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Background Knowledge and 
Motivations
• Overview of Graphics and its significance
• Difficulties associated traditional geometric techniques
• Physics-driven graphical modeling system with natural, 

intuitive haptic interaction --- We present DYNASOAR 
in this talk

• Brief description of some on-going research projects
• Gain a better understanding on the current state of the 

knowledge
• Stimulate future research interest in pursuing new 

research directions and undertaking more challenging 
research projects
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Physics Basics
• Newton’s second law

• Spring energy and force:

• Newton’s second law

• Spring energy and force:
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Mass-spring System
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Mass-spring System
• One mass point

• Particle (mass) system

• One mass point

• Particle (mass) system
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Mass-spring System
• Mass-spring system

• Numerical simulation

• Mass-spring system

• Numerical simulation
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From Matrix Algebra to 
Differential Equations
• The transition from the discrete model to the 

continuous model
• The central idea is equilibrium!!!
• For a discrete model such as the mass-spring 

system, we arrive at solving a linear equation 
and making use of matrix algebra

• For a continuous model, in fact we are getting 
differential equations

• Let us examine one simple example next

• The transition from the discrete model to the 
continuous model

• The central idea is equilibrium!!!
• For a discrete model such as the mass-spring 

system, we arrive at solving a linear equation 
and making use of matrix algebra

• For a continuous model, in fact we are getting 
differential equations

• Let us examine one simple example next
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Example: an Elastic Bar
• Basic concepts
• Displacement
• Material properties
• Forces
• Boundary conditions

• Basic concepts
• Displacement
• Material properties
• Forces
• Boundary conditions

( ) ( ) 0

( )

x x x
du duc c f x
dx dx
d duc f
dx dx

+∆ − + ∆ =

− =



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

From Rod to Beam
• Horizontal force (2nd

order equations)

• Vertical load (4th order 
equations)

• Horizontal force (2nd

order equations)

• Vertical load (4th order 
equations)
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From Continuous to Discrete
• How do we solve the previous differential 

equation?
• In general, analytical formulation is impossible
• Numerical algorithms must be sought
• The discretization of the continuous model leads 

to the linear algebra again!!!
• Once again, we are considering equilibrium as a 

general principle

• How do we solve the previous differential 
equation?

• In general, analytical formulation is impossible
• Numerical algorithms must be sought
• The discretization of the continuous model leads 

to the linear algebra again!!!
• Once again, we are considering equilibrium as a 

general principle
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Function Optimization
• Minimization or maximization
• Consider a single variable function f(x)
• Minimize f(x) (equivalently, maximize –f(x))
• This, in general, leads to a non-linear equation

• One example for a quadric function

• Minimization or maximization
• Consider a single variable function f(x)
• Minimize f(x) (equivalently, maximize –f(x))
• This, in general, leads to a non-linear equation

• One example for a quadric function
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Optimization 
• Commonly-used numerical techniques
• Generic form (extend to n-component vector): to 

minimize
• Solution for (multi-variate) optimization
• Necessary condition --- first-order derivative

• A set of equations, oftentimes solve n-variable 
non-linear equations

• Commonly-used numerical techniques
• Generic form (extend to n-component vector): to 

minimize
• Solution for (multi-variate) optimization
• Necessary condition --- first-order derivative

• A set of equations, oftentimes solve n-variable 
non-linear equations
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Optimization
• If P is a quadratic function of x (a special case)

• Linear equations
– Direct method, iterative method

• Additional constraints
• Non-linear equations
• Complicated cases --- no derivatives

• If P is a quadratic function of x (a special case)

• Linear equations
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Calculus of Variations
• Assume x(u) is not a function defined over [0,1] 

(the unknown is now a function)
• The cost function is an integral!
• Minimize

• Taylor expansion

• Assume x(u) is not a function defined over [0,1] 
(the unknown is now a function)

• The cost function is an integral!
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First Variation
• To minimize the above functional, we need

• The derivative is the first variation!
• Euler equation (strong form)

• To minimize the above functional, we need

• The derivative is the first variation!
• Euler equation (strong form)
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One Dimensional Example
• Generic form
• Taylor expansion to compute the first variation

• Detailed derivation

• Generic form
• Taylor expansion to compute the first variation

• Detailed derivation
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One Dimensional Example
• For any y (Euler equation)

• More complicated examples and the first 
variation

• The Euler equation is

• For any y (Euler equation)

• More complicated examples and the first 
variation

• The Euler equation is
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Two Dimensional Case
• Generic form
• Euler equation

• Higher-order derivatives are involved

• Generic form
• Euler equation

• Higher-order derivatives are involved
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Dynamics and Least Motion
• Time-varying behavior due to temporal variable t
• The system is dynamic (not static)
• The motion equation is within the variational

framework
• Newton’s laws
• Least motion principle and Euler equation based 

on variational analysis

• Time-varying behavior due to temporal variable t
• The system is dynamic (not static)
• The motion equation is within the variational

framework
• Newton’s laws
• Least motion principle and Euler equation based 

on variational analysis
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Dynamics and Least Motion

0

))((
2
1))((

)))(())(((
2

=−⎟
⎠
⎞

⎜
⎝
⎛−

=

⎟
⎠
⎞

⎜
⎝
⎛=

−= ∫

mg
dt
dxm

dt
d

mgxtxP
dt
dxmtxK

dttxPtxKA

t

t



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Lagrange Mechanics
• Lagrangian equation of motion (Lagrangian

mechanics in a discrete form)

• Kinetic energy (continuous form and discretized
form) 

• Lagrangian equation of motion (Lagrangian
mechanics in a discrete form)

• Kinetic energy (continuous form and discretized
form) 
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Lagrange Mechanics
• Damping energy (continuous form and 

discretized form)

• Potential energy (continuous form and 
discretized form)

• The action integral is minimized if the trajectory 
is governed by Mechanics

• Damping energy (continuous form and 
discretized form)

• Potential energy (continuous form and 
discretized form)

• The action integral is minimized if the trajectory 
is governed by Mechanics
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Classical and Modern Physics
• Wave equation
• Heat equation
• Classical mechanics
• Quantum mechanics
• Relativity

• Wave equation
• Heat equation
• Classical mechanics
• Quantum mechanics
• Relativity
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(Partial) Differential Equations
• PDEs are employed to describe physical 

phenomena
• Serve as a foundation for mathematical modeling
• Ordinary (single variable) differential equations
• Partial (multiple variable) differential equations
• Analytic solution is rare
• Numerical computation is necessary for 

approximated solution

• PDEs are employed to describe physical 
phenomena

• Serve as a foundation for mathematical modeling
• Ordinary (single variable) differential equations
• Partial (multiple variable) differential equations
• Analytic solution is rare
• Numerical computation is necessary for 

approximated solution
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PDE Surfaces
• Shape design• Shape design
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PDE Solids
• Shape modeling and design
• Object deformation
• Shape modeling and design
• Object deformation
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Surface Reconstruction
• Shape design
• Object deformation
• Model reconstruction

• Shape design
• Object deformation
• Model reconstruction
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A PDE Formulation
• PDE (Partial Differential Equation)

– Order r
– , g(u,v) : control functions
– : unknown function of u,v

• PDE (Partial Differential Equation)

– Order r
– , g(u,v) : control functions
– : unknown function of u,v
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PDE Techniques for Graphics
• Image processing• Image processing
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PDE Techniques for Graphics
• Smoke simulation• Smoke simulation
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PDE Techniques for Graphics
• Tensor Visualization• Tensor Visualization
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PDE Techniques for Graphics
• Surface fairing for shape modeling• Surface fairing for shape modeling

[Schneider and Kobbelt 00]
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Shape Morphing Using PDEs
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Texture Synthesis
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Vector Field Visualization

Different time steps 
of the anisotropic 
diffusion for both 
principal curvature 
directions
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Individual Tensor 
Components within MRI Brain
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Modeling Fracture
••
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Animating Explosions
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Numerics
• Numerical discretization

– Finite difference
– Finite element

• Boundary constraints
– Boundary condition
– Initial value condition

• Numerical characteristics
– Convergence
– Stability
– Efficiency
– Parallelism

• Numerical discretization
– Finite difference
– Finite element

• Boundary constraints
– Boundary condition
– Initial value condition

• Numerical characteristics
– Convergence
– Stability
– Efficiency
– Parallelism
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Computer Graphics Overview
• Algorithm, software, and hardware techniques for 

image synthesis of computer-generated graphical 
models --- modeling + rendering

• Fundamental methodology and technology to other 
visual computing areas including visualization, vision, 
animation, virtual reality, HCI,  CAD/CAM, 
biomedical applications, etc. 

• My current focus is on graphics modeling
• Modeling techniques are founded upon geometric 

representation and computation

• Algorithm, software, and hardware techniques for 
image synthesis of computer-generated graphical 
models --- modeling + rendering

• Fundamental methodology and technology to other 
visual computing areas including visualization, vision, 
animation, virtual reality, HCI,  CAD/CAM, 
biomedical applications, etc. 

• My current focus is on graphics modeling
• Modeling techniques are founded upon geometric 

representation and computation
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Geometric Modeling Overview
• Point, point cloud 
• Line, poly-line, curve, curve network
• Plane, triangle, rectangle, polygon
• Bivariate parametric surfaces, free-form splines, surfaces defined 

by implicit functions (e.g., polynomials and other well-known 
functions)

• Solid models: CSG, B-rep, cell decomposition (tetrahedra, voxel
cubes, prisms, cross-sectional slices), trivariate parametric super-
patches

• Subdivision-based curves, surfaces, and solids as well as other 
procedural modeling techniques

• PDE-based models

• Point, point cloud 
• Line, poly-line, curve, curve network
• Plane, triangle, rectangle, polygon
• Bivariate parametric surfaces, free-form splines, surfaces defined 

by implicit functions (e.g., polynomials and other well-known 
functions)

• Solid models: CSG, B-rep, cell decomposition (tetrahedra, voxel
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procedural modeling techniques

• PDE-based models
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Geometric Modeling
• Shape representation

– Parametric polynomial
– Piecewise rational spline
– Recursive subdivision form
– Implicit function

• Design paradigms
– Interpolation/approximation
– Optimization
– Cross-sectional design
– Blend and offset
– Solid modeling

• Shape representation
– Parametric polynomial
– Piecewise rational spline
– Recursive subdivision form
– Implicit function

• Design paradigms
– Interpolation/approximation
– Optimization
– Cross-sectional design
– Blend and offset
– Solid modeling
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Geometric Modeling Tools
• Intuitive DOF (degree of freedom) manipulation
• Interpolation/approximation
• Cross-sectional design: curve network creation and 

manipulation
• Reverse engineering from clay models or CAD data
• Constraint-based iterative optimization
• Conventional approaches can be difficult
• New design techniques and tools are necessary

• Intuitive DOF (degree of freedom) manipulation
• Interpolation/approximation
• Cross-sectional design: curve network creation and 

manipulation
• Reverse engineering from clay models or CAD data
• Constraint-based iterative optimization
• Conventional approaches can be difficult
• New design techniques and tools are necessary
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Control Point Manipulation
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Interpolation / Approximation
••
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Cross-Sectional Design
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Cross-Sectional Design
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Scattered Data Interpolation



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Modeling Difficulties for 
Traditional Schemes
• The geometry is abstract, rigid, and complex
• Users must have sophisticated mathematics in order to 

manipulate a  large number of underlying geometric 
parameters to create, edit, instantiate, control, interact, 
and understand CAD datasets

• Lack of effective, interactive sculpting toolkits for the 
natural and intuitive manipulation of geometric objects

• More difficult to handle solid objects, no tools for 
kinematic & dynamic analysis of physical solids

• Primarily focus geometry, cannot handle topology 
modification easily

• The geometry is abstract, rigid, and complex
• Users must have sophisticated mathematics in order to 

manipulate a  large number of underlying geometric 
parameters to create, edit, instantiate, control, interact, 
and understand CAD datasets

• Lack of effective, interactive sculpting toolkits for the 
natural and intuitive manipulation of geometric objects

• More difficult to handle solid objects, no tools for 
kinematic & dynamic analysis of physical solids

• Primarily focus geometry, cannot handle topology 
modification easily
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Engineering Design
• CAD/CAM

– Conceptual design, analysis, evaluation, prototyping, 
manufacturing, assembly, production, etc.

• Iterative and innovative procedure
• Critical for other downstream CAD/CAM activities

– Design decisions affect final products in terms of quality, 
feasibility, cost, time, etc.

• Primary objective: define product geometry
• Techniques and tools

– Advanced graphics interface
– Efficient algorithm and software
– Specialized CAD hardware system

• CAD/CAM
– Conceptual design, analysis, evaluation, prototyping, 

manufacturing, assembly, production, etc.
• Iterative and innovative procedure
• Critical for other downstream CAD/CAM activities

– Design decisions affect final products in terms of quality, 
feasibility, cost, time, etc.

• Primary objective: define product geometry
• Techniques and tools

– Advanced graphics interface
– Efficient algorithm and software
– Specialized CAD hardware system
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Physics-based Design
• Long-term objectives

– New interactive design environment for CAD/CAM
– Variety of new force-based design tools

• New approach
– Physics-based geometric modeling and design

• Rationales
– Difficulties with conventional approaches
– Integration of geometry with physics

• Improve interactive design, support intuitive interaction via forces

• D-NURBS theory and practice
• Future research topics

• Long-term objectives
– New interactive design environment for CAD/CAM
– Variety of new force-based design tools

• New approach
– Physics-based geometric modeling and design

• Rationales
– Difficulties with conventional approaches
– Integration of geometry with physics

• Improve interactive design, support intuitive interaction via forces

• D-NURBS theory and practice
• Future research topics
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Sculpting Tools
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Surface-based Tools
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Physics-based Design
• Geometric models + physical laws = dynamic models
• Integration of static geometry with dynamic behavior
• Energies express global “fairness” criteria
• Forces support direct manipulation, interactive 

sculpting, and intuitive interaction
• Constraints permit functional design
• Shape optimization via evolution to equilibrium
• Dynamics allow time-varying shape design and control
• Automatic DOF selection

• Geometric models + physical laws = dynamic models
• Integration of static geometry with dynamic behavior
• Energies express global “fairness” criteria
• Forces support direct manipulation, interactive 

sculpting, and intuitive interaction
• Constraints permit functional design
• Shape optimization via evolution to equilibrium
• Dynamics allow time-varying shape design and control
• Automatic DOF selection
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Physics-based CAGD as a New 
Theory and Methodology
• A novel graphical modeling and geometric design technique, the 

integration of geometric objects, material properties, and their 
physical and dynamic behaviors

• The geometry is governed by physical laws (e.g., Lagrangian
equation of motion in classical physics, partial differential equations 
in mathematics, etc.), the large number of geometric control 
parameters (e.g., B-spline control points) are determined by physics

• The deformable motion is natural subject to energy optimization 
with geometric constraints, users can interact with geometric models 
via forces

• Can be easily accessed by a wide spectrum of users, ranging from 
CS professionals and engineering designers to naïve users or even 
computer illiterates, a unified framework for modeling, design, 
analysis, simulation, test, prototyping, and manufacturing

• A novel graphical modeling and geometric design technique, the 
integration of geometric objects, material properties, and their 
physical and dynamic behaviors

• The geometry is governed by physical laws (e.g., Lagrangian
equation of motion in classical physics, partial differential equations 
in mathematics, etc.), the large number of geometric control 
parameters (e.g., B-spline control points) are determined by physics

• The deformable motion is natural subject to energy optimization 
with geometric constraints, users can interact with geometric models 
via forces

• Can be easily accessed by a wide spectrum of users, ranging from 
CS professionals and engineering designers to naïve users or even 
computer illiterates, a unified framework for modeling, design, 
analysis, simulation, test, prototyping, and manufacturing
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DYNASOAR: 
DYNAmic Solid Objects of 

ARbitrary topology

Hong Qin
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, New York 11794--4400

Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu

http://www.cs.sunysb.edu/~qin

Hong Qin
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, New York 11794--4400

Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu

http://www.cs.sunysb.edu/~qin
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Presentation Overview
• DYNASOAR --- a novel, dynamic solid modeling system 

for objects of complicated geometry and arbitrary 
topology

• New technologies
– subdivision-based solid geometry 
– physics-based design paradigm
– haptics-based manipulation and interface
– multi-thread, parallel simulation algorithm
– powerful design and sculpting toolkits

• Versatile, various applications
– virtual sculpting & prototyping, FEM analysis & simulation, 

data fitting and segmentation, visualization, etc. 

• DYNASOAR --- a novel, dynamic solid modeling system 
for objects of complicated geometry and arbitrary 
topology

• New technologies
– subdivision-based solid geometry 
– physics-based design paradigm
– haptics-based manipulation and interface
– multi-thread, parallel simulation algorithm
– powerful design and sculpting toolkits

• Versatile, various applications
– virtual sculpting & prototyping, FEM analysis & simulation, 

data fitting and segmentation, visualization, etc. 
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Long-term Research Objectives 
• Integration of novel subdivision solid geometry with 

powerful physics-based modeling for the next-
generation CAE/CAD/CIM

• Haptics-based, natural interaction with physical material 
for virtual engineering

• Unified solid modeling technology for design, 
simulation, real-time manipulation, analysis, evaluation, 
prototyping, and manufacturing

• Basis for real-time, multi-modal, virtual 
sculpting/design/modeling environments in the near 
future

• Integration of novel subdivision solid geometry with 
powerful physics-based modeling for the next-
generation CAE/CAD/CIM

• Haptics-based, natural interaction with physical material 
for virtual engineering

• Unified solid modeling technology for design, 
simulation, real-time manipulation, analysis, evaluation, 
prototyping, and manufacturing

• Basis for real-time, multi-modal, virtual 
sculpting/design/modeling environments in the near 
future
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Our Ideas
• Physics-based sculpting and design for real-world objects
• Virtual Clay: various users can employ CAD tools to interact with, 

deform and topologically modify virtual solid objects

• Physics-based sculpting and design for real-world objects
• Virtual Clay: various users can employ CAD tools to interact with, 

deform and topologically modify virtual solid objects
control lattice 
(geometry)

control lattice 
(geometry)

geometry & 
physics

geometry & 
physics

add 
physics;
sculpt

add 
physics;
sculpt

subdividesubdivide

Subdivided 
solid
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Haptic Manipulation

Screenshot of our sculpting systemScreenshot of our sculpting system
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Proposed Solution 
• Combines subdivision solids with physics-based 

modeling and haptic sculpting interface
• Subdivision solids offer geometric foundation
• Finite Element Method (FEM) and its numerical 

algorithm employed to represent material properties, 
simulate dynamic behaviors, and conduct material 
analysis tasks

• Supports realistic, direct manipulation of sculpted objects
• Offers users a spectrum of powerful sculpting tools
• Provides a novel framework for design and analysis 

applications

• Combines subdivision solids with physics-based 
modeling and haptic sculpting interface

• Subdivision solids offer geometric foundation
• Finite Element Method (FEM) and its numerical 

algorithm employed to represent material properties, 
simulate dynamic behaviors, and conduct material 
analysis tasks

• Supports realistic, direct manipulation of sculpted objects
• Offers users a spectrum of powerful sculpting tools
• Provides a novel framework for design and analysis 

applications
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Haptics Interface
• Much more natural than conventional 2-D interface media such as 

keyboard and mouse, closer to real-world scenarios
• Realize the full potential of physics-driven modeling methodology
• Broaden the computer accessibility by a wider range of users 

including vision-impaired users and younger generations
• Stimulate knowledge advancements in algorithm design, software, 

hardware, HCI
• Serve as a foundation for next-generation, multi-modal interface 

that can integrate acoustic, haptic, visual channels

• Much more natural than conventional 2-D interface media such as 
keyboard and mouse, closer to real-world scenarios

• Realize the full potential of physics-driven modeling methodology
• Broaden the computer accessibility by a wider range of users 

including vision-impaired users and younger generations
• Stimulate knowledge advancements in algorithm design, software, 

hardware, HCI
• Serve as a foundation for next-generation, multi-modal interface 

that can integrate acoustic, haptic, visual channels
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Sculpted CAD Models
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Talk Outline
• Overview and background
• Core techniques

– subdivision geometry
– physics-based modeling
– haptic interaction

• DYNASOAR: DYNAmic Solid Objects of ARbitrary
topology --- FEM formulations and numerical 
algorithms

• Applications
• Conclusion and future directions

• Overview and background
• Core techniques

– subdivision geometry
– physics-based modeling
– haptic interaction

• DYNASOAR: DYNAmic Solid Objects of ARbitrary
topology --- FEM formulations and numerical 
algorithms

• Applications
• Conclusion and future directions
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Subdivision Concepts
• “Simple” recursive algorithms
• Subdivision curves and surfaces popular and well-

researched in CAD and interactive graphics
• Simple subdivision rules generate mathematically 

smooth splines in the limit
• Can handle arbitrary topology objects with ease
• Can round off corners and smooth sharp features

• “Simple” recursive algorithms
• Subdivision curves and surfaces popular and well-

researched in CAD and interactive graphics
• Simple subdivision rules generate mathematically 

smooth splines in the limit
• Can handle arbitrary topology objects with ease
• Can round off corners and smooth sharp features
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Prior Work on Subdivision
• Curves

Chaikin ’74; Dyn et al. ’86, ’87, ’88
• Surfaces

Catmull and Clark ’78;   Doo and Sabin ’78;
Loop ’87;  Dyn ’90;  Kobbelt ’96;  Lounsbery ’94;
Welch and Witkin ’92;   Zorin ’96;   DeRose ’98;
Sederberg et al ‘98;  Stam ’98;   Levin ’99

• Solids
MacCracken and Joy ’96 (but, for free-form

deformation!)
and many more!

• Curves
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Catmull and Clark ’78;   Doo and Sabin ’78;
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Welch and Witkin ’92;   Zorin ’96;   DeRose ’98;
Sederberg et al ‘98;  Stam ’98;   Levin ’99

• Solids
MacCracken and Joy ’96 (but, for free-form

deformation!)
and many more!
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Subdivision Solids
• Little published research on subdivision solids
• Invented by MacCracken and Joy `96
• Developed as a novel FFD technique
• We propose to use such solids as a new solid modeling 

technique for a novel dynamic sculpting environment
• Generalization of Catmull-Clark surfaces to solids
• Start with a control lattice and subdivide until desired 

smoothness is attained
• Motivations: heterogeneous material distributions, 

arbitrary topologies, volumetric sculpting

• Little published research on subdivision solids
• Invented by MacCracken and Joy `96
• Developed as a novel FFD technique
• We propose to use such solids as a new solid modeling 

technique for a novel dynamic sculpting environment
• Generalization of Catmull-Clark surfaces to solids
• Start with a control lattice and subdivide until desired 

smoothness is attained
• Motivations: heterogeneous material distributions, 

arbitrary topologies, volumetric sculpting
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Examples: Solid vs. Surface

scaled cellsscaled cells solid wireframesolid wireframecontrol lattice &
boundary surface
control lattice &

boundary surface

boundary surface
wireframe

boundary surface
wireframe
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Heterogeneous Material
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Spline Mathematics
MacCracken-Joy subdivision solids are in fact a 

generalization of tri-cubic B-spline solids:
MacCracken-Joy subdivision solids are in fact a 

generalization of tri-cubic B-spline solids:
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Subdivision Mathematics
No known closed-form expression exists for the 

basis function of a subdivision solid:

We must therefore rely on the use of subdivision 
rules to define the solid…

No known closed-form expression exists for the 
basis function of a subdivision solid:

We must therefore rely on the use of subdivision 
rules to define the solid…
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B-Spline Basis Functions

B202

B123

B101

B111
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Subdivision Solids
• Control lattice assembled from cells, faces, 

edges, and vertices
• Vertices       edges       faces       cells
• Like procedural subdivision surfaces:

– one subdivision rule for each type of 
geometric “entity” (+ cell rule)

– each geometric entity contributes a new 
vertex during the subdivision process

– assemble new finer subdivision solid after 
computing new vertices

• Control lattice assembled from cells, faces, 
edges, and vertices

• Vertices       edges       faces       cells
• Like procedural subdivision surfaces:

– one subdivision rule for each type of 
geometric “entity” (+ cell rule)

– each geometric entity contributes a new 
vertex during the subdivision process

– assemble new finer subdivision solid after 
computing new vertices
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Subdivision Solid Rules
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Physics-based Modeling
• Idea: attach physical properties to geometry
• Assigns real-world behaviors to virtual objects 

(elasticity, plasticity, etc.)
• Facilitates direct manipulation of objects 

through virtual forces
• Applications in deformable models, physical 

simulations, data fitting, image analysis, etc.

• Idea: attach physical properties to geometry
• Assigns real-world behaviors to virtual objects 

(elasticity, plasticity, etc.)
• Facilitates direct manipulation of objects 

through virtual forces
• Applications in deformable models, physical 

simulations, data fitting, image analysis, etc.
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Physics-based Modeling 
Background 
Very active research area!
Terzopoulos et al. `87, `88; Platt and Barr `88; 
Pentland and Williams `89; Witkin and Welch `90;  
Celniker and Gossard `91; 
Metaxas and Terzopoulos `92;   Celniker `92; 
Qin and Terzopoulos `94, `96;   
Qin et al. `98, `99; James and Pai `99 

and many more!

Very active research area!
Terzopoulos et al. `87, `88; Platt and Barr `88; 
Pentland and Williams `89; Witkin and Welch `90;  
Celniker and Gossard `91; 
Metaxas and Terzopoulos `92;   Celniker `92; 
Qin and Terzopoulos `94, `96;   
Qin et al. `98, `99; James and Pai `99 

and many more!
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Physics-based Sculpting & Design
We use physical laws of motion to:

• provide an intuitive interface to user via forces
• easily guide deformation of sculptures
• permit user to interact with objects directly
• avoid too many degrees of freedom
• animate objects in a physically realistic and 

predictable manner
• enable both expert professionals and naive users 

to interact with virtual objects

We use physical laws of motion to:
• provide an intuitive interface to user via forces
• easily guide deformation of sculptures
• permit user to interact with objects directly
• avoid too many degrees of freedom
• animate objects in a physically realistic and 

predictable manner
• enable both expert professionals and naive users 

to interact with virtual objects
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Haptic Interfaces
• Augment sense of realism by adding force-

feedback
• Thompson et al. `97 (review); 

Dachille et al. `99; Balakrishnan et al. `99
• Natural connection with physics-based models 

and haptic interaction
• Require real-time update rates

• Augment sense of realism by adding force-
feedback

• Thompson et al. `97 (review); 
Dachille et al. `99; Balakrishnan et al. `99

• Natural connection with physics-based models 
and haptic interaction

• Require real-time update rates
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DYNASOAR
• Combine subdivision solid model with physics-

based modeling
– assign mass, damping and stiffness to subdivided 

solid
• Provide user with geometric-, haptics- and 

force-based sculpting tools 
• Geometry of subdivision solid object evolves in 

tandem with physical simulation
• New approach to virtual solid sculpting

• Combine subdivision solid model with physics-
based modeling
– assign mass, damping and stiffness to subdivided 

solid
• Provide user with geometric-, haptics- and 

force-based sculpting tools 
• Geometry of subdivision solid object evolves in 

tandem with physical simulation
• New approach to virtual solid sculpting
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Mass-Spring System

Augmented mass-spring latticeAugmented mass-spring lattice

= normal spring

= angular spring

= mass point

= normal spring

= angular spring

= mass point

cubical cell in 
subdivided solid
cubical cell in 
subdivided solid
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Mass-Spring Formulation
• Normal springs resist stretching forces; angular springs 

resist shearing forces; stretching and shearing stiffness 
can be set independently

• Mass-spring lattice cannot deform arbitrarily 
• System synchronizes mass-spring lattice with 

subdivision solid geometry
• Mass-spring implementation is easy and fast, therefore 

great for haptic interaction
• However, it is based on pseudo-Physics for general 

graphics applications
• More accurate and robust engineering tool --- FEM

• Normal springs resist stretching forces; angular springs 
resist shearing forces; stretching and shearing stiffness 
can be set independently

• Mass-spring lattice cannot deform arbitrarily 
• System synchronizes mass-spring lattice with 

subdivision solid geometry
• Mass-spring implementation is easy and fast, therefore 

great for haptic interaction
• However, it is based on pseudo-Physics for general 

graphics applications
• More accurate and robust engineering tool --- FEM
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Equation for Mass-Spring System
We use a discrete version of the Lagrangian

equation of motion:

where

M = mass matrix
D = damping matrix
K = stiffness matrix
d = discrete material distribution
f = external user-applied forces

We use a discrete version of the Lagrangian
equation of motion:

where

M = mass matrix
D = damping matrix
K = stiffness matrix
d = discrete material distribution
f = external user-applied forces

dfKddDdM =++ &&&
dfKddDdM =++ &&&
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Discrete Time Derivatives
Discrete derivatives are computed as follows:Discrete derivatives are computed as follows:
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Discretized Equation for Simulation
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Given the previous equations we derive the 
implicit time integration formula:
Given the previous equations we derive the 
implicit time integration formula:
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Subdivision Matrix

Apd =Apd =

p = control vertices
A = subdivision matrix
d = vertices in subdivided solid

How do we simulate the dynamic behavior of 
subdivision solids?

p = control vertices
A = subdivision matrix
d = vertices in subdivided solid

How do we simulate the dynamic behavior of 
subdivision solids?
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Element Parameterization
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Finite Elements

normal cellnormal cell

special cellspecial cell
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Dynamics Equation for FEM

Equation of motion drives physical simulation:
M = mass matrix
D = damping matrix
K = stiffness matrix
d = discrete material distribution
δd = displacement (e.g., from rest shape)
f = external forces

Equation of motion drives physical simulation:
M = mass matrix
D = damping matrix
K = stiffness matrix
d = discrete material distribution
δd = displacement (e.g., from rest shape)
f = external forces

dd fKdDdM =++ δ&&&
dd fKdDdM =++ δ&&&
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Hybrid Equation of Motion
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Element Matrices
What are M, D and K?What are M, D and K?
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Element Matrices
• D has a similar definition
• K has application-specific definitions

– for small deformations
– for large deformations

• D has a similar definition
• K has application-specific definitions

– for small deformations
– for large deformations
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Stiffness Formulation
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Gaussian Quadrature
• How are the integrals evaluated?
• Technique used is Gaussian Quadrature
• GQ evaluates

as

• How are the integrals evaluated?
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Gaussian Quadrature

finite elementsfinite elements quadrature pointsquadrature points
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Physics-Based Shape Design
• Two-level approach• Two-level approach
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Physics-Based Design 
Framework

Force-based toolkits  (Physics Level)

Geometric toolkits (Geometry Level)
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Physics-Based Geometric Design
• Generalization of geometric design process
• Standard geometric toolkits still usable
• Two-level design framework
• Additional physics-based toolkits

– Sculpting forces, elastic energies, linear and non-
linear constraints

• Integration of traditional design principles

• Generalization of geometric design process
• Standard geometric toolkits still usable
• Two-level design framework
• Additional physics-based toolkits

– Sculpting forces, elastic energies, linear and non-
linear constraints

• Integration of traditional design principles
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Physics-Based Geometric Design
• Enhance geometric design with additional 

advantages
– Automatic determination of geometric unknowns
– Complicated geometry transparent to designers
– Intuitive shape variation governed by physical 

properties
– Valuable for non-expert users and engineers
– Relevant to the entire CAD/CAM processes

• Enhance geometric design with additional 
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– Automatic determination of geometric unknowns
– Complicated geometry transparent to designers
– Intuitive shape variation governed by physical 

properties
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– Relevant to the entire CAD/CAM processes
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Numerical Implementation 
• Finite element analysis approach
• New subdivision surface finite element

– Normal elements, special elements
• Gaussian quadrature to assemble element 

matrices
• Numerical time integration of motion equation
• Efficient parallel algorithm
• Force applications
• Hierarchical model

• Finite element analysis approach
• New subdivision surface finite element

– Normal elements, special elements
• Gaussian quadrature to assemble element 

matrices
• Numerical time integration of motion equation
• Efficient parallel algorithm
• Force applications
• Hierarchical model
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Finite Element Data Structure
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FEM Data Structure

Element matrices

Physical quantities

Local geometric data

Element DOFs

Element matrices

Physical quantities

Local geometric data

Element DOFs

Global degrees of freedom array of subdivision surfaces

Global geometric information of subdivision surfaces
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Physics-Based Geometric Design 
• Generalization of geometric design process
• Standard geometric toolkits still usable
• Additional physics-based toolkits

– Sculpting forces, elastic energies 
– Linear and non-linear constraints

• Enhance geometric design with new advantages
– Complicated geometry transparent to designers
– Intuitive shape variation
– Valuable for non-expert users and engineers
– Relevant to the entire CAD/CAM process

• Generalization of geometric design process
• Standard geometric toolkits still usable
• Additional physics-based toolkits

– Sculpting forces, elastic energies 
– Linear and non-linear constraints

• Enhance geometric design with new advantages
– Complicated geometry transparent to designers
– Intuitive shape variation
– Valuable for non-expert users and engineers
– Relevant to the entire CAD/CAM process
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Applications
• Geometric modeling and shape design
• Virtual sculpting
• Rapid prototyping
• Physical simulation and animation
• Finite element analysis
• Material and dynamics evaluation
• Data fitting and segmentation
• Volume visualization

• Geometric modeling and shape design
• Virtual sculpting
• Rapid prototyping
• Physical simulation and animation
• Finite element analysis
• Material and dynamics evaluation
• Data fitting and segmentation
• Volume visualization
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Simple Sculpting Examples
original objectoriginal object deformationdeformation cuttingcutting

extrusionextrusion fixed regionsfixed regions
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FEM Simulation
control latticecontrol lattice

finite elementsfinite elements

deformed 
object
deformed 
object

photo-realistic 
rendering

photo-realistic 
rendering
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Data Structures
• Subdivision solids

– radial-edge data structure (Weiler `86)
– similar to winged-edge data structure
– stores adjacency information to accelerate queries of 

and changes to topology of subdivision solids
• Physical representation

– sparse matrices, vectors, arrays, etc.

• Subdivision solids
– radial-edge data structure (Weiler `86)
– similar to winged-edge data structure
– stores adjacency information to accelerate queries of 

and changes to topology of subdivision solids
• Physical representation

– sparse matrices, vectors, arrays, etc.
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Virtual Sculpting Environment
• Suite of extensible virtual sculpting tools

– haptic: stretch, probe, …
– geometric and topological: cut, extrude, join, …
– physical: change material, inflate, …

• On-screen GUI controls
• Sensable Technologies PHANToM haptic I/O 

device
• Runs on 550 MHz PC, 512 MB RAM

• Suite of extensible virtual sculpting tools
– haptic: stretch, probe, …
– geometric and topological: cut, extrude, join, …
– physical: change material, inflate, …

• On-screen GUI controls
• Sensable Technologies PHANToM haptic I/O 

device
• Runs on 550 MHz PC, 512 MB RAM
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Graphics-based Interface
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Sculpting Tools
carvingcarving

joiningjoining

extrusionextrusion

sharp featuressharp features

detail editingdetail editing

deformationdeformation
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Sculpting Tools
inflationinflation curve-based designcurve-based design

material mappingmaterial mapping physical windowphysical window

deflationdeflation

material probingmaterial probing
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Sculpting Tools
pushingpushing curve-based joincurve-based join

curve-based cuttingcurve-based cutting multi-face extrusionmulti-face extrusion

sweepingsweeping

feature deformationfeature deformation
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Trimmed Solids for Data Fitting
original datasetoriginal dataset initial latticeinitial lattice

trimmed oncetrimmed once deformed geometrydeformed geometrytrimmed twicetrimmed twice



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Volume Editing and Visualization

original lattice

original volume

deformed lattice

deformed volume
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Run-time Interaction
• System de-coupled into Simulation and Haptics 

loops
• Haptic interface runs in separate loop to 

guarantee real-time update rates
• Equation of motion solved at each time-step in 

Simulation loop
• Physical simulation guides deformation of 

geometry

• System de-coupled into Simulation and Haptics 
loops

• Haptic interface runs in separate loop to 
guarantee real-time update rates

• Equation of motion solved at each time-step in 
Simulation loop

• Physical simulation guides deformation of 
geometry
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Initialize 
model

Initialize 
model

Apply 
forces
Apply 
forces

Update 
geometry
Update 

geometry

Use topology 
tool

Use topology 
tool

Simulation 
Loop

Simulation 
Loop

Use physical 
tool

Use physical 
tool

Re-initialize 
model

Re-initialize 
model

Haptics 
Loop

Haptics 
Loop

Read
3D cursor 
position

Read
3D cursor 
position

Handle 
haptic I/O
Handle 

haptic I/O
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Material Simulation and Analysis

compressive
forces

compressive
forces

displacement 
mapping

displacement 
mapping
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Performance Statistics
Model    
Name
Model    
Name

# ctrl 
points
# ctrl 
points

subd.    
level
subd.    
level

# data 
points
# data 
points

Update 
Time (ms)
Update 
Time (ms)

Tetra w/ holesTetra w/ holes 1616 33 25052505 8787

CubeCube 2727 22 729729 3030

Cube w/ holesCube w/ holes 6464 22 19001900 103103

GearGear 5656 22 14801480 7171

Soccer PlayerSoccer Player 104104 22 24502450 151151
CactusCactus 108108 22 26252625 169169
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Scenes from DYNASOAR System



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Performance Data

Model Control 
Cells

Subdivided 
Cells

Update 
Time (ms)

Plesiosaur 29 232 30.5
Soccer player 24 1536 85.0
Table 133 1288 146.4
Chair 75 744 82.5
Man’s head 123 1069 114.7
I3D Logo 30 240 30.4
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Finite Element Formulation
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DYNASOAR (FEM) 
Visualization

volumetric 
distortion

volumetric 
distortion

displacementsdisplacementsstrainsstrains



Spring, 2006cse621 ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

FEM-Based Animation
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Conclusions
• DYNASOAR: the next-generation, physics-based, 

volumetric CAD system with haptic interaction for 
virtual engineering

• Integration of subdivision solids with dynamic 
behaviors and material properties for various solid 
modeling applications

• Intuitive sculpting tools permit real-time manipulation 
of virtual clay-like material

• Geometry-based, force-based, and haptics-based 
virtual toolkits offer natural impression and intuitive 
interface

• DYNASOAR: the next-generation, physics-based, 
volumetric CAD system with haptic interaction for 
virtual engineering

• Integration of subdivision solids with dynamic 
behaviors and material properties for various solid 
modeling applications

• Intuitive sculpting tools permit real-time manipulation 
of virtual clay-like material

• Geometry-based, force-based, and haptics-based 
virtual toolkits offer natural impression and intuitive 
interface
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Research Foci & Activities
• Research group on Physics-based modeling and simulation
• MAGIC Lab (Modeling, Animation, and Geometry for Interactive 

Computing)
• Technical vision and strategy: Geometry + Physics
• Founded upon a novel graphical modeling methodology ---

Dynamic geometry for shape design based on interactive physics
– Integration of geometry and physics
– Intuitive force-based CAD tools
– Unifying modeling, design, analysis, and manufacturing
– Virtual engineering without physical prototyping

• Applications
– Graphics, geometric design, finite element analysis, CAD/CAM, computer 

animation, scientific and information visualization, haptic interaction, 
computer vision, virtual environments, etc.
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Engineering Impacts
• Industrial significance
• Improve product quality

– supply intuitive & effective CAD tools
• Shorten product development cycle

– incorporate manufacturing constraints in design process
– unify geometry, design, analysis, assembly, rapid prototyping, 

and  manufacturing
• Reduce product cost
• Enhance the effectiveness of design engineers
• Stimulate future technologies for virtual engineering
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Motivation for Future Research
• Ever-increasing, high expectations of

– Improved product quality, reduced product prices, accelerated performance
• Challenges

– New design theory and methodology
– Advanced simulation methods
– Efficient analysis tools
– More powerful human-computer interaction

• New strategy in CAGD, FEM, CIMS, CAE
• Subdivision-based representation, modeling, design, analysis, and 

manufacturing techniques for the next generation CAD/CAM system
• Geometric design and computing as a theoretical and algorithmic 

foundation for multi-disciplinary research and development 
activities in the future

• Ever-increasing, high expectations of
– Improved product quality, reduced product prices, accelerated performance

• Challenges
– New design theory and methodology
– Advanced simulation methods
– Efficient analysis tools
– More powerful human-computer interaction

• New strategy in CAGD, FEM, CIMS, CAE
• Subdivision-based representation, modeling, design, analysis, and 

manufacturing techniques for the next generation CAD/CAM system
• Geometric design and computing as a theoretical and algorithmic 

foundation for multi-disciplinary research and development 
activities in the future
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Broader Impacts in IT
• Promote computer-centered, graphics-driven modeling, design, 

simulation, analysis technologies
• Broaden user access through multi-modal interface for both 

computer professionals and naïve users
• Afford vision-impaired users and computer illiterates a natural and 

intuitive interaction via human hands
• Advance the state-of-the-knowledge in information technology and 

computer science
• Revolutionize scientific and engineering education in mathematics 

and physics through hands-on experiences
• Alleviate the intimidation of abstract mathematics and physics
• Attract a larger population in young high-school students to study 

science and engineering disciplines in colleges and universities
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Future Research Focus
• Efficient and robust algorithm for design and 

analysis
• Physics-based sculpting toolkits
• Formulation of new powerful dynamic models
• Advanced user interaction techniques
• Various applications
• Industrial collaboration and support
• Technology transfer to commercial CAD/CAM 

systems

• Efficient and robust algorithm for design and 
analysis

• Physics-based sculpting toolkits
• Formulation of new powerful dynamic models
• Advanced user interaction techniques
• Various applications
• Industrial collaboration and support
• Technology transfer to commercial CAD/CAM 

systems
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Future Research Directions
• Fundamental theory
• Interactive modeling environments with physics-based 

programming toolkits
• Advanced user interaction techniques
• Multidisciplinary advances from applied & computational 

mathematics, physics, and engineering sciences
• Visual computing & engineering applications
• Integration with engineering design systems
• Commercial software & system products

• Fundamental theory
• Interactive modeling environments with physics-based 

programming toolkits
• Advanced user interaction techniques
• Multidisciplinary advances from applied & computational 

mathematics, physics, and engineering sciences
• Visual computing & engineering applications
• Integration with engineering design systems
• Commercial software & system products
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Physics-Based Modeling Theory
• Efficient and robust algorithm design and 

analysis
• Physics-based programming toolkits
• Advanced user interaction techniques
• Integration of multi-disciplinary advances

– Computational sciences
– Applied and computational mathematics
– Physics (e.g., fluid dynamics)
– Engineering sciences

• Efficient and robust algorithm design and 
analysis

• Physics-based programming toolkits
• Advanced user interaction techniques
• Integration of multi-disciplinary advances

– Computational sciences
– Applied and computational mathematics
– Physics (e.g., fluid dynamics)
– Engineering sciences
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Interactive Modeling Environment
• Physics-based design tools
• Various engineering applications

– Solid rounding, scattered data fitting, shape 
reconstruction, interactive sculpting, reverse 
engineering, data visualization, hierarchical control

• Unified approach for CAD/CAM
– Variational design
– User interaction
– Shape control
– Weight selection

• Physics-based design tools
• Various engineering applications

– Solid rounding, scattered data fitting, shape 
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– User interaction
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Simulation-Based Virtual 
Environments 
• Complex real-world models and phenomena
• Parallel algorithms + collaboration tools for 

concurrent engineering
• Distributed physics-based simulation
• Virtual engineering without physical prototyping

• Complex real-world models and phenomena
• Parallel algorithms + collaboration tools for 

concurrent engineering
• Distributed physics-based simulation
• Virtual engineering without physical prototyping
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Driving Applications
• Computer graphics and animation
• Geometric modeling and shape design
• CAD/CAM/CAE
• Scientific and information visualization
• Physical and haptic interaction
• Multi-modal HCI
• Computer vision
• Finite element method and numerical techniques
• Virtual engineering and virtual environments
• Applied mathematics and computational physics
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Applications and Beyond
• Computer animation
• Virtual reality
• Computer vision and robotics
• Medicine and medical imaging
• Artificial life
• Scientific visualization
• Industrial collaboration and support
• Technology transfer to commercial systems

• Computer animation
• Virtual reality
• Computer vision and robotics
• Medicine and medical imaging
• Artificial life
• Scientific visualization
• Industrial collaboration and support
• Technology transfer to commercial systems
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Hot Research Projects
• Dynamic NURBS theory and applications
• DYNASOAR: DYNAmic Solid Objects of 

ARbitrary topology 
• Intelligent Balloon (subdivision surfaces for 

unknown topology)
• PDE surfaces and solids
• Haptics-based interface and VR
• Multiresolution analysis, wavelets
• Implicit functions

• Dynamic NURBS theory and applications
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On-going Research Projects 
• Dynamic NURBS theory & applications
• Subdivision surfaces and their non-uniform, rational 

generalizations
• Subdivision-based solid modeling
• Geometric modeling and design based on PDEs
• Intuitive force-based CAD tools
• Novel numerical solvers based on signal processing 

theory
• Energy-based optimization techniques
• Wavelet and implicit functions for shape design

• Dynamic NURBS theory & applications
• Subdivision surfaces and their non-uniform, rational 

generalizations
• Subdivision-based solid modeling
• Geometric modeling and design based on PDEs
• Intuitive force-based CAD tools
• Novel numerical solvers based on signal processing 

theory
• Energy-based optimization techniques
• Wavelet and implicit functions for shape design
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Available Projects
• Virtual cosmetics, surgery simulation 
• 3D painting environment for artists, decorating solids
• Haptics-based sculpting and its integration with VEs
• Inferring material, physical, dynamical properties from images, 

videos
• Digital clay, shape recovery from scattered data
• PDE-based models
• Implicit functions
• Subdivision schemes for polyhedral splines
• Point-based modeling
• Multi-resolution techniques
• Applications: morphing, facial animation, flow, ……
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videos
• Digital clay, shape recovery from scattered data
• PDE-based models
• Implicit functions
• Subdivision schemes for polyhedral splines
• Point-based modeling
• Multi-resolution techniques
• Applications: morphing, facial animation, flow, ……
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