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Abstract

Polycube map is a global cross-surface parameterization technique, where the polycube shape can roughly approximate the geometry of mode
objects while retaining the same topology. The large variation of shape geometry and its complex topological type in real world application:
make it difficult to effectively construct a high-quality polycube that can serve as a good global parametric domain for a given object. In
practice, existing polycube-map construction algorithms typically require a large amount of user interaction for either pre-constructing the
polycubes with great care or interactively specifying the geometric constraints to arrive at the user-satisfied maps. Hence, it is tedious ar
labor intensive to construct polycube maps for surfaces of complicated geometry and topology. This paper aims to develop an effective methe
to construct polycube maps for surfaces with complicated topology and geometry. Using our method, users can simply specify how close tt
target polycube mimics a given shape in a quantitative way. Our algorithm can both construct a similar polycube of high geometric fidelity
and compute a high-quality polycube map in an automatic fashion. In addition, our method is theoretically guaranteed to output a one-to-or
map. To demonstrate the efficacy of our method, we apply the automatically-constructed polycube maps in a number of computer graphi
applications, such as seamless texture tiling, T-spline construction, and quadrilateral mesh generation.
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1. Introduction texture mapping and synthesis [1,2], shape morphing [3], spline
constructions [4,5] and harmonic volumetric mapping [18,17].

Polycube map is a novel cross-surface parameterization teCB’espite many promising properties and great modeling po-

nique where the parametric domain is a polycube (a.k.a. cubic:fléntials of polvcube maps. polvcube maps have not vet been
complex). Compared with other global parameterization tech, POl Ps, poly D y

) h litv of veub , ‘ | cfidely applied to real-world applications. The underlying rea-
hiques, the quality of a polycube map (in terms of angle an ons are two-fold: 1) Polycubes are usually constructed manu-

area distortion) can be quantitatively controlled by_designinga”y with great care and specific domain knowledge. Designing
the polycube which resembles the geometry of th_e |r_1put sha olycubes for shapes of complicated geometry and topology
and shares the same topology [1]. Because of their highly regyz 1 ains 1o be very tedious and labor intensive. 2) Once the

lar structure (i.e., each face is a square or poly-square) and ttﬂ)%lycube is devised, the existing techniques to construct the

nature of the “one-piece” global parametric domain (i.e., no C“t'map between the given 3D shape and polycube require either

ting and abutting), polycube maps have shown great promise iy i tion of the vertices from 3D shape to the polycube (e.g.,
. [1] which is an extrinsic method) or computing a global sur-
* Corresponding author. Address: 50 Nanyang Avenue, Blk N4, Nanyandace parameterization (e.g., [4] which is an intrinsic method).
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(Hong Qin). cube differs from the modeled shape significantly. The intrinsic
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method, though theoretically sound to guarantee a bijection, (i) We compare our method with the existing polycube map

may not be practically useful for a topologically complicated construction techniques and show that the constructed
surface since the rounding error will cause serious numerical polycube maps have lower angle and area distortions, and
problems in computing the hyperbolic parameterization and hence, are of high-quality.

the fundamental domain. In [4,6], the 3D surfaces with neg-
ative Euler characteristics are required to reduce the numbe
of faces significantly before computing the hyperbolic param-
eterization. Therefore, many geometry details are lost in the
resulting polycube maps. In order to arrive at a high-fidelity
polycube map, particularly for a complicated real-world object,
our goal is to develop more efficient and accurate methods for

producing polycube maps for shapes of complicated geometry previous Work
and arbitrary topology with far less user intervention towards

a full automation.

pii) We apply the constructed polycube maps to various ap-
plications, such as polycube T-splines, seamless texture
synthesis, and quadrilateral and hexahedral mesh gen-
eration, and demonstrate the efficacy of our method in
real-world examples.

Tarini et al. pioneered the concept of polycube maps for seam-
less texture mapping with low angle and area distortion [1].
Wanget al.presented an intrinsic method to construct the poly-
cube map which avoids the projection of the vertices on a 3D
model to the polycube domain [4]. Wareg al. presented a
technique where the user can interactively control the desired
locations and the number of singularities of the polycube map
(i.e., the corners in polycubes) which facilitates the manifold
spline construction [5]. Liret al. used Reeb graph to segment
the surface and then developed an automatic method to con-
struct polycube map [10]. However, their segmentation method
may not work for shapes with complicated topology and ge-
ometry and does not guarantee a bijection between the poly-
cube and the 3D model. (The detailed comparisons among dif-
ferent polycube map construction methods are documented in
Section 5.) Because of the highly regular structure, polycube
(d) maps are very promising in seamless texture mapping and syn-

(b)
thesis [11,2], level-of-detail [12], morphing [3], and T-spline
Fig. 1. Polycube map for the genus-1 Dancer model. (a) shows the ConStrUCt%nStruction [4 5]
polycube map. The red curves in (b) illustrate the polycube structure. (c) T
shows the quadrilateral mesh generated using the polycube map. (d) shows

some close-up views of the quadrilateral mesh. Note that both the polycube . .
and polycube map are constructed automatically. 3. Automatic Polycube Map Construction

In particular, this paper tackles the aforementioned technical his section details the theory and algorithmic pipeline of au-
challenges and develops a novel method to construct polycuti@matic polycube map construction. As mentioned earlier, our
maps of arbitrary topology. Compared with the existing meth nethod is intrinsic in that it avoids the projection of vertices
ods which usually require tremendous amount of effort fromffom a 3D surface to the polycube domain. Therefore, the major
users to design and build the polycubes, our method, in shai@Pal is to map the input model and polycube to the canonical
contrast, is automatic. The user may choose to specify two p&lomains and then find the map between the canonical domains.
rameters to control how close the polycube mimics the geomIhe existing intrinsic method proposed by Wang et al. [4] re-
etry of the input shape, then our algorithm can construct botfuires the global parameterization, i.e., mapping the models
the polycube and the one-to-one map between the polycutith positive Euler characteristig > 0 to spheres?, models
and input shape automatically. As an example, Fig. 1 show¥ith x = 0 to Euclidean plan&* and models witty < 0 to hy-

the automatically-constructed polycube map for the genus-Perbolic diskH?. It is known that embedding models with neg-
Dancer model, as well as the quadrilateral remeshing usingtive Euler characteristic is error-prone when the point is very

polycube maps. close to the boundary of the Poincaré disk due to the numerical
o _ _ rounding error. Therefore, Wang et al.'s method is not practical
The contributions of this paper include: and much less numerically stable to construct polycube maps

. . f large-scale m Is with n ive Euler char ristics.
(i) We develop an automatic method to construct polycubeO arge-scale models with negative Euler characteristics

maps of complicated topology and geometry. The poly-To construct intrinsic polycube maps in a more robust and
cube map is theoretically sound to guarantee a bijectiopractical way, we use a divide-and-conquer strategy, i.e., seg-
between the 3D model surface and the polycube domaimenting the polycube and the given 3D surface into multiple
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disjoint components, then constructing the piecewise polycube Minimal point where the current component ends.

map for each component, and finally smoothing the map fo . .
the entire polycube domain. The key reason that we use th%oraclosed surfadd of genusy, the number of critical points

. . . . . satisfies the following equation
divide-and-conquer approach is to avoid the time consuming
and error-prone global parameterization since parameterizing #minimal— #saddle+ #maximal= 2 — 2g.
_each s_egmente_d component_(of genus-0) to the planar domag?nce the maximal and minimal points are specified by the
is relatively easier, more efficient, and more robust than Workboundary condition, the number of saddle points is always 2
ing directly on the global shape in its entirety. Note that the '

straightforward gluing of the individual polycube maps have = *

only C° continuity across the cutting boundaries. Therefore, we &“;&////’0

must apply a global smoothing algorithm to the entire shape to =

improve the quality of the polycube map. Our polycube map
construction algorithm consists of five steps:

() Given a 3D meshM, construct a harmonic functioh:
M — R and extract all the critical points dfwhich reveal
the topological structure d#l (Section 3.1). (a) Harmonic function (b) Critical points

o

(i) Progressively construct the polyculfeusing the scan-  Fig. 2. Critical points of a harmonic function on a closed surface. (a) shows
line like algorithm (Section 3.2). the harmonic functionAf =0, f(vp) =0 and f(v1) =1 wherevyg and v;
are the bottom-most and top-most points on the model, respectively. (b) The
(iii) Slice M andP into disjoint component®); andPR, i.e., saddle, the global minimal, and the global maximal points are colored in
M = UM;, P=PR, whereM; andP, are genus-zero open 9green, red, and blue, respectively.
surfaces. Compute theniform flat metricfor M; andPR,

and embed them to the multi-hole disks (Section 3.3). .
3.2. Constructing the Polycube

(iv) Compute a one-to-one map between Meand B by

solving a harmonic map between the multi-hole disks
(Section 3.4). We sort all the critical points in an ascending order by tlzeir

) . values. Let/, C1,Cp,- -+, Cog, V1 denote the sorted critical points
(v) Smooth the polycube map by solving the harmonic magy,q,;ging the bottom-most and top-most points which are the
for the individual face, edge and corner charts (SeCyona| minimal and maximal points, respectively. zep) de-
tion 3.5). note thez coordinate of poinp. Then we construct@+ 1 hor-
izontal cutting planes, such that

3.1. Extracting the Topological Structure

_ Z(Vo) +2(c1)
2
The divide-and-conquer approach requires segmentation of the z(c1) +z(c2)
input mesh to a set of genus-0 shapes. To develop a general arfd = - 2
automatic segmentation method, we should extract the topo-
logical structure of the input med¥. To achieve this goal, we  Z(Cyg) +2(v1)
construct a harmonic function [13],: M — R, such that 229 = 2
Af =0, (1)  Note that because of shape symmetry, two or more critical

with the boundary condition points may have the same (or near_ly the_samegordinate. In
such a case, only one representative point is selected.
f(vo) =0and f(v) =1, Letd; be the user-specified parameter for the maximal distance
whereA is the Laplace-Beltrami operator under the Euclidearbetween two adjacent cutting planes. This parameter controls
metric (edge length) o1, whereas/y andv; are the bottom- how close the resulting polycube mimics the given shape. In-
most and top-most points W, respectively. Note if multiple tuitively speaking, the smaller the value df, the larger the
bottom(top)-most points exist, we just pick arbitrary one. number of cutting planes, and thus, the more similar to the
given shape the polycube approximation is. Note that if the dis-

We then find all the critical points of whose partial deriva- ) .

) , " . e tance between two consecutive cutting planes, z3andz .,
tives vanish. These critical points can be classified into fou1|rS reater thar,, we uniformly insert| (zi.1 — z),/d,| cuttin
categories (see Figure 2): 9 2 y 4+1—2)/C 9

planes in-between. Since there is at least one cutting plane be-
— Maximal point where a new component starts; tween two adjacent critical points, the given shapés sliced

into multiple disjoint components, each of which is a genus-
zero open surface. Then the polycube can be constructed auto-
— Saddle point where the handle merges; matically using the scan-line like algorithm as detailed below.

— Saddle point where the handle splits;



Let us use the genus-2 Amphora model to illustrate our idea andar parameterization is solving a harmonic map with the user-
the key algorithmic components. There are four saddle pointspecified boundary condition. However, the harmonic map is
1, C2, C3, andcy shown in Fig. 3(a), whereag andvy; are  not suitable for this step since it is very hard to specify the
the bottom-most and top-most points, respectively. Notedhat position of boundary points for surface with multiple bound-
andc, have similarz coordinate, therefore it is not necessarily aries. Therefore, we use discrete Ricci flow [14,9,15] for the
to differentiate these two points by inserting a cutting planeparameterization step since we only need to specify the target
in-between. In our implementation, two or more critical pointscurvatures (rather than their positions) of the boundary points.
are considered on the same level if the difference of their z- . . . . ) )
. : . Supposeis a surface with a Riemannian metgclLetu: S—

coordinates is less than(l of the height of the model. Then . _ - .

. . e : i R be a scalar function 08, theng = e?g is also a Rieman-
the z range of the given model is split into 4 intervaleg, c;], : . o —

; nian metric which is conformal tg. Let K andK denote the

[c1,C2], [c2,€3], [c3,V1]. Next, we uniformly segment the shape

g . : Gaussian curvature induced byndg, then the desired metric
by several cutting planes perpendicular to z-axis as shown b :
can be computed using

the blue lines in Fig. 3(a).

The intersection between each horizontal cutting planeNnd d:—(tt)
is a set of planar curves as shown in Figure 3(b)-(c). Then o o _ _
we approximate these intersection curves by a set of axigvhere the initial condition isi(0) = 0 andK(t) is the Gaussian
aligned polygons using a quad-tree method, i.e., starting frorguUrvature induced by the metr‘fu(t)g- During this curvature
the bounding rectangle of this polygon, and keep subdividing igeformatlon,.the metrig(t) is conformal to the original metric
until the given approximation accuracy threshold is satisfied of(0) at any timet. To map the genus-O open surface to Eu-
the maximal subdivision level is reached. The approximatiorf!idean plane, we compute the uniform flat metriSohamely,
accuracy of the axis-aligned polygopsto the input curved @ metrlcg(o<_>) which is flat everywhere inside the surface and
contoursc is quantitatively measured by the normalized aredh® geodesic curvature is constant on the boundary,
differenced, = area(p )\ c)/areac). Note thatd, is a user-

specified threshold. In general, the smaller the valugspthe K =0, v¢ dS (3)
more accurate the approximated aX|s—aI|g_ned polygqns tp the _ const veas )
curved contours, and thus, the more detailed the axis-aligne B
polygons are. whereK, andk, are the target Gaussian and geodesic curva-
tures. If the total geodesic curvature on each boundary is given,
uch a uniform flat metric exists and is unique. Using uniform
at metric, we can map genus-0 open surface to a multi-hole
gésk and the map is guaranteed to be a diffeomorphism.

=K-K(t), (2)

After we get the axis-aligned polygon approximation of the
curved intersection contours, we can readily construct the 3?
polycube by extruding the axis-aligned polygons along zhe
axis and by performing necessary CSG operations. Suppo
there aren scanning planes witla valuesz; <z <... <z,  Note that both the given meshand polycub@ have been seg-
andQ; is the set of axis-aligned polygons for scanning planemented into multiple disjoint component, B, i=1,2,---,

i with z valuez, all the boundaries of the polygons@ are  each of which is a genus-0 open surface ittip > 1) bound-
extruded along the axis from(z +z_1)/2 (z(Vo) for the first  ariesCoUC,U---UCp_1. Forb > 2,Cq is the boundary with the
scanning plane) tdz +z.1)/2 (z(v1) for the last scanning longest length. We set the target curvature of interior vertices
plane) to form the side face. The polygonal face withzlialue  to zero, the total geodesic curvature of the first boun@ario
(z+z-1)/2 is computed as the union @i_1— (QNQi—1)  2mand the total geodesic curvature to b&r for each of the
andQ; — (QNQi—1). The polygon face will b®; atthezvalue  remaining boundaries};, i = 1,--- ,b— 1. Then the total tar-
z(vp), andQy, at thez valuez(vy). get Gaussian and geodesic curvatures satisfy the Gauss-Bonnet

Figure 3(d)-(e) show the polygon face(a@s+ z16)/2 and the theorem:

side face for the 16-th scanning plane, respectively. Figure 3(f)- /K +/ kg = /K_Jr/ Eg =2m(2—2g—bh), (5)

(9) show the partial polycube after combining the polygon face S s S 9s

and side face for 16-th scanning plane. Figure 3(h) shows th&hereg = 0. Once the target Gaussian curvatures are given,

final polycube; the contours for the axis-aligned polygon ap-we can compute the uniform flat metric by solving the discrete

proximations are colored in blue. Ricci flow. Then, we embed the shape to the Euclidean plane
using uniform flat metric and obtain @& — 1)-hole disc as

shown in Figure 5.
3.3. Uniform Flat Metric and Multi-hole Disk

) ) 3.4. Computing the Piecewise Map
After a polycube is constructed automatically and then seg-

mented into multiple disjoint components, we are ready for the

parameterization step. Note that each segmented componentAs explained earlier, we take a “divide-and-conquer” approach
of a genus-0 open surface, therefore, the ideal parametric da: that we segment the topologically complicated shisipand
main is the Euclidean disc. A common technique for the plapolycubeP into multiple disjoint components)j, R,i=1,---,
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Fig. 3. Automatic polycube construction for the genus-2 Amphora model (with parantgter§.05 andd, = 0.3). (a) shows the genus-2 Amphora model
marked with saddle pointss,---,c4, and the global minimum/maximum pointg, vy in red. A total of 18 horizontal cutting planes slice the given shispe

into 29 components, each of which is a genus-0 open surface. The blue curves show the cross-section contours of the horizontal scanning planes. (b) :
(c) show the cross-section contours (blue lines) for scanning plane 15 Zwilue z;5) and 16 (withz value z), respectively. The inner boundaries (holes)

are drawn in green. Then axis-aligned polygdps(red polygons in (b) and (c)) are used to approximate the curved cross-section contours (blue and green
curves in (b) and (c)). (d) shows the polygonal face a&lue (z15+ z16)/2, which is the union 015 — (Q16(1Qis) (red) andQi6— (Q16NQ1s) (blue). (e)

shows the side face by projecting the boundarieQgf along thez-axis from (z5+ z16)/2 t0 (z16+ z17) /2. (f) shows the result by adding (d) to the partial
polycube after processing the first 15 intersections. (g) shows the result by adding the side face (e) to the partial polycube in (f). (h) shows the final polycube
The blue lines in (h) correspond to the intersection contours in (a).

@) (b)

Fig. 4. Automatic polycube map construction for the genus-5 Decocube model. Because of symmetry, there are only five distinct z-values among the critic:
points (see (a)), so four cutting planes are used to slice the niddahd P into 8 components, each of which is a genus-zero open surface. We construct
the one-to-one mag betweenR, and M;, i =1,--- 8, respectively (see (b) to (f)). Note that each cutting boundary (instead of the boundary in the original
shape) appears in two adjacent components. Since we use the consistent parameterizationdbetavebdM; (see Equation 6), the boundary conditions of

the harmonic map of two adjacent components are consistent. As a result, the piecewise polycube ®Apsmtheuous across the cutting boundaries (red

curves), i.e., they are seamless.



Yi (V) = Yi+1(v). Therefore, the resulting polycube maps of two

adjacent components a@?-continuous across the boundary,

i.e., they are seamless. Figure 6 shows an example of such a

map between the boundary curvesRfand M. Let Dy, and

Dpr denote the embedding &; andP in the Euclidean plane

using uniform flat metric, respectively. Similar to the intrin-

sic method proposed in [4], we want to construct the one-to-

(@) M (b) Dy, one corresplondence betweldrand M; by the composite map
@M = By Dy, © Pr Dy, © PA—Dpy 8 shown in the follow-

ing commutative diagram:

M
R

Mi

¥R —Dp A —Dyy;

(C) R (d) DpI DpI - DMi

#Dp —Dy;

Fig. 5. We map each segmented compor@nand M; to a multi-hole disk . ) ) )
using uniform flat metric, where the Gaussian curvature of the interior verticed1armonic map is a widely used technigue to compute the map-
is zero and the total geodesic curvature of the boundary is constant,i.e., 2ping between two 2D regions. It is well known that a harmonic

for the outer boundary, and2r for each hole. Since the geometry Bfand mapf tAC R2 B C R2is a diffeomorphism iPB is convex
M; are similar, their embeddings of the uniform flat metric are consistent anqind the boundary mappin‘g{&'A) —9Bis a homeomorphism.
stable. . . .
Unfortunately, bottDy, andDp are multi-hole discs, i.e., con-
each of which has simple topology. Then we construct a hareave shape. Thus, solving a harmonic map betwegnand
monic map betweeR andM;. Note that the map betwe@nand D, i.e., A@ =0 and@(dDp) = dDy;,, can not guarantee a
Mi is smooth for the interior vertices ®; andP,. In general, bijection in general.
the map of two adjacent components (components share one

common boundary) may not be continuous across the bounéy, 4qdress this problem, we decompose the multi-hole discs to

ary. In order to ensure that the two adjacent polycube mapg,so|agical discs and then compute the harmonic map between
haveC? continuity across the boundary (otherwise, we can Notwo topological disks.

smooth the polycube map in the next step), we must impose
the boundary condition of adjacent components in a consistent

way. (i) We modify the topology oDy, andDp by introducing

the cuts to connect the inner circles and the outer circle

' — 7 ‘! such thatDy, andDp are topologically equivalent to a
{_,//’ / \ n wny disk. The cuts are constructed as follows: for each inner
- ‘ 4'-7 = circle, we find the shortest line to the outer circle. If the

line does not pass through any other inner circles, we

(@) (b) simply use it as cut locus; otherwise we cut through the

shortest line between two inner circles to connect them.

Fig. 6. Constructing the mapping between boundary cudRsto JM;. (a) We repeat this cutting until the final shape is a topological
The boundaries oP, and M; are planar curves. (b) The blue lines show the disk

map i between the vertices o#P, and dM; (see Equation 6).

We first construct a one-to-one magp: R — JdM; between (i) We compute the harmonic mag : Dy, — D and fp:

the boundaries o andM; in a piecewise fashion. Note that Dp — D whereD C R2is a unit disk. Note thaty andfp
each boundary is a closed planar curve (on the cutting plane). map the bound;,lriegﬁ,\ﬂi and dﬁpl homeomorphically
For each vertex € dR, let ¢/(v) € IM; denote its image, then into the boundary of unit diskD. Thus, fyy and fp are
we require that the mag minimizes the following distance diffeomorphisms.
functional

mm/ap. (V) = V|| (6) (i) We compute the harmonic mag: D — D between the

two unit disks. The boundary condition is specified such

ina th o | . ) ) . _ :
Solving the above optimization problem gives rise to a param that the cutting loci are mapped to each other consistently.

eterization between the boundariespandM; with least dis-
tortion. Note that each cutting boundary (not the boundary in

the original shape) connects two adjacent componentsPsay, (iv) The composite mamﬁiiDMi ofytogofpogn o, in-
andPR 1. Letve dR andv € 0P, 1, then the above map can duces the bijection frorR to M;. The commutative dia-
guarantee that the imageswaiindery; andyj ; are consistent, gram is shown as follows:
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(@M —Dy,  (b)R—Dp

A’

[ ' /
(f) D (9) fp:Dr — (hg:D—D () Ay, © fu' 090 feoga_py

Fig. 7. Constructing a diffeomorphism betweBnand M; (see (a) and (b)). SincBy, and Dp are not convex, the harmonic map: Dp — Dy; is not
one-to-one. Pay attention to the flipover in the close-up view in (c). To correct this problem, we first modify the topolgyaofd Dy; by introducing

three cuts to connect the three inner boundaries with the outer boundary (see (d) and (e)). Then we map the modiﬁiﬂ a!hmﬁmi to unit disk. Next

we compute the harmonic map between two unit disks. The boundary condition is specified that the cutting loci are mapped to each other consistently, e.
the arcAA in 5Mi to the corresponding ar8A’ in ISPI. Finally, the polycube map fror® to M; is the the composite maﬂqiiDMi ) f,\;logo fpoqpﬁDPI.

R
% —0p, Ai—Dy, '
Dr Dwm (7) -
fp fn

Dr g Dw (a) Face charts (b) Edge charts (c) Corner charts

Figure 7 illustrates the idea to compute the diffeomorphisrﬂ:ig- 8. A polycube is covered by face, edge, and corner charts. Each face

] . . chart (drawn in blue) covers only the interior points of the corresponding face
betweerﬂ andM;. Note thata direct h_armon_lc map betwd&m . and leaves off all the boundary edges of the face. Each edge chart (drawn
andDMi IS not One't‘?'one (see the flipover in the close-up VieW red) covers the interior points of the edges but leaves off comer vertices.
Fig. 7(c)). We modify the topology oDp andDy; and then  Each corner chart (drawn in yellow) covers the comer.

construct the bijection betweddy andDy;, (see Figure 7(i)).
improve the quality of the polycube map by solving a harmonic

Figure 4 shows the piecewise polycube map constructionforth,emp for the entire shape. LéUc, Yic}, {Ue, e} and {Us, s}
genus-5 Decocube model, which is decomposed into 8 COMPQpenote the set of corner, edge, and face charts, respectively. As
qents. A bijective map is con_structed fo_r each component, angnown in Fig. 8, the corner sbi; covers the polycube corners;
finally, the whole map is obtained by gluing all components to-e edge se, covers the interior points of the polycube edge
gether. Note that tr(;e piecewise polycube map is smooth for ing;t |eaves off corner vertices: the face Setcovers the interior
terior vertices an€® continuous across the cutting boundarles.poimS of the polycube face but leaves off corner and edge

vertices.

3.5. Smoothing the Polycube Map For any vertex € Ut on the polycube face,and its neighbors
are co-planar. Functiogs : Us — R? is defined by an orthog-

| projecti I h | of th [ face.
The polycube map constructed by the aforementioned steposna projection along the normal of the polycube face

is C* inside each segmented component, however, only hasSor any vertex € Ug on the polycube edge, its neighbors are on
CO continuity across the cutting boundaries. Now, we furthertwo different polycube faces. Functiap : Ue — R? is defined
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M denote the point on the 3D modkl. The composite map
Yo 1:M— R?maps a 3D poinp and its neighborhood to
the planar domain. We can solve a harmonic map(U¢) —
RZ

Ah(p)= Y a(h(p)—h(a)) =0, ®)

ai Nb(p)

whereNb(p) is the set of one-ring neighbors pfand w is
the cotanweights induced by the metric of the given mégh
The vertices on the boundary of corner chldt are fixed, i.e.,

h(@(dUc)) = w(9U¢).

Solving harmonic map for each individual face, edge and corner
chart significantly improves the conformality for each chart
and the charts cover the whole polycube domain, thus, the
quality of the polycube map can be improved significantly.
Note that all the cutting boundaries are entirely covered by
the face charts, as a result, the resulting polycube magthas
continuity along the cutting locus as demonstrated in Fig. 9.
We should also point out that the boundaries of face, edge and
corner charts are onlg® continuous since they serve as the
boundary constraints in the harmonic map. Thus, the resultant
polycube map is only guaranteed to be a bijection rather than a
diffeomorphism. However, based on our experiences, the entire
polycube map, i.e., the interior and the boundaries of the charts,
looks very smooth after solving the harmonic map for face,
edge and corner charts several times (see Fig. 11).

4. Experimental Results

(a) Before improvement  (b) After improvement

Fig. 9. Improving the polycube map by computing the harmonic map for the
entire shape. The continuities across the cutting boundaries before and after
improvement areC® and C*, respectively. The angle distortions before and
after the improvement are141 and 1028, respectively. Please pay attention
to the quality improvement on the conformality of the checkerboard texture
mapping.

)

y
by rotating one attached polycube face 90 degrees (i.e., makir

v and its neighbors co-planar) followed by a projection along
the normal of the un-rotated polycube face.

For any vertex € Uc on the polycube corner, its one-ring neigh-

bors are on three or five different polycube edges. Function (d) (e) ®
e : Us — R? mapsv to the origin and its one-ring neighbors
to uniformly distributed points on a unit circle. Fig. 10. The user can easily control the shape of the polycube by specifying

two parametersd,, the maximal distance between two consecutive cutting
Let Q: P — M denote the constructed piecewise polycube maﬁlanes, andd,, the area difference between the axis-aligned contours and
1. . ._the curved intersection contours. The parameters for the Squirrel model are
and¢ -~ :M — P the inverse map. Then we solve .a harmonlcdzz0_06’%:0_2 (@) to (c) andt,— 0.16, d, — 0.3 (d) to (f). The model
map for the face, edge and corner charts, respectively. We COR-scaled to a unit cube.

sider the corner chart in the following, and the edge and face ) )
charts can be handled in a similar fashion. We conducted extensive tests of our algorithm over a large va-

riety of models ranging from genus zero to genus six. Com-
Given a pointv € U; on the polycube corner, lgi = @(v) € putation time were measured in minutes on a workstation with



Fig. 11. Automatically constructed polycube maps of complicated topology and geometry.

Table 1

Statistics of the experimental results. Test models are scaled to a unit cub
g, genus; #\, number of triangles in the given shapmh; the area difference
between the axis-aligned contours and the curved intersection conthurs;

two parameters. The quality of the polycube map is measured
B‘y the angle distortio,ngle and area distortiosarea [16],

the maximal distance between two adjacent cutting plasgge angle 2 )
distortion; &area, area distortion;T, execution time measured in minutes. Eangle= Z cotaa“ + cotfb+ COtyCZA((p(Ai)), ©)
| Model Jof d; | da | # 4 |eangid aea] T] . AA(L)
1o AL | Al@A))

Amphorg2/0.06 0.3|125K|1.0151.12812 (10)

Bimba =2 2. Aot A AAAD

Buddha

0.1§ 0.3|200K|1.0141.143 9

N/A |N/A|300K|1.0511.31628 where Aj € P, (Ai) € M, a,b,c,a,f3,y are the side length
and angles of\;, andA(-) denotes the area. In the isometric
map, Eangle= 1 andéarea = 1. Therefore, the closer the values

of €angle @Ndéarea tO 1, the better the quality of the constructed
0.1]0.25200K|1.02§1.11820 polycube maps. The statistics and performance of test cases
0.24 0.3| 60K |1.0261.089 3 are reported in Table 1, whereas the corresponding constructed
polycube maps are shown in Figure 11. Note that our method

0

6

0

1

0

(5

4 can produce polycube maps with very small area and angle
Gargoyle0|0.04 0.3| 75K |1.0211.15411] distortions.

4|

1

0

0

0

0

0

Bunny [0]0.08 0.3| 34K |1.0261.127 5

Dancer |1/0.050.25186K|1.0321.11919

Dragon

Decocub

Fertility |4/0.08 0.3|100K|1.0201.14819

Greek |4/0.05 0.3|200K|1.0341.08423|

We have applied the constructed polycube maps to a wide range
0.0§0.2|134K|1.0451.15312 of applications, such as quadrilateral mesh generation, T-spline
0.25 0.3]125K|1.0031.12210 construction, seamless texture synthesis, and volumetric param-
eterization, as demonstrated in Fig. 12 and 13.

Kitten

Laurana|

Rabbit {0 0.2(0.2| 27K |1.0321.142 2

Sheep |0/0.14 0.3|200K|1.0041.19118|

Squirrel |0{0.06 0.2 |144K|1.0041.12514 5. Comparisons

Totem [0]0.080.25217K|1.0251.05523]

i ._In this section, we compare our method with the existing ap-
g.O(i_Hz gPU andt_SGBthmem_(;ry. A][Inctmg ?I! OI t::e five Stlepso'(;proaches and show its advantages and disadvantages. Table 2

ection 3, computing the uniform Tlat metric takes nearly 9%,y yarizes the key differences between our new approach and
of the entire time. Within our framework, the user may choose( g

. . . : he existing methods.

to simply specify two parameters;, the maximal distance be-
tween two adjacent scanning planes, agdthe threshold of Comparison with [1]. In [1], Tarini et al. first constructed the
the normalized area difference between the axis-aligned polypolycube manually and then warped the polycube close to the
gons onP and the curved intersection contoursidrn(see Sec- given mesh. Next, the vertices on the given mesh are projected
tion 3.2 for the details). Figure 10 shows how the user can eagnto the warped polycube. Finally, the polycube is warped back.
ily control the shape of the polycube by specifying the aboveThis method isextrinsig since it requires the projection of

9
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Fig. 13. Polycube serves a natural parametric domain for volumetric param-
eterization. Therefore, we can generate all-hexahedral meshes without any
extraordinary points and T-junctions [17].

Fig. 14. Our method also applies to manually constructed polycubes.

method on the Laurana model.

Comparison with [4]. Following Tarini et al's pioneering

Fig. 12. Polycube maps applied to quadrilateral remeshing, T-splines anWOrk, Wanget al. proposed aintrinsic method to construct a

tile-based texture synthesis. polycube map [4]. Instead of computing the map between the
polycubeP and input shap#! directly, bothP andM are first

the vertices of the input shapé to the polycube domai. embedded into one of the three canonical doma&hAsE?, or

Therefore, this method requires the user to design the polycuti?, depending on the topology ®f, i.e., iy : M — Dy and

P manually and carefully such that it closely resembles thep : P — Dp using uniformization metric, i.e., the Gaussian cur-

geometry of the input shapé, otherwise, it is difficult to warp  vature is constant everywhere. Then by seeking the one-to-one

the polycube close tM and the resulting polycube map may map between the two domaigs,,—.p, : Dm — Dp, the com-

not be bijective. Our method istrinsic in that it guarantees the position@y_p = rrglo @y —Dp © Ty IS the desirable polycube

bijection between the given shape and the polycube. Figure Ifap fromM to P. This method is intrinsic in that it avoids the

shows the comparison between Tamial's method and our vertex projection fronM to P. However, it is known that em-

10



bedding a surface with negative Euler characteristic litds 6. Discussions

error-prone when the point is very close to the boundary of the

Poincaré disk due to the numerical rounding error. Therefore,

Wanget al’s method is not practical and much less numericallyManually vs. Automatically Constructed Polycubes.In the
stable to construct polycube maps of large-scale models witBXisting techniques of constructing polycube maps [1] [4] [5],
negative Euler characteristics. Our method uses a divide-ané?€ Polycube maps are constructed manually. Although manual
conquer approach which avoids computing the uniformizatiorgonstructions work well for the models with simple topology, it
metric. Note that from the point of view of numerical compu- IS extremely tedious and time consuming to construct polycube
tation and its robustness and stability, embedding the genus¥jith complicated topology. The proposed approach (Sec. 3.2)
open surface int@®2 usinguniform flat metricis much more ~ ¢an generate polycubes for complicated topology and geome-
robust than embedding a surface with negative Euler charadly- However, it usually generates polycubes which are more
teristic into hyperbolic spacE? using uniformization metric. complicated (based on the number of corners and faces) than

Figure 16 compares Wargg al’s method [4] and our method the manually-built ones. We should also point out that the cur-
on the Bimba model. rent polycube construction stage can be simplified/replaced by

any alternative method (either automatic or manual approach)

in order to produce a polycube with less complexity. Figure 14
Comparison with [5]. Wang et al. proposed an interactive spows the genus-6 Happy Buddha model, whose polycube ap-
method to improve the polycube map for high genus surproximation is constructed manually. Note that using our new
faces [5]. The key difference between this user-controllablgnethod we can still construct the high-quality polycube map

method and [4] is that users have full freedom to specify theyytomatically and efficiently, while accommodating the vary-
number and locations of the singularities (the pre-images oiﬁqg complexity.

polycube corners) oM and their connectivity, i.e., which

pair of corners forms a polycube edge, which set of poly-Limitations. Our proposed method has certain limitations and
cube edges form the polycube face, etc. This method avoidéemands further improvement in the future. First, the con-
the global parameterization and can nicely produce polycubgtructed polycube depends on the orientation of the 3D model.
maps. However, manually specifying the polycube structurdifferent orientations may resultin very different polycubes. In
on the given mesiM is tedious and sometimes not feasible Our implementation, we require the user to align the model be-
even for expert users with deep geometric insight and broatpre the polycube construction. Second, the proposed method
topological knowledge. For example, the minimal number ofwill generate a geometrically complicated polycube for non-
singularities for the genus-5 Decocube model is 48. It is rathe@xis-aligned long branches or handles, such as the ears of the
time consuming and error-prone to specify both the location§unny model (see Fig. 17). As a result, it may cause difficulty
and connectivity of the singularities on the input model ofin some applications, e.g., spline construction, since each cor-
genus-5 for 48 points. Our method is more flexible in that theher of polycube is an extraordinary point. Third, the polycube
user plays with the parameters to specify how the polycub&onstruction relies on the user inputs, i, andd,. For a
mimics the given shape and then produces the polycube mahape with complicated geometry and topology, the global pa-
with low area and angle distortion. As demonstrated in Fig. 11fameters may not generate a valid polycube. Thus, the local
our method is capable of computing high-quality polycubeadaptive parameters must be used, which will result in a much
maps for surfaces of complicated geometry and topology. ~ more complicated implementation.

Comparison with [10]. Most recently, Linet al. proposed an 7. conclusions

automatic method to construct polycube maps [10]. They first

segmented the 3D model using Reeb graph and then approxi-

mate the polycube into several polycube primitives, i.e., cubeWe have developed an automatic method to construct a poly-
L-, O-, and U-shapes. They demonstrated their approach ocube map for surfaces of arbitrary topology. The underlying the-
bunny, 3-hole torus and horse models. Howevergdtial's ap-  ory and the entire algorithmic pipeline have been clearly docu-
proach may not work for the surfaces with complicated topol-nented. Within our framework, the users only need to control
ogy and geometry. For example, if the Reeb graph has a nodew close the polycube resembles the given shape by using two
whose degree is more than 6, then it is difficult to use thentuitive parameters. With no user intervention after the initial
above polycube primitives to approximate the shape. Note thatarameter setup, our new method can automatically construct a
our approach can generate a polycube for this case, but mdygh-quality polycube map. Furthermore, our method is theo-
have large number of extraordinary points, which will be dis-retically sound and numerically robust and stable to guarantee
cussed in the next section. Furthermore, there is no guaranteeone-to-one map between the constructed polycube and the
that Linet al’s approach produces a bijection. According to thegiven 3D model. We applied the constructed polycube maps to
report in [10], the angle and area distortion of Bunny model isvarious graphics applications, such as seamless texture synthe-
1.12 and 115, respectively. Our approach results in polycubesis and tiling, T-spline construction, and quad mesh generation.
map with smaller angle and area distortiol®26 and 1127  Our experimental results have demonstrated the great promise
(see Fig. 17). of our new method over existing techniques. Extensive com-
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Table 2
Comparison with existing polycube map construction techniques.

Methods Polycube Construction

‘Bijective‘ Performance

Limitation

Tarini . ) - Difficult for surfaces with complicated topology and geometry
et al[1] Manual (The polycube should mimic the given shape) No Efficient due to vertex projection from the given shape to the polycube
Wang |[Manual (The polycube can differ from the given shape SIQ. ComputationallyDifficult for surfaces with complicated topology and geometry
et al[4] |nificantly) expensive |due to the numerical unstableness in hyperbolic embedding

Wang Manu_al (The user directly specifies the polycube structuie %s .Many gser Not practical for surfaces with complicated topology
et al[5] [the given shape) interactions
LCin Automatic (The user specifies several parameters to C)nKIO}A Efficient Not practical for surfaces with complicated topology and| ge-
et al[10] |the Reeb graph embedding and surface segmentation) o ometry ]
Our Automatic (The user may set two parameters 0 specify ho\\?‘/es Efficient Non-axis-aligned branches or handles will usually result|in a
method |close the polycube mimics the given shape) geometrically complicated polycube

Fig. 15. Comparison with Tarinet al’'s method [1], where the polycube

constructed manually to mimic the given shape (Data courtesy of Dr. Marci

Tarini). The angle and area distortions of the polycube magage = 1.102,
€area = 1.140 (Tarini et al’'s method [1], top row) andezngie = 1.003,

€area = 1.122 (our method, bottom row), respectively. Note that our new

is

Fig. 16. The top row shows Wangt al's method [4] on Bima model with

(o}

distortionsgangle = 1.052 andearea = 5.145. The bottom row shows the results
using our automatic method, wheeghgie = 1.014 andeareq = 1.143. Note

that the checkerboard texture mapping of our method is much more uniform
than that of Wanget al’s approach.

method is more flexible in that the user can easily control the shape of
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polycube and reduce the area and angle distortion.

parisons have been conducted to hightlight all the advantageg
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application scopes.
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N 2
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Z(C2g) +2(v1)
2
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Appendix

theoretically sound to guarantee the diffeomorphism between
the genus-0 surface and the multi-hole disk.

In step 4, we construct the harmonic map betwBeand M;
using the following commutative diagram.

R m
¥R —Dp A —Dyy;

Dp Dwm; (11)
%br —0p o —Dw;

Dp —— Dwm
R DM

The uniform flat metric computed using discrete Ricci flow is
guaranteed to induce a diffeomorphism betwBeto Dp, (and

M to Dy;) [14]. Note that a harmonic map: Ac R? — B C

R? is a diffeomorphism i¥)B is convex and the boundary con-
dition f(dA) = 9B is a homeomorphism. Sin@Dp anddDy,

are circular,qbpI B Por, D andqul Dy, are diffeomor-
phism. Then the piecewise polycube mppP — M is given

In the appendix, we show that our method generates a bijectiotr)ly ¢=Ui¢r-m-
between the polycube and 3D model. Here we assume th&t step 5, we further improve the polycube map quality by

given the user specified parametdssandd,, avalid polycube
P is constructed in step 2.
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solving the harmonic maps for face, edge, and corner charts re-
spectively. The polycubB is covered by face, edge and corner



charts {U, y/}, whereU € Pis an open set d® andy : U — R?
mapsU to the planar domain (see Fig. 8). The definition/of
is given in Section 3.5.

Given a pointv € U on a chart, letp = ¢(v) € M denote the
point on the 3D modeM. Then the composite mapo ¢ :

M — R? maps a 3D poinp to the planar domain. We solve a
Laplace’s equatioh : @(U) — R? such that

Ah(p)= % w(h(p)—h(g)) =0,
gieNb(p)
whereNb(p) is the set of one-ring neighbors pfanda is the
cotan weights induced by the metric of the given mishrhe
boundary conditions are given by

h(p(V)) = w(oU).

For the edge and corner chargsmapsdU to a rectangle and
a unit circle, respectively. Note thai(dU) is a homeomor-
phism and the boundary @f(dU) is convex, and thudy is a
diffeomorphism.

For the face chartgp is defined as an orthogonal projection
of the polycube face along the normal direction. Thusnaps
dU to itself andh is also a diffeomorphism.

Since the improved malpis a diffeomorphism for every point
inside the face, edge and corner charts, and a homeomorphism
for the points on the boundary of face, edge and corner charts.
Thus,h induces a bijection between the polycuband the 3D
modelM.
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