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Figure 1: (a) The input is a triangular mesh of genus 4. (b) Our approachgenerates aC∞ smooth surface using hyperbolic structure. The
red curves in (c) show the images of the triangulation. (d) shows the control points overlaid with the smooth surface. Theisophotes in (f)
demonstrate the high quality of the constructed surface.

Abstract

Constructing smooth freeform surfaces of arbitrary topology with
higher order continuity is one of the most fundamental problems in
shape and solid modeling. Most real-world surfaces are withneg-
ative Euler characteristicχ < 0. This paper articulates a novel
method to constructC∞ smooth surfaces with negative Euler num-
bers based on hyperbolic geometry and discrete curvature flow. Ac-
cording to Riemann uniformization theorem, every surface with
negative Euler number has a unique conformal Riemannian metric,
which induces Gaussian curvature of−1 everywhere. Hence, the
surface admits hyperbolic geometry. Such uniformization metric
can be computed using the discrete curvature flow method: hyper-
bolic Ricci flow. Consequently, the basis function for each control
point can be naturally defined over a hyperbolic disk, and through
the use of partition-of-unity, we build a freeform surface directly
over hyperbolic domains while havingC∞ property. The use of
radial, exponential basis functions gives rise to a true meshless
method for modeling freeform surfaces with greatest flexibilities,
without worrying about control point connectivity. Our algorithm
is general for arbitrary surfaces with negative Euler characteristic.
Furthermore, it isC∞ continuous everywhere across the entire hy-
perbolic domain without singularities. Our experimental results
demonstrate the efficiency and efficacy of the proposed new ap-
proach for shape and solid modeling.
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1 Introduction and Motivation

Real-world objects are oftentimes of complex structure andarbi-
trary topology. One fundamental goal of solid and physical mod-
eling is to seek accurate and effective techniques for the compact
representation of smooth freeform shapes with higher-order conti-
nuity and without any singularity (that would require special care

otherwise). To date, tremendous efforts have been devoted for con-
structing freeform splines on surfaces with complicated topologies
by generalizing conventional spline schemes from Euclidean do-
mains to arbitrary manifolds. In a recently-developed manifold
spline framework, [Gu et al. 2006] pointed out that conventional
spline schemes are based on polar forms [Seidel 1993] that are
parametric affine invariant. Therefore, defining manifold splines
based on polar form is equivalent to defining affine geometry on
the surface. Unfortunately, due to the topological obstruction, sur-
faces with non-zero Euler number do not admit affine geometry.
The recent result by Gu et al. showed that the number of extraordi-
nary points of manifold splines with genusg > 1 can be reduced
to as small as one [Gu et al. 2008]. This is the intrinsic reason
why the conventional polynomial-based approach cannot achieve
global continuity, while the singularity point cannot be completely
avoided.

Due to the existence of extraordinary points in polynomial-based
manifold splines, the current state of the art is far from adequate
mainly because of the two following aspects. First, the existence
of extraordinary points requires a great deal of special care such
as hole filling from users (e.g., filling the holes using a separate
spline surface [Gu et al. 2008], or using recursive subdivision to
shrink the size of the vicinity of hole regions [Wang et al. 2009], or
other strategies). All of these delicate strategies require tremendous
amount of human intervention and labor. Second, higher-order con-
tinuity cannot be easily satisfied without explicitly increasing the
degree of the underlying polynomial basis functions, as a result,
polynomials must be degree-elevated in order to satisfy continuity-
varying (in both spatial and temporal domains) design and model-
ing requirements, which is not flexible and far from ideal.

From the practical and algorithmic standpoint, it is highlydesirable
to construct smooth surfaces without singularities. Thus,one fea-
sible way is to get rid of the polynomial or rational polynomial
requirements and directly use non-polynomial smooth functions,
such as exponential functions, to define the shape geometry.Grimm
and Hughes [1995] pioneered a method to constructCk-continuous
parametric surfaces over triangle and quadrilateral meshes. Follow-
ing this direction, there has been extensive research for manifold
construction [Navau and Garcia 2000; Ying and Zorin 2004; Gal-
lier et al. 2009; Vecchia et al. 2008; Siqueira et al. 2009].



In this paper, we present a new method to construct smooth
freeform surfaces with negative Euler characteristic number,χ < 0.
Most real-world surfaces are of genusg > 1, i.e. with negative Eu-
ler number. Here, we focus on high genus surfaces. Surfaces with
boundaries can be converted to closed surfaces by double covering
[Gu and Yau 2003]. The constructed surfaces can be defined on
arbitrary triangular meshes withχ < 0 and areC∞ continuous
everywhere. Our approach is based on the following observation
that the Riemannian metric of these surfaces can be conformally
deformed by Ricci flow such that the Gaussian curvatures eventu-
ally become constant−1 everywhere, namely, the final Riemannian
metric is hyperbolic. Therefore, hyperbolic geometry can be poten-
tially utilized for defining basis functions. More specifically, in or-
der to effectively compute all basis functions, we use Poincaré disk
as the underlying domain for 2 dimensional hyperbolic spaceH

2.
Given a surface(S,g) with a hyperbolic metricg, we can compute
an open covering of the surface{Uα}, S ⊂

S

α
Uα. Then we map

each open setUα onto the Poincaré disk,φα : Uα → H
2. The atlas

A = {(Uα, φα)} gives a hyperbolic structure [Jin et al. 2008], the
local parameter transitions

φαβ = φβ ◦ φ
−1

α : φα(Uα

\

Uβ) → φβ(Uα

\

Uβ)

must be rigid motions in the hyperbolic space. All the hyperbolic
geometric quantities can be directly measured on the hyperbolic pa-
rameter domain, and the measurement is independent of the choice
of the chart. Therefore, hyperbolic geometry is well definedon the
surface via the hyperbolic structure. In addition, this naturally paves
the new way for us to define scalar functions directly over hyper-
bolic geometry. Because of many intrinsic properties (boththeoret-
ical and computational) associated with hyperbolic geometry struc-
ture, it is both natural and necessary to define vector-valued func-
tions and use control points to blend with these functions over hy-
perbolic geometry. As a result, parameterization-centered freeform
surfaces can be naturally defined, manipulated for surface modeling
and representation. Our method has the following advantages:

• The transition function is a hyperbolic rigid motion andC∞

continuous. Thus, the constructed surface is affine invariant
from hyperbolic geometry point of view.

• The constructed surface hasC∞ continuity without any sin-
gularity.

• The approach is general for arbitrary surfaces with negative
Euler number and does not vary with triangulation.

2 Previous Work

There are some related work on defining singularity-free functions
on manifold. Grimm and Hughes constructed an atlas of an arbi-
trary mesh in [1995], where the chart transition functions are ro-
tation, translation, projective and spline blending functions. Navau
and Garcia [2000] introduced another method to construct manifold
based on subdivision surface, the chart transitions are either affine
or polynomial. The construction of the atlas depends on the combi-
natorial structure of the mesh. Ying and Zorin [2004] used analytic
functions as chart transition to build an analytic atlas. The construc-
tion is also determined by the mesh structure. Parametric pseudo-
manifolds (PPM’s) have been used for smooth surface construction
from polygonal meshes in [Gallier et al. 2009] and [Siqueiraet al.
2009], where the atlas construction is also determined by the mesh
structure. Rational blending manifold is constructed in [Vecchia
et al. 2008], where all the chart transitions are rational functions.

These methods share similar construction procedures whichcan be
summarized as follows:

1. Find an atlas{Ui, φi} to cover the domain manifoldM , with
transition functionsφij = φj ◦ φ−1

i . All transition functions
are required to be smooth.

2. Define functional basis on each chartfi : φi(Ui) → R.

3. For each pointp ∈ M , normalize these functions and define
the basis functionsBi as

Bi(p) =
fi(p)

P

j
fj(p)

.

4. Define the functions asF (p) =
P

i
CiBi(p) whereCi are

the control points.

Our method follows the same framework but different in that

1. All the above methods construct atlas based on the mesh struc-
ture. In contrast, the atlas in our method is solely determined
by the geometry of the surface, more rigorously, the confor-
mal structure of the surface. In theory, it is independent ofthe
triangulation. Therefore our method is more intrinsic.

2. Our free-form surface is constructed by using hyperbolicge-
ometry, this requires that all the chart transitions are hyper-
bolic rigid motions. Namely, we define hyperbolic geometry
on general surfaces. Most of the above approaches use smooth
functions for the transition functions. There is no associated
geometry defined on the surface.

Furthermore, the local parameters in our atlas are conformal
to the original surface, therefore the atlas is determined by the
conformal structure of the surface. The transitions of the atlas
in [Ying and Zorin 2004] are also analytical functions, but
it is solely determined by the combinatorial structure of the
mesh, and irrelevant to the conformal structure of the original
surface.

3. The functional basisfi is an exponential function defined on
hyperbolic disk. The existing approaches define the functional
basis on eitherR2 or C

2.

Note that both the transition functions and functional basis of our
approach areC∞-continuous, thus, the resulting surface isC∞

continuity everywhere. Furthermore, our approach appliesto tri-
angular meshes with arbitrary triangulation.

3 Theoretic Background

This section briefly introduces the theoretic background necessary
for the current work. For details, we refer readers to [R.Munkres
1984] for algebraic topology, [Schoen and Yau 1994] for differen-
tial geometry and [Jin et al. 2008] for Ricci flow.

3.1 Fundamental group and representative of homo-
topy class

Let S be a topological surface, and letp be a point ofS. All loops
with base pointp are classified by homotopy relation. All homo-
topy equivalence classes form thehomotopy groupor fundamental
groupπ1(S, p), where the product is defined as the concatenation
of two loops through their common base point.

SupposeS is a genusg closed surface. Acanonical set of
generatorsof π(S, p) consists of{a1, b1, a2, b2, · · · , ag, bg}, such
that the pairai andbi has one intersection point, the pairs{ai, aj},
{bi, bj} and {ai, bj}, have no intersections, wherei 6= j. See



Figure 2 for an example of canonical basis on a genus two surface.

3.2 Universal cover

A covering spaceof S is a spacẽS together with a continuous sur-
jective maph : S̃ → S, such that for everyp ∈ S there exists an
open neighborhoodU of p such thath−1(U) (the inverse image of
U underh) is a disjoint union of open sets iñS each of which is
mapped homeomorphically ontoU by h. The maph is called the
covering map. A simply connected covering space is auniversal
cover.

A deck transformationof a coverh : S̃ → S is a homeomorphism
f : S̃ → S̃ such thath ◦ f = h. All deck transformations form
a group, the so-calleddeck transformation group. A fundamental
domainof S is a simply connected domain, which intersects each
orbit of the deck transformation group only once.

3.3 Uniformization metric

Let S be a surface embedded inR3. S has a Riemannian metric
induced from the Euclidean metric ofR

3, denoted byg. Suppose
u : S → R is a scalar function defined onS. Thenḡ = e2u

g is
also a Riemannian metric onS and is conformal to the original one.

The uniformization theoremfor surfaces says that any metric sur-
face admits a Riemannian metric of constant Gaussian curvature,
which is conformal to the original metric. Such metric is called the
uniformization metric.

For surface with negative Euler characteristic, the Gaussian curva-
ture is -1 under uniformization metric. Uniformization metric can
be solved using Ricci flow, where the Gaussian curvatures arede-
formed by the following PDE:

K̄ = e
−2u(−∆gu + K),

where∆g is the Laplacian-Beltrami operator under the original
metricg. The above equation is called theYamabe equation. By
solving the Yamabe equation, one can design a conformal metric
e2u

g by a prescribed curvaturēK.

3.4 Poincar é disk model
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Figure 2: Computing the hyperbolic structure of genus-2
model. (a) Compute a set of canonical fundamental group basis
{a1, b1, a2, b2}; (b) Compute the hyperbolic uniformization metric
using hyperbolic Ricci flow. The fundamental domain is isometri-
cally embedded ontoH2 under the hyperbolic metric; (c) Compute
the Fuchsian group generators. Any finite portion of the universal
covering space (UCS) can be constructed using these generators.

In this work, we use Poincaré disk to model the hyperbolic space
H

2, which is the unit disk|z| < 1 on the complex plane with the
metric

ds
2 =

4dzdz̄

(1 − zz̄)2
.

The rigid motion is the Möbius transformation

z → e
iθ z − z0

1 − z̄0z
,

whereθ andz0 are parameters. The geodesic of Poincaré disk is a
Euclidean circular arc, which is perpendicular to the unit circle as
shown in Figure 3 (a).
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Figure 3: (a) Hyperbolic line and circles on Poincaré disk. (b)
Discrete surface Ricci flow.

SupposeS is a high genus closed surface with the hyperbolic uni-
formization metric̃g. Then its universal covering space(S̃, g̃) can
be isometrically embedded inH2. Any deck transformation of̃S
is a Möbius transformation, and called aFuchsian transformation.
The deck transformation group is called theFuchsian groupof S.

The geodesics, or hyperbolic lines, are circular arcs perpendicular
to the unit circle. Letz1 andz2 be two points inside the Poincaré
disk, then there exits a unique geodesic passing throughz1 andz2.
Suppose the geodesic intersects the unit circle atξ1, ξ2, ξ1 is closer
to z1 andξ2 is closer toz2, then hyperbolic distance betweenz1, z2

is given by
log[z1, z2; ξ1, ξ2]

−1
,

where the complex cross ratio

[z1, z2; ξ1, ξ2] =
(z1 − ξ1)(z2 − ξ2)

(z2 − ξ1)(z1 − ξ2)

is a real number, because four pointsz1, z2, ξ1, ξ2 are on the same
circle.

A hyperbolic circles(c, r) on the Poincaré disk, wherec is the cen-
ter,r is the radius, is a Euclidean circles(C, R), where

C =
2 − 2µ2

1 − µ2|c|2
c, R

2 = |C|2 −
|c|2 − µ2

1 − µ2|c|2
,

whereµ = 2 cosh(r).

3.5 Discrete Hyperbolic Ricci Flow

In practice, all surfaces are approximated by triangular meshes. Let
M be a triangular mesh,{v1, v2, · · · , vn} be the vertex set,[vi, vj ]
be an edge connectingvi andvj , [vi, vj , vk] be a face. Then thedis-
crete metricof M is the edge lengths. Letθ

jk
i be the corner angle at

vertexvi in the face[vi, vj , vk]. We treat each face[vi, vj , vk] as a
hyperbolic triangle, thereforeθjk

i is determined by the edge lengths
using hyperbolic cosine law. Thediscrete Gaussian curvatureis
defined as the angle deficit,

Ki =



2π −
P

θ
jk
i vi 6∈ ∂M

π −
P

θ
jk
i vi ∈ ∂M

.

We define circle packing metric onM in the following way. Let
M be a triangular mesh. We associate each vertexvi with a disk
with radiusγi. On edgeeij = [vi, vj ], the two circles intersect at



the angleφij . Then the edge lengthlijof eij is determined by the
hyperbolic cosine law:

cosh lij = cosh γi cosh γj + sinh γi sinh γj cos φij . (1)

A circle packing metricis denoted as(M, Γ, Φ), whereΓ : vi → γi

represents the radius,Φ : eij → φij represents the intersection
angle. See Figure 4.
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Figure 4: Circle packing metric.

Let ui = log tanh γi

2
, u = (u1, u2, · · · , un), then the discrete

Ricci flowis defined as

dui(t)

dt
= −Ki, (2)

whereKi is the discrete Gaussian curvature atvi. The convergence
of the discrete hyperbolic Ricci flow is proven by Chow and Luo
[Chow and F.Luo 2003].

TheRicci energyfor circle packing metric(M, Γ, Φ) is defined as

E(u) =

Z

u

u0

n
X

i=1

(K̄i − Ki)dui, (3)

whereu0 = (0, 0, · · · , 0).

The discrete hyperbolic Ricci energy is convex. It has a unique
global minimum, which induces the target curvatureK̄i. Therefore,
in order to compute the uniformization metric, we can set thetarget
curvatureK̄i ≡ 0 for all vertices, and optimize the Ricci energy
using Newton’s method.

4 Construction of C∞-Continuous Surfaces

The basic idea of this work is straight forward. Most surfaces with
complicated topologies are with negative Euler characteristic. Al-
though they do not admit affine geometry, they do admit hyperbolic
geometry. Given a triangular meshM with negative Euler charac-
teristic,M serves both the domain manifold and control net. Our
construction has the following two steps:

1. Computing the hyperbolic structure of M We compute the
uniformization metric using discrete Ricci flow and isometri-
cally embed the mesh onto the hyperbolic disk using Poincàre
model. This constructs hyperbolic atlas, such that all local co-
ordinate transitions are hyperbolic rigid transformations, i.e.,
Möbius transformation.

2. Defining the basis functionWe associate a basis function for
each control pointci ∈ M . The basis function is aC∞-
continuous function defined on a hyperbolic diskD(ci, ri) ∈
M , centered atci and with radiusri, and thus, has finite sup-
port. Given a pointp ∈ M on the domain manifoldM ,
the evaluation atp can be carried out by finding all control
points whose supporting functions coverp, and then take the
weighted sum of their basis functions.

4.1 Computing the hyperbolic structure

We compute the hyperbolic uniformization metric using hyperbolic
Ricci flow, compute the fundamental group generators and thecor-
responding Fuchsian group generators. Figure 2 illustrates the
pipeline. Suppose we are given a mesh with negative Euler number,
as shown in frame (a).

1. Use hyperbolic Ricci flow introduced in the previous section
to compute the hyperbolic metric, such that all vertex curva-
ture equals to zero.

2. Compute a set of canonical fundamental group generators
through a base vertex, as shown in frame (b). We use the
method from Ericson [Erickson and Whittlesey 2005]. We
denote the generators as{a1, b1, a2, b2, · · · , ag, bg}.

3. Slice the meshM along the fundamental group generators to
get an open mesh̄M . The boundary ofM̄ is

∂M̄ = a1b1a
−1

1 b
−1

1 · · · agbga
−1

g b
−1

g .

Isometrically embedM̄ onto the Poincaré disk using the hy-
perbolic uniformization metric to get a fundamental domain,
still denoted asM̄ . As shown in frame (c). The embedding
method is similar to that in [Jin et al. 2008].

4. Compute the Fuchsian group generators corresponding to the
fundamental group generators. Letγ be a fundamental group
generator. BecausēM has been embedded onto the Poincaré
disk,γ ∈ ∂M̄ , we treatγ as a curve segment on the Poincaré
disk. We compute the unique Fuchsian transformationφ, such
thatφ mapsγ−1 to γ. First a Möbius transformation can be
calculated such that the starting vertex ofγ is mapped to the
origin, the ending vertex is mapped to a positive real number.
Similarly we find another Möbius transformation forγ−1.
The composition of the second map with the inverse of the
first map is the desired Fuchsian transformation. We denote
the Fuchsian transformations asαi corresponding toai, βj

corresponding tobj .

Figure 5: Hyperbolic structures of the genus-4 fertility model. The
colored circles show the support of base functions. Note that, hy-
perbolic circles on Poincaré disk looks like Euclidean circles, but
the centers do not coincide with the Euclidean circle centers. The
control points are at the centers of the hyperbolic circles.The dot-
ted poly-lines show the two ring neighbor of the control points.

Figure 5 demonstrates the hyperbolic atlas of a genus-4 surface.

4.2 Defining the functional basis

We define the geometry of the constructed surface using hyperbolic
partition of unity. Let(M,g) be the surface with a hyperbolic Rie-
mannian metricg which is computed by hyperbolic Ricci flow. A
hyperbolic diskD(c, r) ⊂ M be an open hyperbolic disk onM ,
with centerc ∈ M and radiusr > 0,

D(c, r) := {p ∈ M |dg(c, p) < r}


