Vector and Flow Field Visualization

- We have looked primarily at scalar field visualization
- Iso-surface extraction, volume rendering algorithms
- These algorithms do not extend to vector-valued quantities, which may have 2, 3 or more values per voxel
- What would it mean to volume-render a field of velocity vectors?
- How would we perform classification, shading, compositing, and the other stages of the pipeline?

Scalar Generation

- Vectors and other n-D quantities can be turned into scalars
- Example: taking magnitude of vectors
- Example: Hawaii terrain visualization created by projecting vector onto vertical
- Normalize vectors to give maximum magnitude of 1.0
- Steepest slope mapped to brightest color

Scalar Generation

$$s_i = \frac{(p_i - p_1) \cdot (p_h - p_1)}{|p_h - p_1|^2}$$

Figure 6–12 Computing scalars using normalized dot product. Bottom half of figure illustrates technique applied to terrain data from Honolulu, Hawaii (hawaii.tcl).

ATE UNIVERSITY OF NEW YORK

Vector and Flow Field Visualization

Vector and Flow Field Visualization

- Streamlines
 - Integration through vector field
- Stream ribbons
 - Connect two streamlines
- Streamtubes
 - Connect three or more streamlines
- Stream surfaces
 - Sweep line segment through vector field

Streamlines Example

Color indicates temperature of air flowing through engine

Department of Computer Science Center for Visual Computing

Streamribbons Example

Streamtubes Example

PERSPECTIVE

Department of Con Center for Visual

Streamesurfaces Example

NY BR**O**K

NIVERSITY OF NEW YORK

Department of Comput Center for Visual Co.

Vector and Flow Field Visualization

- Computational fluid dynamics (CFD) has been the classical application driving R&D in vector visualization
- Why? Many components at a given (x,y,z) position: velocity, temperature, pressure, rotation, etc.
- Many vector field visualization techniques, some quite clever
- Remember goal of visualization: understand important aspects and features of complex data-sets

Data Contraction

- Reduce vector-valued functions to scalar ones
- Vector magnitude
- Scalar product with a given direction vector
- Advantage: very simple technique and uses existing volume visualization
- Disadvantage: very simple technique that discards too much information

Streamlines, Pathlines, Streaklines

- Particle advection (line integration)
- Streamline path always tangent to flow field
- Streamlines best used for stationary flows, flows that do not change as a function of time
- Color-coded

Department of Computer Science Center for Visual Computing

Streamlines, Pathlines

- Pathline similar to streamline; trajectory that results if single particle is released and traced over time
- If flow is stationary (time invariant), pathline coincides exactly with the streamline at a given starting position

Department of Computer Science Center for Visual Computing

Particle Systems

- Particles are injected into the flow field, which may be timevarying (turbulent)
- Enter, travel, leave
- Animated particles show direction and magnitude of velocity

Department of Computer Science Center for Visual Computing

Ribbons and Tubes

- Multiple particle advections per segment in the discretized line integration
- Connect two of them together to generate a ribbon, more to make a tube

Center for Visual Computing

Hedgehogs

- Draw the vectors themselves
- Advantages: simple
- Disadvantages: many!
- Clutter
- Direction ambiguity
- Spatial ambiguity (start/end locations of arrow)

Department of Computer Science Center for Visual Computing

Streamlines + Hedgehogs

• Can you identify the physical phenomenon being visualized here?

Department of Computer Science Center for Visual Computing

Stream Surfaces

- Calculate multiple stream lines
- Discretize
- Connect points to form triangles
- Diverging and converging flow causes problems
- Divergence: add extra vertices
- Convergence: merge vertices

Stream Surfaces

Department of Computer Science Center for Visual Computing

Streamballs

- Basic idea is to create a continuous function f(x,y,z).
- Take isocontours of this function.
- Use meta-balls (not meatballs) to generate this function

Streamballs

1.5

- Imagine standing outside with a smoking flare in hand
- Smoke trail guided by wind field
- This is the basic idea of flow volumes

- Seed polygon (square) is used as smoke generator
- Constrained such that center is perpendicular to flow
- Square can be subdivided into a finer mesh

- Fast rendering on commodity hardware
- Can color the smoke to indicate other quantities

• Currently defined for regular, rectilinear, curvilinear, multigrid and unsteady meshes

Flow Volumes – Unsteady Flows

- Can work for unsteady flows for all mesh types (curvilinear, rectilinear, irregular, etc.)
- Complex twisting must be handled carefully

Textured Splats

- Basic idea: map reconstruction footprint from splatting to a 2D textured square
- Splat textures oriented in projected direction of flow

Textured Splats

Wind direction and magnitude

Soil conductivity

Department of Computer Science Center for Visual Computing