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ABSTRACT

This paper presents a novel, powerful reconstruction algorithm
that can recover correct shape geometry as well as its unknown
topology from arbitrarily complicated volumetric datasets. The
algorithm starts from a simple seed model (of genus zero) that can
be initialized automatically without user intervention. The
deformable behavior of the model is then governed by a localy
defined objective function associated with each vertex of the
model. Through the numerica computation of function
optimization, the algorithm can adaptively subdivide the model
geometry, automaticaly detect sdlf-collision of the model,
properly modify its topology (because of the occurrence of self-
collision), continuously evolve the model towards the object
boundary, and reduce fitting error and improve fitting quality via
global subdivision. Commonly used mesh optimization techniques
are employed throughout the geometric deformation and
topological variation in order to ensure the model both locally
smooth and globally well-defined. We have applied our algorithm
to various rea and synthetic volumetric datasets in order to
empirically verify and validate its utility and efficacy. Our
experiments have demonstrated that the new modeling algorithm
is extremely vauable for surface reconstruction in volume
graphics, volume segmentation in medica imaging, and iso-
surface extraction in visualization.

1. INTRODUCTION

Recent technical breakthroughs in new imaging modalities such as
CT, MRI and Ultrasound as well as other 3-D scanning
technologies have given rise to massive volumetric datasets
available in modern computer era. How to extract and reconstruct
the shape of 3-D objects from these datasets accurately and
efficiently remains to be both extremely challenging and
significant in volume graphics, medical imaging, and
visualization. One of its important applications that has proven to
be essential in numerous engineering and medical fields is the
non-invasive evauation of an object? Interna structure. For
example, it alows the inspection of mechanical parts without
destroying the product and the examination of internal organs
without operating on the patient.

At present, many algorithms and techniques have been developed
to effectively deal with the acquired volume data for various
modeling and rendering tasks. In general, existing approaches can
be classified into two different categories: they are either model-
less techniques such as direct volume-rendering from voxel
datasets or model-centered techniques such as deformable models.
One major rationdle for model-based approaches is that they
provide the great potential for users to effectively interact with the
dataset (especialy regions of interest) and facilitate other
subsequent processes such as segmentation, shape representation,
matching, and motion tracking. Moreover, the inherent continuity
and smoothness of the model can compensate for the unwanted
sampling artifacts such as noise, gaps, and other irregularities on
object boundaries. Hence, model-based approaches are more
robust, especially in the existence of noise-corrupted datasets.
Among the wide spectrum of model-driven techniques,
deformable models [3, 15, 16, 17] have been extremely popular
with great success primarily because they offer a unified and
powerful approach that combines the knowledge from geometry,
physics, approximation theory, and functional analyss.
Nevertheless, there are several limitations associated with
deformable models that are currently available. Among them, one
of the most severe limitations is that the topology of the
underlying shape either is very simple (such as genus zero) or
must be known apriori (i.e., is determined elsewhere in a separate
pre-processing stage) and remain unchanged throughout the time
integration of model deformation. Another limitation of
traditional deformable models is the user is often required to
manually place theinitial model inside the dataset.

In this paper, we propose a new modeling algorithm that can be
employed to overcome these limitations. It can recover both the
complicated shape geometry and the arbitrary unknown topology
simultaneously from any volume datasets. Furthermore, the model
can be automatically initialized by the system. The geometry and
the deformable behavior of the model are governed by the
principle of energy minimization. After a simple seed model is
initialized, the model will deform and grow towards the boundary
of the modeled dataset in accordance with the local cost function
associated with each vertex of the model. During the process of
model deformation, both global and local/adaptive subdivision
operations on the model can be automatically applied whenever
necessary in order to refine the model to an appropriate resolution
and achieve different levels of detail. More importantly, by using
anovel distance-based collision detection scheme, the model can



automatically detect self-collison and modify its topology
accordingly. In order to ensure the recovery of the correct
topology from arbitrary datasets, we develop a novel, yet smple
scheme that can prevent inter-penetration in the vicinity of any
vertex of the model. This scheme, combined with mature mesh
optimization techniques, has proven to be effective and can
generate a good, high-quality polygona mesh which can both
reconstruct the data geometry and extract the arbitrary topology
from any complicated dataset through model deformation.

The rest of the paper is organized as follows. The next section
summarizes al the important literatures that are relevant to our
work. Section 3 introduces the energy-based minimization method
used in our paper, which is the key mechanism behind the model-
growing step of the algorithm. The other six main steps of our
algorithm are discussed in detail in Section 4. Section 5
demonstrates the experimental results we obtained using our
algorithm. Finally, the conclusion and some future work are given
in Section 6 and Section 7, respectively.

2. RELATED WORK

During the recent years, alot of research work has been conducted
in the areas of surface reconstruction, volume segmentation, and
iso- surface extraction. The mgjority of the published results falls
into two groups: static, geometric techniques and dynamic,
energy- based techniques. Among the static methods, one of the
first algorithms was devised by Fuchs et al. [3]. They developed a
means of stitching a series of two-dimensional contours together
by fitting a triangular strip between adjacent contours. The main
drawback of this approach is that the user must manually identify
a contour in every slice that comprises the object. Later on,
Lorenson and Cline developed an algorithm called marching
cubes [6] that has proven very useful for generating three-
dimensional polygonal surface from volume data with no
connectivity information. In their algorithm, a cube is bounded by
eight pixels located on two adjacent slices. Each vertex is coded
as either inside or outside the object relative to the surface-
defining threshold. Based on the configuration of vertices that lie
inside and outside the object, the cube is triangulated. The
triangles indicate where the surface passes through the cube. The
technique of marching cubes provides an accurate method for
creating three-dimensional polygonal surfaces from dlice data that
can then be manipulated and visualized. However, the marching
cubes model records all the details associated with the original
data regardless of whether these details are insignificant or
sampling artifacts. Also, since marching cubes generate at least
one triangle per voxel through which the surface passes. This
results in an enormous number of extremely small triangles, thus
making it difficult to interactively render these models. On the
other hand, our underlying model is a subdivision-based
deformable model. It can produce models of varying resolution
and can remove noises much easier.

In the category of dynamic approaches, the most famous one is
the snake model proposed by Kass, Witkin and Terzopoulos [4].
A snake is essentidly a spline that minimizes the energy
associated with the spline. The total energy of the snake model is
contributed from three different sources: (1) the interna energy of

the spline, (2) image forces, and (3) external constraints. Through
the minimization of the spline's internal energy, the snake will
adways remain smooth. The image forces guide the snake toward
lines and edges of interest, while the external constraints allow the
user to identify specific features to model. The origina snake
model only behaves and deforms on a 2-D plane, and can only
model the topology of simple 2-D objects. Later on, Terzopoul os,
Kass and Witkin generalized the concept of snakes into
symmetry-seeking models [18]. They derive a three-dimensional
shape from a two- dimensional image by modeling an axis-
symmetric elastic skin spread over aflexible spine. Finite element
methods are aso explored in deformable models by severa
researchers, including Cohen and Cohen [2], Terzopoulos and
Metaxas [17], and Mclnerney and Terzopoulos [10]. On the other
hand, Miller et a. [12, 13] proposed a polygon-based deformable
model. The behavior of the model is determined by a local cost
function associated with each model vertex. The cost functionisa
weighted linear combination of three terms. (1) a deformation
potential that pushes the model vertices towards the object
boundary, (2) an image term that identifies features such as edges
and acts against the model expansion, and (3) a term that
constrains the motion of each vertex to remain not far from the
centroid of its neighbors. Similar to the snake model, the
topologica variation in Miller et a.'s work is not alowed. The
modeled dataset must be homomorphic to a sphere. Recently, Qin
and Manda [14, 8] proposed dynamic subdivision surfaces for
surface reconstruction. Their approaches combine the advantages
of free-form deformable models with the nice properties of
subdivision surfaces---smooth limit surfaces with few degrees of
freedom. In addition, their algorithm alows the direct
manipulation of the limit surfaces defined by the subdivision
process on the initial control mesh. One severe limitation of al
aforementioned deformable models is that the topology must be
determined before the geometric deformation, i.e., only geometric
aspects of the underlying dataset are reconstructed through
energy-based simulation.

Severa researchers have attempted to address this limitation.
Malladi et a. [7] and Caselles et a. [1] independently devel oped
a topology independent active contour scheme based on the
modeling of propagating front with curvature dependent speeds,
where the propagating front is viewed as an evolving level set of
some implicitly defined function. These implicit models provide
topological and geometric flexibility through their level sets.
Unfortunately, implicit models are not very convenient for shape
analysis and visualization, and aso very difficult for user
interaction. Recently, Mclnerney and Terzopoulos [11] proposed
topological adaptable snake, which is a parametric snakes model
that has the power of an implicit formulation. The basic ideais to
superimpose a simplicia grid on the image domain and iteratively
reparameterize the geometry of deforming snakes. In a different
approach, Szeliski et a. [15] use a dynamic, self-organizing
oriented particle system to model the surface boundary of objects.
The particles can reconstruct objects with complex shapes and
topologies by "flowing" over the data, extracting and conforming
to meaningful surfaces. A triangulation is then performed which
connects the particles to form a continuous globa model that is
consistent with the inferred surface of the underlying object.

Our agorithm is based on a polygona model with the capability
of recursive refinements through surface subdivision. It further



generalizes the work of Miller et a. [12, 13] and can overcome
some limitations of their algorithm. In particular, our technique is
capable of recovering geometric shape of arbitrary, unknown
topology from volume data and the initial model is automatically
placed within the dataset. Besides the aforementioned work, two
other research advances are also of relevance. One is the work of
Welch and Witkin [19, 20]. They use a triangle mesh to
approximate the underlying smooth variational surface for free-
form surface design. Another one is the more recent work called
"skin" algorithm proposed by Marksoian et a. [9]. Their god isto
generate a triangle mesh to approximate the surface implicitly
defined by the "skeletons”.

3. ENERGY-BASED OPTIMIZATION

The deformable behavior of the model is governed by the
principle of energy-based minimization. A locally defined cost
function is associated with each vertex of the polygonal model.
The cost function is a weighted linear combination of four
constraints whose objectives are to achieve the desired behaviors
in the simulated model. We shall briefly review these four
components in Section 3.1 followed by the minimization method
in Section 3.2.

3.1 Constraint Modeling

The energy function C (xy,z) associated with the current
location of each model is explicitly formulated as

C(xy,2 =aD(x Y, +aB(x y, 2 +a,V(xy.2) +a;Ax,y,2) (D

wherep(x,y,z) is the deformation potential, B(x,y,z) is the
boundary congtraints, v(x,y,z) is the curvature constraint, and
A(x,y,z) is the angular constraint. a,,a;,a,,a, are the four
corresponding non-negative weighting parameters.

3.1.1 Deformation potential -- D(x,y, 2)

Deformation potential D(x, y, z) offersthe mechanism to inflate

the model. It defines a scalar field where each position in spaceis
assigned a value based on the frame of reference. The vertex will
move along the direction of the lowest local potential (in absence
of other constraints).

In order to model concave objects, the normal tracking method is
used, i.e., each vertex is attracted to a point located in the vicinity
of normal direction of the polyhedron surface. During each
evolving step, every vertex moves in the general direction of the
local surface normal in order to decrease its deformation potential .

During the refinement process (loca and globa subdivision)
which we will discussin detail in Section 4, it is possible that new

vertices are added to the model on the opposite of the boundary.
In order to move these model points to the other side of the
boundary and hence increase the accuracy and quality of the
model, the surface normal used in the deformation potential of
these model points is defined to point in the opposite direction.
The effect is that a model point will migrate towards the true
boundary of the object regardless of whether the model point is
located inside or outside the object. Hence, as long as the initial
model intersects the object boundary, i.e. some of the model
points are inside object, the remainders are outside the object, the
model tends to seek out the true boundary of the object.

3.1.2 Boundary constraint -- B(x, y, z)

Boundary constraint B(x,y,z) afords the mechanism for the

model to interact with the dataset and identify the boundary. It is
used to counter-balance the deformation potential and will
restrict, direct, and counter-act the general progression of the
deformation. We make use of a shifted threshold operator:

B(X, y, Z) - Iémage(x, Y, Z) -T Image(x, 2 Z) >T (2)

Image(x,y,2) <T

where Image(X, y, z) is the gray-level intensity distribution of
the voxel at location (x,y,2), and T is the threshold value that
identifies the object.

When a model point steps over the edge of an object, the
agorithm returns a value that should increase the overall cost of
the system. Therefore, the minimization process is required to
either move the vertex by a smaller amount or not move the vertex
at al. Hence the vertex will approach the boundary without
crossing over it (unlessits neighbors pull it over the edge).

3.1.3 Curvature constraint -- V(x, y, 2)

The first two constraints have the ability to grow the model until
dl the vertices reach the boundary of the underlying object.
During the deformation process, it is desirable for a vertex not to
stray far away from its neighbors. This suggests the use of
Curvature congtraint V(x,y,z) Wwhich is a reasonable

approximant of the local curvature, and it is defined as the ratio of
the distance from the current model point to the centroid of its
neighbors over the maximum distance among all the neighbors of
the current model point:

. z)—ii(xj,yj,zj)n
max(1(;,¥;.2,)= 04, Y1 2) )

V(xy,2) =



where(X, y,z) is the current model point, N is the number of
neighbors to the current model point, (X;,Y,,z;), (X, Yi»Z)

are the neighbors of the current model point, 1< j,k<n.

Curvature constraint also has the effect of keeping the vertices
well distributed during the deformation process. We will discuss
thisissue in more details in the next section.

3.1.4 Angular constraint A(x,y,z)

The fourth constraint--Angular constraint A(x,y,z) is used to

simulate the effect of attaching a very stiff string between any two
adjacent faces. Similar to the boundary constraint, the value of
angular constraint is either zero or very large. At each deformation
step, the edges on the one-neighborhood of each vertex are
identified, and al the dihedral angles between the two adjacent
faces of these edges are calculated. If the next move of the vertex
will cause any of these dihedral angles smaller than the threshold,
the angular constraint will become very large and the vertex is not
allowed to move at this deformation cycle. Otherwise, the angular
constraint is zero. Angular constraint can effectively keep any two
adjacent faces from being too close to each other. This constraint,
used in concert with the more aggressive stressed-edge resolution
approach and the mesh optimization techniques that will both be
discussed later in this paper, will effectively prevent the loca
inter-penetration of adjacent faces.

3.2 Optimization Method

An implicit iterative method is employed to numerically compute
the minimization of our cost function explained above. The
advantage of this approach is that it is extremely genera and can
offer an accurate, stable solution even for very large systems,
therefore, it is well suited for our purpose in shape recovery of
large datasets. A vertex of the model will move aong the
direction of the steepest descent along the cost surface, which is
opposite to the gradient of the cost function C,. The gradient

(ai ac, 60,) is numerically approximated using the central
ox ody o0z
difference of the overal cost function for the current position of

the model vertex with avery small perturb.

The amount that a vertex can move is adjusted based upon the
current configuration of the cost space. The step size can be
reduced four times if the magnitude of the current step size results
in an increase in the cost function. If a step size is no longer able
to reduce the cost of the vertex, then the vertex is not alowed to
move at this step. If a vertex has not moved for a certain number
of deformation cycles, the vertex will be marked as non-active and
will be excluded from future numerical integrations.

4. ALGORITHM

The entire pipeline of the modeling algorithm consists of the
following seven main steps:

Model initialization.

Stressed edge resol ution.

Model growing.

Local adaptive subdivision.

Mesh optimization.

Collision detection and topology change.
Global subdivision.

NoukrwdhpE

After the moddl is automatically initialized at step one, the model
will start its deformation process. It will loop through step two to
step six at each deformation cycle. The deformation process stops
when the model reaches its equilibrium, i.e. al the vertices of the
model have been marked as non-active. Finally, the model can be
globally subdivided several times until a user-given error criterion
is met. Figure 1 shows the flow chart of the algorithm. We have
highlighted the mechanism of model growing (step 3) in the
previous section. In this section, we will detail the other six steps
of the agorithm.

‘ Model initialization ‘

b

‘ Resolve stressed edges ‘

v
‘ Model growing ‘

h 4
‘ Mesh optimization ‘

¥
Collision detection

//l\
Are there aJ:y Topology change
\Olllslonf/

No
Is the model
still active?

‘ Output model

Figure 1: Pipeline of the algorithm.

4.1 Modd Initialization

The seed model may be any kind of closed polyhedra. For
simplicity and without loss of generality, we use a sphere-like
polyhedron consisting of 24 triangles of equal size. Before the



deformation process starts, the algorithm will search through the
input volume datasets and find a non-boundary voxel. This voxel
is then identified as the initial center position of the seed model.
Note that the seed model does not need to be completely inside
the dataset because the model will flip the normal tracking
direction of the vertex if the vertex is detected to be outside the
dataset.

4.2 Stressed Edge Resolution

One phenomenon which oftentimes appears in a polygon based
deformable model is the local inter-penetration of neighboring
faces. Loca inter-penetration typically occurs between two
portions of the surface separated by a chain of stressed edges. In
practice, a stressed edge is identified if its two adjacent faces form
an angle of less than 60 degrees (this value may vary across
different systems). In this paper, we propose a simple, yet very
powerful method that can efficiently solve this problem. At the
beginning of each deformation cycle, al the stressed edges are
detected by calculating the dihedral angle. Then each stressed
edge is split into two small edges at the middle point and the
middle point is further moved to the middle position of the two
opposite vertices. Figure 2 demonstrates our method of resolving
stressed edges.
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Figure 2: Stressed edge resolution. (a) Edge BD is marked as
stressed edge because the dihedral angle between its two adjacent
faces ABD and EBD is less than the threshold. (b) Edge BD is
split at the middle, and the middle point F of edge BD is

connected with vertices A, B, D and E. (c) Finally, F is moved to
the middle of vertices A and E.

4.3 Local Adaptive Subdivision

In order to control the smoothness of the model and the size of
each polygon during the model-growing phase, we must allow the
model to be able to increase its degrees of freedom during the
deformation process. One simple, straightforward technique is
globa subdivision, i.e., globaly subdivide the model whenever
necessary. The drawback of the global subdivision approach is
that it may generate a lot of unnecessary vertices on surface
regions where a good approximation to the data boundary has
aready been achieved. Alternatively, we take advantage of the
local adaptive subdivision approach, i.e., we only need to
subdivide active regions that are still growing. A face is
subdivided if its areais larger than certain user-defined threshold,
and moreover, at least one of its three vertices is still active. The
typical subdivision rule is as follows. The algorithm will
introduce a new vertex at the middle position of each old edge,
and connect al the three new vertices. Thus four smaller new

faces are generated from each old face. To maintain subdivision
connectivity, al the triangles adjacent to the current face aso
need to be subdivided correspondingly. For example, in Figure 3,
in order to subdivide the centra triangle BDE, all the three
adjacent triangles ADB, CBE and DFE need to be subdivided as
well. And each of these three triangles is subdivided into two
smaller ones by split the adjacent edge they share with the central
triangle BDE.

DE
F

Figure 3: Loca adaptive subdivision scheme. The solid lines are
the old edges, the dashed lines are the new edges. The center
triangle BDE is divided into four smaller triangles by connecting
the three middle points of the old edges. Each of the three
adjacent triangles ADB, CBE and DFE are split into two smaller
triangles.

4.4 Mesh Optimization

The agorithm can automatically construct the new subdivision
mesh during the deformation phase. Therefore, it's critica to
improve and maintain the mesh quality throughout the process to
ensure the model both localy smooth and globaly well
conditioned. In general, three issues must be considered as aso
observed by Welch et a. [17]: (1) how to keep the nodes well
distributed; (2) how to keep the triangles well shaped; and (3)
how to keep an appropriate node density.

4.4.1 Nodesdistribution

A popular scheme for keeping the nodes well distributed is called
Laplacian Smoothing. It can be implemented by iteratively
moving each node to the centroid of its neighbors. In our
agorithm, we decide not to implement this scheme because of the
high numerical cost associated with it. Instead, we rely on the
curvature condtraint V(x,y,z) in our loca cost function

C.(x,y,2) in equation (1) associated with each vertex to keep

vertices from straying too far away from the centroid of their
neighboring vertices. We observe that our curvature constraint
behaves well in maintaining a good distribution for the nodes.

4.4.2 Triangle shape

A triangulation with nodes well distributed can still have many
skinny triangles. It is well known that the best possible surface
triangulation over a set of points with known topology is the
Delauny triangulation. In addition, a Delauny triangulation of



arbitrary surface can be incrementally recovered from a valid
initial surface triangulation through edge swapping. We swap an
edge if doing so will increase the minimum angle within its
adjacent faces. Repeated applications of this swap operation
always keep increasing the minimum angle and hence result in a
Delauny triangulation at the end of the procedure. That is, it
maximizes the minimum angle on all the triangles of the mesh. In
practice, an edge is eligible for swapping only if the dihedral
angle between its two adjacent faces is larger than certain user-
defined threshold, i.e., the local surface across the edge is flat
enough. Moreover, an edge is swapped only if itslocal minimum-
angle will be increased by certain small minimum (specified by
users and heuristically determined by the algorithm). These two
conditions can guarantee that the edge-swapping algorithm always
functions correctly and terminates eventualy.

4.43 Nodes density

During the deformation process, some nodes may cluster with
each other, and some other nodes may be too far away from each
other. To maintain an appropriate node density, two other
operations are needed here: edge split and edge collapse. An
edge-split is triggered if any two neighbors are too far apart.
Similarly, if any node is too close to each of its neighbors, the
node is destroyed using the edge collapse. In addition, skinny
triangles are also eliminated at this step by edge collapsing. All
the three inner-angles of each triangle are calculated. If any one of
the three inner-angles of a triangle is too small, then the triangle
containing the inner-angle will be eliminated by collapsing the
edge opposite to this inner-angle. To restore a quality mesh, the
edge swapping is always applied after any edge split and edge
collapse operations. Figure 4 illustrates the three mesh operations.
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Figure 4: Mesh optimization operations. (a) Edge swap. (b) Edge
split. (c) Edge collapse.

45 Collision Detection and Topology Change

In order to recover shape of arbitrary, unknown topology, the
model must be able to change its topology properly whenever a

collision with other parts of the model is detected. Various kinds
of collisions can be considered, such as face-to-face, edge-to-
edge, vertex-to-vertex, edge-to-face, etc. Techniques such as
surface-surface intersection and trimming have been proposed to
solve collision detections. However, these techniques are usually
very time consuming. We propose a novel distance based collision
detection scheme that is simple, fast and efficient. Figure 5
illustrates the three steps of the scheme: (1) collision detection,
(2) identify one-neighborhood and put them into correspondence,
and (3) change the topology.

Collision detection: If the distance of two non-neighbor active
vertices is smaller than the threshold, a collision will be identified
and a merge-operation is triggered. If the distance between several
pairs of active vertices is smaller than the threshold, the closest
pair of vertices is chosen. For example, in Fig. 5(a), because the
distance between two active vertices A and B is smaller than the
threshold, a collision between regions around vertex A and B is
detected and a merge operation is triggered.

Identify one-neighborhoods and put them into correspondence:
To merge the two parts of the model. First, we need to identify
and collect all the one-neighborhood points for each of these two
vertices. Then these two sets of points (i.e., one-neighborhood
points) are sequenced separately and are put into correspondence.
To do so, we use the same procedure as [19]: Iteratively refine the
neighborhood with fewer edges by splitting its longest edge until
both have the same number of nodes, then choose the alignment
that minimizes the sum of squared distances between nodes. In
Fig. 5(a), originaly the one-neighborhood of vertex A has five
nodes: {Al, A2, A3, A4, A5}, the one-neighborhood of vertex B
has six nodes: {B1, B2, B3, B4, B5, B6}. To make these two
one-neighborhoods have the same number of nodes, we first find
the longest edge of the one-neighborhood of vertex A, which is
the edge between nodes A2 and A3. And then split this edge into
two edges and insert a new node in between. Finally, we put these
two sets of points into correspondence by finding the alignment
that minimizes the sum of squared distances between nodes. In
Fig. 5(b), point set {Al, A2, ..., A5} are corresponding to {B1,
B2, ..., B6} respectively.

Change the topology: After the two sets of points are put into
correspondence, each points is connected with its corresponding
points in the opposite point set. The two center vertices and all its
incident edges are removed (Fig. 5(c)). The newly created
quadrilaterals are further triangulated by split each quadrilateral
into two triangles along one of its diagonal (Fig. 5(d)).

The mesh optimization processes will quickly smooth out any
artifacts that may result from the matching procedure once the
merge has been completed.
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Figure 5: Collision detection and topology change. (a) A collision
is detected between the region around vertex A and the region
around vertex B. (b) The one-neighborhoods of vertex A and
vertex B are put into correspondence. (¢) The corresponding
vertices between the one-neighborhoods of vertex A and vertex B
are connected. Vertex A and vertex B and their incident edges are
removed. The topology of the model is modified. (d) Each of the
newly created quadrilateralsis split into two triangles.

4.6 Global Subdivision

Once a rough estimation of the topology and geometry of a shape
is achieved, the model can be subdivided several times to improve
the fitting accuracy. We choose Loop’s scheme [7] in our model
though other schemes would also achieve this goal. Figure 6
shows the Loop’ s subdivision scheme. There are two kinds of new
vertices generated at each level of subdivision: edge points and
vertex points. Each old edge will generate a new edge point using
the rule shown in Fig. 6(a). Each old vertex will generate a new

vertex point using the rule shown in Fig. 6(b). By connecting each
vertex point with its two adjacent edge point and connect the three
edge points with each other, four smaller triangles are generated
from each old triangle. After one level of global subdivision, the
model will deform again based on the cost function explained
above, and will arrive at a more accurate configuration of the
shape because we now have more degrees of freedom for the
model. Since the unknown topology of the underlying data set has
already been recovered, there is no need for collision detection at
this stage.
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Figure 6: Subdivision rules for Loop’'s scheme: (a) Edge point
rule. (b) Vertex point rule. 3 = i for k>3 and B = 3 for
8k 16

k=3, k isthe valence of the vertex.

5. EXPERIMENTAL RESULTS

We have devel oped an experimental system using C++ and FLTK.
Figures 7, 8, 9, and 10 show some of the experimental results we
have conducted using this system. In al figures, (@) shows a
volume-rendered image of the original volume datasets. (b) and
(c) are the two snapshots of the model during the deformation
process. (d) isthe first round estimation of geometry and topology
of the model. Red color shows the regions of the model that are
still active, while the non-active regions of the model are colored
as blue. (e) is the refined shape of the modd after one leve of
global subdivision. By comparing (d) and (€), we can clearly see
the improvement of the fitting accuracy of the model after one
level of global subdivision.

In addition, Fig. 10(f) shows the refined shape of the model after
two levels of global subdivision, the groves on the inner-surface
of the nut are recovered very well. Fig. 10(g), (h) and (i) are the
error maps of the models of Fig. 10(c), (d) and (f), respectively.
Thefitting error is calculated by dividing the distance between the
model vertex and the closest volume boundary voxel by the
diameter of the smallest bounding sphere of the object. The green
color shows regions whose fitting error is less than 0.5%. The red
color represents regions whose fitting error is greater than 2%.
These three error maps illustrate that the fitting error is greatly
reduced after two levels of globa subdivision. Since our model
currently cannot recover sharp edges and corners, the regions that
are sill red after two levels of subdivision are primarily the
regionsin the vicinity of sharp edges and corners.



Our agorithm also supports multiple seed model initiaization.
For example, in Fig. 9(b), four seeds are initialized at four
different positions at the same time. Each model will grow
independently (Fig. 9(c)) and will merge with other models
whenever acollision is detected (Fig. 9(d)).

Table 1 lists the four weighting coefficients for calculating the
local cost function associated with each vertex using Equation (1).
Table 2 and Table 3 summarize the statistics of our examples. In
particular, Table 2 is the input of three dimensions of the
volumetric image data. Table 3 lists the size of recovered shape of
the model along with the maximum fitting error of each model.

Currently, several parameters need to be set by the user at the start
of the deformation process. They are: (1) the face area threshold
for local adaptive subdivision, (2) the distance threshold for
collision detection, and (3) the edge length threshold for mesh
operations such as edge split and edge collapse. In the future, we
plan to simplify these parameters by conducting a preprocessing
step and normalize the input dataset to the same scale. Then it
should be possible for the agorithm to automatically set the
proper values for these parameters.

Table 1: Weighting coefficients.

o) & &, 85
1 1 16 1

Table 2: The dimensions of the input volume datasets

Figurett X(#voxels) Y (#voxels) Z(#voxels)
7 67 127 67
8 128 120 47
9 32 32 64
10 68 41 59
Table 3: Recovered model information.
Figure# | #Vertices | #Edges #Faces Max. fitting
error (%)
7(d) 2491 7491 4994 1.05
7(e) 9889 29685 19790 0.92
8(d) 1005 3015 2010 0.533
8(e) 4299 12897 8598 0.38
9(d) 2379 7161 4774 1.26
9(e) 9848 29568 19712 0.94
10(b) 187 561 374 3.88
10(c) 774 2322 1548 222
10(d) 3141 9423 6282 1.85

6. CONCLUSIONS

In this paper, we have presented a new modeling algorithm for the
extraction of boundary surfaces from volumetric datasets.
Through the use of a new collision-detection method and a novel
stressed-edge resolution scheme, coupled with mesh optimization

techniques, the algorithm is able to overcome several limitations
associated with conventiona deformable models. The agorithm
can recover the shape of arbitrary geometry and its unknown
topology simultaneously. Because the underlying model is a
subdivision-based model, it naturaly supports levels of detail.
After the initial estimation of both topology and geometry of the
dataset is achieved, the user can control the fitting quality easily
by specifying the number of levels of globa subdivision.
Furthermore, the agorithm can be multi-threaded for the
improved performance, i.e, multiple seed models can be
initialized at different locations at the same time. Hence, parallel
implementation is readily available. Throughout the deformation
process, each seed model will grow independently and will merge
with neighboring models whenever a collision occurs.

We expect our modeling algorithm to be extremely valuable in
such areas as computer graphics, medical imaging, computer
aided design, and visualization. It can be used to extract the
internal organs for medicine, or to model scanned mechanical
parts for engineering. Furthermore, our model can be easily
extended to higher dimensional spaces (e.g., to model a series of
time varying volume data which is essential in motion tracking).

7. FUTURE WORK

Several improvements are possible. First, we currently use a
brute-force searching algorithm for collision detection. We shall
continue to improve their time performance by using techniques
such as hierarchical bounding box. Second, our current modeling
agorithm functions in a semi-automatic fashion. Although the
seed model is automaticaly initialized, users have to interactively
select several parameters before the deformation process starts.
This would require certain knowledge for users. Hence, the
current version of our system is perhaps more appropriate for
domain speciaists who are more familiar with the underlying
datasets and their attributes. It would be ideal to fully automate
our system so that al relevant parameters can be determined
heuristically without user intervention. Making all the parameters
transparent in our system would appeal to naive users.

We aso plan to extend the functionality of our model and its
associated system along the following directions in the future. We
shall enhance our model so that it can recover sharp features such
as corners and creases. Also, besides the coarse-to-fine levels of
detail currently available in our system, we shall explore the data-
reduction capability (i.e., from fine to coarse), this will enable us
to use very few degrees of freedom to model complicated shapes
of geometry and topology.
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Figure 7: Surface reconstruction from volumetric image data of a chair.

(b) © (d) C)

Figure 8: Surface reconstruction from volumetric image data of a phantom vertebral.

(b) © (d) C)

Figure 9: Surface reconstruction from volumetric image data using multiple seeds.
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Figure 10: Surface reconstruction from volumetric image data of a nut along with the corresponding error maps.
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