control p&in

Figure 5 demonstrates the hyperbolic atlas of a genus-dcirf

4.2 Defining the functional basis

We define the geometry of the constructed surface using hgper
partition of unity. Let(M, g) be the surface with a hyperbolic Rie-
mannian metrigg which is computed by hyperbolic Ricci flow. A
hyperbolic diskD(c,r) C M be an open hyperbolic disk ai/,
with centerc € M and radius > 0,

D(c,r) :={p € Mldg(c,p) <r}



