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Abstract

Polycube map is a global cross-surface parameterization technique, where the polycube shape can roughly approximate the geometry of modeled
objects while retaining the same topology. The large variation of shape geometry and its complex topological type in real world applications
make it difficult to effectively construct a high-quality polycube that can serve as a good global parametric domain for a given object. In
practice, existing polycube-map construction algorithms typically require a large amount of user interaction for either pre-constructing the
polycubes with great care or interactively specifying the geometric constraints to arrive at the user-satisfied maps. Hence, it is tedious and
labor intensive to construct polycube maps for surfaces of complicated geometry and topology. This paper aims to develop an effective method
to construct polycube maps for surfaces with complicated topology and geometry. Using our method, users can simply specify how close the
target polycube mimics a given shape in a quantitative way. Our algorithm can both construct a similar polycube of high geometric fidelity
and compute a high-quality polycube map in an automatic fashion. In addition, our method is theoretically guaranteed to output a one-to-one
map. To demonstrate the efficacy of our method, we apply the automatically-constructed polycube maps in a number of computer graphics
applications, such as seamless texture tiling, T-spline construction, and quadrilateral mesh generation.
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1. Introduction

Polycube map is a novel cross-surface parameterization tech-
nique where the parametric domain is a polycube (a.k.a. cubical
complex). Compared with other global parameterization tech-
niques, the quality of a polycube map (in terms of angle and
area distortion) can be quantitatively controlled by designing
the polycube which resembles the geometry of the input shape
and shares the same topology [1]. Because of their highly regu-
lar structure (i.e., each face is a square or poly-square) and the
nature of the “one-piece” global parametric domain (i.e., no cut-
ting and abutting), polycube maps have shown great promise in
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texture mapping and synthesis [1,2], shape morphing [3], spline
constructions [4,5] and harmonic volumetric mapping [18,17].

Despite many promising properties and great modeling po-
tentials of polycube maps, polycube maps have not yet been
widely applied to real-world applications. The underlying rea-
sons are two-fold: 1) Polycubes are usually constructed manu-
ally with great care and specific domain knowledge. Designing
polycubes for shapes of complicated geometry and topology
remains to be very tedious and labor intensive. 2) Once the
polycube is devised, the existing techniques to construct the
map between the given 3D shape and polycube require either
projection of the vertices from 3D shape to the polycube (e.g.,
[1] which is an extrinsic method) or computing a global sur-
face parameterization (e.g., [4] which is an intrinsic method).
As a result, many technical challenges can not be easily over-
come with all the existing methods. For example, the extrinsic
method may not produce a valid one-to-one map if the poly-
cube differs from the modeled shape significantly. The intrinsic
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method, though theoretically sound to guarantee a bijection,
may not be practically useful for a topologically complicated
surface since the rounding error will cause serious numerical
problems in computing the hyperbolic parameterization and
the fundamental domain. In [4,6], the 3D surfaces with neg-
ative Euler characteristics are required to reduce the number
of faces significantly before computing the hyperbolic param-
eterization. Therefore, many geometry details are lost in the
resulting polycube maps. In order to arrive at a high-fidelity
polycube map, particularly for a complicated real-world object,
our goal is to develop more efficient and accurate methods for
producing polycube maps for shapes of complicated geometry
and arbitrary topology with far less user intervention towards
a full automation.

(a) (b) (c) (d)

Fig. 1. Polycube map for the genus-1 Dancer model. (a) shows the constructed
polycube map. The red curves in (b) illustrate the polycube structure. (c)
shows the quadrilateral mesh generated using the polycube map. (d) shows
some close-up views of the quadrilateral mesh. Note that both the polycube
and polycube map are constructed automatically.

In particular, this paper tackles the aforementioned technical
challenges and develops a novel method to construct polycube
maps of arbitrary topology. Compared with the existing meth-
ods which usually require tremendous amount of effort from
users to design and build the polycubes, our method, in sharp
contrast, is automatic. The user may choose to specify two pa-
rameters to control how close the polycube mimics the geom-
etry of the input shape, then our algorithm can construct both
the polycube and the one-to-one map between the polycube
and input shape automatically. As an example, Fig. 1 shows
the automatically-constructed polycube map for the genus-1
Dancer model, as well as the quadrilateral remeshing using
polycube maps.

The contributions of this paper include:

(i) We develop an automatic method to construct polycube
maps of complicated topology and geometry. The poly-
cube map is theoretically sound to guarantee a bijection
between the 3D model surface and the polycube domain.

(ii) We compare our method with the existing polycube map
construction techniques and show that the constructed
polycube maps have lower angle and area distortions, and
hence, are of high-quality.

(iii) We apply the constructed polycube maps to various ap-
plications, such as polycube T-splines, seamless texture
synthesis, and quadrilateral and hexahedral mesh gen-
eration, and demonstrate the efficacy of our method in
real-world examples.

2. Previous Work

Tarini et al.pioneered the concept of polycube maps for seam-
less texture mapping with low angle and area distortion [1].
Wanget al.presented an intrinsic method to construct the poly-
cube map which avoids the projection of the vertices on a 3D
model to the polycube domain [4]. Wanget al. presented a
technique where the user can interactively control the desired
locations and the number of singularities of the polycube map
(i.e., the corners in polycubes) which facilitates the manifold
spline construction [5]. Linet al. used Reeb graph to segment
the surface and then developed an automatic method to con-
struct polycube map [10]. However, their segmentation method
may not work for shapes with complicated topology and ge-
ometry and does not guarantee a bijection between the poly-
cube and the 3D model. (The detailed comparisons among dif-
ferent polycube map construction methods are documented in
Section 5.) Because of the highly regular structure, polycube
maps are very promising in seamless texture mapping and syn-
thesis [11,2], level-of-detail [12], morphing [3], and T-spline
construction [4,5].

3. Automatic Polycube Map Construction

This section details the theory and algorithmic pipeline of au-
tomatic polycube map construction. As mentioned earlier, our
method is intrinsic in that it avoids the projection of vertices
from a 3D surface to the polycube domain. Therefore, the major
goal is to map the input model and polycube to the canonical
domains and then find the map between the canonical domains.
The existing intrinsic method proposed by Wang et al. [4] re-
quires the global parameterization, i.e., mapping the models
with positive Euler characteristicχ > 0 to sphereS2, models
with χ = 0 to Euclidean planeE2 and models withχ < 0 to hy-
perbolic diskH2. It is known that embedding models with neg-
ative Euler characteristic is error-prone when the point is very
close to the boundary of the Poincaré disk due to the numerical
rounding error. Therefore, Wang et al.’s method is not practical
and much less numerically stable to construct polycube maps
of large-scale models with negative Euler characteristics.

To construct intrinsic polycube maps in a more robust and
practical way, we use a divide-and-conquer strategy, i.e., seg-
menting the polycube and the given 3D surface into multiple
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disjoint components, then constructing the piecewise polycube
map for each component, and finally smoothing the map for
the entire polycube domain. The key reason that we use the
divide-and-conquer approach is to avoid the time consuming
and error-prone global parameterization since parameterizing
each segmented component (of genus-0) to the planar domain
is relatively easier, more efficient, and more robust than work-
ing directly on the global shape in its entirety. Note that the
straightforward gluing of the individual polycube maps have
onlyC0 continuity across the cutting boundaries. Therefore, we
must apply a global smoothing algorithm to the entire shape to
improve the quality of the polycube map. Our polycube map
construction algorithm consists of five steps:

(i) Given a 3D meshM, construct a harmonic functionf :
M →R and extract all the critical points off which reveal
the topological structure ofM (Section 3.1).

(ii) Progressively construct the polycubeP using the scan-
line like algorithm (Section 3.2).

(iii) Slice M andP into disjoint componentsMi andPi , i.e.,
M =

⋃
Mi , P=

⋃
Pi, whereMi andPi are genus-zero open

surfaces. Compute theuniform flat metricfor Mi andPi ,
and embed them to the multi-hole disks (Section 3.3).

(iv) Compute a one-to-one map between theMi and Pi by
solving a harmonic map between the multi-hole disks
(Section 3.4).

(v) Smooth the polycube map by solving the harmonic map
for the individual face, edge and corner charts (Sec-
tion 3.5).

3.1. Extracting the Topological Structure

The divide-and-conquer approach requires segmentation of the
input mesh to a set of genus-0 shapes. To develop a general and
automatic segmentation method, we should extract the topo-
logical structure of the input meshM. To achieve this goal, we
construct a harmonic function [13],f : M → R, such that

△ f = 0, (1)

with the boundary condition

f (v0) = 0 and f(v1) = 1,

where△ is the Laplace-Beltrami operator under the Euclidean
metric (edge length) ofM, whereasv0 andv1 are the bottom-
most and top-most points onM, respectively. Note if multiple
bottom(top)-most points exist, we just pick arbitrary one.

We then find all the critical points off whose partial deriva-
tives vanish. These critical points can be classified into four
categories (see Figure 2):

– Maximal point where a new component starts;

– Saddle point where the handle splits;

– Saddle point where the handle merges;

– Minimal point where the current component ends.

For a closed surfaceM of genusg, the number of critical points
satisfies the following equation

#minimal−#saddle+#maximal= 2−2g.

Since the maximal and minimal points are specified by the
boundary condition, the number of saddle points is always 2g.

(a) Harmonic function (b) Critical points

Fig. 2. Critical points of a harmonic function on a closed surface. (a) shows
the harmonic function△ f = 0, f (v0) = 0 and f (v1) = 1 wherev0 and v1

are the bottom-most and top-most points on the model, respectively. (b) The
saddle, the global minimal, and the global maximal points are colored in
green, red, and blue, respectively.

3.2. Constructing the Polycube

We sort all the critical points in an ascending order by theirz
values. Letv0,c1,c2, · · · ,c2g,v1 denote the sorted critical points
including the bottom-most and top-most points which are the
global minimal and maximal points, respectively. Letz(p) de-
note thez coordinate of pointp. Then we construct 2g+1 hor-
izontal cutting planes, such that

z0 =
z(v0)+z(c1)

2

z1 =
z(c1)+z(c2)

2
· · ·

z2g =
z(c2g)+z(v1)

2

Note that because of shape symmetry, two or more critical
points may have the same (or nearly the same)z coordinate. In
such a case, only one representative point is selected.

Let dz be the user-specified parameter for the maximal distance
between two adjacent cutting planes. This parameter controls
how close the resulting polycube mimics the given shape. In-
tuitively speaking, the smaller the value ofdz, the larger the
number of cutting planes, and thus, the more similar to the
given shape the polycube approximation is. Note that if the dis-
tance between two consecutive cutting planes, say,zi andzi+1

is greater thandz, we uniformly insert⌊(zi+1−zi)/dz⌋ cutting
planes in-between. Since there is at least one cutting plane be-
tween two adjacent critical points, the given shapeM is sliced
into multiple disjoint components, each of which is a genus-
zero open surface. Then the polycube can be constructed auto-
matically using the scan-line like algorithm as detailed below.

3



Let us use the genus-2 Amphora model to illustrate our idea and
the key algorithmic components. There are four saddle points
c1, c2, c3, andc4 shown in Fig. 3(a), whereasv0 and v1 are
the bottom-most and top-most points, respectively. Note thatc3

andc4 have similarz coordinate, therefore it is not necessarily
to differentiate these two points by inserting a cutting plane
in-between. In our implementation, two or more critical points
are considered on the same level if the difference of their z-
coordinates is less than 0.01 of the height of the model. Then
thez range of the given model is split into 4 intervals:[v0,c1],
[c1,c2], [c2,c3], [c3,v1]. Next, we uniformly segment the shape
by several cutting planes perpendicular to z-axis as shown by
the blue lines in Fig. 3(a).

The intersection between each horizontal cutting plane andM
is a set of planar curves as shown in Figure 3(b)-(c). Then
we approximate these intersection curves by a set of axis-
aligned polygons using a quad-tree method, i.e., starting from
the bounding rectangle of this polygon, and keep subdividing it
until the given approximation accuracy threshold is satisfied or
the maximal subdivision level is reached. The approximation
accuracy of the axis-aligned polygonsp to the input curved
contoursc is quantitatively measured by the normalized area
differenceda = area(p\ c)/area(c). Note thatda is a user-
specified threshold. In general, the smaller the value ofda, the
more accurate the approximated axis-aligned polygons to the
curved contours, and thus, the more detailed the axis-aligned
polygons are.

After we get the axis-aligned polygon approximation of the
curved intersection contours, we can readily construct the 3D
polycube by extruding the axis-aligned polygons along thez
axis and by performing necessary CSG operations. Suppose
there aren scanning planes withz valuesz1 < z2 < .. . < zn

andQi is the set of axis-aligned polygons for scanning plane
i with z valuezi , all the boundaries of the polygons inQi are
extruded along thez axis from(zi +zi−1)/2 (z(v0) for the first
scanning plane) to(zi + zi+1)/2 (z(v1) for the last scanning
plane) to form the side face. The polygonal face with thezvalue
(zi + zi−1)/2 is computed as the union ofQi−1− (Qi

⋂
Qi−1)

andQi −(Qi
⋂

Qi−1). The polygon face will beQ1 at thezvalue
z(v0), andQn at thez valuez(v1).

Figure 3(d)-(e) show the polygon face at(z15+z16)/2 and the
side face for the 16-th scanning plane, respectively. Figure 3(f)-
(g) show the partial polycube after combining the polygon face
and side face for 16-th scanning plane. Figure 3(h) shows the
final polycube; the contours for the axis-aligned polygon ap-
proximations are colored in blue.

3.3. Uniform Flat Metric and Multi-hole Disk

After a polycube is constructed automatically and then seg-
mented into multiple disjoint components, we are ready for the
parameterization step. Note that each segmented component is
of a genus-0 open surface, therefore, the ideal parametric do-
main is the Euclidean disc. A common technique for the pla-

nar parameterization is solving a harmonic map with the user-
specified boundary condition. However, the harmonic map is
not suitable for this step since it is very hard to specify the
position of boundary points for surface with multiple bound-
aries. Therefore, we use discrete Ricci flow [14,9,15] for the
parameterization step since we only need to specify the target
curvatures (rather than their positions) of the boundary points.

SupposeS is a surface with a Riemannian metricg. Let u : S→
R be a scalar function onS, then ḡ = e2ug is also a Rieman-
nian metric which is conformal tog. Let K and K̄ denote the
Gaussian curvature induced byg andḡ, then the desired metric
ḡ can be computed using

du(t)
dt

= K̄−K(t), (2)

where the initial condition isu(0) = 0 andK(t) is the Gaussian
curvature induced by the metrice2u(t)g. During this curvature
deformation, the metricg(t) is conformal to the original metric
g(0) at any timet. To map the genus-0 open surface to Eu-
clidean plane, we compute the uniform flat metric ofS, namely,
a metricg(∞) which is flat everywhere inside the surface and
the geodesic curvature is constant on the boundary,

K̄ = 0, v /∈ ∂S (3)

k̄g = const, v∈ ∂S, (4)

whereK̄v and k̄v are the target Gaussian and geodesic curva-
tures. If the total geodesic curvature on each boundary is given,
such a uniform flat metric exists and is unique. Using uniform
flat metric, we can map genus-0 open surface to a multi-hole
disk and the map is guaranteed to be a diffeomorphism.

Note that both the given meshM and polycubeP have been seg-
mented into multiple disjoint componentsMi , Pi , i = 1,2, · · · ,
each of which is a genus-0 open surface withb (b≥ 1) bound-
ariesC0∪C1∪·· ·∪Cb−1. Forb≥ 2,C0 is the boundary with the
longest length. We set the target curvature of interior vertices
to zero, the total geodesic curvature of the first boundaryC0 to
2π and the total geodesic curvature to be−2π for each of the
remaining boundaries,Ci , i = 1, · · · ,b−1. Then the total tar-
get Gaussian and geodesic curvatures satisfy the Gauss-Bonnet
theorem:∫

S
K +

∫
∂S

kg =
∫

S
K̄ +

∫
∂S

k̄g = 2π(2−2g−b), (5)

whereg = 0. Once the target Gaussian curvatures are given,
we can compute the uniform flat metric by solving the discrete
Ricci flow. Then, we embed the shape to the Euclidean plane
using uniform flat metric and obtain a(b− 1)-hole disc as
shown in Figure 5.

3.4. Computing the Piecewise Map

As explained earlier, we take a “divide-and-conquer” approach
in that we segment the topologically complicated shapeM and
polycubeP into multiple disjoint components,Mi , Pi , i = 1, · · · ,
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(a)

(b) (d) (f)

(c) (e) (g)

(h)

Fig. 3. Automatic polycube construction for the genus-2 Amphora model (with parametersdz = 0.05 andda = 0.3). (a) shows the genus-2 Amphora model
marked with saddle pointsc1, · · · ,c4, and the global minimum/maximum pointsv0,v1 in red. A total of 18 horizontal cutting planes slice the given shapeM
into 29 components, each of which is a genus-0 open surface. The blue curves show the cross-section contours of the horizontal scanning planes. (b) and
(c) show the cross-section contours (blue lines) for scanning plane 15 (withz value z15) and 16 (withz value z16), respectively. The inner boundaries (holes)
are drawn in green. Then axis-aligned polygonsQi (red polygons in (b) and (c)) are used to approximate the curved cross-section contours (blue and green
curves in (b) and (c)). (d) shows the polygonal face atz value (z15+z16)/2, which is the union ofQ15− (Q16

⋂
Q15) (red) andQ16− (Q16

⋂
Q15) (blue). (e)

shows the side face by projecting the boundaries ofQ16 along thez-axis from (z15+z16)/2 to (z16+z17)/2. (f) shows the result by adding (d) to the partial
polycube after processing the first 15 intersections. (g) shows the result by adding the side face (e) to the partial polycube in (f). (h) shows the final polycube.
The blue lines in (h) correspond to the intersection contours in (a).

(a) (b) (c) (d) (e) (f)

Fig. 4. Automatic polycube map construction for the genus-5 Decocube model. Because of symmetry, there are only five distinct z-values among the critical
points (see (a)), so four cutting planes are used to slice the modelM and P into 8 components, each of which is a genus-zero open surface. We construct
the one-to-one mapφ betweenPi and Mi , i = 1, · · · ,8, respectively (see (b) to (f)). Note that each cutting boundary (instead of the boundary in the original
shape) appears in two adjacent components. Since we use the consistent parameterization between∂Pi and ∂Mi (see Equation 6), the boundary conditions of
the harmonic map of two adjacent components are consistent. As a result, the piecewise polycube maps areC0 continuous across the cutting boundaries (red
curves), i.e., they are seamless.
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(a) Mi (b) DMi

(c) Pi (d) DPi

Fig. 5. We map each segmented componentPi and Mi to a multi-hole disk
using uniform flat metric, where the Gaussian curvature of the interior vertices
is zero and the total geodesic curvature of the boundary is constant, i.e., 2π
for the outer boundary, and−2π for each hole. Since the geometry ofPi and
Mi are similar, their embeddings of the uniform flat metric are consistent and
stable.

each of which has simple topology. Then we construct a har-
monic map betweenPi andMi . Note that the map betweenPi and
Mi is smooth for the interior vertices ofMi andPi . In general,
the map of two adjacent components (components share one
common boundary) may not be continuous across the bound-
ary. In order to ensure that the two adjacent polycube maps
haveC0 continuity across the boundary (otherwise, we can not
smooth the polycube map in the next step), we must impose
the boundary condition of adjacent components in a consistent
way.

(a) (b)

Fig. 6. Constructing the mapping between boundary curves∂Pi to ∂Mi . (a)
The boundaries ofPi and Mi are planar curves. (b) The blue lines show the
map ψi between the vertices on∂Pi and ∂Mi (see Equation 6).

We first construct a one-to-one mapψ : ∂Pi → ∂Mi between
the boundaries ofPi andMi in a piecewise fashion. Note that
each boundary is a closed planar curve (on the cutting plane).
For each vertexv∈ ∂Pi , let ψ(v) ∈ ∂Mi denote its image, then
we require that the mapψi minimizes the following distance
functional

min
∫

∂Pi

‖ψi(v)−v‖2. (6)

Solving the above optimization problem gives rise to a param-
eterization between the boundaries ofPi andMi with least dis-
tortion. Note that each cutting boundary (not the boundary in
the original shape) connects two adjacent components, say,Pi

andPi+1. Let v∈ ∂Pi andv∈ ∂Pi+1, then the above map can
guarantee that the images ofv underψi andψi+1 are consistent,

ψi(v) = ψi+1(v). Therefore, the resulting polycube maps of two
adjacent components areC0-continuous across the boundary,
i.e., they are seamless. Figure 6 shows an example of such a
map between the boundary curves ofPi andMi . Let DMi and
DPi denote the embedding ofMi andPi in the Euclidean plane
using uniform flat metric, respectively. Similar to the intrin-
sic method proposed in [4], we want to construct the one-to-
one correspondence betweenPi andMi by the composite map
φPi→Mi = φ−1

Mi→DMi
◦φDPi→DMi

◦φPi→DPi
as shown in the follow-

ing commutative diagram:

Pi Mi

DPi DMi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

-

φDPi
→DMi

Harmonic map is a widely used technique to compute the map-
ping between two 2D regions. It is well known that a harmonic
map f : A⊆ R

2 → B⊆ R
2 is a diffeomorphism if∂B is convex

and the boundary mappingf (∂A) = ∂B is a homeomorphism.
Unfortunately, bothDMi andDPi are multi-hole discs, i.e., con-
cave shape. Thus, solving a harmonic map betweenDPi and
DMi , i.e., △φ = 0 andφ(∂DPi ) = ∂DMi , can not guarantee a
bijection in general.

To address this problem, we decompose the multi-hole discs to
topological discs and then compute the harmonic map between
two topological disks.

(i) We modify the topology ofDMi andDPi by introducing
the cuts to connect the inner circles and the outer circle
such thatD̄Mi and D̄Pi are topologically equivalent to a
disk. The cuts are constructed as follows: for each inner
circle, we find the shortest line to the outer circle. If the
line does not pass through any other inner circles, we
simply use it as cut locus; otherwise we cut through the
shortest line between two inner circles to connect them.
We repeat this cutting until the final shape is a topological
disk.

(ii) We compute the harmonic mapsfM : D̄Mi → D and fP :
D̄Pi →D whereD⊆R

2 is a unit disk. Note thatfM and fP
map the boundaries∂ D̄Mi and ∂ D̄Pi homeomorphically
into the boundary of unit disk∂D. Thus, fM and fP are
diffeomorphisms.

(iii) We compute the harmonic mapg : D → D between the
two unit disks. The boundary condition is specified such
that the cutting loci are mapped to each other consistently.

(iv) The composite mapφ−1
Mi→DMi

◦ f−1
M ◦ g◦ fP◦ φPi→DPi

in-

duces the bijection fromPi to Mi . The commutative dia-
gram is shown as follows:
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(a) Mi → DMi (b) Pi → DPi (c) φDPi →DMi

(d) D̄Mi (e)fM : D̄Mi → D

(f) D̄Pi (g) fP : D̄Pi → D (h) g : D → D (i) φ−1
Mi→DMi

◦ f−1
M ◦g◦ fP◦φPi→DPi

Fig. 7. Constructing a diffeomorphism betweenPi and Mi (see (a) and (b)). SinceDMi and DPi are not convex, the harmonic mapφ : DPi → DMi is not
one-to-one. Pay attention to the flipover in the close-up view in (c). To correct this problem, we first modify the topology ofDPi and DMi by introducing
three cuts to connect the three inner boundaries with the outer boundary (see (d) and (e)). Then we map the modified shapeD̄Pi and D̄Mi to unit disk. Next
we compute the harmonic map between two unit disks. The boundary condition is specified that the cutting loci are mapped to each other consistently, e.g.,
the arcAA′ in D̄Mi to the corresponding arcAA′ in D̄Pi . Finally, the polycube map fromPi to Mi is the the composite mapφ−1

Mi→DMi
◦ f−1

M ◦g◦ fP ◦φPi→DPi
.

Pi Mi

DPi DMi

D̄Pi D̄Mi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

?

fP

?

fM

-
g

(7)

Figure 7 illustrates the idea to compute the diffeomorphism
betweenPi andMi . Note that a direct harmonic map betweenDPi

andDMi is not one-to-one (see the flipover in the close-up view
Fig. 7(c)). We modify the topology ofDPi andDMi and then
construct the bijection between̄DPi andD̄Mi (see Figure 7(i)).

Figure 4 shows the piecewise polycube map construction for the
genus-5 Decocube model, which is decomposed into 8 compo-
nents. A bijective map is constructed for each component, and
finally, the whole map is obtained by gluing all components to-
gether. Note that the piecewise polycube map is smooth for in-
terior vertices andC0 continuous across the cutting boundaries.

3.5. Smoothing the Polycube Map

The polycube map constructed by the aforementioned steps
is C∞ inside each segmented component, however, only has
C0 continuity across the cutting boundaries. Now, we further

(a) Face charts (b) Edge charts (c) Corner charts

Fig. 8. A polycube is covered by face, edge, and corner charts. Each face
chart (drawn in blue) covers only the interior points of the corresponding face
and leaves off all the boundary edges of the face. Each edge chart (drawn
in red) covers the interior points of the edges but leaves off corner vertices.
Each corner chart (drawn in yellow) covers the corner.

improve the quality of the polycube map by solving a harmonic
map for the entire shape. Let{Uc,ψc}, {Ue,ψe} and{U f ,ψ f }
denote the set of corner, edge, and face charts, respectively. As
shown in Fig. 8, the corner setUc covers the polycube corners;
the edge setUe covers the interior points of the polycube edge
but leaves off corner vertices; the face setU f covers the interior
points of the polycube face but leaves off corner and edge
vertices.

For any vertexv∈U f on the polycube face,v and its neighbors
are co-planar. Functionψ f : U f → R

2 is defined by an orthog-
onal projection along the normal of the polycube face.

For any vertexv∈Ue on the polycube edge, its neighbors are on
two different polycube faces. Functionψe : Ue→ R

2 is defined
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(a) Before improvement (b) After improvement

Fig. 9. Improving the polycube map by computing the harmonic map for the
entire shape. The continuities across the cutting boundaries before and after
improvement areC0 andC∞, respectively. The angle distortions before and
after the improvement are 1.141 and 1.028, respectively. Please pay attention
to the quality improvement on the conformality of the checkerboard texture
mapping.

by rotating one attached polycube face 90 degrees (i.e., making
v and its neighbors co-planar) followed by a projection along
the normal of the un-rotated polycube face.

For any vertexv∈Uc on the polycube corner, its one-ring neigh-
bors are on three or five different polycube edges. Function
ψc : Uc → R

2 mapsv to the origin and its one-ring neighbors
to uniformly distributed points on a unit circle.

Let φ : P→ M denote the constructed piecewise polycube map
andφ−1 : M → P the inverse map. Then we solve a harmonic
map for the face, edge and corner charts, respectively. We con-
sider the corner chart in the following, and the edge and face
charts can be handled in a similar fashion.

Given a pointv ∈ Uc on the polycube corner, letp = φ(v) ∈

M denote the point on the 3D modelM. The composite map
ψ ◦φ−1 : M → R

2 maps a 3D pointp and its neighborhood to
the planar domain. We can solve a harmonic maph : φ(Uc) →
R

2

△h(p) = ∑
qi∈Nb(p)

ωi(h(p)−h(qi)) = 0, (8)

whereNb(p) is the set of one-ring neighbors ofp and ωi is
thecotanweights induced by the metric of the given meshM.
The vertices on the boundary of corner chart∂Uc are fixed, i.e.,
h(φ(∂Uc)) = ψ(∂Uc).

Solving harmonic map for each individual face, edge and corner
chart significantly improves the conformality for each chart
and the charts cover the whole polycube domain, thus, the
quality of the polycube map can be improved significantly.
Note that all the cutting boundaries are entirely covered by
the face charts, as a result, the resulting polycube map hasC∞

continuity along the cutting locus as demonstrated in Fig. 9.
We should also point out that the boundaries of face, edge and
corner charts are onlyC0 continuous since they serve as the
boundary constraints in the harmonic map. Thus, the resultant
polycube map is only guaranteed to be a bijection rather than a
diffeomorphism. However, based on our experiences, the entire
polycube map, i.e., the interior and the boundaries of the charts,
looks very smooth after solving the harmonic map for face,
edge and corner charts several times (see Fig. 11).

4. Experimental Results

(a) (b) (c)

(d) (e) (f)

Fig. 10. The user can easily control the shape of the polycube by specifying
two parameters,dz, the maximal distance between two consecutive cutting
planes, andda, the area difference between the axis-aligned contours and
the curved intersection contours. The parameters for the Squirrel model are
dz = 0.06, da = 0.2 ((a) to (c)) anddz = 0.16, da = 0.3 ((d) to (f)). The model
is scaled to a unit cube.

We conducted extensive tests of our algorithm over a large va-
riety of models ranging from genus zero to genus six. Com-
putation time were measured in minutes on a workstation with
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Fig. 11. Automatically constructed polycube maps of complicated topology and geometry.

Table 1
Statistics of the experimental results. Test models are scaled to a unit cube.
g, genus; #∆, number of triangles in the given shape;da, the area difference
between the axis-aligned contours and the curved intersection contours;dz,
the maximal distance between two adjacent cutting planes;εangle, angle
distortion; εarea, area distortion;T, execution time measured in minutes.

Model g dz da # ∆ εangle εarea T

Amphora2 0.06 0.3 125K 1.0151.12812

Bimba 0 0.18 0.3 200K 1.0141.143 9

Buddha 6 N/A N/A 300K 1.0511.31628

Bunny 0 0.08 0.3 34K 1.0261.127 5

Dancer 1 0.050.25186K 1.0321.11919

Dragon 0 0.1 0.25200K 1.0281.11820

Decocube5 0.25 0.3 60K 1.0261.089 3

Fertility 4 0.08 0.3 100K 1.0201.14819

Gargoyle0 0.08 0.3 75K 1.0211.15511

Greek 4 0.05 0.3 200K 1.0341.08223

Kitten 1 0.08 0.2 134K 1.0451.15312

Laurana 0 0.25 0.3 125K 1.0031.12210

Rabbit 0 0.2 0.2 27K 1.0321.142 2

Sheep 0 0.14 0.3 200K 1.0041.19118

Squirrel 0 0.06 0.2 144K 1.0041.12514

Totem 0 0.080.25217K 1.0251.05523

3.0GHz CPU and 3GB memory. Among all of the five steps in
Section 3, computing the uniform flat metric takes nearly 80%
of the entire time. Within our framework, the user may choose
to simply specify two parameters,dz, the maximal distance be-
tween two adjacent scanning planes, andda, the threshold of
the normalized area difference between the axis-aligned poly-
gons onP and the curved intersection contours onM (see Sec-
tion 3.2 for the details). Figure 10 shows how the user can eas-
ily control the shape of the polycube by specifying the above

two parameters. The quality of the polycube map is measured
by the angle distortionεangle and area distortionεarea [16],

εangle= ∑
i

cotαa2 +cotβb2+cotγc2

4A(△i)
A(φ(△i)), (9)

εarea=
1
2 ∑

i

(
A(△i)

A(φ(△i))
+

A(φ(△i))

A(△i)
)A(φ(△i)), (10)

where△i ∈ P, φ(△i) ∈ M, a,b,c,α,β ,γ are the side length
and angles of△i , andA(·) denotes the area. In the isometric
map,εangle= 1 andεarea = 1. Therefore, the closer the values
of εangle andεarea to 1, the better the quality of the constructed
polycube maps. The statistics and performance of test cases
are reported in Table 1, whereas the corresponding constructed
polycube maps are shown in Figure 11. Note that our method
can produce polycube maps with very small area and angle
distortions.

We have applied the constructed polycube maps to a wide range
of applications, such as quadrilateral mesh generation, T-spline
construction, seamless texture synthesis, and volumetric param-
eterization, as demonstrated in Fig. 12 and 13.

5. Comparisons

In this section, we compare our method with the existing ap-
proaches and show its advantages and disadvantages. Table 2
summarizes the key differences between our new approach and
the existing methods.

Comparison with [1]. In [1], Tarini et al. first constructed the
polycube manually and then warped the polycube close to the
given mesh. Next, the vertices on the given mesh are projected
onto the warped polycube. Finally, the polycube is warped back.
This method isextrinsic, since it requires the projection of
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Fig. 12. Polycube maps applied to quadrilateral remeshing, T-splines and
tile-based texture synthesis.

the vertices of the input shapeM to the polycube domainP.
Therefore, this method requires the user to design the polycube
P manually and carefully such that it closely resembles the
geometry of the input shapeM, otherwise, it is difficult to warp
the polycube close toM and the resulting polycube map may
not be bijective. Our method isintrinsic in that it guarantees the
bijection between the given shape and the polycube. Figure 15
shows the comparison between Tariniet al.’s method and our

Fig. 13. Polycube serves a natural parametric domain for volumetric param-
eterization. Therefore, we can generate all-hexahedral meshes without any
extraordinary points and T-junctions [17].

Fig. 14. Our method also applies to manually constructed polycubes.

method on the Laurana model.

Comparison with [4]. Following Tarini et al.’s pioneering
work, Wanget al. proposed anintrinsic method to construct a
polycube map [4]. Instead of computing the map between the
polycubeP and input shapeM directly, bothP andM are first
embedded into one of the three canonical domains,S

2, E
2, or

H
2, depending on the topology ofM, i.e., πM : M → DM and

πP : P→DP using uniformization metric, i.e., the Gaussian cur-
vature is constant everywhere. Then by seeking the one-to-one
map between the two domainsφDM→DP : DM → DP, the com-
positionφM→P = π−1

P ◦φDM→DP ◦πM is the desirable polycube
map fromM to P. This method is intrinsic in that it avoids the
vertex projection fromM to P. However, it is known that em-
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bedding a surface with negative Euler characteristic intoH
2 is

error-prone when the point is very close to the boundary of the
Poincaré disk due to the numerical rounding error. Therefore,
Wanget al.’s method is not practical and much less numerically
stable to construct polycube maps of large-scale models with
negative Euler characteristics. Our method uses a divide-and-
conquer approach which avoids computing the uniformization
metric. Note that from the point of view of numerical compu-
tation and its robustness and stability, embedding the genus-0
open surface intoR2 usinguniform flat metricis much more
robust than embedding a surface with negative Euler charac-
teristic into hyperbolic spaceH2 using uniformization metric.
Figure 16 compares Wanget al.’s method [4] and our method
on the Bimba model.

Comparison with [5]. Wang et al. proposed an interactive
method to improve the polycube map for high genus sur-
faces [5]. The key difference between this user-controllable
method and [4] is that users have full freedom to specify the
number and locations of the singularities (the pre-images of
polycube corners) onM and their connectivity, i.e., which
pair of corners forms a polycube edge, which set of poly-
cube edges form the polycube face, etc. This method avoids
the global parameterization and can nicely produce polycube
maps. However, manually specifying the polycube structure
on the given meshM is tedious and sometimes not feasible
even for expert users with deep geometric insight and broad
topological knowledge. For example, the minimal number of
singularities for the genus-5 Decocube model is 48. It is rather
time consuming and error-prone to specify both the locations
and connectivity of the singularities on the input model of
genus-5 for 48 points. Our method is more flexible in that the
user plays with the parameters to specify how the polycube
mimics the given shape and then produces the polycube map
with low area and angle distortion. As demonstrated in Fig. 11,
our method is capable of computing high-quality polycube
maps for surfaces of complicated geometry and topology.

Comparison with [10]. Most recently, Linet al. proposed an
automatic method to construct polycube maps [10]. They first
segmented the 3D model using Reeb graph and then approxi-
mate the polycube into several polycube primitives, i.e., cube,
L-, O-, and U-shapes. They demonstrated their approach on
bunny, 3-hole torus and horse models. However, Linet al.’s ap-
proach may not work for the surfaces with complicated topol-
ogy and geometry. For example, if the Reeb graph has a node
whose degree is more than 6, then it is difficult to use the
above polycube primitives to approximate the shape. Note that
our approach can generate a polycube for this case, but may
have large number of extraordinary points, which will be dis-
cussed in the next section. Furthermore, there is no guarantee
that Linet al.’s approach produces a bijection. According to the
report in [10], the angle and area distortion of Bunny model is
1.12 and 1.15, respectively. Our approach results in polycube
map with smaller angle and area distortion 1.026 and 1.127
(see Fig. 17).

6. Discussions

Manually vs. Automatically Constructed Polycubes.In the
existing techniques of constructing polycube maps [1] [4] [5],
the polycube maps are constructed manually. Although manual
constructions work well for the models with simple topology, it
is extremely tedious and time consuming to construct polycube
with complicated topology. The proposed approach (Sec. 3.2)
can generate polycubes for complicated topology and geome-
try. However, it usually generates polycubes which are more
complicated (based on the number of corners and faces) than
the manually-built ones. We should also point out that the cur-
rent polycube construction stage can be simplified/replaced by
any alternative method (either automatic or manual approach)
in order to produce a polycube with less complexity. Figure 14
shows the genus-6 Happy Buddha model, whose polycube ap-
proximation is constructed manually. Note that using our new
method we can still construct the high-quality polycube map
automatically and efficiently, while accommodating the vary-
ing complexity.

Limitations. Our proposed method has certain limitations and
demands further improvement in the future. First, the con-
structed polycube depends on the orientation of the 3D model.
Different orientations may result in very different polycubes. In
our implementation, we require the user to align the model be-
fore the polycube construction. Second, the proposed method
will generate a geometrically complicated polycube for non-
axis-aligned long branches or handles, such as the ears of the
bunny model (see Fig. 17). As a result, it may cause difficulty
in some applications, e.g., spline construction, since each cor-
ner of polycube is an extraordinary point. Third, the polycube
construction relies on the user inputs, i.e.,da and dz. For a
shape with complicated geometry and topology, the global pa-
rameters may not generate a valid polycube. Thus, the local
adaptive parameters must be used, which will result in a much
more complicated implementation.

7. Conclusions

We have developed an automatic method to construct a poly-
cube map for surfaces of arbitrary topology. The underlying the-
ory and the entire algorithmic pipeline have been clearly docu-
mented. Within our framework, the users only need to control
how close the polycube resembles the given shape by using two
intuitive parameters. With no user intervention after the initial
parameter setup, our new method can automatically construct a
high-quality polycube map. Furthermore, our method is theo-
retically sound and numerically robust and stable to guarantee
a one-to-one map between the constructed polycube and the
given 3D model. We applied the constructed polycube maps to
various graphics applications, such as seamless texture synthe-
sis and tiling, T-spline construction, and quad mesh generation.
Our experimental results have demonstrated the great promise
of our new method over existing techniques. Extensive com-
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Table 2
Comparison with existing polycube map construction techniques.

Methods Polycube Construction Bijective Performance Limitation

Tarini
et al.[1]

Manual (The polycube should mimic the given shape) No Efficient
Difficult for surfaces with complicated topology and geometry
due to vertex projection from the given shape to the polycube

Wang
et al.[4]

Manual (The polycube can differ from the given shape sig-
nificantly)

Yes
Computationally

expensive
Difficult for surfaces with complicated topology and geometry
due to the numerical unstableness in hyperbolic embedding

Wang
et al.[5]

Manual (The user directly specifies the polycube structure on
the given shape)

Yes Many user
interactions

Not practical for surfaces with complicated topology

Lin
et al.[10]

Automatic (The user specifies several parameters to control
the Reeb graph embedding and surface segmentation)

N.A. Efficient
Not practical for surfaces with complicated topology and ge-
ometry

Our
method

Automatic (The user may set two parameters to specify how
close the polycube mimics the given shape)

Yes Efficient
Non-axis-aligned branches or handles will usually result in a
geometrically complicated polycube

Fig. 15. Comparison with Tariniet al.’s method [1], where the polycube is
constructed manually to mimic the given shape (Data courtesy of Dr. Marco
Tarini). The angle and area distortions of the polycube map areεangle= 1.102,
εarea = 1.140 (Tarini et al.’s method [1], top row) andεangle = 1.003,
εarea = 1.122 (our method, bottom row), respectively. Note that our new
method is more flexible in that the user can easily control the shape of
polycube and reduce the area and angle distortion.

parisons have been conducted to hightlight all the advantages
of our algorithm. Comprehensive discussions also pinpoint cer-
tain limitations that will lead to future research and broader
application scopes.
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Fig. 16. The top row shows Wanget al.’s method [4] on Bima model with
distortionsεangle= 1.052 andεarea= 5.145. The bottom row shows the results
using our automatic method, whereεangle= 1.014 andεarea = 1.143. Note
that the checkerboard texture mapping of our method is much more uniform
than that of Wanget al.’s approach.
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Appendix

In the appendix, we show that our method generates a bijection
between the polycube and 3D model. Here we assume that
given the user specified parametersda anddz, avalid polycube
P is constructed in step 2.

Given a close surface of genusg, we solve the Laplace’s equa-
tion using the z-coordinate of the top-most and bottom-most
points as the boundary condition in step 1. The Laplace’s equa-
tion results in 2g saddle points. For each handle, one saddle
point corresponds to the case in which the handle splits, and the
other saddle point corresponds to the case in which the handle
merges.

In step 2, the saddle points are sorted in the ascending order
of z-coordinate. Then we construct 2g+ 1 horizontal cutting
planes,

z0 =
z(v0)+z(c1)

2

z1 =
z(c1)+z(c2)

2
· · ·

z2g =
z(c2g)+z(v1)

2

Note that using the top and bottom cutting planesz0 andz2g,
the model will be segmented into 3 parts, the top part (a genus-
0 open surface with 1 boundary), the middle part (a genus-g
open surface with 2 boundaries), and the bottom part (a genus-
0 open surface with 1 boundary). Next, 2g−1 cutting planes,
z1, · · · , z2g−1, are used to slice the middle part into 2g layers,
each of which contains a set of disjoint genus 0 surfaces with
at least 2 boundaries. Note that if two or more saddle points
are on the same cutting plane, the number of layers decreases.

In step 3, we compute the uniform flat metric of each segmented
componentPi or Mi using discrete Ricci flow. Ricci flow is
theoretically sound to guarantee the diffeomorphism between
the genus-0 surface and the multi-hole disk.

In step 4, we construct the harmonic map betweenPi andMi

using the following commutative diagram.

Pi Mi

DPi DMi

D̄Pi D̄Mi

-
φPi→Mi

?

φPi→DPi

?

φMi→DMi

?

φDPi
→D̄Pi

?

φDMi
→D̄Mi

-

φD̄Pi
→D̄Mi

(11)

The uniform flat metric computed using discrete Ricci flow is
guaranteed to induce a diffeomorphism betweenPi to DPi (and
Mi to DMi ) [14]. Note that a harmonic mapf : A⊂ R

2 → B⊂
R

2 is a diffeomorphism if∂B is convex and the boundary con-
dition f (∂A) = ∂B is a homeomorphism. Since∂ D̄Pi and∂ D̄Mi

are circular,φDPi →D̄Pi
, φDMi →D̄Mi

, andφD̄Pi →D̄Mi
are diffeomor-

phism. Then the piecewise polycube mapφ : P→ M is given
by φ =

⋃
i φPi→Mi .

In step 5, we further improve the polycube map quality by
solving the harmonic maps for face, edge, and corner charts re-
spectively. The polycubeP is covered by face, edge and corner
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charts,{U,ψ}, whereU ∈P is an open set ofP andψ :U →R
2

mapsU to the planar domain (see Fig. 8). The definition ofψ
is given in Section 3.5.

Given a pointv∈ U on a chart, letp = φ(v) ∈ M denote the
point on the 3D modelM. Then the composite mapψ ◦φ−1 :
M → R

2 maps a 3D pointp to the planar domain. We solve a
Laplace’s equationh : φ(U) → R

2 such that

△h(p) = ∑
qi∈Nb(p)

ωi(h(p)−h(qi)) = 0,

whereNb(p) is the set of one-ring neighbors ofp andωi is the
cotan weights induced by the metric of the given meshM. The
boundary conditions are given by

h(φ(∂U)) = ψ(∂U).

For the edge and corner charts,ψ maps∂U to a rectangle and
a unit circle, respectively. Note thatψ(∂U) is a homeomor-
phism and the boundary ofψ(∂U) is convex, and thus,h is a
diffeomorphism.

For the face charts,ψ is defined as an orthogonal projection
of the polycube face along the normal direction. Thus,ψ maps
∂U to itself andh is also a diffeomorphism.

Since the improved maph is a diffeomorphism for every point
inside the face, edge and corner charts, and a homeomorphism
for the points on the boundary of face, edge and corner charts.
Thus,h induces a bijection between the polycubeP and the 3D
modelM.
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