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Abstract

Shape skeletonization (i.e., medial axis extraction) is powerful in many visual computing applications, such as pattern
recognition, object segmentation, registration, and animation. In this paper, we expand the use of diffusion equations combined
with distance field information to approximate medial axes of arbitrary 3D solids represented by polygonal meshes based on
their differential properties. It offers an alternative but natural way for medial axis extraction for commonly used 3D polygonal
models. By solving the PDE along time axis, our system can not only quickly extract diffusion-based medial axes of input
meshes, but also allow users to visualize the extraction process at each time step. In addition, our model provides users a set of
manipulation toolkits to sculpt extracted medial axes, then use diffusion-based techniques to recover corresponding deformed
shapes according to the original input datasets. This skeleton-based shape manipulation offers a fast and easy way for animation
and deformation of complicated mesh objects.

1 Introduction and Motivation

Figure 1: 2D illustration for medial axis.

Medial axis, also known as skeleton, offers much more simple and compact representations for arbitrary complex geometric
and/or solid objects. Ever since it was first proposed and named by Blum [8][9], medial axis has started to gain more and
more popularity in visual computing areas especially in recent years. It collectively provides useful shape information such as
topology, orientation, and local properties in an intuitive and compact fashion. For instance, the medial axis of a 2D polygon can
be directly associated with the concept of grassfire transform: By igniting boundary points of the polygon, the fire propagates
inward from the boundary at a uniform speed, and where the fire front meets and extinguishes itself defines the medial axis in a
natural and physically plausible way. More mathematically, the medial axis can be defined as the locus of all centers of circles
inside the 2D polygon (or spheres inside the 3D object) that are tangent to the boundary in two or more places [10]. The points
on the medial axis (or skeleton) of an object usually have more than one closest point on the boundary of the object. Fig. 1
shows an illustration of the medial axis for a 2D shape. In practice medial axis is also called medial surface and frequently
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Figure 2: Medial axis extraction using our PDE technique. The medial axes are shown in red with transparent datasets sur-
rounding them.

referred as the 3D skeleton (especially in bio-medical applications) for 3D models. Hence the extraction of medial axis is
oftentimes called skeletonization.

There are several unique advantages of using medial axis or skeleton to model geometric objects. First, it provides localiza-
tion of features such as anatomical landmarks (which are extremely valuable in bio-medical applications). Second, it separates
thickness information (e.g., radius of medial axis or skeleton) from orientational and topological information, i.e., shape fea-
tures can be subdivided into radial, orientational and location information in order to facilitate statistical analysis. Third, shape
differences between objects can be quantified in a more intuitive and accurate way. Fourth, it is more expeditious to capture
coarse-scale changes from the acquired models, making it more stable and robust to handle noisy datasets.

Skeletons can be used to repair topological errors on solid models in the form of small surface handles [31]. 3D line
skeletons also contributes for modifying topologies of 3D models [20].

There are various developed algorithms using different techniques for medial axis extraction in both 2D and 3D. However,
the stable numerical computation of medial axis remains a challenging problem.

On the other hand, PDE techniques use Partial Differential Equations (PDEs) to model a large variety of concepts in
computer graphics and visual computing areas, such as visualization [38][40], and image processing [4][29], etc. In addition,
PDE methods offer an alternative way to model both parametric and implicit geometric shapes [7][15][16]. In a nutshell,
they define and govern geometric objects as solutions of a set of differential equations with boundary/initial conditions. In
principle, PDE models can be controlled by physical laws, and the formulation of differential equations is well-conditioned
and technically sound. Smooth objects that minimize certain energy functionals oftentimes are associated with differential
equations, so optimization techniques can be unified with PDE models. Users can easily understand the underlying physical
process associated with PDEs, therefore, it is possible to implement intuitive and natural control through the modification of
physical parameters.

To take advantages of PDE techniques, [14] proposed a PDE-based technique to extract medial axes (or skeletons) for
arbitrary 3D objects bounded by polygonal meshes. This method uses a diffusion-based equation with differential properties of
the boundary surface to approximate a simplified medial axis of the object. The diffusion-based equation is solved numerically
along the time axis, therefore users can obtain visual feedback during the medial axis extraction process. Users can define
their own medial axis for an object by selecting desired boundary points of the object to be skeletal points on the medial
axis. It provides users more degrees of freedom for shape skeletonization and further manipulation. To further improve the
performance of the PDE-based medial axis extraction procedure, in this paper, we employ a distance field function based on
Taylor polynomials to detect medial axis/surface point on the propagating surface. Fig. 2 demonstrates some examples of
extracted medial axes from several objects.

The remaining of this paper is organized as follows. Section 2 reviews previous work of medial axis extraction and some
related work of PDE techniques. Section 3 presents the formulation and numerical approximation of our PDE-based method for
medial axis extraction with distance field information. Section 4 details the PDE-based medial axis extraction from objects with
arbitrary polygonal boundary surfaces as well as shape sculpting and manipulation based on extracted skeletons. In Section 5,
we discuss our method with possible improvements. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Medial Axis Extraction

In the past several decades, medial axis extraction has been well studied and there are various techniques for detecting medial
axes of 2D and 3D objects. Here we briefly review several typical approaches of computing medial axes or skeletons:
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• Thinning
To extract the medial axis of an object, one intuitive way is to peel off the object’s boundary layer by layer. Such
thinning process can be performed iteratively in the discrete domain. It will retain points on skeletons and maintain
object’s topology [2][23][26]. However, the thinning-based methods are fundamentally discrete processes and require
fully segmented, compact, and connected objects. These techniques have difficulties to deal with partial data and are
sensitive to Euclidean transformations of the data.

• Distance functions
Because the skeletal or medial surface points usually coincides with the singularities of a Euclidean distance function
to the boundary, distance functions can be employed for medial axis extraction. The approaches based on distance
functions construct distance field transformation of an object and extract the medial axis based on the distance field
[3][5][17][19][24]. However, usually it’s difficult to ensure homotopy with original objects using techniques based on
distance functions.

• Voronoi skeletons
Because the vertices of the Voronoi diagram of a set of boundary points can converge to the skeleton as the sampling
rate increases under appropriate smoothness conditions [32], Voronoi diagram and its dual Delaunay triangulation have
been widely adopted for medial axis extraction [1][12][18][27][28] [33][35] [34]. These types of methods can preserve
topology and accurately localize skeletal or medial surface points for densely sampled object. However, for algorithms
based on Voronoi diagrams, it’s more time consuming to build a 3D Voronoi diagram with increasing number of sample
points, thus, direct computing method for Voronoi skeletons is less suitable for large datasets.

• Level set method
Another class of methods casts the surface as the level set of a 4D embedded object and finds the weak solution of a PDE
which models the wave propagation process whose singularities yield the medial axis. Kimmel et al. [21] introduced a
level-set-based method for skeletonization using numerical approximation of distance maps of an object. Ma et al. [25]
proposed a practical approach for extracting skeletons from general 3D models using radial basis functions (RBFs).

• Direction testing
Bloomenthal and Lim [6] proposed an implicit method based on direction testing that defines the skeleton as the set of
points at which the direction to the nearest point on the object undergoes a sudden transition. The geometric skeleton
is derived from a static object using an implicit direction method. The object may be reconstructed from the modified
skeleton using implicit distance and convolution techniques.

• Hybrid techniques
In addition, many skeletonization techniques combine several aforementioned methods into a single framework for me-
dial axis extraction. For instance, Siddiqi et al. [10] proposed a method combining the thinning process and the distance
transformation and using a Hamilton-Jacobi equation to calculate the medial axis of volume data. This method provides
accurate medial axis extractions and preserves homotopy of objects. However, it mainly focuses on volumetric datasets.
Medial axis extraction for arbitrary polygonal meshes hasn’t been considered. And sometimes the real medial axis for
an irregular complex model may have noisy branches which are difficult to handle in the interest of shape manipulation.

2.2 Diffusion Equation and Applications
PDEs are at the heart of many computer analysis models or simulations of continuous physical systems, such as fluids, electro-
magnetic fields, the human body, and so on. Diffusion equation, wave equation, Laplacian equation, heat equation, as well as
the equations of fluid dynamics, i.e., Navier-Stokes equations, are all popularly used PDEs [41] for modeling and simulation.
Because most of the physics-based modeling techniques and many CAD/CAM applications are related to certain PDEs, PDE
techniques are playing a more and more important role in computer graphics areas. In this paper, we mainly focus on diffusion
equations.

A diffusion equation is defined as a PDE describing the variation in space and time of a physical quantity which is governed
by diffusion. It provides a good mathematical model for the variation of temperature through conduction of heat and the
propagation of electromagnetic waves in a highly conducting medium. The diffusion equation is a parabolic PDE whose
characteristic form relates the first partial derivative of a field u with respect to time t to its second partial derivatives with
respect to spatial coordinates x:

∂u
∂ t

= D∇
2u, (1)
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where u = u(x, t),x = (x1,x2, · · · ,xn) ∈ Ω ⊂ Rn, t ≥ 0, and D is called the diffusion coefficient. The operator ∇2 = ∑i
∂ 2

∂x2
i

is

called the Laplacian. When D is not constant, but depends on spatial coordinates and time: D = D(x, t), this spatial variation
leads to anisotropic diffusion equation:

∂u
∂ t

= ∇ · (D∇u). (2)

The solution of a diffusion equation is subject to both initial and boundary conditions. The numerical solution of dif-
fusion equations usually makes use of the finite-difference method, which employs Forward Time Centered Space (FTCS)
finite-difference approximation to the diffusion equation. Because x in above equations can be of arbitrary variables in any
dimensions, diffusion equations can be applied for various applications in computer graphics fields. Using such equations,
researchers have developed visually convincing models of fire, smoke, and other gaseous phenomena. The diffusion equa-
tions can also be used in scientific visualization of medical images. The applications of diffusion equations include depicting
gaseous phenomena [36], surface fairing [11], texture synthesis using reaction-diffusion system [40][38], visualizing vector
field [30][13], etc.

In this paper, we employ a diffusion-based equation to approximate skeletons of objects bounded by arbitrary meshes (or
other boundary representations) and reconstruct the original shape.

3 PDE Formulation of Medial Axis Extraction for Arbitrary Meshes
To directly detect and extract skeletons of 3D solid objects bounded by arbitrary meshes, we employ a diffusion-based PDE
combined with distance field information to allow any given 3D objects to propagate inward their boundaries and approximate
simplified skeletons with user interactions, which can provide users instant feedback and interactive control during the extrac-
tion process. The distance information from skeletal points to the boundaries are recorded for reconstruction and deformation
purposes. When manipulating the skeleton, the original model can be deformed accordingly. Other immediate applications
include model simplification, skeleton-driven parameterization, and animation control of complex, articulated characters.

3.1 Diffusion-based Equation
The grassfire flow on a 3D surface S is governed by

∂S
∂ t

= N, (3)

which allows the fire front propagating at unit speed along the inward surface normal N.
The simplest way to simulate (3) for medial axis extraction of a polygonal mesh is to let the sample points on the boundary

surface travel along the surface normal inward (i.e., shrinking the boundary) at each time step, and where the points meet with
each other forms the skeleton. However, the time step for this simulation process needs to be very small to guarantee a close
approximation of medial axis. Therefore, it’s difficult to achieve satisfactory results using direct simulation of (3). Furthermore,
the complexity of the medial axis structure of an object depends on its geometric shape. For a complex object with various
detailed features, its real medial axis will be very complicated with noisy branches. Such structures are not suitable for shape
manipulation operations. In addition, because our goal is to extract medial axes of objects bounded by discrete arbitrary
polygonal meshes, we can only approximate the surface normal at discrete sample points on the boundary surfaces where the
regular parametrization is not applicable, and the mesh qualities will directly affect the results for direct simulation of (3).

On the other hand, diffusion equations are frequently used for denoising in image processing. They can also provide smooth
results for geometric surface fairing [11]. Because of their smoothing properties, we apply the diffusion process for medial axis
extraction from polygonal meshes, which will provide simplified approximations and remove noisy branches on medial axes
for easy storage and manipulation. Since our main purpose of medial axis extraction is to offer users a compact geometric
representation for shape manipulation and deformation, such approximation can provide satisfactory results.

We formulate the diffusion-based equation for the simplified medial axis approximation as:

∂S
∂ t

= D(N,κ)∇2S, (4)

where S = S(p, t) is the propagating boundary surface of an object, p = (x,y,z) is the coordinate vector, t ≥ 0 is the time variable,
∇2S is the Laplacian of the surface, and D is the diffusion coefficient function related to the surface normal N and curvature
κ . The normal N provides directions for boundary propagation during the medial axis extraction process. The curvature κ is
used as a threshold to detect skeletal points on the medial axis. We consider the curvature as the threshold for skeletal point
detection is because the Laplacian will smooth the boundary surface and eliminate sharp features during the propagation. By
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using curvature of the boundary surface as a threshold, the propagation process can detect sharp features of an object and
preserve such properties on its simplified medial axis.

(4) is formulated to guide the boundary surface propagation. It provides the direction of the propagating boundary surface
while smoothing out unnecessary noises at each time step. By solving (4), the object’s surface will moving inward from
the original boundary guided by its normal, and the Laplacian will smooth the surface to avoid noisy branches during the
propagating process. The curvature acts as a threshold to preserve feature points of the object on the approximated medial axis.
Therefore, after all the points on the propagating surfaces collide with others which means they reside on a thin set, we can
obtain a compact structure without interior points inside. We consider it as an approximation for the real medial axis because
it’s a thin set inside the object and preserve features of the original dataset. Since our major goal is to use a compact and
simple representation for shape manipulation, such an approximation is enough to provide satisfactory results for this purpose.
Alternatively, because the skeletal or medial surface points usually coincides with the singularities of a Euclidean distance
function to the boundary, we also use distance field information to determine if the point on the propagating surfaces reside on
the medial axis. We employ a distance function based on Taylor polynomials to calculate the value of the points in the distance
field, which could indicate if the points belong to the medial axis.

Note that, the shape reconstruction from skeletons is a reverse process of medial axis extraction by applying the normal
outward to original boundaries. The diffusion equation is suitable for continuous geometric objects including surfaces and
solids. Although in this paper, we mainly use numerical techniques to solve it on discrete polygonal boundary surfaces, it can
be readily applied to other type of solid representations for medial axis extraction.

3.2 Numerical Simulations
Diffusion equations can be easily solved through numerical techniques. One of the most popular numerical methods to solve
a diffusion equation is the finite-difference method. It discretizes the equation by applying finite-difference approximations of
partial derivatives in the equation. The finite-difference technique is straightforward for regular parametric objects. However,
regular parametrization for an arbitrary mesh surface is a challenging problem, because an arbitrary mesh usually has arbitrary
connectivities among surface points, therefore it is difficult to discretize the surface into regular, uniform grids. As a result,
finite-difference approximations of partial derivatives [15] cannot be applied in such situation. We have to seek for alternative
techniques to approximate the partial derivatives to obtain a discretized equation.

3.2.1 Umbrella Operator

There is a type of difference operators called umbrella operator which is commonly used in surface fairing to approximate the
Laplacian operator for 2D meshes [37][22]. A simple umbrella operator assumes the mesh has underlying regular parametriza-
tion where every edge length equals with each other and every angle between neighbor vertices in the parametrization domain
is the same. Then the parametrization of (ui,vi) can be represented by

(ui,vi) = (cos
2πi
n

,sin
2πi
n

),

where n is the number of direct neighbors (points in the 1-neighborhood) of the point at (ui,vi).
The Laplacian operator can be approximated by the discretized umbrella operator:

∇
2pi =

1
n ∑

j∈N1(i)
p j−pi,

where pi is a surface point, p j is a point in the 1-neighborhood (N1(i)) of pi.
However, the assumption of regular parametrization is only suitable for ideal situations. In most occasions for arbitrary

meshes, such type of parametrization cannot give a satisfactory result. The umbrella operator can be further improved by
adding weights based on the connectivity of the mesh which allows vertices drifting in the parametric space and leads to non-
uniform mesh parametrization. One way is to allow edge lengths between points not to be constant. The discretized Laplacian
operator can be approximated by

∇
2pi =

2
E ∑

j∈N1(i)

p j−pi

ei, j
,

where E = ∑ j∈N1(i) ei, j and ei, j is the edge length between pi and p j. Fig. 3 shows an illustration of umbrella operators. Note
that, the angles between edges in the 1-neighborhood of a point on the mesh can also be considered as weights to improve the
umbrella operator.
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(a) (b)

Figure 3: Umbrella operators. (a) Regular umbrella operator. (b) Improved umbrella operator with edge lengths as weights.

To simplify the process and provide a fast algorithm for medial axis extraction, we employ the finite-difference discretization
associated with umbrella operators for iterative computations of the evolving surface and its Laplacian operator. The diffusion-
based equation (4) can be discretized as follows:

pn+1
i −pn

i
∆t

= D(Ni,κi)(
1
n ∑

j∈N1(i)
pn

j −pn
i ). (5)

3.2.2 Surface Normal Approximation

To calculate surface normal at sample points of an arbitrary mesh object, we also resort to numerical approximation techniques.
The simplest way is first calculating the normals of surface patches around the target point, then averaging the surface patch
normals to approximate the normal at the point. This only provides a rough approximation of surface normal at the sample point.
There is another way to approximate the normal at a point proposed in [42] to provide more satisfying normal approximations.
The normal at a surface point pi can be computed using approximated tangent vectors t1 and t2 along the surface at pi which
can be computed as:

t1 =
n−1

∑
j=0

cos
2π j

n
p j, t2 =

n−1

∑
j=0

sin
2π j

n
p j,

where n is the valence of the point on the mesh, and p j’s are in the 1-neighborhood of pi.
Therefore, the sampled surface normal Ni at pi can be computed as

Ni = t1× t2. (6)

3.2.3 Gaussian Curvature of Arbitrary Meshes

Since the diffusion process is also influenced by the surface curvature, we need to evaluate curvature values at the boundary
surface. In this paper, we consider the contribution of Gaussian curvature for medial axis extraction. The curvature is used as
a threshold to define skeletal points on the medial axis to preserve shape features, therefore other types of curvature instead
of Gaussian curvature can also be employed for this purpose. We use Gaussian curvature because it’s very easy to calculate
using the approximation scheme for polygonal meshes. We use a local approximation scheme to compute Gaussian curvature
of sample points on the boundary surface based on Gauss-Bonnet theorem. The Gaussian curvature at a surface point is related
to angles and faces connected to the point on the surface [39]. The Gaussian curvature κ can be approximated as:

κ =
a
A

,

where a is the angular defect at the point which is defined as (2π - sum of the interior angles of faces meeting at the point)
and A is the area associated to the point that is equal to 1

3 of the sum of areas of triangles meeting at the point. Therefore, the
Gaussian curvature κi at point pi can be computed as follows:

κi =
2π−∑

n−1
j=0 φ j

1
3 ∑

n−1
j=0 A j

, (7)

6



where φ j is the angle of the jth face connected to pi and A j is the corresponding triangle’s area. (7) is for inner points on a mesh
and suitable for any points in a closed surface. As for open surfaces, the approximation for Gaussian curvature of a boundary
point can be evaluated using the following scheme:

κi =
π−∑

n−1
j=0 φ j

1
3 ∑

n−1
j=0 A j

, (8)

An illustration of Gaussian curvature approximation for a mesh point is shown in Fig. 4.

(a) (b)

Figure 4: The evaluation of Gaussian curvature for a mesh point. (a) Gaussian curvature for an internal vertex. (b) Gaussian
curvature for a boundary vertex.

3.2.4 Distance Function Based On Taylor Polynomials

According to the grassfire simulation, the surface points on a polygonal mesh travel along the surface normal inward (i.e.,
shrinking the boundary) and where the points meet with each other forms the medial axis. Therefore, the points on the medial
axis have equal distance to at least two surface points on the original mesh. During the numerical simulation of (4), we can use
distance field information of surface points on the propagating surface to determine if the points reach the medial axis.

A distance field based on a given 3D object can be calculated by an implicit interpolation function

f (p) =
n

∑
i=1

wi(p)φ(p− ci),

where f (ci) = di for any point ci in the dataset. wi are the weight functions and φ is the interpolation basis function.
Among various implicit interpolation functions, we use Taylor polynomials as interpolation basis functions that make use

the differential properties of the 3D object to provide higher-order continuity for the resulting distance field. The Taylor
polynomials are often used to approximate values in its neighborhood based on the value and differential properties at a given
point. For example, the Taylor approximation using the first order derivative is:

f1st(c+∆p)≈ f (c)+∆p ·∇ f (c), (9)

where ∇ f = (∂ f /∂x,∂ f /∂y,∂ f /∂ z)T and in most cases, we assume it’s equivalent to the normal vector Ni at a given point ci.
And the Taylor approximation using the first and second order derivatives is:

f2nd(c+∆p)≈ f (c)+∆p ·∇ f (c)+
1
2

∆p ·H(c) ·∆p, (10)

where H(c) = (
∂ 2 f /∂x2 ∂ 2 f /∂x∂y ∂ 2 f /∂x∂ z

∂ 2 f /∂x∂y ∂ 2 f /∂y2 ∂ 2 f /∂y∂ z
∂ 2 f /∂x∂ z ∂ 2 f /∂y∂ z ∂ 2 f /∂ z2

).

The weight functions wi for the interpolation are defined as:

wi =
1

|p− ci|
/

n

∑
j=1

1
|p− c j|

. (11)

The weight functions have the property ∑
n
i=1 wi = 1.
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Therefore, the interpolation function using the first order Taylor polynomial f (p) = ∑
n
i=1 wi f1st(ci +(p−ci) can be rewritten

as:

f (p) =
n

∑
i=1

di +(p− ci) ·Ni

|p− ci|
/

n

∑
j=1

1
|p− ci|

. (12)

The function using the second order Taylor polynomial can be formulated similarly.
Fig. 5 shows examples of calculating distance fields of a mesh torus based on the first and second order Taylor polynomials.

(a) (b)

Figure 5: Distance fields calculated based on Taylor polynomials. (a) The distance field of a torus calculated based on the first
order Taylor polynomial. (b) The distance field of a torus calculated based on the second order Taylor polynomial.

Using Taylor polynomials for calculate the distance field of a polygonal mesh has several advantages. First, the distance
value can be calculated directly based on data points on the 3D object and their derivative information. Second, weight functions
are naturally defined according to data points on the 3D object so that no equations need to be solved. Third, the distance of
a given point can be approximated by a simplified interpolation function, which only use the closest surface point for the
calculation. With such simplification, we can quickly detect the points on the medial axis.

With numerical discretizations and approximations for Laplacian operator, surface normal, and curvature, (5) can be eas-
ily solved by iterative method along time axis. The diffusion equation will evolve along time axis according to the surface
curvature and normal. The medial axis resides on the locations where different parts of the propagating surface meet, which
can be determined by a collision detection algorithm or the distance values calculated by the distance function based on Taylor
polynomials. Because of the discrete property of the numerical technique, users can freeze certain points on the mesh to let
them stay at their current positions during the process to obtain different skeletons. Furthermore, we also allow users to select
a region to extract the medial axis inside the region to obtain any localized results.

For shape reconstruction, because we save the distance information between the skeleton and the original boundary surface,
the object can be recovered along the normal outward without any difficulty. In addition, after the skeleton manipulation, the
corresponding deformed shape can be reconstructed through diffusion propagation to follow changes of the skeleton.

4 PDE-based Skeletonization and Shape Manipulation

4.1 Diffusion-based Medial Axis Extraction: An Algorithmic Outline
We use the finite-difference technique to approximate the solution for the time-dependent diffusion-based equation numerically
to provide users progressive results for medial axis approximation and shape reconstruction. Our techniques can be applied for
solid objects with polygonal boundary surfaces and is also suitable for other boundary representations.

Starting with the original mesh, our system extracts the medial axis according to the differential properties of the boundary
mesh, and allow the mesh to shrink to its medial axis. Our algorithm consists of following operations:

• Initialization: at the initialization stage, the system approximates the surface normal for the boundary surface using (6)
and other differential properties such as curvature by (7) and Laplacian using umbrella operators.

• Skeletonization: during the skeletonization process, at each time step, the system first computes the evolving surface
based on (5). Then a determination step is performed on the resulting surface to decide if a surface point is on the medial
axis. Two algorithms are employed for the determination step. (a) Collision detection. If a surface point collides with
any other point, edge, or face, it is considered as residing on the skeleton. In such case, it is marked as a skeletal point
with its position fixed and the distance information from original surface point to this skeletal point is recorded. After
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(a) (b) (c)

(d) (e) (f)

Figure 6: An example of PDE-based medial axis extraction for arbitrary meshes. (a) Original dataset; (b), (c), (d) and (e) are
shrinking objects during medial axis extraction at different time step by performing (5); (f) is the final skeleton.

all the points are checked for collision detection, surface optimization is applied to delete redundant points and faces
with too small areas. (b) Distance Function. Alternatively, users can choose to use the distance function based on Taylor
polynomials to approximate the distance value of a propagating surface point. According to the definition of medial
axis, a medial axis point will have equal distance to at least two surface points on the 3D object. During the propagation
process, a point on the propagating surface will reach the medial axis if its distance value can be calculated based on a
point other than its corresponding point on the original surface. By calculating the distance values of propagating surface
points at each time step, we can determine which points reside on the medial axis. This process is repeated until all points
on the propagating surface are marked as skeletal points.

• User Interaction: in addition, during the process, users can interactively select any points on the propagating surface to
be skeletal points, thus they can define the user-controlled skeleton based on their own criteria. Users are also allowed to
define local regions for local medial axis extraction.

The medial axis extraction using our technique is a progressive process along time, which offers users visual feedback
during the extraction. Fig. 6 shows an example of progressively extracting medial axis for an object.

After this skeletonization process, we can obtain a simplified skeleton approximating the medial axis of the object associated
with distance information between the skeleton and the original boundary surface. With such information, we can manipulate
the object by sculpting its skeleton with ease.

4.2 Local Region Skeletonization and User Interaction

To explore local features, our system allows users to extract medial axis from a selected part of an object. This can be done by
selecting a region in the 3D working space and the system will only extract skeleton for part of the object residing in the region.
By allowing medial axis to be extracted locally, it will reduce the time complexity for shape skeletonization of complex models
and enable the mechanism for the direct user control. Refer to Fig. 7 for an example.

Because we provide a simplified approximation of medial axis for an object, the result may not satisfy users expectation
sometimes. For example, there are certain points on the object that users want to be on the medial axis, but the system doesn’t
mark them as skeletal points during medial axis extraction process. Therefore, we allow users to select desired points on the
boundary surface to be skeletal points for any user defined skeleton during the extraction process, which can provide more
degrees of freedom for later skeleton-based shape manipulation (Fig. 8). Since manipulations on different shape of skeletons
can result in different shape deformations, these user interactions provide more flexibility/freedom and control for skeleton-
based shape sculpting. Furthermore, because the diffusion-based equation is solved on polygonal meshes, the number of points
on the meshes will extremely affect the performance of the medial axis extraction process. It’s time consuming to extract medial
axes for complex models. Therefore, local medial axis extraction in selected regions will be useful for such cases. It’s also
possible to integrate parallel techniques with our method for shape skeletonization of large datasets.
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(a) (b) (c) (d)

Figure 7: An example of PDE-based medial axis extraction for selected parts from arbitrary boundary meshes. (a) Original
dataset; (b) and (c) are two examples of extracting skeletons for part of the objects; and (d) is the skeleton for the entire dataset.

(a) (b) (c) (d)

Figure 8: Examples of PDE-based medial axis extraction with user-defined skeletal points. (a), (b), and (c) are different
skeletons obtained after fixing different surface points as skeletal points. (d) is a different skeleton for Fig. 6 (a) by fixing a
point at the bottom of the dataset.

4.3 Skeleton-based Shape Sculpting
One of the advantages of medial axes is that they provide much more compact and natural representations for objects. Therefore,
shape deformation/manipulation and other processes based on medial axes alleviate the burden of tedious and less insightful
operations for deforming and animating complex objects, as well as other shape queries and interrogations. In this paper, we
provide users various sculpting tools to manipulate medial axes, then propagate the deformation to original datasets according
to the distance information. However, the deformed result may not be satisfactory if we just simply reconstruct the objects from
their medial axes according to the distances from medial axes to original datasets. Therefore, we employ the diffusion-based
equation with normal pointing outward to the original boundaries to reconstruct the modified datasets. Fig. 9 and Fig. 10
have two examples of shape manipulation based on skeletons and recovered using diffusion propagation. Fig. 11 shows a
deformation sequence of an object through skeleton manipulations. It may be noted that, from this point of view, our technique
also serves as an aid for shape parameterization and can be potentially improved for a powerful shape analysis tool (beyond
shape sculpting and synthesis).

(a) (b) (c) (d)

Figure 9: An example of skeleton-based shape sculpting. (a) Original dataset; (b) is the skeleton; (c) is the sculpted skeleton;
(d) is the corresponding deformed dataset recovered from (c).

4.4 Curvature Manipulation
In this paper, we employ Gaussian curvature of the polygonal boundary surface in the diffusion equation for shape skeletoniza-
tion. It works as the threshold for medial axis extraction to decide which surface points will be skeletal points on the medial
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(a) (b) (c) (d)

Figure 10: Another example of skeleton-based shape sculpting.

(a) (b) (c) (d)

Figure 11: A sequence of deformed shapes through skeleton-based shape sculpting.

axis. Thus, different values of the threshold for Gaussian curvature on the boundary polygonal mesh will result in different
shapes of skeletons. By allowing users to define the threshold themselves, they can obtain the medial axis for an object ac-
cording to their own criteria. Fig. 12 shows examples for several medial axes extracted from an object with different Gaussian
curvature thresholds.

5 Discussion and Future Work
In this paper, we propose a diffusion-based medial axis extraction method which combines the grassfire flow simulation and
diffusion propagation to approximate skeletons for solid objects whose boundary surfaces are polygonal meshes or other types
of B-reps. The diffusion-based formulation naturally unifies the thinning process along surface normals with surface smoothing
for propagating boundaries. The system is implemented using Visual C++ and runs on Windows systems. The examples shown
in this paper are provided by 3D CAFE and rendered using POV-RAY.

Our method offers smooth approximations of medial axes in a visually progressive way. For complex objects bounded
by polygonal meshes, the real medial axes may have numerous noisy branches to preserve objects’ features. Such structures
are difficult to manipulate for shape sculpting. In contrast, our technique provides simplified approximations for medial axes,
which are smooth thin sets residing inside objects without noisy branches. The approximated results are smoothed because of
the Laplacian operator, which eliminates noisy branches of the real medial axis, so that the resulting medial axis is relatively
simple and easy to manipulate.

Because our medial axis extraction algorithm is applied directly to objects bounded by arbitrary polygonal meshes, the
resolution of meshes and the point distribution on meshes will affect the quality of extracted skeletons. For instance, when the
two end points of a long edge on the propagating surface stop on the skeleton, all the points on the edge will be assumed to

(a) (b) (c) (d)

Figure 12: Examples of skeleton extraction with different value of curvature thresholds.
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be skeletal points, although there may be still spaces between them and real skeletal points. Therefore, a mesh optimization
process may be considered to extract more accurate results.

In addition, the approximating techniques to calculate the differential properties of the boundary surface sometimes are
not accurate enough for extremely irregular meshes. On the other hand, there are techniques available to provide regular
parametrization for irregular polygonal meshes. The differential calculation will be much easier under such parametrization.
Thus, mesh parametrization techniques might be applied to our model for better results.

Other future work may include using other distance functions in the future and comparing the results with different distance
measures. We will also consider other skeleton-based shape sculpting techniques to further enhance our system.

6 Conclusion
In this paper we present a PDE-based technique using diffusion-based propagation for medial axis extraction of geometric
objects bounded by arbitrary polygonal meshes. By numerically solving the time-dependent diffusion-based equation using
finite-difference approximations, we simulate the skeletonization process progressively along the time axis to offer users instant
feedback of the medial axis extraction. The diffusion-based equation is formulated to unify the grassfire flow simulation and
diffusion propagation based on differential properties of the boundary surfaces such as curvature. The evolving surface is
propagating from the boundary surface inwards according to the PDE combined with distance field information based on
Taylor polynomials and approximates a simplified and smoothed medial axis of the object associated with distant information
between the skeleton and the original model. With such information, the original model can be easily reconstructed. In addition,
shape sculpting based on skeleton manipulations can be conducted without any difficulty. Because the diffusion equation can
essentially smooth out noises of an irregular dataset, our medial axis extraction process is much less noise-sensitive and able to
provide smoother skeletons for irregular datasets. Our method offers user control of curvature threshold and selecting desired
skeletal points on the propagating surface for the skeleton extraction process that can allow users to define different medial
axis extraction criteria and thus obtain satisfactory skeleton representations. Furthermore, our system also can extract localized
skeletons for selected parts of the objects, which is useful for medial axis extraction of complex models. To illustrate properties
of the extracted medial axis, we also provide interactive manipulation toolkits to deform the medial axis, and use diffusion
propagation to recover the corresponding deformed shape. Our PDE-based approach unifies several modeling tasks such as
shape smoothing (denoising), simplification, editing, and deformation together within a single framework. We hope that it can
be further improved to become a more powerful and convenient tool for shape modeling, synthesis, and analysis of complex
real-world objects.
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