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Abstract. This paper develops the manifold T-splines, which naturally extend
the concept and the currently available algorithms/techniques of the pqtaia
nar tensor-product NURBS and T-splines to arbitrary manifold dombaeng
topological type. The key idea is the global conformal parameterizatadriritu-
itively induces a tensor-product structure with a finite number of zemt@cand
hence offering a natural mechanism for generalizing the tensoupraglines
throughout the entire manifold. In our shape modeling framework, thaiim
fold T-splines are globally well-defined except at a finite number of exdia
nary points, without the need of any tedious trimming and patching work. We
present an efficient algorithm to convert triangular meshes to manifefifies.
Because of the natural, built-in hierarchy of T-splines, we can easibnstaict

a manifold T-spline surface of high-quality with LOD control and hiergrah
structure.

1 Introduction

Despite many new shape representations proposed in reeard, to date, NURBS
remain the prevailing industrial standard for surface ninden CAD/CAM primar-
ily because of their many attractive geometric propertied their dominant use in
modeling and design software industry. Nevertheless, gixbibit two major shortcom-
ings: (1) NURBS control points must always align themselvea rectangular grid.
As a result, localized details and sharp features can noasieyeaccommodated with-
out introducing many more control points via knot insertidoreover, level-of-detail
(LOD) control and hierarchical structure facilitating riitdsolution analysis are im-
possible using a single-level NURBS; (2) due to the naturigsafctangular structure,
a single NURBS surface can only represent very simple sheypgsas open surfaces
or tori. In practice, in order to modeling surfaces of corogiéd topology, one must
define a network of tensor-produBtspline or NURBS patches and maintain certain
continuity requirement between adjacent patches [1, 2thEumore, surface trimming
and abutting are oftentimes unavoidable.

To combat the above deficiencies of tensor-product NURB&réwently developed
techniques, T-spline [3] and manifold spline [4], have ba#roduced in shape mod-
eling community. T-splines, developed by Sederberg, ZhBaggenov, and Nasri [3],
are a generalization of NURBS surfaces that are capablapoffisantly reducing the
number of superfluous control points by using the T-juncti@thanism. The main dif-
ference between a T-spline control mesh and a NURBS conteshris that T-splines
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Fig. 1. Modeling the genus-one Rocker Arm model by manifold T-spline. (& Tbnformal
structure induces a natural curvilinear coordinate on the manifold doifgi€onstruct the do-
main manifold by tracing the iso-curves of the global conformal paterization. Note that the
domain manifoldM contains only quadrilaterals and T-junctions. (c) A culé-tontinuous)
manifold T-spline surface. (d) The red curves on the manifold T-s@inméace are the images
of the edges on the domain manifold along the u and v directions., {&12ontrol points are
highlighted. (f) The close-up view of the details.

allow a row or column of control points to terminate at anyveghwithout strictly en-
forcing the rectangular grid structure throughout the peetaic domain. Consequently,
T-splines enable much better local refinement capabiliies NURBS. Furthermore,
using the techniques presented in [3], it is possible to madjoining T-spline surfaces
into a single T-spline without adding new control pointswéwer, this patching process
requires that the knot intervals of the to-be-merged edgest establish an one-to-one
correspondence between the two surfaces.

Manifold spline, presented by Gu, He, and Qin [4], is a gelntakeoretical frame-
work, in which the existing spline schemes defined over plaioanains can be sys-
tematically generalized to any manifold domain of arbitrpology (with or without
boundaries) using affine structures. They demonstrateidé¢iasof manifold spline only
using triangulaB-splines because of the attractive properties of triamgBiaplines,



Manifold T-spline 3

such as arbitrary triangulation, parametric affine invac& and piecewise polynomial
reproduction. Despite the generality of trianguBasplines, they have not been used in
an industrial setting due to their modeling complexity irmlkeation, differential prop-
erty computation, and data management. In practice, 2Bydike control point layout
facilitates the effective computation, shape analysis, perhaps above all, the sim-
plicity of data structure. In spite of all the potential mtidg power associated with
our manifold spline, its has not gained a widespread pojpylarainly due to the fact
that its constituent is trianguld-spline. To further promote its utility in real-world
applications, we must bring tensor-product splines suddW@RBS into our manifold
spline framework and demonstrate its efficacy. Our curresgarch reported here aims
to serve this need.

In particular, this paper presents the manifold T-spliesatural and necessary
integration of T-splines and manifold splines, with a gaalrétain all the desirable
properties while overcoming the aforementioned modelmnagvtdacks at the same time.
Manifold T-splines can be directly defined over the manifofcarbitrary topology to
accurately represent various shapes with complicated geprand topology. Mani-
fold T-splines naturally inherit all the attractive propes from T-splines defined over
a planar domain, including the powerful local refinementatalities and the hierarchi-
cal organization for LOD control. Definitely worth mentiowgi here is that its build-
ing block comes from tensor-product NURBS, an industriahdard in all CAD/CAM
software systems with a large variety of algorithmic roesiravailable. The systematic
development of our manifold T-splines streamlines theremrocess of our manifold
splines by demonstrating the intrinsic connection betwmeanifold splines and pop-
ular tensor-product NURBS. As a result, our manifold T4sgdi are suitable for both
expert users and novice users. Users, who are familiar WiiRBIS, can easily em-
brace our manifold T-splines without extra difficulties,adisthe software routines and
existing algorithms for tensor-product NURBS remain umgjed in our new model-
ing framework. Figure 1 shows the manifold T-spline of genus Rocker Arm model.
This manifold T-spline is a single spline representatiothaat any trimming, cutting
and patching work.

2 Previous Work

2.1 Hierarchical Splines and B-splines/Bzier Splines Based Modeling
Techniques

Forsey and Bartels presented the hierarchB:apline [5], in which a single control
point can be inserted without propagating an entire row durna of control points.
Gonzalez-Ochoa and Peters [6] presented the localizedrbigy surface splines which
extended the hierarchical spline paradigm to surfacesifrary topology. Yvartet

al presented th&? hierarchical triangular spline which works on any 2-malaiftsi-
angular mesh of arbitrary genus and has no restriction oredhaectivity of the ver-
tices. They demonstrated hierarchical triangular splinesmooth adaptive fitting of
3D models in [7]. In [3], Sederbergt al. presented the T-spline, a generalization of
the non-uniform B-spline surfaces. T-spline control griéed not to be totally regular.
In particular, they allow T-junctions, and lines of contmmints need not to traverse
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the entire control grid. Therefore, T-splines enable tngal refinement without intro-
ducing additional, unnecessary control point in nearbyoregyy Sederbergt al. also
developed an algorithm to convert NURBS surfaces into hemurfaces, in which a
large percentage of superfluous control points are elirechEg].

There also exist large number of literatures in modeling B&pgs of complicated
topology usingB-splines and Bzier patches. Due to the space limitation, we just name
a few of them. Peters construct€d surfaces of arbitrary topology using biquadratic
and bicubic spliens [9]. This method generalizes the stahgiguadratic tensor-product
B-spline representation to irregular meshes, i.e., thexeamregularity restrictions on
the input meshes. Hahmann and Bonneau [10] presented a anfethinterpolating
2-manifold triangular meshes with a parametric surfacepmsad of Rizer patches
of degree 5. This method can generate visually pleasingeshajithout the unwanted
undulations, even if the interpolated mesh has irreguitufes. Loop and DeRose pre-
sented a method for constructing surfaces from control egesharbitrary topological
type [11]. This method is based on S-patches which generbiguadratic and bicu-
bic B-splines. The abov@-splines and Bzier spline based methods share one common
property: they require the control points along the bouiedasf adjacent spline patches
satisfying certain constraints to rea@, C or C? continuity. Therefore, only part of
the control points serve the geometric modeling purpose.

2.2 Manifold Construction

There are some related work on defining functions over mihifa essence, mani-
fold construction is different from the above work on spéire arbitrary topology. The
shape (2-manifold) is covered by several charts. One béuidstions on each chart.
Due to certain continuity requirement of the transitiondiions between overlapping
charts, the smoothness properties of the manifold funstemeautomaticallyguar-
anteed. Therefore, there are no restrictions/constraimtthe control points. All the
control points are free variables in the entire modelingpss. Furthermore, manifold
constructions can genera® smooth surfaces.

Grimm and Hugues [12] pioneered a generic method to extesgliBes to sur-
faces of arbitrary topology, based on the concept of ovpiapcharts. Cotrinaet
al. proposed &K construction on manifold [13, 14]. Ying and Zorin [15] presed
a manifold-based smooth surface construction method whasiC”-continuous with
explicit nonsingular parameterizations only in the vigjrof regions of interest.

More recently, Giet al. [4] developed a general theoretical framework of manifold
splines in which spline surfaces defined over planar donw@inde systematically gen-
eralized to any manifold domain of arbitrary topology (wih without boundaries).
Manifold spline is different from the above manifold constiion methods in the fol-
lowing aspects: 1) The transition functions of manifoldspmust be affine. Therefore,
the requirements of manifold spline is much stronger thawipus work. That is why
topological obstruction plays an important role in the ¢aurction. 2) Manifold spline
produces either polynomial or rational polynomials. On ahgrt, the basis functions
are always polynomials or rational polynomials, and repmésd a8-splines or rational
B-splines.
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To further improve our manifold spline results, in this pape develop the mani-
fold T-spline, which combine the benefits of our manifoldispland T-spline towards
a more practical solution on surface modeling and simutatio

3 Manifold T-spline

As pointed out in [4], if a particular planar spline schemimigriant under the paramet-
ric affine transformation, it can be generalized to manitiddhain of arbitrary topology
with no more than Euler number of singular points. For examplangularB-splines
and Powell-Sabin splines have been generalized from tmaptiomain to manifold of
arbitrary topology [4, 16].

T-splines [3] are a generalization of NURBS surfaces thatcapable of signifi-
cantly reducing the number of superfluous control pointsplihres are parametric affine
invariant, and therefore, they can be generalized to miarifomain without theoretical
difficulties. The overview of the construction algorithmais follows:

Algorithm: Construction of manifold T-spline
Input: A polygonal mesl, maximal fitting tolerance
Output: A manifold T-splind= which approximate®

1. Compute the global conformal parameterizatio® of

2. Construct the domain manifol (a coarse T-mesh) according to the conformal
structure ofP.

3. Assign the knot interval for each edgeMfto get the initial T-splind-.

4. Compute the control points &f by minimizing a linear combination of the inter-
polation and fairness functional.

5. Locally refine the T-spliné€ if the fitting error is bigger than the user specified
fitting tolerancee and repeat step 4. Otherwise, output

3.1 Global Conformal Parameterization

SupposeP is a surface with handles, either open or closed. A globafaroral pa-
rameterization is a mag: P — R?, such that each poir on M is mapped to a point
on the planar parametric domapip) = (u(p),v(p)). Furthermore, the mapis angle
preserving, which is equivalent to the following fact: sapp we arbitrarily draw two
intersecting curveg, y» onM, the intersection angle ¢, then the intersection angle of
their imagesp(y1) andg(y.) is alsoa. Mathematically, the conformality of the param-
eterization is formulated in the following way: the first flamental form oM under
conformal parameterizatiofu, v) is represented ads® = A%(u, v)(dw? 4+ dv?), whereh
is called the conformal factor, which indicates the areim ta¢tween the area dvl and
that on the plane.

In practice, it is more convenient to compute the gradieldsief ¢, namely(syu, 7v).
If @is conformal, then it satisfies the following criteria:

VV(p) = n(p) x 7u(p),
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wheren(p) is the normal at the poirt, also

VX YU=7x V=0,

because the gradient fields are curl-free. Formally, a gaiector fields satisfying the
above conditions is holomorphic 1-formThere exists an infinite number of this kind
of vector fields. They form a@dimensional real linear space, wherés the number
of handles ofP.The integration curvesyu andsyv are calledhorizontal and vertical
trajectories respectively. It is obvious that the horizontal and veiticajectories are
orthogonal everywhere and two horizontal (vertical) twpeies do not intersect each
other in general. There are special pointsRyrwhere two horizontal trajectories in-
tersect (two vertical trajectories also intersect). It banproven that, at those points,
the conformal factors are zero, therefore, such kind of tgscne calledzero pointsof
the holomorphic 1-form. By the Poin&Hopf theorem, every vector field on a closed
surface of genug # 1 must have zero points. The holomorphic 1-form has the @niqu
property that it has the minimal number of zero points, |25~ 2| zero points.

The following theorem reveals the relationship betweerctirdormal structure and
the affine structure.

Theorem 1. ([4]) Given a closed genus g surface M, and a holomorphic 1-torm
Denote by Z= {zeros ofw} the zero points ofo. Then the size of Z is no more than
29— 2, and there exists an affine atlas ory®ldeduced bw.

Essentially, Theorem 3 indicates that an affine atlas of afoldrivi can be deduced
from its conformal structure in a straightforward fashion.

3.2 Domain Manifold Construction

Unlike the manifold triangulaB-spline which does not have any restriction on the do-
main manifold [4], manifold T-splines require that the domenanifold has mainly
rectangular structure possibly with T-junctions. The gllatonformal parameterization
induces the natural tensor-product structures on the domanifold with Euler number
of zero points, which furthermore induces the affine stmectf the domain manifold.
In the subsection, we present the method to construct thaitiamanifold (quad mesh
with T-junctions). The method varies different types offaces. We explain the details
for each case: genus zero closed surfaces, genus one dfexbs, high genus closed
surfaces and surfaces with boundaries.

Genus zero closed surfacelSvery genus zero closed surfadéean be conformally
mapped to a sphere. Practical algorithms for computing se@ps are given in [17,
18]. The idea used in [17] is that, for genus zero closed sasfaconformal maps are
equivalent to harmonic maps, which can be computed usingflo@amethod. Denote
by f : P — S? the conformal map and®, @) the spherical coordinates. The horizon-
tal trajectories orP are the curves ~1(@ = const), and the vertical trajectories are
f=1(8 = const). The preimages of the north and south poles are the zeraspdine
trajectories are orthogonal everywhere except at the zsrtgpand form the conformal
net. Figure 8 shows the conformal parameterization and ¢ineath manifold of the
genus zero Iphegenia model.

Genus one closed surfaceBhe holomorphic 1-fornw on a genus one closed sur-
faceP is nonsingular everywhere, i.e., there are no zero poirtgs;Tthe construction
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of domain manifold is straightforward. By integratingon P, the whole surface can be
conformally mapped to a parallelogram on the plane, calledundamental periodf

P. In general, this is not a rectangle, but a skewed parallalogvhose shape is deter-
mined by the conformal structure &f If the fundamental period is a rectangle, then
all the horizontal and vertical trajectories forming thefaymal net on the surfaces are
closed circles. Otherwise, two families of curves paratethe sides of the parallelo-
gram are used as the trajectories. Figure 1 shows the coaf@amameterization and
domain manifold of the Rocker Arm model.

High genus closed surface$he global structure of conformal nets on high genus
closed surfaces is more complicated than the above casés the existence of zero
points.

Once the differential form is obtained, we locate all itsapoints and all the hor-
izontal trajectories passing through them, namely,dtitical horizontal trajectories.
The critical horizontal trajectories partition the sudanto several patches. Each patch
is either a cylinder or a disk. All patches can be conformialgpped to a planar rectan-
gle. Therefore, we can build the conformal net for each patod glue them together.
Note that, the T-junctions are allowed along the boundasfabe patches. The zero
points, the critical horizontal trajectories, and the patform a graph, the so called
critical graph.

(©

Fig. 2. Critical graph of the two-hole torus model. (a) Global conformal patanization. (b) The
critical horizontal trajectories partition the surface into two patches. Eatdhs a cylinder. (c)
Map each patch to a planar rectangle. (d) We build the quad mesh fopatathand then glue
them together.

Surfaces with boundariesFor surface with boundaries, we need to double cover
the original surfaces to make it become a closed surface[{8&dor the details of
double covering technique). GenerallyHfis of genusg and hasb boundaries, then
the double-covered surfaéds a closed surface with genug-2b— 1. We compute the
holomorphic 1-form basis d% and then find a special holomorphic 1-focon= (0, wy)
on it such thaty, is orthogonal t@P everywhere. Thisoinduces a conformal net dn
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for which all curves irdP are vertical trajectories. Figure 6 illustrates the caitigraph

of the Stanford Bunny. In order to get the uniform global @ynfal parameterization,
three cuts are introduced in the original model, two are atifhs of ears, one is at the
bottom. Therefore, it is topologically equivalent to a 2ehdisk. The double covered
surface is of genus 2. The zero point is between the rootsedvitb ears. The critical
horizontal trajectories partition the surface into 2 carted components, each compo-
nent is a topological disk which can be conformally mappea tectangle in the plane
by integrating the holomorphic 1-form. Then the domain manifold can be constructed
by remeshing each component.

Fig. 3. Modeling the Kitten model using manifold T-spline with 765 control points.

3.3 Hierarchical Surface Reconstruction

Given the domain manifoll with conformal structurep: M — R?, the manifold T-
spline can be formulated as follows:

F(U) = 3 CiBi(w). UM, ®

whereB;s are basis functions ar@h = (X, Vi, z,w;) are control points i?* whose
weights aren;, and whose Cartesian coordinates ﬁr@q ,Yi»Z). The cartesian coordi-
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nates of points on the surface are given by
2106, %,2)Bi (@) @
S WiBi(@(u))

Given a parametar € M, the evaluation can be carried out on arbitrary charts coger
u.

We now discuss the problem of finding a good approximationgi¥an polygonal
meshP with vertices{p; }|" ; by a manifold T-spline.

A commonly-used technology is to minimize a linear comborabf interpolation
and fairness functionals, i.e.,

MINE = Egjst + AEfair- (3)

The first part is
m
Egist= Y [[F(ui) —pil|®
2

whereu; € M is the parameter fqu;,i=1,...,m.
The second patE:g; in (3) is a smoothing term. A frequently-used example is the
thin-plate energy,

Efair ://'\A(F3U+ZF5v+F3v)dUdV

Note that both parts are quadratic functions of the unknowwitrol points.

We solve Equation 3 for unknown control points using Conjagaradient method.
The value and gradient of the interpolation functional agidness functional can be
computed straightforwardly.

In our method, we control the quality of the manifold T-splispline by specifying
the maximal fitting toleranck. = max||F(ui) —pi||,i =1,...,m. If the current surface
does not satisfy this criterion, we employ adaptive refingn@introduce new degrees
of freedom into the surface representation to improve thiaditquality. Because of
the natural and elegant hierarchial structure of T-splities step can be done easily.
Suppose a domain rectandleviolates the criterion and denotg, the L., error on
rectanglel. If the L, > 2¢, split the rectanglé using 1-to-4 scheme; Otherwise, we
divide | into two rectangles by splitting the longest edge.

After adaptive refinement, we then re-calculate the copoits until the maximal
fitting tolerance is satisfied. Figure 3.3 shows the wholegdaore of hierarchical fitting
of the David’'s head model. The initial spline contains ondb ontrol points and the
maximal errorL,, = 8.6%. Through six iterations, we can obtain a much more refined
spline with 7706 control points. The maximal fitting erroduees to 074%. As shown
in the close-up view (Figure 5), our hierarchical data fiffonocedure can produce high
quality manifold T-splines with high-fidelity recoveredtes.

3.4 Experimental Results

We have implemented a prototype system on a 3GHz Pentium IWIECLGB RAM.
We perform experiments on various real-world surfaces.rtfeoto compare the fit-
ting quality across different models, we uniformly scale thodels to fit within a unit
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Table 1. Statistics of test caseblp, # of points in the polygonal meshi, # of control points;
rms, root-mean-square errdr;,, maximal error. The execution time measures in minutes.

| Object [ Np | Nc [ rms | Lo [Time]
David |200,0007,7060.08%0.74% 39m
Bunny | 34,000(1,3040.09%0.81% 18m
Iphegenia|150,0009,907/0.06%60.46% 53m
Rocker Arm 50,000 (2,121{0.04%0.36% 26m
Kitten 40,000| 765 |0.05%0.44% 12m

cube. Table 1 summarizes the spline complexities and pedioce. The execution time
includes the global conformal parameterization, domainifoll construction and hi-

erarchical spline fitting. Figure 8 shows the manifold Tispbf Iphegenia model. Note
that the details can be reconstructed easily with an apjateprumber of control points.

4 Conclusions

In this paper, we have presented the manifold T-splines asval shape modeling

paradigm for complicated geometry and topology. Built upoin previous work, the

manifold T-splines integrate the algorithms and techrécpfethe widely-used, tensor-
product NURBS and recently-proposed T-splines towardsffextive shape model-

ing for arbitrary manifold. Our motivations come from twaffitiers: (1) extending

NURBS and T-splines to the manifold setting; and (2) prongtihe widespread ac-
ceptance of manifold splines in real-world, shape modedipglications. The central

idea is the global conformal parameterization that nalyiatuces a tensor-product
structure over arbitrarily complicated manifold. In ouaple modeling framework, the
manifold T-splines are globally well-defined except at atdéimumber of extraordinary

points without the need of any tedious and counter-intaitiimming and patching

work. Driven by the theoretical advances, we have develapeefficient algorithm au-

tomatically construct manifold T-splines from input dat@ms. The salient features of
our manifold T-splines include: natural hierarchical strwe, local refinement, LOD

control, tensor-product splines as building blocks, etar @ew techniques are poised
to be effective in shape modeling, and interactive design.
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Conformal N¢ =105 NZ = 295
structure Ll =9.6% L2 =5.7%

NS =950 Ng = 2130 NS = 5087 Né = 7706
L3 =3.8% L4 =2.4% L2 =1.3% LS =0.74%

Fig. 4. Hierarchical surface reconstructidﬂi: andLl, are the number of control points and maxi-
mal fitting error in iteration. Ny is the number vertices in the input polygonal m&sHhe input
data is normalized to a unit cube.

Fig. 5.Close-up of the reconstructed details. (a),(c) The original polygoeah. (b),(d) Manifold
T-spline where the red curves highlight the T-junctions.
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>O{

@) (b)

Fig. 6. Critical graph and domain manifold. (a) shows the global conformarpaterization. (b)
shows the critical horizontal trajectories partition the whole surface into tmagponents. Each
component can be conformally mapped to a rectangle. (c) Consteudbthain manifold (quad
mesh with T-junctions) by remeshing each component. T-junctions aweeallalong the critical
trajectories.

Fig. 7. Converting Stanford Bunny into a manifold T-spline. (a)&(b) The fraietv. (c)&(d) The
back view. The red curves illustrate the T-junctions on the spline surface.
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(b)

Fig. 8. Modeling the Iphegenia model using manifold T-spline. (a) Global conéb parameteri-
zation; (b) The domain manifold; (c) &2 manifold T-spline with 9907 control points; (d) The
red curves are the images of the edges of the rectangles in the domaialdhan



