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Abstract

This paper proposes a new concept of polycube splines and develops novel modeling techniques for using the polycube splines in solid
modeling and shape computing. Polycube splines are essentially a novel variant of manifold splines which are built upon the polycube map, serving
as its parametric domain. Our rationale for defining spline surfaces over polycubes is that polycubes have rectangular structures everywhere over
their domains, except a very small number of corner points. The boundary of polycubes can be naturally decomposed into a set of regular
structures, which facilitate tensor-product surface definition, GPU-centric geometric computing, and image-based geometric processing. We
develop algorithms to construct polycube maps, and show that the introduced polycube map naturally induces the affine structure with a finite
number of extraordinary points. Besides its intrinsic rectangular structure, the polycube map may approximate any original scanned data-set with
a very low geometric distortion, so our method for building polycube splines is both natural and necessary, as its parametric domain can mimic the
geometry of modeled objects in a topologically correct and geometrically meaningful manner. We design a new data structure that facilitates the
intuitive and rapid construction of polycube splines in this paper. We demonstrate the polycube splines with applications in surface reconstruction

and shape computing.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Real-world physical prototypes are frequently 2-manifolds
of complex geometry and arbitrary topology. With the rapid
advancement of modern 3D scanning technologies, CAD-
based digital prototypes are routinely acquired in forms of raw
points and/or triangular meshes. In order to enable geometric
design and downstream product development processes
(e.g., accurate shape analysis, finite element simulation, and
e-manufacturing) in CAE environments, discrete data inputs
must be converted into continuous, compact representations for
scientific computing and engineering applications. In order to
model an arbitrary manifold in 3D using conventional spline
schemes, current approaches will segment the manifold to
many smaller open patches, then cover each patch by a single
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coordinate system, so that each patch can be modeled by a
spline surface. Finally, any generic approach must glue all
the spline patches together by adjusting the control points
and the knots along their common boundaries in order to
ensure continuity of certain degree. The entire segmenting
and patching process is primarily performed manually, and
it requires users’ knowledge and skills, and for non-trivial
topology and complicated geometry this task is laborious and
error-prone.

To overcome the above modeling and design difficulties
and address the topological issue, we seek novel modeling
techniques that would allow designers to directly define
continuous spline models over any manifolds (serving as
parametric domains). Such a global approach would have many
modeling benefits, including no need of the transition from
local patch definition to global surface construction via gluing
and abutting, the elimination of a non-intuitive segmentation
and patching process, and ensuring the high-order continuity
requirements. More importantly, we can expect a true “one-
piece” representation for shapes of complicated topology, with
a hope to automate the entire reverse engineering process
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(by converting points and/or polygonal meshes to spline
surfaces with high accuracy) without human intervention.

Towards the aforementioned goal, most recently the
manifold splines proposed by Gu, He, and Qin [10] also
aim to provide a technical solution for directly defining
continuous surfaces over arbitrary manifold domains. In
their work, a manifold can be equivalently treated as a
set of coordinate charts in R? via local parameterization,
and these local charts are then glued coherently to form
a complete manifold surface. As a result, manifold splines
are essentially piecewise polynomials or rational polynomials
defined on affine manifolds, whose transition functions between
different charts are all affine transformations. Thus, the
evaluation algorithms and other computational procedures are
both efficient and robust. They have also showed that any
planar spline schemes (defined over an open planar domain)
which satisfy the parametric affine invariant property can be
straightforwardly extended to manifolds of arbitrary topology
within the manifold spline framework [14,13,15].

Despite this earlier success, certain drawbacks of manifold
splines still remain and demand more powerful modeling
techniques. First of all, there must be singularities for any
closed manifold except tori. Hence, for a closed manifold of
g > 1, there has to be singularities of the atlas which can not be
covered by any chart within its collection set. The existence of
singularities comes from the topological obstruction, which can
not be avoided within the current manifold spline framework.
Given a closed domain manifold of genus g, [10] proposed
a method to compute the affine structure with Euler number
|2 — 2g| extraordinary points and showed that the induced
transition functions are simply the translation. Although in
theory singularity points are simply points, without occupying
any regions or areas, in practice “small” holes must be punched
in order to enable the easy construction of manifold splines
in the finite dimension space. Their earlier work makes no
effort to actually fill the “small” holes in the vicinity of
extraordinary points, in spite of their theoretic contributions.
In addition, given the fact that the number of singularities is
actually fixed, but their positions are somehow globally related,
which are determined by the intrinsic conformal structure of the
underlying surface and are usually difficult to control, i.e., it is
impossible to specify the locations of all the singularities on the
domain manifold.

Aside from splines, subdivision surfaces have also
been extensively investigated recently, for the continuous
representation of discrete data inputs. It defines a smooth
surface as the limit of a sequence of successive refinements
from a given coarse polygonal mesh. All the chart transition
functions are rotation, translation and scaling. Despite their
modeling advantages for arbitrarily complicated geometry
and topology, subdivision surfaces have two drawbacks:
(1) accurate surface evaluation is frequently conducted via
explicit, recursive subdivision since most subdivision schemes
(especially those interpolatory schemes) do not allow closed-
form analytic formulation for their basis functions; (2)
extraordinary points depend on the connectivity of the control
mesh and need special care, as their behaviors and smoothness

properties differ significantly from other regular regions nearby.
Subdivision surfaces can be considered special cases of
manifold splines according to [10].

In this paper, we forge ahead with our new research efforts
by developing the polycube splines, with a goal to further
improve the current state of knowledge for manifold splines.
In a nutshell, our polycube splines can be considered as a
novel variant of manifold splines with many new and attractive
modeling properties. Unlike the previous manifold splines, the
polycube splines are built directly upon the polycube map,
serving as its parametric domain. Because of its regularity, the
polycube is now only covered by charts which are uniquely
associated with faces and edges belonging to one of the cubes.
As a result of the polycube map, all the corner points now
become singular. The key motivation for us to pursue the
definition and construction of polycube splines, is the fact that
the polycube map offers a rectangular structure which will
certainly facilitate geometric computing and shape analysis.
Another main advantage of the polycube spline is that its
parametric domain can mimic the geometry of any modeled
objects in a topologically correct way, hence, it is much
easier to isolate and control the position of the singularities.
Furthermore, there are only four kinds of connectivity on
the singularities, valence 3 to 6, which can greatly simplify
our procedures to handle extraordinary points. The polycube
domain can be constructed to approximate the modeled
geometry with better accuracy, but at the expense of more
cubes and more charts. So, users will have freedom to control
the complexity of the underlying parametric domain and place
singularity points with great flexibility. Fig. 1 demonstrates an
example of our polycube splines. Similar to manifold splines,
polycube splines also afford a general theoretic and engineering
framework in which all the existing planar splines can be
generalized to any polycube domain via an affine structure.
In this paper, we develop algorithms to construct T-splines
over polycubes and demonstrate their applications in shape
modeling and reverse engineering, in order to take advantage of
the properties of partition-of-unity, level-of-detail control, and
hierarchical representation. It may be noted that other powerful
spline schemes, such as triangular B-splines, can be employed
in a similar fashion.

1.1. Contributions

The specific contributions of this paper are as follows:

(i) We present a systematic way to construct polycube
maps for surfaces of arbitrary topology. Our method is
fundamentally different from Tarini et al.’s technique [29]
in that we do not need to compute the projection of
the points from the 3D shape to the polycube, thus, the
polycube can be flexibly constructed at any resolution and
complexity.

(i) We show that the introduced polycube maps naturally
induce the affine structure by removing a finite number
of corner points. Thus, polycube splines become a novel
variant of manifold splines with many new and attractive
properties (outlined above). Taking advantage of the
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Fig. 1. T-splines on polycubes. The polycube serves as the parametric domain
which mimics the geometry of the 3D model. All the corners are singularities
which are colored in yellow. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

low area distortion between the domain manifold and
the smooth spline surface (because polycubes can be
built to approximate the modeled geometry within any
user-specified accuracy), the polycube splines can be
constructed easily and robustly by using simple and regular
charts and isolating all the user-controllable singularity
points.

(iii) Polycube splines offer a general framework in which
any existing planar spline scheme can be generalized to
a polycube domain via an affine structure. Especially,
in this paper, we construct T-splines on polycubes and
demonstrate the efficiency of polycube splines to model
surfaces with high fidelity, while retaining the attractive
properties of partition-of-unity, level-of-detail control, and
hierarchical representation.

The remainder of this paper is organized as follows. We
review the related work on splines and parameterizations in
Section 2. We present the detailed algorithms for constructing
the polycube map in Section 3. Next, we show the hierarchical
surface reconstruction in Section 4. Experimental results with
statistics and performance data are also shown in Section 4.
Finally, we conclude our paper in Section 5 with future research
directions.

2. Related work and background
2.1. T-splines

In [25], Sederberg et al. pioneered the T-spline, a
generalization of the non-uniform B-spline surfaces. Unlike
tensor-product splines, T-spline control grids are no longer
required to be totally regular. In particular, they permit T-
junctions, and iso-parametric curves of control points need
not traverse the entire column/row of control grids. Therefore,
T-splines enable a true local refinement without introducing
additional, unnecessary control points in nearby regions.
Sederberg et al. also developed an algorithm to convert
industry standard NURBS surfaces into T-spline surfaces,

in which a large percentage of superfluous control points
are eliminated [26]. Zheng et al. developed techniques for
adaptively fitting T-splines to functional data [34]. Wang and
Zheng addressed the issue of control point removal for T-
spline surfaces [30]. Yang et al. developed T-spline level sets
for image segmentation and meshing non-uniform sampled and
incomplete data [31,32]. Deng et al. introduced the polynomial
spline functions over T-meshes, an extension of T-splines
such that the splines are piecewise polynomials instead of
rational functions [4]. Recently, Li et al. presented an automatic
technique to convert polygonal meshes to T-splines using
periodic global parameterization [22,24]. Li et al.’s method can
be also viewed as manifold splines since the transition functions
of the periodic global parameterization are compositions of
translations and rotations [24].

2.2. Manifold construction

In essence, manifold construction is to model surfaces
using charts. The shape (2-manifold) is covered by several
charts. One builds functions on each chart. Due to certain
continuity requirements of the transition functions between
overlapping charts, the smoothness properties of the manifold
functions are automatically guaranteed. Therefore, there are no
restrictions/constraints on the control points. All the control
points are free variables in the entire modeling process.
Furthermore, manifold constructions can generate C* smooth
surfaces.

Grimm and Hugues [7] pioneered a generic method to
extend B-splines to surfaces of arbitrary topology, based on
the concept of overlapping charts. Cotrina et al. proposed a C¥
construction on a manifold [2,3]. Ying and Zorin [33] presented
a manifold-based smooth surface construction method which
has C*°-continuous with explicit nonsingular parameterizations
only in the vicinity of regions of interest.

Gu et al. [10] developed a general theoretical framework of
manifold splines in which spline surfaces, defined over planar
domains, can be systematically generalized to any manifold
domain of arbitrary topology (with or without boundaries). He
et al. further developed modeling techniques for applications
of manifold splines using triangular B-splines [14] and Powell-
Sabin splines [13].

2.3. Global surface parameterization

Surface parameterization has been a very active research
area in the past decade [5]. Parameterization can be viewed
as a mapping from a surface in 3D to a 2D canonical domain.
Since isometric mappings only exist in very special cases, many
approaches to surface Euclidean parameterization therefore
attempt to find a mapping which is either conformal (i.e., no
angular distortion) [27,8,21,24,16,19], or equiareal (i.e., no
area distortion) [23,28,20]. Hyperbolic parametrization for
high genus number surfaces is presented in [17]. Spherical
parametrization for genus zero surfaces are introduced in [6,
9]. In sharp contrast to the above parameterization methods,
which build the map between the surface and one of the three
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canonical domains (sphere, Euclidean disk, or hyperbolic disk),
Tarini et al. pioneered the concept of polycube maps, which
has the same topology of the input mesh and also mimics its
rough geometry. Thus, the polycube can induce the map which
minimizes both the angular distortion and area distortion [29].
Tarini et al. demonstrated that polycube maps naturally lead to
a seamless texture mapping method that is simple enough to be
implemented in currently available graphics hardware [29].

3. Construction of polycube maps

In this section, we explain in details our algorithm for
constructing an affine atlas using polycube maps for surfaces of
arbitrary topology. The key difference between the techniques
employed in [29] and ours in this paper is that Tarini et al.’s
technique is trying to find the one-to-one mapping of the 3D
shape and polycube extrinsically, which typically requires the
projection of points from one shape to the other. As a result,
their method is usually quite difficult for handling cases where
the two shapes differ greatly and the point projection does
not establish the one-to-one correspondence. In contrast, our
method aims to compute such a mapping in an intrinsic way.
We first conformally map the 3D shape and the polycube to
the same canonical domains (e.g., sphere, Euclidean plane, or
hyperbolic disk), then we construct a map between these two
domains, which induces a one-to-one map between the 3D
shape and the polycube. Since our method avoids the direct
projection of the 3D shape to the polycube, the polycube can
be constructed independent of the actual geometry of the 3D
shape, allowing different complexity and resolution for the
polycube.

3.1. Riemannian uniformization metric

Constructing the polycube map is equivalent to seeking a
bijective map between the 3D model and the polycube. Our
method for establishing such a mapping varies according to
different topologies of surfaces:genus zero surfaces, genus one
surfaces, and surfaces of high genus.

Suppose a surface S is embedded in R>, then it has
a Riemannian metric, which is represented by its first
fundamental form, induced from the Euclidean metric of R3,
denoted by g. Suppose u : § — R is a scalar function defined
on S, then it can be verified that e**g is another Riemannian
metric on S, denoted by g. It can be proven that angles measured
by g are equal to those measured by g. Therefore, g is conformal
to g and now e is called the conformal factor.

In essence, the Riemannian metric determines the length,
area, curvature and differential operators on S. When the
Riemannian metric is conformally deformed, these geometric
quantities will be changed accordingly. Suppose g is changed
to g = e?g. Then the Gaussian curvature will become

K =e (= Au + K), (1)

where A is the Laplacian-Beltrami operator under the original
metric g. The geodesic curvature will become

k=e " (0qu + k), 2

where n is the tangent vector orthogonal to the boundary.
According to Gauss-Bonnet theorem, the total curvature is

/KdA+/ kds=/1€dA+f kds = 27 x(S), 3)
S EN S ES

where x (S) is the Euler characteristic number of S and 9. is
the boundary of S.

The Riemann uniformization theorem [18] states that for any
surface S, there exists a unique conformal metric, such that
it induces constant Gaussian curvature K and zero geodesic
curvature k.

+1, x(S) >0
K=10, x(5=0 4)
-1, x() <0.

Such a kind of metric is called the uniformization metric of .

We compute the uniformization metric with a heat flow
method [9] for genus zero surfaces, a holomorphic 1-form
method [8,16] for genus one surfaces, and a hyperbolic Ricci
flow method [17] for surfaces with genus greater than one.

In the following, we use notations M and P to denote
the 3D model and its polycube approximation (serving as the
parametric domain), respectively.

The overall flow of our algorithm for establishing the one-
to-one mapping can be summarized as follows:

(1) Given a 3D model M from data acquisition, construct a
polycube P which roughly resembles the geometry of M
and is of the same topology of M.

(i) Compute the uniformization metric of M and embed M in
the canonical domain Dy, which is a domain in S2, EZ or
H2, ie., ¢y : M — Dy.

(iii) Compute the uniformization metric of P and embed P in
the canonical domain Dp,i.e., ¢p : P — Dp.
(iv) Construct the map ¢p,,—p, : Dy — Dp.

(v) Finally, the composition ¢y, p = q&;l o ¢py—Dp © M
gives the desired polycube map from M to P as shown in
Eq. (5).

¢M~>P

M ——>p
P op 4)

Dy — Dp
DM—>DP

Note that, our construction method varies depending on
different types of surfaces. Genus zero surfaces are mapped to
the unit sphere S? with positive curvature K = 1. Genus one
surfaces are mapped to Euclidean plane E? with zero curvature

K = 0. Surfaces of high genus are mapped to hyperbolic disk
H? with negative curvature K = —1.

3.2. Genus-zero polycube map

Genus zero surfaces are topologically equivalent to a sphere.
Thus, we use a sphere as the canonical domain for both M and
P. We use the heat flow method to construct conformal maps
between a closed genus zero surface and the unit sphere S? [9].
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The idea is that, for genus zero closed surfaces, conformal maps
are equivalent to harmonic maps.

Let $ : M — S? denote the spherical mapping. The
harmonic energy is defined as

E(p) = /M<V¢>, V¢)dA, (6)

where (,) is the inner product in R3. The critical point of
the harmonic energy is the harmonic map. Define the normal
component of the Laplacian as

(Ad)*: = (Ap,no¢)m, 7

where n is the normal of ¢ (M). If ¢ is the harmonic map, then
the tangent component of Laplace-Beltrami operator vanishes,
ie.,

Ap = (Ap)*. ®)

Therefore, we can diffuse ¢ to harmonic map by the heat
flow method:
i—"’ = —(A¢p — (49)D). ©)

t

After computing the maps ¢y : M — S?and ¢p : P — S?,
we need to find a map ¢p,,—p, : S> — S? which can align
their major features. For example, we want to align the eyes
and nose of the Isidore Horse model (see Fig. 2) to be at certain
positions on the polycube. To do so, we conformally map the
sphere to the plane using stereographic projection

2x 2y

T:(x,y,2) > ( ) , (x,y,2)€ S%. (10)

11—z 1—z2
We then use a special conformal map from the plane to itself,
a Mobius transformation, to move three arbitrary feature points
into any new desired positions. Suppose for the first surface,
the three feature points are zg, z1 and zo. We first construct the
Mobius transformation which takes them into 0, 1, and oo:
(z —z0)(z1 — 22)

Vi=————~ Y

(z—22)(z1 —20)

We then construct ¥, for three positions on P in a similar
way. Then ¥~ ' Y» maps the feature points on the second
surface into those on the first one. Finally, the conformal map
épy—pp : S? — S? is defined as

PDy—Dp =T oYy oYioT. (12)
Note that the polycube map ¢y p = ¢;1 oPpy—Dp OPM
is conformal since each sub-map is conformal.’

3.3. Genus-one polycube map

Suppose M is a genus one closed surface, w is a holomorphic
1-form. Then, w is well-defined everywhere, i.e., there are no
zero points as shown in Fig. 3.

1 Strictly speaking, the map ¢p : P — S is conformal everywhere except
at the corners of the polycube.

Fig. 2. Conformal mapping of a genus zero surface to the unit sphere induces
the genus zero conformal polycube map. Both the original mesh M and the
polycube P are conformally mapped to the canonical domains, i.e., s?, B2
or H2. Denote these maps by ¢py : M — Dy and ¢p : P — Dp.
By finding the optimal map between Dj; and Dp, we get the polycube map
dM—p = ¢;l °¢py—~>Dp °PM-

Fig. 3. Holomorphic 1-form ® on genus one surface is well defined
everywhere.

By integrating w, M can be periodically mapped to the plane,
each period is called a fundamental polygon. Each canonical
fundamental polygon of genus one surface is a parallelogram.
Given two arbitrary parallelograms, there exists a unique affine
map to map one to the other, such that corners are mapped to
corners, sides are mapped to sides.

The fundamental polygons of M and P, Dy and Dp, are
parallelograms. Denote the unique affine map between them

as ¢p,,—pp, then the polycube map ¢pp—.p : M — P is
formulated as
Pr—P =¢p' 0 $Dy—Dp © bu. (13)

Fig. 4 demonstrates the above mapping method for constructing
a polycube map of the Rockerarm model. The polycube
mesh is manually built. Then both the Rockerarm mesh and
the polycube model are parameterized using the holomorphic
1-form method [8]. Their fundamental polygons are extracted
and mapped by an affine map. The affine map further induces a
bijective map between the Rockerarm model and the polycube.



726 H. Wang et al. / Computer-Aided Design 40 (2008) 721-733

(a) M. . ()

Fig. 4. Euclidean structure induces the genus-one polycube map. The genus one Rockerarm model M in (a) is conformally mapped to the Euclidean plane in (b).
The fundamental domain is a rectangle region enclosed by the green boundary in (b). Then, a polycube P in (c) is also parameterized over the rectangular region in
the same way in (d). By matching the two fundamental regions in (b) and (d) via an affine map, the conformal polycube map for the Rockerarm model is established.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

a b C d e f

Fig. 5. Hyperbolic structures induce the high genus polycube map. The canonical homology basis of the genus-3 sculpture model are colored in blue in (a). (b)
shows the isometric embedding of its universal covering space on the Poincaré hyperbolic disk. We compute the hyperbolic uniformization metric of the polycube
in (c) using a similar approach. The canonical homology basis of the polycube are drawn in blue in (c), (d) shows the isometric embedding of its universal covering
space on the Poincaré hyperbolic disk. By establishing the correspondence between the fundamental domains, we construct the polycube map (shown in (e) and (f))
between (a) and (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.4. High genus polycube map Given the circle packing metric, the length /;; associated
with the edge e;; is computed using the hyperbolic cosine law.

Given a high genus surface with simple geometry like the
3-hole torus model shown in Fig. 1, the polycube map can be
constructed using the techniques in [29]. However, for surfaces
with complicated geometries like the model in Fig. 5, the direct
projection techniques in R? hardly generate bijective maps.
To avoid these difficulties, we use hyperbolic parameterization
method instead.

cosh lizj = cosh y; cosh y; + sinh y; sinh y; cos ¢;;, (14)

where ¢;; is the intersection angle between two circles
associated at v; and v; with radius y; and y; respectively.

The discrete Gaussian curvature K; at an interior vertex v;
with surrounding face f;jx is defined as

K,' =2 — Z Qijk,
fijkeF

3.4.1. Hyperbolic Ricci flow vi € M, (15)

Hyperbolic Ricci flow is introduced in [17]. A circle packing
on a mesh associates a circle with each vertex, circles intersect
each other. A mesh with circle packing is denoted as (M, I", ®),
where M represents the triangulation (connectivity) with vertex
set V, edge set E and face set F, I' = {y;,v; € V} are the

where 91.1 k is the corner angle of f;;x at v;. While the discrete
Gaussian curvature for a boundary vertex v; is defined as

K,' =7 — Z Gl-jk,

v € OM. (16)

vertex radii and ¢ = {¢;;, ¢;; € E} are the angles associated
with each edge. A circle packing metric is define as (M, &, I').
A discrete conformal mapping t : (M, ', &) — (M, T, D)
solely changes the vertex radii I', but preserves the intersection
angles .

fijkeF
Then the hyperbolic Ricci flow is defined as

ayi .
8—): = —sinhy; K;. (17)
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It can be proven that discrete Ricci Flow is convergent
to the uniformization metric and the convergence rate is
exponential [1,17].

3.4.2. Hyperbolic embedding

With the uniformization metric, M with ¢ > 1 can be
periodically mapped onto the hyperbolic space H?. We use
the Poincaré hyperbolic disk model to represent the hyperbolic
space H2. The Poincaré disk is a two-dimensional space defined
in the unit disk {z € C : |z] < 1} on the complex plane C with
hyperbolic metric. The hyperbolic metric is defined as

_ dzdz

S (1=-z)%
The geodesic (hyperbolic lines) in the Poincaré disk are

Euclidean circular arcs perpendicular to the boundary |z| =

1. The rigid motions in the hyperbolic plane are the Mobius
transformations z — w, z € C with the form

ds? (18)

92— 2
w=el 2, (19)
1 -2
where z( is an arbitrary point inside the unit disk.
To embed M into the Poincaré disk, we need to compute
the canonical homology basis, which is a set of 2g curves

{a1,b1,a2, by, ..., ag, be} satisfying the following criteria:

(1) All the curves meet at a single base point, v.
(ii) Each pair of curves {a;, b;} algebraically intersect each
other exactly once.
(iii) No curve in another pair {a;, b;} algebraically intersects
either of a;, b;.

We slice the mesh M along {a,-,b,-}f'=1 to form the
fundamental domain D whose boundary 9D is

oD = alblal_lbl_l . ~~agbgag_1bg_1.

Then the canonical homology basis are mapped to geodesics
on the Poincaré disk. Fig. 6 illustrates the canonical homology
basis and the hyperbolic embedding with the uniformization
metric for a genus 2 model.

3.4.3. Constructing the polycube map

In order to find the map between M and P, we compute their
hyperbolic parameterizations by solving the discrete hyperbolic
Ricci flow in (17). Then, similar to the genus zero case, a
harmonic map ¢p,,— p, is constructed such that it maps the
fundamental polygon of M to the fundamental polygon of P.
Finally, the polycube map is constructed as

OM—P =bp' 0 PDy—Dp © DM (20)

Fig. 5 demonstrates the example of polycube map for a genus-3
surface and highlight our construction pipeline.

3.5. The affine atlas via polycube map

We construct an affine atlas from the polycube map. Each
face and edge on the polycube are associated with its own

Fig. 6. A genus two surface with a set of canonical fundamental group
generators {ay, b, ap, by} is shown on the left. A finite portion of its universal
covering space is shown on the right. Different fundamental domains are drawn
in different colors. The boundary of each fundamental domain is the preimage
of alblaf]bflazbzaglbgl. The points {pg, p1, p2} are the preimages of p
on the surface.

local chart. Each face chart covers only the interior points of
the corresponding face and leaves off all the edges of the face.
Each edge chart covers the interior points of the edge but leaves
off corner vertices. Furthermore, there are overlaps between
face charts and edge charts. The transition functions between
overlapped edge and face charts are simply translations and
rotations of 90 deg. Note that there is NO vertex chart for the
corner vertex, i.e., the corners are singular points. Therefore,
by removing all the corners, the polycube map naturally
induces the affine structure. Fig. 7 highlights face and edge
charts of a polycube. The extraordinary points are colored in
yellow.

In [10], they have pointed out that any planar spline schemes
which satisfy the parametric affine invariant property can be
generalized to a manifold domain via an affine structure. By
removing all the corner points, a polycube domain is just an
affine manifold preserving the affine structure. Therefore, we
can define spline surfaces on polycube directly.

4. Hierarchical surface reconstruction using polycube T-
splines

After constructing the domain manifold and affine atlas
of the original model by computing the polycube maps
(Section 3), we are now ready to generalize the T-spline from
planar domains to manifold domains via an affine structure.
This will enable the automatic reverse engineering from
polygonal models initially acquired to a more compact spline
representation with high accuracy.

4.1. T-splines via polycube maps

The key advantage for defining T-spline over polycube maps
is that each face chart of the polycube is nothing more than
a union of rectangles; conventional tensor-product splines are
special cases of T-splines, and they are all naturally defined
over rectangular regions. More importantly, the hierarchical
definition and level-of-detail control are attractive features in
practice.
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(a) Face charts.

(b) Edge charts.

(e) Face chart.

(s <

(c) Singularities.

(d) Close-up view of one face chart and its
associated edge charts and singularities.

(f) Transition function.

Fig. 7. Polycube map induces an affine structure. The polycube is covered by face and edge charts. Each face chart (drawn in blue) covers only the interior points of
the corresponding face and leaves off all the edges of the face. Each edge chart (drawn in red) covers the interior points of the edges but leaves off corner vertices.
The corners (drawn in yellow) are singularities which are NOT covered by any charts. We highlight one face chart and its associated edge charts and singularities
in (d). By flattening the edge charts, we get the planar domain shown in (e). Note that the transition functions between overlapped edge and face charts are simply
translations and rotations. Therefore, by removing all the corners, the open polycube P \ C has the affine structure. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Recall that for every control point in the T-mesh, the
covering region of its basis function is a rectangle, whose side
lengths (knot vectors) are determined by the connectivity of
the T-mesh. In polycube T-splines, we follow the rules defined
in [25,26]. We further require that on each chart, the basis
functions vanish outside the boundary of the chart. Thus, the
face charts are totally separate from each other. Each edge chart
connects two face charts (one face chart if it is a boundary
edge and not shared by two faces). Therefore, given an arbitrary
parameter u € P \ C, it may be covered by a single face chart,
or a single edge chart, or by one face chart and one edge chart.

On each (edge and face) chart (U;, ¢;), the spline patch is
defined as a point-based spline whose control points form a
T-mesh:

Fi(w) =) ¢;Bj(¢i(w), uel, @1)
J

where ¢; € R3 are the control points.
Given an arbitrary parameter u € P\ C, the spline evaluation
can be carried out as follows:

(i) Find the set of charts which cover this point u. This set V
contains one face chart, or one edge chart, or one face chart
and one edge chart.

(i) The function value is the partition of unity of the spline
patches in the above chart(s), i.e.,

> > ¢jBj(¢i(w)

ieV j

> X Bi¢i)

ieV j

F(u) =

4.2. Least-square fitting and hierarchical refinement

We now discuss the problem of finding a good approxima-
tion of a given polygonal mesh S with vertices {p;};’; by a
manifold T-spline. We assume that the polygonal mesh S has
been normalized to be inside the unit cube centered at the ori-
gin. A commonly-used technology is to minimize a linear com-
bination of interpolation and fairness functionals, i.e.,

min E = Egis + A Efair. (22)

The first part is

m
Egiso= ) IIF(u) —p;II%,
i=1
where w; € M is the parameter forp;, i =1, ..., m.
The second part Epgj in (22) is a smoothing term. A
frequently used example is the thin-plate energy,

Efair = // (Fiu + 2F5v + F%v)dudv.
M

Note that both parts are quadratic functions of the unknown
control points, leading to a linear system.

We solve Eq. (22) for unknown control points using
the Conjugate Gradient method. The value and gradient of
the interpolation functional and fairness functional can be
computed straightforwardly.

In our method, we control the quality of the manifold T-
spline by specifying the maximal fitting tolerance Lo, =
max ||[F(w;) — p;ll, i = 1,...,m. If the current surface
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S Polycube

N, =31K map

N! = 1218

Ll =58%

N3 =4325 NS = 6475

L3 =1.9% L3 =0.54%

Fig. 8. Hierarchical surface reconstruction of Polycube T-splines. Né and Lf,o are the number of control points and maximal fitting error in iteration i. Ny is the
number of vertices in the input polygonal mesh S. The input data is normalized to a unit cube.

(b) T-spline.

(e) Polygonal mesh. (f) T-spline.

(g) T-junctions.

(h) Control points.

Fig. 9. Close-up views of the reconstructed details. Our hierarchical surface reconstruction algorithm can faithfully reconstruct the details in the original model. (a)
and (e) show the original polygonal model. (b) and (f) show the T-spline surfaces of C 2 continuity. (c) and (g) highlight the T-junctions on the spline surfaces. (d)

and (h) show the splines overlaid by the control points.

does not satisfy this criterion, we employ adaptive refinement
to introduce new degrees of freedom into the surface
representation to improve the fitting quality. Because of the
natural and elegant hierarchial structure of T-splines, this step
can be done easily. Suppose a domain rectangle / violates the
criterion and denote L. the Lo error on rectangle 1. If the
LCI>o > 2¢g, split the rectangle I using 1-to-4 scheme; Otherwise,
we divide I into two rectangles by splitting the longest edge.
After adaptive refinement, we then re-calculate the control
points until the maximal fitting tolerance is satisfied.

Fig. 8 shows the whole procedure of hierarchical fitting of
T-splines. For example, the initial spline of the Head model
(Fig. 8) contains only 1218 control points and the maximal
error Lo, = 5.8%. Through five iterations, we can obtain a
much more refined spline surface with 6475 control points by
inserting only necessary control points. The maximal fitting
error reduces to 0.54%. As shown in the close-up view (Fig. 9),
our hierarchical data fitting procedure can produce high quality
polycube T-splines with high-fidelity and we will be able to
recover all the surface details.
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4.3. Handling the extraordinary points

In [10], Gu et al. proved that manifold splines MUST have
singularities if the domain manifold is closed and not a torus.
The number of extraordinary points of the domain manifold via
conformal structures and polycube maps are different. Given
the surface M with genus g and b boundaries, the number of
zero points of the holomorphic 1-form is fixed, i.e., [2g — 2 +
b|. Using polycube maps, the number of extraordinary points
depends on the geometry of the polycube, i.e., each corner is a
singularity.

Although the singularities are just points on the domain
manifold, in practice, we have to remove these points and
their 1-ring or 2-ring neighbors. As a result, the holes are
unavoidably in the spline surface. Thus, we need to find
a blending surface patch to fill the holes smoothly. In our
implementation, we use a cubic triangular spline to fill each
hole such that the surface is C? inside and G'! along the
boundaries of the hole. The reason that we choose the triangular
B-spline [11,12] is its flexibility in the domain construction and
its potential to match with any number of sides of holes.

Thus, our goal is to solve the following optimization
problem:

9%s 2 9%s 2 9%s 2
E(s)://ﬂ (m) +2<8u3v> +<m) dudv  (23)

where s is the triangular B-spline surface, and (2 is the
parametric domain of s. Our strategy to fill the hole is to find s
solving the following minimization problem:

as as

min{E(s) 2Slan = f, F™ X 3

= n} (24)
a2
where f and n are the boundary positions and normals.

The boundary conditions are represented by several
sampling points on the boundary of the spline surface. The
boundary position constraints naturally lead to a system of
linear equations on the control points. The normal constraints
are expressed as

0
—S,n =0, a—s,n =0.
ou ov

Therefore, Eq. (24) is a linear least-square problem with linear
constraints, which can be solved easily using the Lagrange
Multiplier method. Fig. 10 demonstrates the procedure pipeline
to handle the extraordinary points on the Rocker Arm model.

4.4. Discussions

This subsection compares the T-splines constructed using
a conformal structure [15] and apolycube map, respectively.
From the chart-relation’s point of view, these methods differ
in three aspects, the number and the locations of singularities,
the angle/area distortion, and the type of transition functions.
Each method has its own merits and users may choose one or
another depending on their specific application needs. Table 1
summaries the salient differences between these methods.

Gy o
TS5
..'Q.'o:u'
Lo AR

Fig. 10. Handing the extraordinary points of the manifold T-spline whose
affine atlas is constructed using polycube maps, where all the corners are
extraordinary points (shown in (a)). (b) shows the domain manifold after
removing all the corners. (c) shows the open manifold T-spline surface
with many holes. For each hole, we construct a cubic triangular B-spline
surface which minimizes the thin-plate energy functional (24) and satisfies the
boundary condition. (d) shows the final result after hole-filling (hole areas are
all colored in green). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 11. Polycube T-splines for the Isodore Horse model.

Conformal structure induces the affine structure with a fixed
number of extraordinary points, i.e., |2¢g — 2 + b|. For genus-
zero surfaces, we usually intentionally cut two boundaries on
the model. Note that, we do not modify the geometry of the
original model, the number of extraordinary points drop to
zero. Although conformal structures preserves the angles very
well, they inevitably introduce large area distortion if the model
has some long, extruding parts. These large area distortions
usually make the spline construction very difficult, since we
need to introduce more control points in such areas. The
transition functions of the affine atlas via conformal structure is
simply the translations, which facilitates the implementation of
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Table 1
Comparison of the methods to compute affine structures. g, genus of the domain manifold M; b, number of boundaries of M

Method # of singularities Location of singularities Area distortion Angle distortion Transition function
Conformal structure 2g —2+b| Difficult to control Large on extruding parts No Translation
Polycube map Many Easy to control Low Translation and 90 deg rotation

(a) Polycube map.

(b) T-spline.

(c) T-junctions.

Fig. 12. Polycube T-splines for the Chinese Dragon model.

T-splines on manifolds. The valence of extraordinary points
of T-splines via conformal structure is eight, i.e., the hole is
sixteen-sided.

Polycube maps are ideal to reduce both the area and angle
distortion in the affine atlas, as shown in the 3-hole torus models
in Fig. 1. Thus, it facilitates the spline construction procedures.
However, the side-effect to reducing the area distortion is to
introduce more extraordinary points simultaneously. Usually,
the smaller the area distortion, the greater the number of
extraordinary points. The transition functions of the affine atlas
via polycube maps is the composition of translation and 90 deg
rotation. The valence of singularities of T-spline via polycube
map is three, four, five or six, thus, the hole is six, eight, ten or
twelve-sided (see Fig. 13).

4.5. Experimental results

Our prototype system is implemented in C++ on a Windows
platform. We built a complete system for computing the
conformal structures, the polycube maps and T-splines. We
tested our algorithms on various models from genus zero to
genus three. The statistics of the test cases are shown in Table 2.
Fig. 8 illustrates the hierarchical surface reconstruction. As
shown in Figs. 8 and 9, we can get high-quality spline surfaces
by gradually increasing the number of control points. More
complicated models are shown in Figs. 11, 12 and 14. The
results demonstrate both the theoretic rigor and feasibility in
practice for methodologies and computational techniques.

5. Conclusion

We have developed polycube splines which not only
inherit all the features of general manifold splines but
also have new and more attractive properties of their own,

Fig. 13. Extraordinary point (marked in red) with valence 3, 4, 5 and 6.

including hierarchical representation, level-of-detail control,
regular domain, partition-of-unity for basis functions, easy
chart construction, and easy handling of extraordinary points.
The polycube splines are naturally built upon the polycube map
which serve as its parametric domain. The use of polycubes
for spline surface definition and construction is the first attempt
to take advantage of the rectangular structure defined by the
boundary of polycubes, allowing the parametric domain to
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(a) Polycube map. (b) T-spline. (c) T-junctions. (d) Control points.

Fig. 14. Construction of manifold T-splines using polycube maps.
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Table 2

Statistics of test examples

Object Genus Ny N¢ rms (%)
Head (Figs. 8 and 9) 0 8 6475 0.05
Bimba (Fig. 14) 0 16 10964 0.07
Buddha (Fig. 14) 0 16 11067 0.04
Rockerarm (Fig. 14) 1 24 4132 0.03
3-hole Torus (Fig. 1) 3 32 5180 0.02
Isidore Horse (Fig. 11) 0 20 12158 0.07
Chinese Dragon (Fig. 12) 0 28 11335 0.07
Ramesses (Fig. 14) 0 24 9874 0.04

Ny, # of singularities; N, # of control points; rms, root-mean-square error.

actually mimic the geometry of the modeled objects with lower
area distortion while enforcing their topological consistence.
We have presented our algorithms to construct polycube maps
as the first step to enable spline construction over polycubes
of arbitrary topology. We show that the introduced polycube
maps easily induce the affine structures except at the finite
number of corner points, where we also articulate our strategy
for the hole-filling procedure. Through extensive experiments
on various models, we demonstrate that polycube splines are
a very good candidate for accurately representing complicated
geometric models of arbitrarily complicated topology with
low fitting errors and fewer control points (in comparison
with polygonal models). Although the immediate application
documented in this paper is data fitting for reverse engineering
and shape presentation, we foresee a broader application scope
in solid computing, shape analysis, data compression, FEM-
based dynamic simulation, and virtual prototyping in CAD
environments.
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