A Novel Modeling Algorithm for Shape Recovery of Unknown Topology

Y e Duan and Hong Qin
Department of Computer Science, State University of New Y ork at Stony Brook
Stony Brook, New York, USA 11794

Abstract

This paper presents a novel modeling algorithm that is
capable of simultaneously recovering correct shape
geometry as well asits unknown topology from arbitrarily
complicated datasets. Our algorithm starts from a simple
seed model (of genus zero) that can be arbitrarily
initiated by users within any dataset. The deformable
behavior of our model is governed by a locally defined
objective function associated with each vertex of the
model. Through the numerical computation of function
optimization, our algorithm can adaptively subdivide the
model geometry, automatically detect self-collision of the
model, properly modify its topology (because of the
occurrence of self-collision), continuously evolve the
model towards the object boundary, and reduce fitting
error and improve fitting quality via global subdivision.
Commonly used mesh optimization techniques are
employed throughout the geometric deformation and
topological variation in order to ensure the model both
locally smooth and globally well conditioned. We have
applied our algorithm to various real/synthetic range
data as well as volumetric image data in order to
empirically verify and validate its usefulness. Based on
our experiments, the new modeling algorithm proves to be
very powerful and extremely valuable for shape recovery
in computer vision, reverse engineering in computer
graphics, and iso-surface extraction in visualization.

1. Introduction, motivation, and background
Advances from new imaging modalities such as CT,
MRI and Ultrasound as well as other 3-D scanning
technologies have given rise to massive volumetric, range,
and image datasets available in modern computer era
How to recover and reconstruct the shape of 3-D objects
from various datasets accurately and efficiently remains to
be non-trivial and challenging for researchers in computer
vision. In addition, extracting both meaningful geometry
and correct topology from the underlying dataset is
fundamental to other vision tasks such as segmentation,
reconstruction, recognition, and reasoning. Many
algorithms and techniques have been developed to achieve
the goa of shape extraction from datasets. In general,
existing approaches can be classified as either model-free
techniqgues or model-based approaches. One major

rationale for model-based approaches is that they both
provides the great potential for usersto effectively interact
with the dataset (especialy regions of interest) and
facilitate other subsequent vision processes such as shape
recognition and analysis. Moreover, the inherent
continuity and smoothness of the model can compensate
for the unwanted sampling artifacts such as noise, gaps,
and other irregularities at object boundaries. Hence,
model -based approaches are more robust, especially in the
existence of noise-corrupted datasets. Among the wide
spectrum of model-driven techniques, deformable models
[1, 10, 11] have been extremely popular with great
success primarily because they offer a unified and
powerful approach that combines the knowledge from
geometry, physics, approximation theory, and functional
analysis. One well-known deformable model is the snake
model proposed by Kass, Witkin and Terzopoulos [1]. In
essence, a snake is a spline model that can dynamically
minimize its potential energy. The total potential energy
of the snake model results from three different sources:
(2) the internal energy of the spline, (2) image forces, and
(3) external constraints. Through minimization of the
spline’s internal energy, the snake will always remain
smooth. The image forces guide the snake toward lines,
edges, or other more general low-level features of interest,
while the external constraints alow the user to identify
specific high-level features to model, recognize, and
analyze in the subsequent stages. Later, Miller et al.
proposed a polygonal-based deformable balloon model [6,
7]. The behavior of their model is determined by a local
cost function associated with each vertex of the model.
The cost function is a weighted linear combination of
three terms that give rise to: (1) a deformation potential
that pushes the model vertices towards the object
boundary, (2) an image term that identifies features such
as edges and acts against the balloon expansion, and (3) a
term that constrains the motion of each vertex to remain
not too far away from the centroid of its immediate
neighbors. Similar to the snake model, the topological
variation in Miller et al.’s work is not permitted. The
modeled dataset must be homomorphic to a sphere, and
the algorithm can only handle volumetric datasets. More
recently, Qin and Mandal [8,4] proposed dynamic
subdivision surfaces for shape recovery and recognition.
Their approaches combine the advantages of free-form

deformable models with the nice properties of subdivision
surfaces--smooth limit surfaces with few degrees of
freedom. Nonetheless, the topology of these models must
be determined before the geometric deformation, i.e., only
geometric aspects of the underlying dataset are
reconstructed through physics-based simulation. All
aforementioned deformable models suffer from one severe
limitation: the topology of the underlying shape either is
very simple (e.g., genus zero) or must be known a priori
(i.e., is determined elsewhere in a separate pre-processing
phase) and remain unchanged throughout the time
integration of model deformation.

Several researchers have attempted to address this
limitation. Mclnerney and Terzopoulos [5] proposed
topological adaptable snake that can overcome this
limitation. The basic idea is to superimpose a simplical
grid on the image domain and iteratively reparameterize
the geometry of deforming snakes. In a different
approach, Szeliski et al. [9] use adynamic, self-organizing
oriented particle system to model the surface boundary of
objects. The particles can reconstruct objects with
complex shapes and topologies by "flowing" over the
data, extracting and conforming to meaningful surfaces. A
triangulation is then performed which connects the
particles to form a continuous global model that is
consistent with the inferred surface of the underlying
object.

In this paper, we develop a new modeling algorithm
that can recover both the complicated shape geometry and
the arbitrary unknown topology simultaneously from any
datasets. The agorithm provides the user a unified
approach that not only can deal with both volumetric data
and range data, but aso is efficient, flexible and powerful.
The underlying model is a subdivision-based deformable
model that further generalizes the polygonal balloon
model of Miller et al. [6,7]. The geometry and the
deformable behavior of the model are governed by the
principle of energy minimization. When using our
algorithm for shape recovery, users can interactively seed
a simple model at the initialization stage, the model will
deform and grow towards the boundary of the modeled
dataset in accordance with the local cost function
associated with each vertex of the model. During the
process of model deformation, both global and
local/adaptive subdivision operations on the model can be
automatically applied whenever necessary in order to
refine the model to an appropriate resolution and achieve
different levels of detail. More importantly, by using a
novel distance-based collision detection scheme, the
model can automatically detect self-collision and modify
its topology accordingly. In order to ensure the recovery
of the correct topology from arbitrary datasets, we
develop a novel, yet simple scheme that can prevent inter-
penetration in the vicinity of any vertex of the model. This
scheme, combined with mature mesh optimization

techniques, has proven to be very effective and can
generate a good, high-quality polygonal mesh that can
recover both the geometry and the arbitrary topology from
any complicated dataset through model deformation.

2. Energy-based optimization

The deformable behavior of the model is governed by
the principle of energy-based minimization. A locally
defined cost function is associated with each vertex of the
polygonal model. The cost function is a weighted linear
combination of four constraints that aim to achieve the
desired behaviors being simulated in the model. We shall
briefly review these four components in Section 2.1
followed by the minimization method in Section 2.2.

2.1. Constraints modeling
The cost function ¢ (x,y,z) associated with the current

location of amodel point is explicitly formulated as

C(xy.D=aD(xy.2)+aB(xy.2+aV(xy 2 +aAXxy.2 (1)
wherep(x,y,z) is the deformation potential, B(x,y,z) IS
the boundary constraints, v(xy,z is the curvature
congtraint, and A(x,y,z) IS the angular congtraint.
a,,a,,a,,a, are the four corresponding non-negative

weighting parameters.
Deformation potential D(x,y,z) offers the

mechanism to inflate the model. It defines a scalar field
where each position in space is assigned a value based on
the frame of reference. The vertex will move aong the
direction of the lowest local potential (in absence of other
constraints). In order to model concave objects, the
normal tracking method is used, i.e, each vertex is
atracted to a point located in the vicinity of normal
direction of the polyhedron surface. During each evolving
step, every vertex moves in the genera direction of the
local surface normal in order to decrease its deformation
potential.

Boundary constraint B(x,y,z) affords the mechanism

for the model to interact with the dataset and identify the
boundary. It is used to counter-balance the deformation
potential and will restrict, direct, and counter-act the
general progression of the deformation. Note that,
volumetric data and range data are treated separately.

For volumetric data, we make use of a shifted threshold
operator:

- >
B(x.y, Z):%mage(x, v,2) =T IIrnage(x, v, 2)2T 2
mage(x,y,2) <T

where Image(x,y,z) is the gray-level intensity
distribution of the voxel at location (x,y,2), and T is the
threshold value that identifies the object.

When a model point steps over the edge of an object,
the algorithm returns a value that should increase the
overall cost of the system. Therefore, the minimization

process is required to either move the vertex by a smaller
amount or not move the vertex at all. Hence the vertex
will approach the boundary without crossing over it
(unlessits neighbors pull it over the edge).

For range data, however, since there is no grid
inherited in the underlying data, the aforementioned
method cannot function properly. Instead, we use a
distance-based constraint. For each vertex, the algorithm
finds out the closest data point to the vertex and calculates
the distance. If the distance is smaller than the threshold,
the boundary constraint will become very large, otherwise,
it is set as zero. Therefore a vertex is not alowed to
proceed at a deformation cycle if it is close enough to the
boundary of the object. This mechanism will ensure the
model to be always inside the range data. The distance
threshold used here is the sampling rate of the range data.
Intuitively, we can consider the sampling rate as the
smallest radius of spheres that are centered at each point
of the range data set and can tightly cover the entire
boundary area of the modeled object without having any
gaps on the surface region.

The first two constraints have the ability to grow the
model until al the vertices reach the boundary of the
underlying object. During the deformation process, it is
desirable for a vertex not to stray far away from its
neighbors. This suggests the use of Curvature constraint
V(x,y, z) which is a reasonable approximant of the local

curvature, and it is defined as the ratio of the distance
from the current model point to the centroid of its
neighbors over the maximum distance among all the
neighbors of the current model point. Curvature constraint
also has the effect of keeping the vertices well distributed
during the deformation process. We will discuss this issue
in more details in the next section.

The fourth constraint--Angular constraint A(x,y,z) is

used to simulate the effect of attaching a very stiff string
between any two adjacent faces. Similar to the boundary
congtraint, the value of angular constraint is either zero or
very large. At each deformation step, the edges on the
one-neighborhood of each vertex are identified, and all the
dihedral angles between the two adjacent faces of these
edges are calculated. If the next move of the vertex will
cause any of these dihedral angles smaller than the
threshold, the angular constraint will become very large
and the vertex is not allowed to move at this deformation
cycle. Otherwise, the angular constraint is zero. Angular
congtraint can effectively keep any two adjacent faces
from being too close to each other. This constraint, used
in concert with the more aggressive stressed-edge
resolution approach and the mesh optimization techniques
which will both be discussed later in this paper, will
effectively prevent the local inter-penetration of adjacent
faces.

2.2. Energy optimization method

An implicit iterative method is employed to
numerically compute the minimization of our cost
function explained above. The advantage of this approach
is that it is extremely general and can offer an accurate,
stable solution even for very large systems, therefore, it is
well suited for our purpose in shape recovery of large
datasets. A vertex of the model will move aong the
direction of the steepest descent along the cost surface,
which is opposite to the gradient of the cost function C. .
The gradient (ﬁ aC, aC,, is numerically approximated

ox ' dy ' oz

using the central difference of the overall cost function for
the current position of the model vertex with a very small
perturb. The amount that a vertex can move is adjusted
based upon the current configuration of the cost space.
The step size can be reduced four times if the magnitude
of the current step size results in an increase in the cost
function. If a step size is no longer able to reduce the cost
of the vertex, then the vertex is not allowed to move at this
step. If a vertex has not moved for a certain number of
deformation cycles, the vertex will be marked as non-
active and will be excluded from future numerica
integrations.

3. Algorithm

The entire pipeline of the modeling algorithm consists
of the following seven main steps:
Model initialization.
Stressed edge resolution.
Model growing.
Local adaptive subdivision.
Mesh optimization.
Collision detection and topology change.
. Global subdivision.
After the model is initialized at step one, the model will
start its deformation process. It will loop through step two
to step six at each deformation cycle. The deformation
process stops when the model reaches its equilibrium, i.e.
all the vertices of the model have been marked as non-
active. Finaly, the model can be globally subdivided
several times until a user-given error criterion is met. We
have highlights the mechanism of model growing (step
three) in the previous section. In this section, we will
detail the other six steps of the algorithm.

Noug,rwhpE

3.1. Model initialization

The seed model may be any kind of closed polyhedron.
For smplicity and without loss of generality, we use a
sphere-like polyhedron consisting of 24 triangles of equal
size. The initial position of the seed model can be put
interactively by users anywhere within the dataset. For
volumetric data, the seed model does not need to be
completely inside the dataset, since the model will flip the

normal tracking direction of the vertex if the vertex is
detected to be outside the dataset. In the future, the model
initialization should be automated by determining only
one voxel of the dataset.

3.2. Stressed edge resolution

One phenomenon which oftentimes appears in a
polygonal based deformable model is the local inter-
penetration of neighboring faces. Local inter-penetration
typically occurs between two portions of the surface
separated by a chain of stressed edges. In practice, a
stressed edge isidentified if its two adjacent faces form an
angle of less than 60 degrees (this value may vary across
different systems). In this paper, we propose a simple, yet
very powerful method that can efficiently solve this
problem. At the beginning of each deformation cycle, all
the stressed edges are detected by calculating the dihedral
angle. Then each stressed edge is split into two small
edges at the middle point and the middle point is further
moved to the middle position of the two opposite vertices.
Figure 1 demonstrates our method of resolving stressed
edges.

C

@) (b) (©

Figure 1: Stressed edge resolution. (a) Edge BD is marked
as stressed edge because the dihedral angle between its
two adjacent faces ABD and EBD is less than the
threshold. (b) Edge BD is split at the middle, and the
middle point F of edge BD is connected with vertices A,
B, D and E. (c) Finaly, F is moved to the middle of
vertices A and E.

3.3. Local adaptive subdivision

In order to control the smoothness of the model and the
size of each polygon during the model-growing phase, we
must allow the model to be able to increase its degrees of
freedom during the deformation process. One simple,
straightforward technique is globa subdivision, i.e.,
globally subdivide the model whenever necessary. The
drawback of the global subdivision approach isthat it may
generate a lot of unnecessary vertices on surface regions
where a good approximation to the data boundary has
already been achieved. Alternatively, we take advantage
of the local adaptive subdivision approach, i.e., we only
need to subdivide active regions that are still growing. A
face is subdivided if its area is larger than certain user-
defined threshold, and moreover, at least one of its three
vertices is still active. The typical subdivision rule is as
follows. The agorithm will introduce a new vertex at the

middle position of each old edge, and connect all the three
new vertices. Thus four smaller new faces are generated
from each old face. To maintain subdivision connectivity,
all the triangles adjacent to the current face also need to
be subdivided correspondingly. For example, in Figure 2,
in order to subdivide the central triangle BDE, &l the
three adjacent triangles ADB, CBE and DFE need to be
subdivided as well. And each of these three triangles is
subdivided into two smaller ones by split the adjacent
edge they share with the central triangle BDE.
A B C

DE
F

Figure 2: Local adaptive subdivision scheme. The solid
lines are the old edges, the dashed lines are the new edges.

3.4. Mesh optimization

The agorithm can automatically construct the new
subdivison mesh during the deformation phase.
Therefore, it's critical to improve and maintain the mesh
quality throughout the process to ensure the model both
locally smooth and globally well conditioned. Three mesh
operations. edge swap, edge split, and edge collapse are
applied at this step to achieve this goal.

Edge swap is employed if doing so will increase the
minimum angle within its adjacent faces. Repeated
applications of this swap operation always keep increasing
the minimum angle and hence result in a Delauny
triangulation at the end of the procedure. That is, it
maximizes the minimum angle on al the triangles of the
mesh. And it is well known that the best possible surface
triangulation over a set of points with known topology is
the Delauny triangulation. In practice, an edge is swapped
only if its local minimum-angle will be increased by
certain small minimum. Also, edges with sharp dihedral
angle (smaler than 90 degrees in our case) are not
allowed to swap. These two conditions will guarantee that
the edge-swapping algorithm always functions correctly
and terminates eventualy.

During the deformation process, some nodes may
cluster with each other, and some other nodes may be too
far away from each other. To maintain an appropriate
node density, two other operations are needed here: edge
split and edge collapse. An edge-split is triggered if any
two neighbors are too far apart. Similarly, if any node is
too close to each of its neighbors, the node is destroyed
using the edge collapse. In addition, skinny triangles are
also eliminated at this step by edge collapsing. All the
three inner-angles of each triangle are calculated. If any

one of the three inner-angles of a triangle is too small,
then the triangle containing the inner-angle will be
eliminated by collapsing the edge opposite to this inner-
angle. To restore a quality mesh, the edge swapping is
aways applied after any edge split and edge collapse
operations. Figure 3 illustrates the three mesh operations.

7
!
—

;b

edge swap edgesplit edge collapse
Figure 3: Mesh optimization operations.

3.5. Callision detection and topology change

In order to recover shape of arbitrary, unknown
topology, the model must be able to change its topology
properly whenever a collison with other parts of the
model is detected. Various kinds of collisions can be
considered, such as face-to-face, edge-to-edge, vertex-to-
vertex, edge-to-face, etc. Techniques such as surface-
surface intersection and trimming have been proposed to
solve collision detections. However, these techniques are
usually very time consuming. We propose a novel
distance based collision detection scheme that is simple,
fast and efficient. Figure 4 illustrates the three steps of the
scheme: (1) collison detection, (2) identify one-
neighborhood and put them into correspondence, and (3)
change the topol ogy.

Collision detection: If the distance of two non-neighbor
active vertices is smaller than the threshold, a collision
will be identified and a merge-operation is triggered. If the
distance between several pairs of active verticesis smaller
than the threshold, the closest pair of vertices is chosen.
For example, in Figure 4(a), because the distance between
two active vertices A and B is smaller than the threshold,
a collision between regions around vertex A and B is
detected and a merge operation is triggered.

Identify one-neighborhoods and put them into
correspondence: To merge the two parts of the model.
First, we need to identify and collect &l the one-
neighborhood points for each of these two vertices. Then
these two sets of points (i.e., one-neighborhood points) are

sequenced separately and are put into correspondence. To
do so, we use the same procedure as [12]: Iteratively
refine the neighborhood with fewer edges by splitting its
longest edge until both have the same number of nodes,
then choose the alignment that minimizes the sum of
squared distances between nodes. In Figure 4(a),
originaly the one-neighborhood of vertex A has five
nodes. {Al, A2, A3, A4, A4}, the one-neighborhood of
vertex B has six nodes: {B1, B2, B3, B4, B5, B6}. To
make these two one-neighborhoods have the same number
of nodes, we first find the longest edge of the one-
neighborhood of vertex A, which is the edge between
nodes A2 and A3. And then split this edge into two edges
and insert a new node in between. Finally, we put these
two sets of points into correspondence by finding the
alignment that minimizes the sum of squared distances
between nodes. In Figure 4(b), point set { A1, A2, ..., A5}
are corresponding to { B1, B2, ..., B6} respectively.

Change the topology: After the two sets of points are
put into correspondence, each points is connected with its
corresponding points in the opposite point set. The two
center vertices and all its incident edges are removed
(Figure 4(c)). The newly created quadrilaterals are further
triangulated by split each quadrilateral into two triangles
along one of its diagona (Figure 4 (d)).

The mesh optimization processes will quickly smooth
out any artifacts that may result from the matching
procedure once the merge has been compl eted.

(d)

Figure 4: Callision detection and topology change. (a) A
collision is detected between the region around vertex A
and the region around vertex B. (b) The one
neighborhoods of vertex A and vertex B are put into
correspondence. (c) The corresponding vertices between
the one-neighborhoods of vertex A and vertex B are
connected. Vertex A and vertex B and their incident edges
are removed. The topology of the model is modified. (d)
Each of the newly created quadrilaterals is split into two
triangles.

3.6. Global subdivision

Once a rough estimation of the topology and geometry
of a shape is achieved, the model can be subdivided
several times to improve the fitting accuracy. We choose
Loop's scheme [7] in our model though other schemes
would aso achieve this goal. Figure 5 shows the Loop’s
subdivision scheme. There are two kinds of new vertices
generated at each level of subdivision: edge points and
vertex points. Each old edge will generate a new edge
point using the rule shown in Figure 5(a). Each old vertex
will generate a new vertex point using the rule shown in
Figure 5(b). By connecting each vertex point with its two
adjacent edge point and connect the three edge points with
each other, four smaller triangles are generated from each
old triangle. After one level of global subdivision, the
model will deform again based on the cost function
explained above, and will arrive at a more accurate
configuration of the shape because we now have more
degrees of freedom for the model. Since the unknown
topology of the underlying data set has already been
recovered, there is no need for collision detection and
topology change at this stage.

1

2

@ (b)

Figure 5: Subdivision rules for Loop’s scheme: (a) Edge

point rule. (b) Vertex point rule. g = % for k> 3 and

B = i for k=3, k isthe valence of the vertex.
16

4. Experimental results

We have built an experimental system using C++ and
FLTK. Figure 6 to 9 show some of the experimental
results we conducted using this system.

Figure 6 and 7 demonstrate the shape recovery process
from volumetric image data. The input dataset of Figure 6
is a synthetic data of a torus with 84 by 23 by 84 voxels.
The input dataset of Figure 7 is obtained from scanning a
phantom of vertebral with 128 by 120 by 52 voxels.
Starting from the leftmost, each figure shows the snapshot
of different stages during the deformation process. Fig.
6(a) and Fig. 7(a) are the model initialization stages; Fig.
6(b) and Fig. 7(b) are the model growing stages without
any topology changes; Fig. 6(c) and Fig. 7(c) are the first
round recovered shape, the topology of the object has
been correctly recovered; Fig. 6(d) and Fig. 7(d) are the
refined shape after one level of global subdivision, the
fitting accuracy of the geometry of the object has been
greatly improved. In al figures, red regions represent
parts of the model that are still active and growing, blue
region represent parts of the model that have already
reached the boundary of the object and are not active
anymore. The algorithm aso supports multiple seed
model initialization. For example, in Figure 8(a), four
seeds areinitialized at different positions at the same time.
Each model will grow independently (Fig. 8(b)) and will
merge with other models whenever a collision is detected
(Fig. 8 (c)). Fig. 8(d) shows the more refined model after
one level of global subdivision.

Figure 9 and 10 illustrate the shape recovery process
from synthetic range datasets. The input dataset of Figure
9 is obtained by sampling a sweeping surface with 10000
data points. The input dataset of Figure 10 is obtained by
sampling a subdivision surface with 6140 data points. The
leftmost figures (Fig. 9(a) and Fig. 10(a)) are the range
data with the seed model inside. The middle two figures
(Fig. 9(b), Fig. 9(c) and Fig. 10(b), Fig. 10(c)) are the two
snapshots of the model while they are still growing and
deforming. The rightmost figures (Fig. 9(d) and Fig.
10(d)) are the final shapes of the models.

Table 1 summarizes the statistics of the examples. The
fitting error is calculated by dividing the distance between
the model vertex and the boundary of the object by the
diameter of the smallest bounding sphere of the object.
Table 2 lists the four weighting coefficients for calculating
the local cost function associated with each vertex using
equation (1). Currently, several parameters need to be set
by the user at the beginning of the deformation process.

They are: the face area threshold for local adaptive
subdivision, the distance threshold for collision detection,
and the edge length threshold for mesh operations such as
edge split and edge collapse. In the future, we plan to
simplify these parameters by conducting a preprocessing
step and normalize the input dataset to the same scale.
Then it should be possible for the agorithm to
automatically set the proper parameters.
Table 1: Recovered shape information.

Figure | #Vertices | #Edges | #Faces | Max. fitting
error (%)
6(c) 371 1113 742 1.76
6(d) 1489 4467 2978 1.36
7(c) 1005 3015 2010 0.533
7(d) 4299 8598 12897 0.38
8(c) 2379 4774 7161 1.26
8(d) 9848 29568 19712 0.94
9(d) 5101 15303 10202 1.63
10(d) 821 1650 2475 2.50
Table 2: Weighting coefficients.
) a &, 8
1 1 1.6 1
5. Conclusion

We have developed a novel modeling algorithm for
shape recovery and representation in computer vision.
Through the use of a new collision-detection method and
a novel stressed-edge resolution scheme, coupled with
mesh optimization techniques, the algorithm is able to
overcome several limitations associated with conventional
deformable models. It offers users a unified approach to
deal with both volumetric image data and range data. The
algorithm can recover the shape of arbitrary geometry and
its unknown topology simultaneously. Because the
underlying model is a subdivision-based model, it
supports levels of detail naturally. After the initia
estimation of both topology and geometry of the dataset is
accomplished, the user can control the fitting quality
easily by specifying the number of levels of global
subdivision. Furthermore, the algorithm can be multi-
threaded, i.e., multiple seed models can be initialized at
different locations at the same time. Throughout the
deformation process, each seed model will grow
independently and will merge with neighboring models
whenever a collision occurs. Several improvements are
possible in the near future. The time performance of the
algorithm can be further enhanced by employing
techniques such as hierarchical bounding box instead of
the brute-force searching algorithm currently used for
collision detection. Also, the initial position of the seed
model should be automatically inferred from data
distribution without user intervention.

References

[1] M. Kass, A. Witkin, and D. Terzopoulos. Snakes:
Active contour models. International Journal of
Computer Vision, pages 321-331, 1988.

[2] Charles Loop. Smooth subdivision surfaces based on
triangles. Master's thesis, Department of
Mathematics, University of Utah, August 1987.

[3] W.E. Lorensen and H.E. Cline. Marching cubes. A
high resolution 3d surface construction algorithm.
Computer Graphics (SIGGRAPH’87 Proceedings),
pages 163-169, July 1987.

[4] C. Mandal, B.C. Vemuri, and H. Qin. Shape recovery
using dynamic subdivision surfaces. In Proceedings
of IEEE Internationa Conference on Computer
Vision (ICCV’'98), pages 805-810, Bombay, India,
January 1998.

[5] T. Mclnerney and D. Terzopoulos. Topologically
adaptable snakes. In Proceedings of I|EEE
International Conference on Computer Vision
(ICCV'95), pages 840-845, Cambridge, MA, June,
1995.

[6] JV. Miller. On GDM'’s. Geometrically deformed
models for the extraction of closed shapes from
volume data. Masters thesis, Rensselaer Polytechnic
Ingtitute, Troy, New Y ork, December 1990.

[71 JV. Miller, D.E. Breen, W.E. Lorensen, R.M.
O'Bara, and M.J. Wozny. Geometric deformed
models: a method for extracting closed geometric
models from volume data. Computer Graphics
(SIGGRAPH'91 Proceedings), pages 217-226, July
1991.

[8] H. Qin, C. Mandal, and B.C. Vemuri. Dynamic
Catmull-Clark subdivision surfaces. |EEE
Transactions on Visudization and Computer
Graphics, 4(3):215-229, July 1998.

[9] R. Szeliski, D. Tonnesen, and D. Terzopoulos.
Modeling surfaces of arbitrary topology with dynamic
particles. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition
(CVPR’93), pages 82-87, New York, NY, June 1993.

[10]D. Terzopoulos, and K. Fleischer. Deformable
models. The Visua Computer 4(6), pages 306-331,
1988.

[11] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-
seeking models and 3d object reconstruction.
International Journal of Computer Vision, pages 211-
221, 1987.

[12]W. Welch and A. Witkin. Free-form shape design
using triangulated surfaces. Computer Graphics
(SIGGRAPH’'94 Proceedings), pages 247-256, July
1994.

Figure 7: Shape recovery from volumetric image data of a phantom vertebral.

(b) © (d)

Figure 8: Shape recovery from volumetric image data using multiple seeds.

(b) ©

Figure 9: Shape recovery from synthetic range data of a sweeping surface

@ (b) (© (d)

Figure 10: Shape recovery from synthetic range data of a subdivision surface.

