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Abstract 
 

In this paper, we develop a novel subdivision-based model---
Intelligent Balloon---which is capable of recovering arbitrary, 
complicated shape geometry as well as its unknown topology 
simultaneously. Our Intelligent Balloon is a parameterized 
subdivision surface whose geometry and its deformable behaviors 
are governed by the principle of energy minimization. Our 
algorithm starts from a simple seed model (of genus zero) that can 
be arbitrarily initiated by users within regions of interest. The 
growing behavior of our model is controlled by a locally defined 
objective function associated with each vertex. Through the 
numerical integration of function optimization, our algorithm can 
adaptively subdivide the model geometry, automatically detect 
self-collision of the model, properly modify its topology (because 
of the occurrence of self-collision), correctly evolve the model 
towards the region boundary and reduce fitting error and improve 
fitting quality via global subdivision. Commonly used mesh 
optimization techniques are employed throughout the geometric 
deformation and topological variation in order to ensure the 
model both locally smooth and globally well conditioned. We 
have applied our topologically flexible models to such 
applications as reverse engineering from range data and surface 
reconstruction from volumetric image data. Our new models 
prove to be very powerful and extremely useful for boundary 
representation of complicated solids of arbitrary topology, shape 
recovery and segmentation for medical imaging, and iso-surface 
extraction for visualization. 

 

Keywords: Energy Optimization, Geometric and topological 
representations, Biomedical applications, Reverse engineering. 

 

1 INTRODUCTION 
 

Despite the significant advances of modeling techniques and 
system functionalities in Computer-Aided Design (CAD) and 
computer graphics during the past ten years, current state-of-the-
art modeling systems are still lacking of some of the unique visual 
and physical advantages inherent in real-world clay models. As a 
result, clay models remain to be unreplacable especially in the 
presence of 3-D data acquisition technology. In particular, they 
have been extensively used by engineers in areas such as 
automobile design. Besides conventional interactive techniques 
via editing on CAD models, 3-D laser range scanners offer a 
powerful, alternative means of acquiring geometric models. Small 
or large-scale objects can be initially sculptured in real world and 
subsequently scanned into CAD formats for future applications 
such as manipulation, analysis, and evaluation. In a nutshell, 3-D 
scanning technology facilitates the process of reverse engineering, 
i.e., natural and manufactured parts can be digitally converted into 
CAD systems and then being modified using a range of CAD 
tools.  
 

On the other hand, recent hardware advances based on new 
imaging modalities such as CT, MRI and Ultrasound as well as 
sensoring techniques have been able to generate more volumetric, 
range and image data than what scientists and engineers can 
handle. It remains a challenging task for researchers and 
practitioners on how to model, manipulate and display the 
tremendous amount of data in a useful and intuitive way in shape 
modeling, CAD, visualization, and medical imaging. To date, 
many algorithms and techniques have been developed to 
effectively deal with the acquired data for modeling and rendering 
applications. In general, existing approaches can be roughly 
classified into two different categories: they are either model-less 
techniques such as direct volume-rendering from voxel datasets or 
model-centered techniques such as deformable modeling for 
shape reconstruction and recognition. Among a wide array of 
model-driven techniques, deformable models have been extremely 
popular with great success primarily because they offer a unified 
and powerful approach that can combine the knowledge from 
geometry, physics and approximation theory to tackle many 
challenging problems and offer an elegant solution for many 
applications. Nevertheless, there are several limitations associated 
with deformable models that are currently available. Among them, 
one of the most severe limitations is that the topology of the 

 

 

 



  

underlying shape either is very simple (such as genus zero) or 
must be known a priori (i.e., is determined elsewhere in a separate 
pre-processing phase) and remain unchanged throughout the time 
integration of model deformations. 
 
By contrast, our Intelligent Balloon model can be used to 
overcome this limitation. It can recover both complicated shape 
geometry and its arbitrary, unknown topology simultaneously. It 
provides user a unified approach that can deal with both 
volumetric data and range data, therefore our new model is 
efficient, flexible and powerful. Moreover, Intelligent Balloon is a 
subdivision-based deformable model. In using our system for 
reverse engineering, users can interactively seed a simple model at 
the initialization stage, the model will deform and grow towards 
the boundary of the modeled dataset in accordance with the local 
cost function associated with each vertex of the model. During the 
process of model deformation, both global and local/adaptive 
subdivision operations on the model can be automatically applied 
whenever necessary in order to refine the model to an appropriate 
resolution and achieve different levels of detail. More importantly, 
by using a novel distance-based collision detection scheme, the 
model can automatically detect self-collision and modify its 
topology accordingly. In order to ensure the recovery of the 
correct topology from arbitrary datasets, we develop a novel, yet 
simple scheme that can prevent inter-penetration in the vicinity of 
any vertex of the model. This scheme, combined with matured 
mesh optimization techniques, has proven to be effective and can 
generate a good, high-quality polygonal mesh, which both 
reconstruct the data geometry and extract the arbitrary topology 
from any complicated dataset through model deformation. 
 
The rest of the paper is organized as follows. We briefly discuss 
related work in Section 2. Section 3 reviews the principle of 
energy minimization techniques that govern the deformable 
behavior of our Intelligent Balloon towards the correct recovery 
of both geometry and topology. Section 4 details all key 
components of our algorithm for the Intelligent Balloon model. 
Experimental results are shown in section 5. Finally, we conclude 
our paper in Section 6 and point out possible future directions in 
Section 7. 
 

2 RELATED WORK 
 
During the recent years, a lot of research has been conducted in 
the areas of surface reconstruction, reverse engineering, and shape 
recovery in medical imaging. The majority of the published results 
falls into two groups: static, geometric techniques and dynamic, 
energy-based techniques.  Among the static methods, one popular 
algorithm was proposed by Hoppe et al. [3,4,5]. They first use all 
the input points to define a signed distance function on 3R , and 
then interpolate and polygonize the zero-set of this function 
through the use of the marching-cube algorithm to generate the 
desirable output mesh. Another type of static approaches uses 
Voronoi diagram and Delaunay triangulation. For instance, 
Edelsbrunner et al. [2] generalize the mathematical notion of 
convex hull to formally define a family of surfaces based on the 
input point set. They call the new set of polyhedra α - shapes. A 
simplex (i.e., edge, triangle, or tetrahedron) belongs to the α -
shape if it has some circumsphere with interior empty of sample 
points, of radius at most α . Therefore, any α -shape consists of a 
number of appropriate simplices, which can be considered as 
modeling primitives for the α -shape. The overall shape and its 

natural dimensionality of the point set can be modified by 
changing the values of α . Recently, Amenta et al. [1] proposed a 
new Voronoi-based algorithm called Crust. Using their method, 
the parameter can be computed automatically for the purpose of 
shape reconstruction. 
 
In the category of dynamic approaches, the most famous one is 
the snake model proposed by Kass, Witkin and Terzopoulos [6].  
A snake is essentially a spline that minimizes the energy 
associated with the spline. The total energy of the snake model is 
contributed from three different sources: (1) the internal energy of 
the spline, (2) image forces, and (3) external constraints.  Through 
the minimization of the spline’s internal energy, the snake will 
always remain smooth. The image forces guide the snake toward 
lines and edges of interest, while the external constraints allow the 
user to identify specific features to model. The original snake 
model only behaves and deforms on a 2-D plane, and can only 
model the topology of simple 2-D objects. Recently, McInerney 
and Terzopoulos [11] extended the snake model to be able to 
recover 3D shapes of arbitrary topology. The basic idea of their 
method is to superimpose a simplical grid on the image domain 
and iteratively reparameterize the geometry of deforming snakes.  
Miller et al. [12, 13] proposed a polygon-based deformable 
model.  The behavior of the model is determined by a local cost 
function associated with each model vertex. The cost function is a 
weighted linear combination of three terms: (1) a deformation 
potential that pushes the model vertices towards the object 
boundary, (2) an image term that identifies features such as edges 
and acts against the balloon expansion, and (3) a term that 
constrains the motion of each vertex to remain not far from the 
centroid of its neighbors. Similar to the snake model, the 
topological variation in Miller et al.’s work is not allowed. The 
modeled dataset must be homomorphic to a sphere, and the 
algorithm only deal with the volumetric data type. In contrast, Our 
Intelligent Balloon model further generalizes their work and can 
overcome some limitations of their algorithm. In particular, our 
technique is capable of recovering geometric shape of arbitrary, 
unknown topology from either volumetric data or range data. 
Recently, Qin and Mandal [14, 9] proposed dynamic subdivision 
surfaces for surface reconstruction. Their approaches combine the 
advantages of free-form deformable models with the nice 
properties of subdivision surfaces---smooth limit surfaces with 
few degrees of freedom. In addition, their algorithm allows the 
direct manipulation of the limit surfaces defined by the 
subdivision process on the initial control mesh. When applying 
the dynamic subdivision surfaces to solve shape reconstruction 
problems, however, the topology of these models must be 
determined before the geometric deformation, i.e., only geometric 
aspects of the underlying dataset are reconstructed through 
physics-based simulation.  
 
Our Intelligent Balloon is a polygonal model with the capability 
of recursive refinements through surface subdivision. It can 
automatically construct the new subdivision mesh during the 
deformation phase. Besides the aforementioned work, two other 
research advances are also of relevance. One is the work of Welch 
and Witkin [16,17]. They use a triangle mesh to approximate the 
underlying smooth variational surface for free-form surface 
design. Another one is the more recent work called "skin" 
algorithm proposed by Marksoian et al. [10]. Their goal is to 
generate a triangle mesh to approximate the surface implicitly 
defined by the "skeletons". 



  

3 GEOMETRIC CONSTRAINTS AND 
ENERGY-BASED OPTIMIZATION 

 

The deformable behavior of our Intelligent Balloon is governed 
by the principle of energy-based minimization. A locally defined 
cost function is associated with each vertex of the polygonal 
model. Through the minimization process of the cost function, our 
model will inflate like a typical balloon until it reaches the 
boundary of the modeled objects represented by the data set. In 
this paper, the cost function is a weighted linear combination of 
four constraints that are selected to achieve the desired behaviors 
being simulated in the model. We shall briefly review these four 
components in Section 3.1 followed by the minimization 
algorithm in Section 3.2.  

 

3.1 Constraint Modeling 
 

The energy function ),,( zyxCi
 associated with the current 

location of each model is explicitly formulated as 
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where ),,( zyxD  is the deformation potential, ),,( zyxB  is the 

boundary constraints, ),,( zyxV  is the curvature constraint, and 

),,( zyxA  is the angular constraint. 
3210 ,,, aaaa  are the four 

corresponding non-negative weighting parameters. 

 

3.1.1 Deformation potential -- ),,( zyxD  
 

The deformation potential ),,( zyxD  offers the mechanism to 

inflate the model. It defines a scalar field where each position in 
space is assigned a value based on the frame of reference. The 
vertex will move along the direction of the lowest local potential 
(in absence of other constraints).  

 

In order to model concave objects, the normal tracking method is 
used, i.e., each vertex is attracted to a point located in the vicinity 
of normal direction of the polyhedron surface. During each 
evolving step, every vertex moves in the general direction of the 
local surface normal in order to decrease its deformation potential. 

 
During the refinement process (local and global subdivision), 
which we will discuss in detail in Section 4, it is possible that new 
vertices are added to the model on the opposite of the boundary. 
In order to move these model points to the other side of the 
boundary and hence increase the accuracy and quality of the 
model, the surface normal used in the deformation potential of 
these model points is defined to point in the opposite direction. 
The effect is that a model point will migrate towards the true 
boundary of the object regardless of whether the model point is 
located inside or outside the object. Hence, as long as the initial 
model intersects the object boundary, i.e. some of the model 
points are inside object, the remainders are outside the object, the 
model tends to seek out the true boundary of the object.  

3.1.2 Boundary constraint -- ),,( zyxB  
 

Boundary constraint ),,( zyxB  affords the mechanism for the 

model to interact with the data set and identify the boundary. It is 
used to counter-balance the deformation potential and will 
restrict, direct, and counter-act the general progression of the 
deformation. Note that, volumetric data and range data are treated 
separately. 

 

For volumetric data, we make use of a shifted threshold operator 
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where ),,( zyxmageI  is the grey-level intensity distribution of the 

voxel at (x, y, z), T is the threshold value that identifies the object. 

 

When a model point steps over the edge of an object, the 
algorithm returns a value that should increase the overall cost of 
the system. Therefore, the minimization process is required to 
either move the vertex by a smaller amount or not move the vertex 
at all. Hence the vertex will approach the boundary without 
crossing over it (unless its neighbors pull it over the edge).  

 

For range data, however, since there is no grid inherited in the 
underlying data, the aforementioned method cannot function 
properly. Instead, we use a distance-based constraint. For each 
vertex, the algorithm finds out the closest data point to the vertex 
and calculates the distance. If the distance is smaller than the 
threshold, the vertex will be marked as non-active and is no 
longer allowed to move. This mechanism will ensure that the 
model is always inside the range data. The threshold used here is 
the sampling rate of the range data. Intuitively, we can consider 
the sampling rate as the smallest radius of spheres that are 
centered at each point of the range data set and can tightly cover 
the entire boundary area of the modeled object without having any 
gaps on the surface region. 

 

3.1.3 Curvature constraint -- ),,( zyxV  
 

The first two constraints have the ability to grow the model until 
all the vertices reach the boundary of the underlying object. 
During the deformation process, it is desirable for a vertex not to 
stray far away from its neighbors. This suggests the use of 
curvature constraint which is a reasonable approximant of the 
local curvature, and it is defined as the ratio of the distance from 
the current model point to the centroid of its neighbors over the 
maximum distance among all the neighbors of the current model 
point: 
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where ),,( zyx  is the current model point, n  is the number of 

neighbors to the current model point, ),,(),,,( kkkjjj zyxzyx  

are the neighbors of the current model point, .,1 nkj ≤≤  

Curvature constraint ),,( zyxV  also has the effect of keeping the 

vertices well distributed during the deformation process. We will 
discuss this issue in more details in Section 4 later. 

 

3.1.4 Angular constraint-- ),,( zyxA  
 

Angular constraint is used to simulate the effect of attaching a 
very stiff string between any two adjacent faces. Similar to the 
boundary constraint, the value of angular constraint is either zero 
or very large. At each deformation step, the edges on the one-
neighborhood of each vertex are identified, and all the dihedral 
angles between the two adjacent faces of these edges are 
calculated. If the next move of the vertex will cause any of these 
dihedral angles smaller than the threshold, the angular constraint 
will become very large and the vertex is not allowed to move at 
this deformation cycle. Otherwise, the angular constraint is zero. 
Angular constraint can effectively keep any two adjacent faces 
from being too close to each other. This constraint, used in 
concert with the more aggressive stressed-edge resolution 
approach and the mesh optimization techniques that will both be 
discussed later in this paper, will effectively prevent the local 
inter-penetration of adjacent faces. 

 

3.2 Optimization Method 
 

An implicit iterative method is employed to numerically compute 
the minimization of our cost function explained above. The 
advantage of this approach is that it is extremely general and can 
offer an accurate, stable solution even for very large systems, 
therefore, it is well suited for our purpose in shape reconstruction. 
A vertex of the model will move along the direction of steepest 
descent along the cost surface, which is opposite to the gradient of 

the cost function 
iC . The gradient ),,( z
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numerically approximated using the central difference of the 
overall cost function for the current position of the model vertex 
with a very small perturbation. The amount that a vertex can move 
is adjusted based upon the current configuration of the cost space. 
The step size can be reduced four times if the magnitude of the 
current step size results in an increase in the cost function. If a 
step size is no longer able to reduce the cost of the vertex, then the 
vertex is marked as non-active and is not allowed to move any 
further.  

 
4 INTELLIGENT BALLOON MODEL 
 

The previous section highlights the key mathematical concept of 
balloon-like deformable models---defining and associating a local 
cost function with each vertex of the underlying polygonal 
models. Through the minimization of the cost function, the model 
can grow until it reaches the boundary of the object. 
 

In order to recover shape of arbitrary, unknown topology, we 
generalize the balloon-like deformable models with additional 
capabilities. Our Intelligent Balloon model is a subdivision-based 
deformable model. Our model is initialized interactively by users 
as a very simple seed model that consists of a small number of 
faces (e.g., a cube). Following the previous discussion, our model 
can inflate according to its local cost function associated with 
each vertex of the model. In addition, local adaptive subdivision 
schemes can be applied on the model in order to increase the 
degrees of freedom and make our model highly flexible for 
various complicated geometric data sets while ensuring the tight 
control on the fitting error. Most importantly, our model has the 
ability to automatically detect self-collision and modify its 
topology in accordance with the data set. Meanwhile, mesh 
optimization techniques are used throughout the deformation 
process to maintain the good quality of the mesh. Figure 1 shows 
the flowchart of our algorithm. 
 
 
 

 
 

Figure 1: Overview of the Intelligent Balloon model. 

 



  

4.1 Model Initialization 
 
The seed model may be any kind of closed polyhedron. For 
simplicity and without loss of generality, we use a sphere-like 
polyhedron consisting of 24 triangles of equal size. The initial 
position of the seed model can be put interactively by users 
anywhere within the data set. Furthermore, for volumetric data, 
the seed model does not need to be completely inside the data set. 
This is because the model will flip the normal tracking direction 
of the vertex if the vertex is detected to be outside the data set. 
 

4.2 Local Adaptive Subdivision 
 

In order to control the smoothness of the model and the size of 
each polygon during the model-growing phase, we must allow the 
model to be able to increase its degrees of freedom during the 
deformation process. One simple, straightforward technique is 
global subdivision, i.e., globally subdivide the model whenever 
necessary. The drawback of the global subdivision approach is 
that it may generate a lot of unnecessary vertices on surface 
regions where a good approximation to the data boundary has 
already been achieved. Alternatively, we take advantage of the 
local adaptive subdivision approach, i.e., we only need to 
subdivide active regions that are still growing. A face is 
subdivided if its area is larger than a certain user-defined 
threshold, and moreover, at least one of its three vertices is still 
active. The typical subdivision rule is as follows. The algorithm 
will introduce a new vertex at the middle position of each old 
edge, and connect all the three new vertices. Thus four smaller 
new faces are generated from each old face. To maintain 
subdivision connectivity, all the triangles adjacent to the current 
face also need to be subdivided correspondingly. For example, in 
Figure 2, in order to subdivide the central triangle BDE, all the 
three adjacent triangles ADB, CBE and DFE need to be 
subdivided as well. And each of these three triangles is subdivided 
into two smaller ones by splitting the adjacent edge they share 
with the central triangle BDE. 
 

 
 

Figure 2: Local adaptive subdivision scheme. The solid lines are 
the old edges, the dashed lines are the new edges. The center 
triangle BDE is divided into 4 smaller triangles by connecting the 
three middle points of the old edges. Each of the three adjacent 
triangles ADB, CBE and DFE is split into two smaller triangles. 

 

4.3 Improving Mesh Quality 
 
The Intelligent Balloon is a polygonal based model. Therefore, it’s 
critical to improve and maintain the mesh quality throughout the 
deformation process to keep the model both locally smooth and 
globally well conditioned. In general, three issues must be 
considered as also observed by Welch et al. [17]: (1) how to keep 
the nodes well distributed; (2) how to keep the triangles well 
shaped; and (3) how to keep an appropriate node density. 
 

4.3.1 Nodes distribution 
 

A popular scheme for keeping the nodes well distributed is called 
Laplacian Smoothing. It can be implemented by iteratively 
moving each node to the centroid of its neighbors. In our 
algorithm for the Intelligent Balloon, we decide not to implement 
this scheme because of the high numerical cost associated with it. 
Instead, we rely on the curvature constraint ),,( zyxV  in our local 

cost function ),,( zyxCi
 associated with each vertex to keep 

vertices from straying too far away from the centroid of their 
neighboring vertices. We observe that our curvature constraint 
behaves well in maintaining a good distribution of the nodes. 

 

4.3.2 Triangle shape 
 
A triangulation with nodes well distributed can still have many 
skinny triangles. It is well known that the best possible surface 
triangulation over a set of points with known topology is the 
Delaunay triangulation. In addition, a Delaunay triangulation of 
an arbitrary surface can be incrementally recovered from a valid 
initial surface triangulation through edge swapping. We swap an 
edge if doing so will increase the minimum angle within its 
adjacent faces. Repeated applications of this swap operation 
always keep increasing the minimum angle and hence result in a 
Delaunay triangulation at the end of the procedure. That is, it 
maximizes the minimum angle on all the triangles of the mesh. In 
practice, an edge is eligible for swapping only if the dihedral 
angle between its two adjacent faces is larger than a certain user-
defined threshold, i.e., the local surface across the edge is flat 
enough. Moreover, an edge is swapped only if its local minimum-
angle will be increased by a certain small minimum (specified by 
users and heuristically determined by the algorithm). These two 
conditions can guarantee that the edge-swapping algorithm always 
functions correctly and terminates eventually. 
 

4.3.3 Node density 
 
During the deformation process, some nodes may cluster with 
each other, and some other nodes may be too far away from each 
other. To maintain an appropriate node density, we also need to 
perform the following two operations: (1) edge split and (2) edge 
collapse. First, all the edge lengths are measured in 3-D, and an 
edge-split is triggered if any two neighbors are too far apart. 
Similarly, if any node is too close to each of its neighbors, the 
node is destroyed using the edge collapse. To restore a quality 
mesh, the edge swapping is always applied after any edge split 
and edge collapse operations. Figure 3 illustrates the three mesh 
operations. 
 



  

 
           edge swap               edge split               edge collapse 

 

Figure 3: Mesh optimization techniques. 

 

4.4 Prevention of Local Inter-penetration  
 
One phenomenon which oftentimes appears in a polygonal based 
deformable model is the local inter-penetration of neighboring 
faces. Local inter-penetration typically occurs between two 
portions of the surface separated by a chain of stressed edges.  In 
practice, a stressed edge is identified if its two adjacent faces form 
an angle of less than 60 degrees (this value may vary across 
different systems).  Marksoian et al. [10] solve this problem by 
passively registering the collision points and letting other non-
stressed edges continue to evolve. Eventually, the creases will be 
resolved by themselves. This method works very well within 
interactive design environment. But it is not very applicable to our 
purpose for shape reconstruction and reverse engineering. We 
propose a more aggressive approach, which, when combined with 
the aforementioned mesh optimization techniques, can 
significantly prevent the occurrence of local inter-penetrations. 
 
The idea is to resolve stressed edges whenever they appear. 
Before each step of deformation, we calculate the dihedral angle 
of the two adjacent faces for all the active edges, mark all the 
edges whose dihedral angle is less than certain threshold as 
stressed edges. Each stressed edge is split into two small edges at 
the middle point. Then the middle point is moved to the middle 
position of the two opposite vertices. If the two adjacent faces of 
the stressed edge are very close to each other, then at the 
following mesh optimization steps, the new edges will be 
collapsed, i.e., the two adjacent faces will be merged. Figure 4 
demonstrates our method of resolving stressed edges. Edge BD is 
marked as the stressed edge because the dihedral angle between 
its two adjacent faces ABD and EBD is smaller than the threshold 
(Fig. 4(a)). Thus it is split at its middle point F and is connected 

with the four neighbor vertices A, B, D and E (Fig. 4(b)). Finally, 
F is moved to the middle position of the two opposite vertices A 
and E (Fig. 4(c)). 
 
 

 
            

(a)    (b)          (c) 
 
 
Figure 4: Resolve stressed edges. (a) Edge BD is marked as 
stressed edge because the dihedral angle between its two adjacent 
faces ABD and EBD is less than the threshold. (b) Edge BD is 
split at the middle, and the middle point F of edge BD is 
connected with vertices A, B, D and E. (c) Finally, F is moved to 
the middle of vertices A and E. 
 
 

4.5 Collision Detection and Topology 
Changes 

 
In order to recover a shape of arbitrary, unknown topology, the 
model must be able to change its topology properly whenever a 
collision with other parts of the model is detected. Various kinds 
of collisions can be considered, such as face-to-face, edge-to-
edge, vertex-to-vertex, edge-to-face, etc. Techniques such as 
surface-surface intersection and trimming have been proposed to 
solve collision detections. However, these techniques are usually 
very time consuming. We propose a novel distance based collision 
detection scheme that is simple, fast and efficient. Figure 5 shows 
the following three steps of the algorithm: (1) collision detection, 
(2) identify one-neighborhood and put them into correspondence, 
and (3) change the topology. 
 
Collision detection: If the distance of two non-neighbor active 
vertices is smaller than the threshold, a collision will be identified 
and a merge-operation is triggered. If the distance between several 
pairs of active vertices is smaller than the threshold, the closest 
pair of vertices is chosen. For example, in Fig. 5(a), because the 
distance between two active vertices A and B is smaller than the 
threshold, a collision between regions around vertex A and B is 
detected and a merge operation is triggered. 
 
Identify one-neighborhoods and put them into correspondence: 
To merge the two parts of the model. First, we need to identify 
and collect all the one-neighborhood points for each of these two 
vertices. Then these two sets of points (i.e., one-neighborhood 
points) are sequenced separately and are put into correspondence. 
To do so, we use the same procedure as Welch and Witkin [16]: 
Iteratively refine the neighborhood with fewer edges by splitting 
its longest edge until both have the same number of nodes, then 
choose the alignment that minimizes the sum of squared distances 
between nodes. In Fig. 5(a), originally the one-neighborhood of 
vertex A has five nodes: { A1, A2, A3, A4, A5} , the one-



  

neighborhood of vertex B has six nodes: { B1, B2, B3, B4, B5, 
B6} .  To make these two one-neighborhoods have the same 
number of nodes, we first find the longest edge of the one-
neighborhood of vertex A, which is the edge between nodes A2 
and A3. And then split this edge into two edges and insert a new 
node in between. Finally, we put these two sets of points into 
correspondence by finding the alignment that minimizes the sum 
of squared distances between nodes. In Fig. 5(b), point set { A1, 
A2, …, A6}  are corresponding to { B1, B2, …, B6}  respectively. 
 
Change the topology: After the two sets of points are put into 
correspondence, each point is connected with its corresponding 
point in the opposite point set. The two center vertices and all its 
incident edges are removed (Fig. 5(c)). The newly created 
quadrilaterals are further triangulated by splitting each 
quadrilateral into two triangles along one of its diagonals (Fig. 5 
(d)). 
 
The mesh optimization processes will quickly smooth out any 
artifacts that may result from the matching procedure once the 
merge has been completed. 
 
 

 
 
 
   (a) 

 

 
 
     (b) 

 

 
   
   (c) 
 

 
(d) 

 
 
Figure 5: Collision detection and topology change. (a) A collision 
is detected between the region around vertex A and the region 
around vertex B. (b) The one-neighborhoods of vertex A and 
vertex B are put into correspondence. (c) The corresponding 
vertices between the one-neighborhoods of vertex A and vertex B 
are connected. Vertex A and Vertex B and their incident edges are 
removed. The topology of the model is modified. (d) Each of the 
newly created quadrilaterals is split into two triangles. 
 
 

4.6 Level of Detail 
 
Once a rough estimation of the topology and geometry of a shape 
is achieved, the model can be subdivided several times to improve 
the fitting accuracy. We choose Loop's scheme [7] in our model 
though other schemes would also achieve this goal. Figure 6 
shows the Loop’s subdivision scheme. There are two kinds of new 
vertices generated at each level of subdivision: edge points and 
vertex points. Each old edge will generate a new edge point using 
the rule shown in Fig. 6(a). Each old vertex will generate a new 
vertex point using the rule shown in Fig. 6(b). By connecting each 
vertex point with its two adjacent edge point and connect the three 
edge points with each other, four smaller triangles are generated 
from each old triangle. 
 



  

After one level of global subdivision, the model will deform again 
based on the cost function explained above, and will arrive at a 
more accurate configuration of the shape because we now have 
more degrees of freedom for the model. Note that, since the 
unknown topology of the underlying data set has already been 
recovered, there is no need for collision detection and topology 
change at this stage. 
 
 

 
 

(a) (b) 
 
 
Figure 6: Subdivision rules for Loop’s scheme: (a) Edge point 

rule. (b) Vertex point rule. 
8n
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16
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  a=  for 

n = 3, n is the valence of the vertex. 
 
 

5 RESULTS 
 
We have built an experimental system of the Intelligent Balloon 
model using C++ language and FLTK. Figure 7 to 10 show some 
of the experiments we have conducted using this system.  
 
The input data set of Figure 7 is a synthesized range data with 
three holes. Fig. 7(a) shows the initialized model within the range 
data. Fig. 7(b) and Fig. 7(c) are two snapshots of our model 
during the deformation process. Fig. 7(d) is the final shape. Fig. 
7(e) is the refined shape after one level of global subdivision 
using Loop’s scheme.  By comparing Fig. 7(d) and Fig. 7(e), we 
can clearly see the improvement of the fitting accuracy. 
 
Figure 8 shows our experiment on a synthesized range data which 
is acquired from a torus. Fig. 8(a) shows the initialized model 
within the range data, followed by a growing model to its right 
(Fig. 8(b)). Fig. 8(c) represents the final shape after the recovery 
of the topological information. Fig. 8(d) illustrates the more 
refined model after one level of subdivision.  
 
Figure 9 illustrates the shape reconstruction process from a 
volumetric image data with six holes. Fig. 9(a) and Fig. 9(b) are 
the snapshots of our model while they are still growing and 
deforming, and the final shape estimation is shown on Fig. 9(c). 
Fig. 9(d) shows the more refined model after one level of 
subdivision. Fig. 9(e) is the volume rendering of the volumetric 
image data with six holes. 
 

Figure 10 demonstrates our experiment on a volumetric image 
data which is acquired from a nut. Fig. 10(a) shows the still 
growing model, followed by the final shape on Fig. 10(b). Fig. 
10(c) and Fig. 10(d) are the refined shape after one and two levels 
of global subdivision. The groves on the inner-surface of the nut 
are recovered very well (Fig. 10(d)). The volume rendering of the 
nut is shown on Fig. 10(e). Fig. 10(f), Fig. 10(g) and Fig. 10(h) 
are the error maps of the final shape of Fig. 10(b), Fig. 10(c) and 
Fig. 10(d), respectively. The fitting error is calculated by dividing 
the distance between the model vertex and the closest volume 
boundary voxel by the diameter of the smallest bounding sphere 
of the object. The green color shows regions whose fitting error is 
less than 0.5%. The red color represents regions whose fitting 
error is greater than 2%. These three error maps illustrates that the 
fitting error is greatly reduced after two levels of global 
subdivision. Since our model currently cannot recover sharp 
edges and corners, the regions that are still red after two levels of 
subdivision are mainly the regions around the sharp edges and 
corners. 
 
Table 1 lists the four weighting coefficients for calculating the 
local cost function associated with each vertex using equation (1). 
Table 2 and Table 3 summarize the statistics of the examples. In 
particular, Table 2 summarizes the information of the input data, 
including data type and the data size. Table 3 gives the 
information of the recovered shape, such as the number of 
vertices, edges and faces for each model, the running time, and the 
maximum fitting error. The running time is measured on an AMD 
K6 475MHZ Notebook PC with 64MB internal memory. 
 
 
 

0a  1a  2a  3a  

1 1 1.6 1 
Table 1: Weighting coefficients. 

 
 
 

Figure # Data Type Data Size 
7 Synthesized range data 4348 points 
8 Synthesized range data 6400 points 
9 Volumetric image data 32 x 32 x 64 voxels 
10 Volumetric image data 69 x 41 x 59 voxels 

Table 2: Input data information. 
 
 
 

Figure# #Vertices #Edges #Faces Time 
(sec) 

Fitting 
error(%) 

7(d) 509 1539 1026 41 4.37 
7(e) 2104 6324 4216 139 2.29 
8(c) 211 633 422 30 4.80 
8(d) 924 2772 1848 125 2.79 
9(c) 2379 4774 7161 120 1.26 
9(d) 9848 29568 19712 315 0.94 
10(b) 172 344 516 24 2.79 
10(c) 756 1512 2268 31 2.03 
10(d) 3053 6106 9159 218 1.85 

Table 3: Recovered shape information. 
 

 



  

6 CONCLUSIONS 
 

We have developed and presented a novel subdivision based 
deformable model—Intelligent Balloon. Our Intelligent Balloon 
can overcome several limitations of the conventional deformable 
models. It offers users a unified approach to deal with both 
volumetric data and range data. By using a novel distanced based 
collision detection scheme, Intelligent Balloon can recover the 
shape of arbitrary geometry and unknown topology 
simultaneously. We also proposed a novel technique to prevent 
any local inter-penetration by aggressively resolving all the 
stressed edges whenever they appear. Our algorithm, combined 
with mesh optimization techniques, can guarantee a very high 
quality mesh during the deformation process. Since our model is a 
subdivision-based model, it supports levels of detail naturally. 
After an initial estimation of both topology and geometry of the 
data set is accomplished, the user can control the levels of detail 
easily by specifying the number of levels of global subdivision. 
Our model can also be paralleled, i.e., multiple seed models can 
be placed at different positions at the same time, and each seed 
model will grow on its own and will merge with other models 
whenever a collision is detected. This will speed up the algorithm 
and is especially useful in areas such as medical imaging when a 
priori knowledge about the data set is always available. 
 

7 FUTURE WORK 
 
Several improvements are possible. First, we currently use a 
brute-force searching algorithm for collision detection and the 
closest-point searching algorithm for the range data. We shall 
continue to improve their time performance by using techniques 
such as hierarchical bounding box. Second, our current algorithms 
require users to interactively select a few parameters during the 
initialization stage. This would require certain knowledge for 
users. Hence, the current version of our system is perhaps more 
appropriate for domain specialists who are more familiar with the 
underlying data set and its property. It would be ideal to refine our 
system so that all relevant parameters can be determined 
heuristically without user intervention. Making all the parameters 
transparent in our system would appeal to naive users. 
Furthermore, the initial position of the seed model ought to be 
chosen automatically.  
 
In addition, we plan to extend the functionality of our model and 
its associated system in the following directions in the future. 
First, we shall enhance our model so that it can recover sharp 
features such as corners and creases. Second, besides the coarse-
to-fine levels of detail currently available in our system, we shall 
explore the data-reduction capability (i.e., from fine to coarse). It 
is essential in solid modeling to obtain a more concise, spline-like 
representation of the modeled data. Third, we shall apply the 
techniques and algorithms of our Intelligent Balloon to other 
visual computing fields such as interactive design and engineering 
analysis.  
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Figure 7: Surface reconstruction from synthesized range data with three holes. (a) Seed model initialized inside the range data.  (b) A 
snapshot of the model during the deformation process. (c) Another snapshot of the model during the deformation process, the topology of 
the model has been changed. (d) The final shape of the model. (e) Refined shape of the model, one level of subdivision has been applied. 
Active regions of the model are shown as red, non-active regions of the model are shown as blue, and range data points are shown as gold. 



  

       

                 (a)                      (b)              (c)                      (d) 

 

Figure 8: Surface reconstruction of a torus from synthesized range data. (a) Seed model initialized inside the range data.  (b) A snapshot of 
the model during the deformation process. (c) The final shape of the model. (d) Refined shape of the model, one level of subdivision has 
been applied. Active regions of the model are shown as red, non-active regions of the model are shown as blue, and range data points are 
shown as gold. 
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Figure 9: Surface reconstruction from volumetric image data with six holes. (a) A snapshot of the model during the deformation process. 
(b) Another snapshot of the model during the deformation process, the topology of the model has been changed. (c) The final shape of the 
model. (d) Refined shape of the model, one level of subdivision has been applied. (e) Volume rendering of the volumetric image data with 
six holes. Active regions of the model are shown as red, non-active regions of the model are shown as blue. 
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Figure 10: Surface reconstruction of a nut from volumetric image data. (a) A snapshot of the model during the deformation process. (b) The 
final shape of the model. (c) Refined shape of the model, one level of subdivision has been applied. (d) Refined shape of the model after 
two levels of subdivision. (e) Volume rendering of the volumetric image data of nut. Active regions of the model are shown as red, non-
active regions of the model are shown as blue. (f), (g) and (h) are the error maps of models on (b), (c) and (d), respectively. Green color 
shows regions whose fitting error are less than 0.5%, red color represents regions whose fitting error is greater than 2%. 


