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Abstract

In this paper, we develop a novel subdivision-based model---
Intelligent Balloon---which is capable of recovering arbitrary,
complicated shape geometry as well as its unknown topology
simultaneously. Our Intelligent Balloon is a parameterized
subdivision surface whose geometry and its deformable behaviors
are governed by the principle of energy minimization. Our
algorithm starts from a simple seed model (of genus zero) that can
be arbitrarily initiated by users within regions of interest. The
growing behavior of our model is controlled by alocally defined
objective function associated with each vertex. Through the
numerical integration of function optimization, our agorithm can
adaptively subdivide the model geometry, automatically detect
self-collision of the model, properly modify its topology (because
of the occurrence of self-collision), correctly evolve the model
towards the region boundary and reduce fitting error and improve
fitting quality via global subdivision. Commonly used mesh
optimization techniques are employed throughout the geometric
deformation and topological variation in order to ensure the
model both locally smooth and globally well conditioned. We
have applied our topologically flexible models to such
applications as reverse engineering from range data and surface
reconstruction from volumetric image data. Our new models
prove to be very powerful and extremely useful for boundary
representation of complicated solids of arbitrary topology, shape
recovery and segmentation for medical imaging, and iso-surface
extraction for visualization.

Keywords: Energy Optimization, Geometric and topological
representations, Biomedical applications, Reverse engineering.

1 INTRODUCTION

Despite the significant advances of modeling techniques and
system functiondlities in Computer-Aided Design (CAD) and
computer graphics during the past ten years, current state-of-the-
art modeling systems are still lacking of some of the unique visua
and physical advantages inherent in real-world clay models. As a
result, clay models remain to be unreplacable especialy in the
presence of 3-D data acquisition technology. In particular, they
have been extensively used by engineers in areas such as
automobile design. Besides conventional interactive techniques
via editing on CAD models, 3-D laser range scanners offer a
powerful, aternative means of acquiring geometric models. Small
or large-scale objects can be initially sculptured in real world and
subsequently scanned into CAD formats for future applications
such as manipulation, analysis, and evaluation. In a nutshell, 3-D
scanning technology facilitates the process of reverse engineering,
i.e, natural and manufactured parts can be digitally converted into
CAD systems and then being modified using a range of CAD
tools.

On the other hand, recent hardware advances based on new
imaging modalities such as CT, MRI and Ultrasound as well as
sensoring techniques have been able to generate more volumetric,
range and image data than what scientists and engineers can
handle. It remains a challenging task for researchers and
practitioners on how to model, manipulate and display the
tremendous amount of data in a useful and intuitive way in shape
modeling, CAD, visuaization, and medical imaging. To date,
many agorithms and techniques have been developed to
effectively deal with the acquired data for modeling and rendering
applications. In general, existing approaches can be roughly
classified into two different categories. they are either model-less
techniques such as direct volume-rendering from voxel datasets or
model-centered techniques such as deformable modeling for
shape reconstruction and recognition. Among a wide array of
model-driven techniques, deformable models have been extremely
popular with great success primarily because they offer a unified
and powerful approach that can combine the knowledge from
geometry, physics and approximation theory to tackle many
challenging problems and offer an elegant solution for many
applications. Nevertheless, there are several limitations associated
with deformable models that are currently available. Among them,
one of the most severe limitations is that the topology of the



underlying shape either is very simple (such as genus zero) or
must be known apriori (i.e., is determined elsewhere in a separate
pre-processing phase) and remain unchanged throughout the time
integration of model deformations.

By contrast, our Intelligent Balloon model can be used to
overcome this limitation. It can recover both complicated shape
geometry and its arbitrary, unknown topology simultaneously. It
provides user a unified approach that can deal with both
volumetric data and range data, therefore our new model is
efficient, flexible and powerful. Moreover, Intelligent Balloon isa
subdivision-based deformable model. In using our system for
reverse engineering, users can interactively seed a simple model at
the initiglization stage, the model will deform and grow towards
the boundary of the modeled dataset in accordance with the local
cost function associated with each vertex of the model. During the
process of model deformation, both global and local/adaptive
subdivision operations on the model can be automatically applied
whenever necessary in order to refine the model to an appropriate
resolution and achieve different levels of detail. More importantly,
by using a novel distance-based collision detection scheme, the
model can automatically detect self-collison and modify its
topology accordingly. In order to ensure the recovery of the
correct topology from arbitrary datasets, we develop a novel, yet
simple scheme that can prevent inter-penetration in the vicinity of
any vertex of the model. This scheme, combined with matured
mesh optimization techniques, has proven to be effective and can
generate a good, high-quality polygonal mesh, which both
reconstruct the data geometry and extract the arbitrary topology
from any complicated dataset through model deformation.

The rest of the paper is organized as follows. We briefly discuss
related work in Section 2. Section 3 reviews the principle of
energy minimization techniques that govern the deformable
behavior of our Intelligent Balloon towards the correct recovery
of both geometry and topology. Section 4 details al key
components of our algorithm for the Intelligent Balloon model.
Experimental results are shown in section 5. Finally, we conclude
our paper in Section 6 and point out possible future directions in
Section 7.

2 RELATED WORK

During the recent years, a lot of research has been conducted in
the areas of surface reconstruction, reverse engineering, and shape
recovery in medical imaging. The majority of the published results
fals into two groups: static, geometric techniques and dynamic,
energy-based techniques. Among the static methods, one popular
algorithm was proposed by Hoppe et a. [3,4,5]. They first use al
the input points to define a signed distance function on R*, and
then interpolate and polygonize the zero-set of this function
through the use of the marching-cube algorithm to generate the
desirable output mesh. Another type of static approaches uses
Voronoi diagram and Delaunay triangulation. For instance,
Edelsbrunner et al. [2] generaize the mathematica notion of
convex hull to formally define a family of surfaces based on the
input point set. They call the new set of polyhedra & - shapes. A
simplex (i.e., edge, triangle, or tetrahedron) belongs to the O -
shape if it has some circumsphere with interior empty of sample
points, of radius at most @ . Therefore, any @ -shape consists of a
number of appropriate simplices, which can be considered as
modeling primitives for the @ -shape. The overall shape and its

natural dimensionality of the point set can be modified by
changing the values of &' . Recently, Amenta et a. [1] proposed a
new Voronoi-based algorithm called Crust. Using their method,
the parameter can be computed automatically for the purpose of
shape reconstruction.

In the category of dynamic approaches, the most famous one is
the snake model proposed by Kass, Witkin and Terzopoulos [6].
A snake is essentidly a spline that minimizes the energy
associated with the spline. The total energy of the snake model is
contributed from three different sources: (1) the internal energy of
the spline, (2) image forces, and (3) external constraints. Through
the minimization of the spline's internal energy, the snake will
aways remain smooth. The image forces guide the snake toward
lines and edges of interest, while the externa constraints allow the
user to identify specific features to model. The original snake
model only behaves and deforms on a 2-D plane, and can only
model the topology of simple 2-D objects. Recently, Mclnerney
and Terzopoulos [11] extended the snake model to be able to
recover 3D shapes of arbitrary topology. The basic idea of their
method is to superimpose a simplical grid on the image domain
and iteratively reparameterize the geometry of deforming snakes.
Miller et a. [12, 13] proposed a polygon-based deformable
model. The behavior of the model is determined by a local cost
function associated with each model vertex. The cost functionisa
weighted linear combination of three terms. (1) a deformation
potential that pushes the model vertices towards the object
boundary, (2) an image term that identifies features such as edges
and acts against the balloon expansion, and (3) a term that
constrains the motion of each vertex to remain not far from the
centroid of its neighbors. Similar to the snake model, the
topologica variation in Miller et a.’s work is not alowed. The
modeled dataset must be homomorphic to a sphere, and the
agorithm only deal with the volumetric data type. In contrast, Our
Intelligent Balloon model further generalizes their work and can
overcome some limitations of their algorithm. In particular, our
technique is capable of recovering geometric shape of arbitrary,
unknown topology from either volumetric data or range data
Recently, Qin and Mandal [14, 9] proposed dynamic subdivision
surfaces for surface reconstruction. Their approaches combine the
advantages of free-form deformable models with the nice
properties of subdivision surfaces---smooth limit surfaces with
few degrees of freedom. In addition, their algorithm allows the
direct manipulation of the limit surfaces defined by the
subdivision process on the initial control mesh. When applying
the dynamic subdivision surfaces to solve shape reconstruction
problems, however, the topology of these models must be
determined before the geometric deformation, i.e., only geometric
aspects of the underlying dataset are reconstructed through
physics-based simulation.

Our Intelligent Balloon is a polygonal model with the capability
of recursive refinements through surface subdivision. It can
automatically construct the new subdivision mesh during the
deformation phase. Besides the aforementioned work, two other
research advances are also of relevance. One is the work of Welch
and Witkin [16,17]. They use a triangle mesh to approximate the
underlying smooth variational surface for free-form surface
design. Ancther one is the more recent work caled "skin"
agorithm proposed by Marksoian et a. [10]. Their goa is to
generate a triangle mesh to approximate the surface implicitly
defined by the "skeletons'.



3 GEOMETRIC CONSTRAINTS AND
ENERGY-BASED OPTIMIZATION

The deformable behavior of our Intelligent Balloon is governed
by the principle of energy-based minimization. A locally defined
cost function is associated with each vertex of the polygona
model. Through the minimization process of the cost function, our
model will inflate like a typical baloon until it reaches the
boundary of the modeled objects represented by the data set. In
this paper, the cost function is a weighted linear combination of
four constraints that are selected to achieve the desired behaviors
being simulated in the model. We shall briefly review these four
components in Section 3.1 followed by the minimization
algorithmin Section 3.2.

3.1 Constraint Modeling

The energy function C (xy,z) associated with the current
location of each model is explicitly formulated as

C(xy,2 =aD(xy,2 +aB(x y, 2 +a,V(xy.2) +a;Ax,y,2) (D

wherep(x,y,z) is the deformation potential, B(x,y,z) is the
boundary congtraints, v(x,y,z) is the curvature constraint, and
A(x,y,z) is the angular congtraint. a,,a;,a,,a, are the four
corresponding non-negative weighting parameters.

3.1.1 Deformation potential -- D(X, Y, 2)

The deformation potential D(x,y,z) offers the mechanism to

inflate the model. It defines a scalar field where each position in
space is assigned a value based on the frame of reference. The
vertex will move along the direction of the lowest local potential
(in absence of other constraints).

In order to model concave objects, the normal tracking method is
used, i.e., each vertex is attracted to a point located in the vicinity
of normal direction of the polyhedron surface. During each
evolving step, every vertex moves in the general direction of the
local surface normal in order to decrease its deformation potential .

During the refinement process (loca and global subdivision),
which we will discussin detail in Section 4, it is possible that new
vertices are added to the model on the opposite of the boundary.
In order to move these model points to the other side of the
boundary and hence increase the accuracy and quality of the
model, the surface norma used in the deformation potential of
these model points is defined to point in the opposite direction.
The effect is that a model point will migrate towards the true
boundary of the object regardless of whether the model point is
located inside or outside the object. Hence, as long as the initial
model intersects the object boundary, i.e. some of the model
points are inside object, the remainders are outside the object, the
model tends to seek out the true boundary of the object.

3.1.2 Boundary constraint -- B(X, Y, 2)

Boundary constraint B(X, Y, z) affords the mechanism for the

model to interact with the data set and identify the boundary. It is
used to counter-balance the deformation potential and will
restrict, direct, and counter-act the general progression of the
deformation. Note that, volumetric data and range data are treated

Separately.

For volumetric data, we make use of a shifted threshold operator

Image(x,y,2) =T
Image(x,y,z) <T

B(x,y,7) = %mage(x, v,2) =T

where Image(X, Y, z) isthe grey-level intensity distribution of the
voxel at (X, Y, z), T isthe threshold value that identifies the object.

When a model point steps over the edge of an object, the
agorithm returns a value that should increase the overall cost of
the system. Therefore, the minimization process is required to
either move the vertex by a smaller amount or not move the vertex
at al. Hence the vertex will approach the boundary without
crossing over it (unlessits neighbors pull it over the edge).

For range data, however, since there is no grid inherited in the
underlying data, the aforementioned method cannot function
properly. Instead, we use a distance-based constraint. For each
vertex, the algorithm finds out the closest data point to the vertex
and calculates the distance. If the distance is smaller than the
threshold, the vertex will be marked as non-active and is no
longer allowed to move. This mechanism will ensure that the
model is aways inside the range data. The threshold used here is
the sampling rate of the range data. Intuitively, we can consider
the sampling rate as the smallest radius of spheres that are
centered at each point of the range data set and can tightly cover
the entire boundary area of the modeled object without having any
gaps on the surface region.

3.1.3 Curvature constraint -- V(X, Y, 2)

The first two constraints have the ability to grow the model until
dl the vertices reach the boundary of the underlying object.
During the deformation process, it is desirable for a vertex not to
stray far away from its neighbors. This suggests the use of
curvature constraint which is a reasonable approximant of the
local curvature, and it is defined as the ratio of the distance from
the current model point to the centroid of its neighbors over the
maximum distance among al the neighbors of the current model
point:

||<x,y,z)—ii(xj,y,-,zj)||
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V(xy,2) =



where (X,Y,Zz) is the current model point, N is the number of
neighbors to the current model point, (xj Y zj), (%es Yir Z)
are the neighbors of the current model point, 1< j,k<n.

Curvature constraint (X, y, z) aso has the effect of keeping the

vertices well distributed during the deformation process. We will
discuss thisissuein more detailsin Section 4 later.

3.1.4 Angular constraint-- A(X, Y, )

Angular congtraint is used to simulate the effect of attaching a
very stiff string between any two adjacent faces. Similar to the
boundary constraint, the value of angular constraint is either zero
or very large. At each deformation step, the edges on the one-
neighborhood of each vertex are identified, and all the dihedral
angles between the two adjacent faces of these edges are
calculated. If the next move of the vertex will cause any of these
dihedral angles smaller than the threshold, the angular constraint
will become very large and the vertex is not alowed to move at
this deformation cycle. Otherwise, the angular constraint is zero.
Angular constraint can effectively keep any two adjacent faces
from being too close to each other. This constraint, used in
concert with the more aggressive stressed-edge resolution
approach and the mesh optimization techniques that will both be
discussed later in this paper, will effectively prevent the loca
inter-penetration of adjacent faces.

3.2 Optimization Method

An implicit iterative method is employed to numerically compute
the minimization of our cost function explained above. The
advantage of this approach is that it is extremely general and can
offer an accurate, stable solution even for very large systems,
therefore, it iswell suited for our purpose in shape reconstruction.
A vertex of the model will move aong the direction of steepest
descent along the cost surface, which is opposite to the gradient of
ac, ac; ac
S oy o)
numerically approximated using the central difference of the
overal cost function for the current position of the model vertex
with avery small perturbation. The amount that a vertex can move
is adjusted based upon the current configuration of the cost space.
The step size can be reduced four times if the magnitude of the
current step size results in an increase in the cost function. If a
step size is no longer able to reduce the cost of the vertex, then the
vertex is marked as non-active and is not alowed to move any
further.

the cost function C,. The gradient ( is

4 INTELLIGENT BALLOON MODEL

The previous section highlights the key mathematical concept of
balloon-like deformable models---defining and associating a local
cost function with each vertex of the underlying polygona
models. Through the minimization of the cost function, the model
can grow until it reaches the boundary of the object.

In order to recover shape of arbitrary, unknown topology, we
generalize the balloon-like deformable models with additional
capabilities. Our Intelligent Balloon model is a subdivision-based
deformable model. Our model is initialized interactively by users
as a very simple seed model that consists of a small number of
faces (e.g., a cube). Following the previous discussion, our model
can inflate according to its local cost function associated with
each vertex of the model. In addition, loca adaptive subdivision
schemes can be applied on the model in order to increase the
degrees of freedom and make our model highly flexible for
various complicated geometric data sets while ensuring the tight
control on the fitting error. Most importantly, our model has the
ability to automatically detect self-collison and modify its
topology in accordance with the data set. Meanwhile, mesh
optimization techniques are used throughout the deformation
process to maintain the good quality of the mesh. Figure 1 shows
the flowchart of our algorithm.

| Model initialization |

v

| Resolve stressed edge

‘_

| Model growing |

4_

| Model optimization |

4_

| Collision detection |

Are there any
collisions?

Is the model
still active?

Output model

Figure 1: Overview of the Intelligent Balloon model.

Topology change



4.1 Model Initialization

The seed model may be any kind of closed polyhedron. For
simplicity and without loss of generality, we use a sphere-like
polyhedron consisting of 24 triangles of equal size. The initial
position of the seed model can be put interactively by users
anywhere within the data set. Furthermore, for volumetric data,
the seed model does not need to be completely inside the data set.
This is because the model will flip the normal tracking direction
of the vertex if the vertex is detected to be outside the data set.

4.2 Local Adaptive Subdivision

In order to control the smoothness of the model and the size of
each polygon during the model-growing phase, we must allow the
model to be able to increase its degrees of freedom during the
deformation process. One simple, straightforward technique is
global subdivision, i.e., globaly subdivide the model whenever
necessary. The drawback of the global subdivision approach is
that it may generate a lot of unnecessary vertices on surface
regions where a good approximation to the data boundary has
already been achieved. Alternatively, we take advantage of the
local adaptive subdivision approach, i.e, we only need to
subdivide active regions that are still growing. A face is
subdivided if its area is larger than a certain user-defined
threshold, and moreover, at least one of its three vertices is still
active. The typical subdivision rule is as follows. The agorithm
will introduce a new vertex at the middle position of each old
edge, and connect al the three new vertices. Thus four smaller
new faces are generated from each old face. To maintain
subdivision connectivity, &l the triangles adjacent to the current
face also need to be subdivided correspondingly. For example, in
Figure 2, in order to subdivide the centra triangle BDE, all the
three adjacent triangles ADB, CBE and DFE need to be
subdivided aswell. And each of these three trianglesis subdivided
into two smaller ones by splitting the adjacent edge they share
with the central triangle BDE.

Figure 2: Local adaptive subdivision scheme. The solid lines are
the old edges, the dashed lines are the new edges. The center
triangle BDE is divided into 4 smaller triangles by connecting the
three middle points of the old edges. Each of the three adjacent
triangles ADB, CBE and DFE is split into two smaller triangles.

4.3 Improving Mesh Quality

The Intelligent Balloon is a polygonal based model. Therefore, it's
critical to improve and maintain the mesh quality throughout the
deformation process to keep the model both locally smooth and
globally well conditioned. In genera, three issues must be
considered as also observed by Welch et a. [17]: (1) how to keep
the nodes well distributed; (2) how to keep the triangles well
shaped; and (3) how to keep an appropriate node density.

4.3.1 Nodes distribution

A popular scheme for keeping the nodes well distributed is called
Laplacian Smoothing. It can be implemented by iteratively
moving each node to the centroid of its neighbors. In our
algorithm for the Intelligent Balloon, we decide not to implement
this scheme because of the high numerical cost associated with it.
Instead, we rely on the curvature constraint \(x, y, z) inour local

cost function C.(x,V,2) associated with each vertex to keep

vertices from straying too far away from the centroid of their
neighboring vertices. We observe that our curvature constraint
behaves well in maintaining a good distribution of the nodes.

4.3.2 Triangle shape

A triangulation with nodes well distributed can still have many
skinny triangles. It is well known that the best possible surface
triangulation over a set of points with known topology is the
Delaunay triangulation. In addition, a Delaunay triangulation of
an arbitrary surface can be incrementally recovered from a valid
initial surface triangulation through edge swapping. We swap an
edge if doing so will increase the minimum angle within its
adjacent faces. Repeated applications of this swap operation
aways keep increasing the minimum angle and hence result in a
Delaunay triangulation at the end of the procedure. That is, it
maximizes the minimum angle on all the triangles of the mesh. In
practice, an edge is eligible for swapping only if the dihedral
angle between its two adjacent faces is larger than a certain user-
defined threshold, i.e., the local surface across the edge is flat
enough. Moreover, an edge is swapped only if itslocal minimum-
angle will be increased by a certain small minimum (specified by
users and heuristically determined by the algorithm). These two
conditions can guarantee that the edge-swapping agorithm always
functions correctly and terminates eventually.

4.3.3 Node density

During the deformation process, some nodes may cluster with
each other, and some other nodes may be too far away from each
other. To maintain an appropriate node density, we also need to
perform the following two operations. (1) edge split and (2) edge
collapse. First, all the edge lengths are measured in 3-D, and an
edge-split is triggered if any two neighbors are too far apart.
Similarly, if any node is too close to each of its neighbors, the
node is destroyed using the edge collapse. To restore a quality
mesh, the edge swapping is always applied after any edge split
and edge collapse operations. Figure 3 illustrates the three mesh
operations.
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Figure 3: Mesh optimization techniques.

4.4 Prevention of Local Inter-penetration

One phenomenon which oftentimes appears in a polygonal based
deformable model is the local inter-penetration of neighboring
faces. Loca inter-penetration typically occurs between two
portions of the surface separated by a chain of stressed edges. In
practice, a stressed edge is identified if its two adjacent faces form
an angle of less than 60 degrees (this value may vary across
different systems). Marksoian et al. [10] solve this problem by
passively registering the collision points and letting other non-
stressed edges continue to evolve. Eventually, the creases will be
resolved by themselves. This method works very well within
interactive design environment. But it is not very applicable to our
purpose for shape reconstruction and reverse engineering. We
propose a more aggressive approach, which, when combined with
the aforementioned mesh optimization techniques, can
significantly prevent the occurrence of local inter-penetrations.

The idea is to resolve stressed edges whenever they appear.
Before each step of deformation, we calculate the dihedral angle
of the two adjacent faces for all the active edges, mark al the
edges whose dihedra angle is less than certain threshold as
stressed edges. Each stressed edge is split into two small edges at
the middle point. Then the middle point is moved to the middle
position of the two opposite vertices. If the two adjacent faces of
the stressed edge are very close to each other, then at the
following mesh optimization steps, the new edges will be
collapsed, i.e., the two adjacent faces will be merged. Figure 4
demonstrates our method of resolving stressed edges. Edge BD is
marked as the stressed edge because the dihedral angle between
its two adjacent faces ABD and EBD is smaller than the threshold
(Fig. 4(8). Thus it is split at its middle point F and is connected

with the four neighbor vertices A, B, D and E (Fig. 4(b)). Finaly,
F is moved to the middle position of the two opposite vertices A
and E (Fig. 4(c)).

A A A F
E E E
b /v
D D D
C c C

@ (b) (©

Figure 4. Resolve stressed edges. () Edge BD is marked as
stressed edge because the dihedral angle between its two adjacent
faces ABD and EBD is less than the threshold. (b) Edge BD is
split at the middle, and the middle point F of edge BD is
connected with vertices A, B, D and E. (¢) Findly, F is moved to
the middle of vertices A and E.

4.5 Collision Detection and Topology
Changes

In order to recover a shape of arbitrary, unknown topology, the
model must be able to change its topology properly whenever a
collision with other parts of the model is detected. Various kinds
of collisions can be considered, such as face-to-face, edge-to-
edge, vertex-to-vertex, edge-to-face, etc. Techniques such as
surface-surface intersection and trimming have been proposed to
solve collision detections. However, these techniques are usually
very time consuming. We propose a novel distance based collision
detection scheme that is simple, fast and efficient. Figure 5 shows
the following three steps of the algorithm: (1) collision detection,
(2) identify one-neighborhood and put them into correspondence,
and (3) change the topology.

Collision detection: If the distance of two non-neighbor active
vertices is smaller than the threshold, a collision will be identified
and a merge-operation is triggered. If the distance between several
pairs of active vertices is smaller than the threshold, the closest
pair of vertices is chosen. For example, in Fig. 5(a), because the
distance between two active vertices A and B is smaller than the
threshold, a collision between regions around vertex A and B is
detected and a merge operation is triggered.

Identify one-neighborhoods and put them into correspondence:
To merge the two parts of the model. First, we need to identify
and collect all the one-neighborhood points for each of these two
vertices. Then these two sets of points (i.e., one-neighborhood
points) are sequenced separately and are put into correspondence.
To do so, we use the same procedure as Welch and Witkin [16]:
Iteratively refine the neighborhood with fewer edges by splitting
its longest edge until both have the same number of nodes, then
choose the alignment that minimizes the sum of squared distances
between nodes. In Fig. 5(a), originally the one-neighborhood of
vertex A has five nodes: {Al, A2, A3, A4, A5}, the one-



neighborhood of vertex B has six nodes: {B1, B2, B3, B4, B5,
B6}. To make these two one-neighborhoods have the same
number of nodes, we first find the longest edge of the one-
neighborhood of vertex A, which is the edge between nodes A2
and A3. And then split this edge into two edges and insert a new
node in between. Finally, we put these two sets of points into
correspondence by finding the alignment that minimizes the sum
of squared distances between nodes. In Fig. 5(b), point set {Al,
A2, ..., A6} arecorresponding to {B1, B2, ..., B6} respectively.

Change the topology: After the two sets of points are put into
correspondence, each point is connected with its corresponding
point in the opposite point set. The two center vertices and al its
incident edges are removed (Fig. 5(c)). The newly created
quadrilaterals are further triangulated by splitting each
quadrilateral into two triangles along one of its diagonals (Fig. 5

(d)).

The mesh optimization processes will quickly smooth out any
artifacts that may result from the matching procedure once the
merge has been compl eted.

(b)

(©

Al B1

(d)

Figure 5: Collision detection and topology change. (8) A collision
is detected between the region around vertex A and the region
around vertex B. (b) The one-neighborhoods of vertex A and
vertex B are put into correspondence. (c) The corresponding
vertices between the one-neighborhoods of vertex A and vertex B
are connected. Vertex A and Vertex B and their incident edges are
removed. The topology of the model is modified. (d) Each of the
newly created quadrilateralsis split into two triangles.

4.6 Level of Detail

Once a rough estimation of the topology and geometry of a shape
is achieved, the model can be subdivided several times to improve
the fitting accuracy. We choose Loop's scheme [7] in our model
though other schemes would also achieve this goal. Figure 6
shows the Loop’ s subdivision scheme. There are two kinds of new
vertices generated at each level of subdivision: edge points and
vertex points. Each old edge will generate a new edge point using
the rule shown in Fig. 6(8). Each old vertex will generate a new
vertex point using the rule shown in Fig. 6(b). By connecting each
vertex point with its two adjacent edge point and connect the three
edge points with each other, four smaller triangles are generated
from each old triangle.



After one level of global subdivision, the model will deform again
based on the cost function explained above, and will arrive a a
more accurate configuration of the shape because we now have
more degrees of freedom for the model. Note that, since the
unknown topology of the underlying data set has aready been
recovered, there is no need for collision detection and topology
change at this stage.

1/8

3/8 3/8

1/8 a

@ (b)

Figure 6: Subdivision rules for Loop's scheme: (a) Edge point

rule. (b) Vertex point rule. a=— for n>3and a=— for
8n 16

n = 3, nisthe valence of the vertex.

5 RESULTS

We have built an experimental system of the Intelligent Balloon
model using C++ language and FLTK. Figure 7 to 10 show some
of the experiments we have conducted using this system.

The input data set of Figure 7 is a synthesized range data with
three holes. Fig. 7(a) shows the initialized model within the range
data. Fig. 7(b) and Fig. 7(c) are two snapshots of our model
during the deformation process. Fig. 7(d) is the final shape. Fig.
7(e) is the refined shape after one level of global subdivision
using Loop’s scheme. By comparing Fig. 7(d) and Fig. 7(e), we
can clearly see the improvement of the fitting accuracy.

Figure 8 shows our experiment on a synthesized range data which
is acquired from a torus. Fig. 8(a) shows the initialized model
within the range data, followed by a growing model to its right
(Fig. 8(b)). Fig. 8(c) represents the final shape after the recovery
of the topological information. Fig. 8(d) illustrates the more
refined model after one level of subdivision.

Figure 9 illustrates the shape reconstruction process from a
volumetric image data with six holes. Fig. 9(a) and Fig. 9(b) are
the snapshots of our model while they are still growing and
deforming, and the final shape estimation is shown on Fig. 9(c).
Fig. 9(d) shows the more refined model after one level of
subdivision. Fig. 9(e) is the volume rendering of the volumetric
image data with six holes.

Figure 10 demonstrates our experiment on a volumetric image
data which is acquired from a nut. Fig. 10(a) shows the still
growing model, followed by the final shape on Fig. 10(b). Fig.
10(c) and Fig. 10(d) are the refined shape after one and two |levels
of globa subdivision. The groves on the inner-surface of the nut
are recovered very well (Fig. 10(d)). The volume rendering of the
nut is shown on Fig. 10(e). Fig. 10(f), Fig. 10(g) and Fig. 10(h)
are the error maps of the final shape of Fig. 10(b), Fig. 10(c) and
Fig. 10(d), respectively. The fitting error is calculated by dividing
the distance between the model vertex and the closest volume
boundary voxel by the diameter of the smallest bounding sphere
of the object. The green color shows regions whose fitting error is
less than 0.5%. The red color represents regions whose fitting
error is greater than 2%. These three error maps illustrates that the
fitting error is greatly reduced after two levels of global
subdivision. Since our model currently cannot recover sharp
edges and corners, the regions that are still red after two levels of
subdivision are mainly the regions around the sharp edges and
corners.

Table 1 lists the four weighting coefficients for calculating the
local cost function associated with each vertex using equation (1).
Table 2 and Table 3 summarize the statistics of the examples. In
particular, Table 2 summarizes the information of the input data,
including data type and the data size. Table 3 gives the
information of the recovered shape, such as the number of
vertices, edges and faces for each model, the running time, and the
maximum fitting error. The running time is measured on an AMD
K6 475MHZ Notebook PC with 64MB internal memory.

8 a & a4
1 1 16 1
Table 1: Weighting coefficients.

Figure # Data Type Data Size
7 Synthesized range data 4348 points
8 Synthesized range data 6400 points
9 Volumetric image data 32 x 32 x 64 voxels
10 Volumetric image data 69 x 41 x 59 voxels
Table 2: Input data information.
Figurett | #Vertices | #Edges | #Faces | Time | Fitting
(sec) | error(%)
7(d) 509 1539 1026 41 4.37
7(e) 2104 6324 4216 139 2.29
8(c) 211 633 422 30 4.80
8(d) 924 2772 1848 125 2.79
9(c) 2379 4774 7161 120 1.26
9(d) 9848 29568 | 19712 | 315 0.94
10(b) 172 344 516 24 2.79
10(c) 756 1512 2268 31 2.03
10(d) 3053 6106 9159 218 1.85

Table 3: Recovered shape information.




6 CONCLUSIONS

We have developed and presented a novel subdivision based
deformable model—Intelligent Balloon. Our Intelligent Balloon
can overcome several limitations of the conventional deformable
models. It offers users a unified approach to deal with both
volumetric data and range data. By using a hovel distanced based
collision detection scheme, Intelligent Balloon can recover the
shape of arbitrary geometry and unknown topology
simultaneously. We aso proposed a novel technique to prevent
any local inter-penetration by aggressively resolving all the
stressed edges whenever they appear. Our algorithm, combined
with mesh optimization techniques, can guarantee a very high
quality mesh during the deformation process. Since our model isa
subdivision-based model, it supports levels of detail naturaly.
After an initial estimation of both topology and geometry of the
data set is accomplished, the user can control the levels of detall
easily by specifying the number of levels of global subdivision.
Our model can aso be paraleled, i.e., multiple seed models can
be placed at different positions at the same time, and each seed
model will grow on its own and will merge with other models
whenever a collision is detected. This will speed up the algorithm
and is especially useful in areas such as medical imaging when a
priori knowledge about the data set is always available.

7 FUTURE WORK

Several improvements are possible. First, we currently use a
brute-force searching algorithm for collision detection and the
closest-point searching algorithm for the range data. We shall
continue to improve their time performance by using techniques
such as hierarchical bounding box. Second, our current algorithms
require users to interactively select a few parameters during the
initidlization stage. This would require certain knowledge for
users. Hence, the current version of our system is perhaps more
appropriate for domain specialists who are more familiar with the
underlying data set and its property. It would beideal to refine our
system so that all relevant parameters can be determined
heurigtically without user intervention. Making al the parameters
transparent in our system would appea to naive users.
Furthermore, the initial position of the seed model ought to be
chosen automatically.

In addition, we plan to extend the functionality of our model and
its associated system in the following directions in the future.
First, we shall enhance our model so that it can recover sharp
features such as corners and creases. Second, besides the coarse-
to-fine levels of detail currently available in our system, we shall
explore the data-reduction capability (i.e., from fine to coarse). It
is essentia in solid modeling to obtain a more concise, spline-like
representation of the modeled data. Third, we shall apply the
techniques and agorithms of our Intelligent Balloon to other
visual computing fields such as interactive design and engineering
analysis.
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Figure 7: Surface reconstruction from synthesized range data with three holes. (a) Seed model initialized inside the range data. (b) A
snapshot of the model during the deformation process. (¢) Another snapshot of the model during the deformation process, the topology of
the model has been changed. (d) The final shape of the model. (€) Refined shape of the model, one level of subdivision has been applied.
Active regions of the model are shown as red, non-active regions of the model are shown as blue, and range data points are shown as gold.
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Figure 8: Surface reconstruction of atorus from synthesized range data. (a) Seed model initialized inside the range data. (b) A snapshot of
the model during the deformation process. (c) The final shape of the model. (d) Refined shape of the model, one level of subdivision has
been applied. Active regions of the model are shown as red, non-active regions of the model are shown as blue, and range data points are
shown as gold.
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Figure 9: Surface reconstruction from volumetric image data with six holes. (a) A snapshot of the modd during the deformation process.
(b) Ancther snapshot of the model during the deformation process, the topology of the model has been changed. () The fina shape of the
model. (d) Refined shape of the model, one level of subdivision has been applied. (e) Volume rendering of the volumetric image data with
six holes. Active regions of the model are shown as red, non-active regions of the model are shown as blue.
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Figure 10: Surface reconstruction of a nut from volumetric image data. (a) A snapshot of the model during the deformation process. (b) The
final shape of the model. (c) Refined shape of the model, one level of subdivision has been applied. (d) Refined shape of the model after
two levels of subdivision. (€) Volume rendering of the volumetric image data of nut. Active regions of the model are shown as red, non-
active regions of the model are shown as blue. (f), (g) and (h) are the error maps of models on (b), (c) and (d), respectively. Green color
shows regions whose fitting error are less than 0.5%, red color represents regions whose fitting error is greater than 2%.




