Vector and Flow Field Visualization

- We have looked primarily at scalar field visualization
- Iso-surface extraction, volume rendering algorithms
- These algorithms do not extend to vector-valued quantities, which may have 2, 3 or more values per voxel
- What would it mean to volume-render a field of velocity vectors?
- How would we perform classification, shading, compositing, and the other stages of the pipeline?
Scalar Generation

- **Vectors and other n-D quantities can be turned into scalars**
- **Example:** taking magnitude of vectors
- **Example:** Hawaii terrain visualization created by projecting vector onto vertical
- **Normalize vectors to give maximum magnitude of 1.0**
- **Steepest slope mapped to brightest color**
Scalar Generation

\[s_i = \frac{(p_i - p_1) \cdot (p_h - p_1)}{|p_h - p_1|^2} \]

Figure 6–12 Computing scalars using normalized dot product. Bottom half of figure illustrates technique applied to terrain data from Honolulu, Hawaii (*hawaii.tcl*).
Vector and Flow Field Visualization
Vector and Flow Field Visualization

- **Streamlines**
 - Integration through vector field
- **Stream ribbons**
 - Connect two streamlines
- **Streamtubes**
 - Connect three or more streamlines
- **Stream surfaces**
 - Sweep line segment through vector field
Streamlines Example

Color indicates temperature of air flowing through engine
Streamribbons Example
Streamtubes Example
Stream surfaces Example
Vector and Flow Field Visualization

• Computational fluid dynamics (CFD) has been the classical application driving R&D in vector visualization

• Why? Many components at a given (x,y,z) position: velocity, temperature, pressure, rotation, etc.

• Many vector field visualization techniques, some quite clever

• Remember goal of visualization: understand important aspects and features of complex data-sets
Data Contraction

- Reduce vector-valued functions to scalar ones
- Vector magnitude
- Scalar product with a given direction vector
- Advantage: very simple technique and uses existing volume visualization
- Disadvantage: very simple technique that discards too much information
Streamlines, Pathlines, Streaklines

- Particle advection (line integration)
- Streamline – path always tangent to flow field
- Streamlines best used for stationary flows, flows that do not change as a function of time
- Color-coded
Streamlines, Pathlines

- Pathline – similar to streamline; trajectory that results if single particle is released and traced over time
- If flow is stationary (time invariant), pathline coincides exactly with the streamline at a given starting position
Particle Systems

- Particles are injected into the flow field, which may be time-varying (turbulent)
- Enter, travel, leave
- Animated particles show direction and magnitude of velocity
Ribbons and Tubes

- Multiple particle advections per segment in the discretized line integration
- Connect two of them together to generate a ribbon, more to make a tube
Hedgehogs

- **Draw the vectors themselves**
- **Advantages: simple**
- **Disadvantages: many!**
- **Clutter**
- **Direction ambiguity**
- **Spatial ambiguity (start/end locations of arrow)**
Streamlines + Hedgehogs

- Can you identify the physical phenomenon being visualized here?
Stream Surfaces

- Calculate multiple stream lines
- Discretize
- Connect points to form triangles
- Diverging and converging flow causes problems
- Divergence: add extra vertices
- Convergence: merge vertices
Stream Surfaces
Streamballs

- Basic idea is to create a continuous function $f(x,y,z)$.
- Take isocontours of this function.
- Use meta-balls (not meatballs) to generate this function.
Streamballs
Flow Volumes

- Imagine standing outside with a smoking flare in hand
- Smoke trail guided by wind field
- This is the basic idea of flow volumes
Flow Volumes

- Seed polygon (square) is used as smoke generator
- Constrained such that center is perpendicular to flow
- Square can be subdivided into a finer mesh
Flow Volumes

- Fast rendering on commodity hardware
- Can color the smoke to indicate other quantities
Flow Volumes

- Currently defined for regular, rectilinear, curvilinear, multigrid and unsteady meshes
Flow Volumes – Unsteady Flows

- Can work for unsteady flows for all mesh types (curvilinear, rectilinear, irregular, etc.)
- Complex twisting must be handled carefully
Textured Splats

- Basic idea: map reconstruction footprint from splatting to a 2D textured square
- Splat textures oriented in projected direction of flow
Textured Splats

Soil conductivity

Wind direction and magnitude