
 
 

A Novel Modeling Algorithm for Shape Recovery of Unknown Topology 
 

Ye Duan and Hong Qin 
Department of Computer Science, State University of New York at Stony Brook 

Stony Brook, New York, USA 11794 
 

Abstract 
 

This paper presents a novel modeling algorithm that is 
capable of simultaneously recovering correct shape 
geometry as well as its unknown topology from arbitrarily 
complicated datasets. Our algorithm starts from a simple 
seed model (of genus zero) that can be arbitrarily 
initiated by users within any dataset. The deformable 
behavior of our model is governed by a locally defined 
objective function associated with each vertex of the 
model. Through the numerical computation of function 
optimization, our algorithm can adaptively subdivide the 
model geometry, automatically detect self-collision of the 
model, properly modify its topology (because of the 
occurrence of self-collision), continuously evolve the 
model towards the object boundary, and reduce fitting 
error and improve fitting quality via global subdivision. 
Commonly used mesh optimization techniques are 
employed throughout the geometric deformation and 
topological variation in order to ensure the model both 
locally smooth and globally well conditioned. We have 
applied our algorithm to various real/synthetic range 
data as well as volumetric image data in order to 
empirically verify and validate its usefulness. Based on 
our experiments, the new modeling algorithm proves to be 
very powerful and extremely valuable for shape recovery 
in computer vision, reverse engineering in computer 
graphics, and iso-surface extraction in visualization. 

 

1. Introduction, motivation, and background 
Advances from new imaging modalities such as CT, 

MRI and Ultrasound as well as other 3-D scanning 
technologies have given rise to massive volumetric, range, 
and image datasets available in modern computer era. 
How to recover and reconstruct the shape of 3-D objects 
from various datasets accurately and efficiently remains to 
be non-trivial and challenging for researchers in computer 
vision. In addition, extracting both meaningful geometry 
and correct topology from the underlying dataset is 
fundamental to other vision tasks such as segmentation, 
reconstruction, recognition, and reasoning. Many 
algorithms and techniques have been developed to achieve 
the goal of shape extraction from datasets. In general, 
existing approaches can be classified as either model-free 
techniques or model-based approaches. One major 

rationale for model-based approaches is that they both 
provides the great potential for users to effectively interact 
with the dataset (especially regions of interest) and 
facilitate other subsequent vision processes such as shape 
recognition and analysis. Moreover, the inherent 
continuity and smoothness of the model can compensate 
for the unwanted sampling artifacts such as noise, gaps, 
and other irregularities at object boundaries. Hence, 
model-based approaches are more robust, especially in the 
existence of noise-corrupted datasets. Among the wide 
spectrum of model-driven techniques, deformable models 
[1, 10, 11] have been extremely popular with great 
success primarily because they offer a unified and 
powerful approach that combines the knowledge from 
geometry, physics, approximation theory, and functional 
analysis. One well-known deformable model is the snake 
model proposed by Kass, Witkin and Terzopoulos [1]. In 
essence, a snake is a spline model that can dynamically 
minimize its potential energy. The total potential energy 
of the snake model results from three different sources: 
(1) the internal energy of the spline, (2) image forces, and 
(3) external constraints. Through minimization of the 
spline’s internal energy, the snake will always remain 
smooth. The image forces guide the snake toward lines, 
edges, or other more general low-level features of interest, 
while the external constraints allow the user to identify 
specific high-level features to model, recognize, and 
analyze in the subsequent stages. Later, Miller et al. 
proposed a polygonal-based deformable balloon model [6, 
7]. The behavior of their model is determined by a local 
cost function associated with each vertex of the model. 
The cost function is a weighted linear combination of 
three terms that give rise to: (1) a deformation potential 
that pushes the model vertices towards the object 
boundary, (2) an image term that identifies features such 
as edges and acts against the balloon expansion, and (3) a 
term that constrains the motion of each vertex to remain 
not too far away from the centroid of its immediate 
neighbors. Similar to the snake model, the topological 
variation in Miller et al.’s work is not permitted. The 
modeled dataset must be homomorphic to a sphere, and 
the algorithm can only handle volumetric datasets. More 
recently, Qin and Mandal [8,4] proposed dynamic 
subdivision surfaces for shape recovery and recognition. 
Their approaches combine the advantages of free-form 



deformable models with the nice properties of subdivision 
surfaces---smooth limit surfaces with few degrees of 
freedom. Nonetheless, the topology of these models must 
be determined before the geometric deformation, i.e., only 
geometric aspects of the underlying dataset are 
reconstructed through physics-based simulation. All 
aforementioned deformable models suffer from one severe 
limitation: the topology of the underlying shape either is 
very simple (e.g., genus zero) or must be known a priori 
(i.e., is determined elsewhere in a separate pre-processing 
phase) and remain unchanged throughout the time 
integration of model deformation. 

Several researchers have attempted to address this 
limitation. McInerney and Terzopoulos [5] proposed 
topological adaptable snake that can overcome this 
limitation. The basic idea is to superimpose a simplical 
grid on the image domain and iteratively reparameterize 
the geometry of deforming snakes. In a different 
approach, Szeliski et al. [9] use a dynamic, self-organizing 
oriented particle system to model the surface boundary of 
objects. The particles can reconstruct objects with 
complex shapes and topologies by "flowing" over the 
data, extracting and conforming to meaningful surfaces. A 
triangulation is then performed which connects the 
particles to form a continuous global model that is 
consistent with the inferred surface of the underlying 
object.  

In this paper, we develop a new modeling algorithm 
that can recover both the complicated shape geometry and 
the arbitrary unknown topology simultaneously from any 
datasets. The algorithm provides the user a unified 
approach that not only can deal with both volumetric data 
and range data, but also is efficient, flexible and powerful. 
The underlying model is a subdivision-based deformable 
model that further generalizes the polygonal balloon 
model of Miller et al. [6,7]. The geometry and the 
deformable behavior of the model are governed by the 
principle of energy minimization. When using our 
algorithm for shape recovery, users can interactively seed 
a simple model at the initialization stage, the model will 
deform and grow towards the boundary of the modeled 
dataset in accordance with the local cost function 
associated with each vertex of the model. During the 
process of model deformation, both global and 
local/adaptive subdivision operations on the model can be 
automatically applied whenever necessary in order to 
refine the model to an appropriate resolution and achieve 
different levels of detail. More importantly, by using a 
novel distance-based collision detection scheme, the 
model can automatically detect self-collision and modify 
its topology accordingly. In order to ensure the recovery 
of the correct topology from arbitrary datasets, we 
develop a novel, yet simple scheme that can prevent inter-
penetration in the vicinity of any vertex of the model. This 
scheme, combined with mature mesh optimization 

techniques, has proven to be very effective and can 
generate a good, high-quality polygonal mesh that can 
recover both the geometry and the arbitrary topology from 
any complicated dataset through model deformation. 

 

2. Energy-based optimization 
The deformable behavior of the model is governed by 

the principle of energy-based minimization. A locally 
defined cost function is associated with each vertex of the 
polygonal model. The cost function is a weighted linear 
combination of four constraints that aim to achieve the 
desired behaviors being simulated in the model. We shall 
briefly review these four components in Section 2.1 
followed by the minimization method in Section 2.2. 

 
2.1. Constraints modeling 

The cost function ),,( zyxCi
 associated with the current 

location of a model point is explicitly formulated as 
)1(),,(),,(),,(),,(),,( 3210 zyxAazyxVazyxBazyxDazyxCi +++=

where ),,( zyxD  is the deformation potential, ),,( zyxB  is 

the boundary constraints, ),,( zyxV  is the curvature 

constraint, and ),,( zyxA  is the angular constraint. 

3210 ,,, aaaa  are the four corresponding non-negative 

weighting parameters. 
Deformation potential ),,( zyxD  offers the 

mechanism to inflate the model. It defines a scalar field 
where each position in space is assigned a value based on 
the frame of reference. The vertex will move along the 
direction of the lowest local potential (in absence of other 
constraints). In order to model concave objects, the 
normal tracking method is used, i.e., each vertex is 
attracted to a point located in the vicinity of normal 
direction of the polyhedron surface. During each evolving 
step, every vertex moves in the general direction of the 
local surface normal in order to decrease its deformation 
potential. 

Boundary constraint ),,( zyxB  affords the mechanism 

for the model to interact with the dataset and identify the 
boundary. It is used to counter-balance the deformation 
potential and will restrict, direct, and counter-act the 
general progression of the deformation. Note that, 
volumetric data and range data are treated separately. 

For volumetric data, we make use of a shifted threshold 
operator: 

)2(
),,(0

),,(),,(
),,(

î



<
≥−

=
TzyxageIm

TzyxageImTzyxageIm
zyxB

where ),,( zyxmageI  is the gray-level intensity 

distribution of the voxel at location (x,y,z), and T is the 
threshold value that identifies the object. 

When a model point steps over the edge of an object, 
the algorithm returns a value that should increase the 
overall cost of the system. Therefore, the minimization 



process is required to either move the vertex by a smaller 
amount or not move the vertex at all. Hence the vertex 
will approach the boundary without crossing over it 
(unless its neighbors pull it over the edge).  

For range data, however, since there is no grid 
inherited in the underlying data, the aforementioned 
method cannot function properly. Instead, we use a 
distance-based constraint. For each vertex, the algorithm 
finds out the closest data point to the vertex and calculates 
the distance. If the distance is smaller than the threshold, 
the boundary constraint will become very large, otherwise, 
it is set as zero. Therefore a vertex is not allowed to 
proceed at a deformation cycle if it is close enough to the 
boundary of the object. This mechanism will ensure the 
model to be always inside the range data. The distance 
threshold used here is the sampling rate of the range data. 
Intuitively, we can consider the sampling rate as the 
smallest radius of spheres that are centered at each point 
of the range data set and can tightly cover the entire 
boundary area of the modeled object without having any 
gaps on the surface region. 

The first two constraints have the ability to grow the 
model until all the vertices reach the boundary of the 
underlying object. During the deformation process, it is 
desirable for a vertex not to stray far away from its 
neighbors. This suggests the use of Curvature constraint 

),,( zyxV  which is a reasonable approximant of the local 

curvature, and it is defined as the ratio of the distance 
from the current model point to the centroid of its 
neighbors over the maximum distance among all the 
neighbors of the current model point. Curvature constraint 
also has the effect of keeping the vertices well distributed 
during the deformation process. We will discuss this issue 
in more details in the next section. 

The fourth constraint--Angular constraint ),,( zyxA  is 

used to simulate the effect of attaching a very stiff string 
between any two adjacent faces. Similar to the boundary 
constraint, the value of angular constraint is either zero or 
very large. At each deformation step, the edges on the 
one-neighborhood of each vertex are identified, and all the 
dihedral angles between the two adjacent faces of these 
edges are calculated. If the next move of the vertex will 
cause any of these dihedral angles smaller than the 
threshold, the angular constraint will become very large 
and the vertex is not allowed to move at this deformation 
cycle. Otherwise, the angular constraint is zero. Angular 
constraint can effectively keep any two adjacent faces 
from being too close to each other. This constraint, used 
in concert with the more aggressive stressed-edge 
resolution approach and the mesh optimization techniques 
which will both be discussed later in this paper, will 
effectively prevent the local inter-penetration of adjacent 
faces. 

 

2.2. Energy optimization method 
An implicit iterative method is employed to 

numerically compute the minimization of our cost 
function explained above. The advantage of this approach 
is that it is extremely general and can offer an accurate, 
stable solution even for very large systems, therefore, it is 
well suited for our purpose in shape recovery of large 
datasets. A vertex of the model will move along the 
direction of the steepest descent along the cost surface, 
which is opposite to the gradient of the cost function 

iC . 

The gradient ),,(
z

C

y

C

x

C iii

∂
∂

∂
∂

∂
∂  is numerically approximated 

using the central difference of the overall cost function for 
the current position of the model vertex with a very small 
perturb. The amount that a vertex can move is adjusted 
based upon the current configuration of the cost space. 
The step size can be reduced four times if the magnitude 
of the current step size results in an increase in the cost 
function. If a step size is no longer able to reduce the cost 
of the vertex, then the vertex is not allowed to move at this 
step. If a vertex has not moved for a certain number of 
deformation cycles, the vertex will be marked as non-
active and will be excluded from future numerical 
integrations. 

 
3. Algorithm 

The entire pipeline of the modeling algorithm consists 
of the following seven main steps: 

1. Model initialization. 
2. Stressed edge resolution. 
3. Model growing. 
4. Local adaptive subdivision. 
5. Mesh optimization. 
6. Collision detection and topology change. 
7. Global subdivision. 

After the model is initialized at step one, the model will 
start its deformation process. It will loop through step two 
to step six at each deformation cycle. The deformation 
process stops when the model reaches its equilibrium, i.e. 
all the vertices of the model have been marked as non-
active. Finally, the model can be globally subdivided 
several times until a user-given error criterion is met. We 
have highlights the mechanism of model growing (step 
three) in the previous section. In this section, we will 
detail the other six steps of the algorithm. 
 
3.1. Model initialization 

The seed model may be any kind of closed polyhedron. 
For simplicity and without loss of generality, we use a 
sphere-like polyhedron consisting of 24 triangles of equal 
size. The initial position of the seed model can be put 
interactively by users anywhere within the dataset. For 
volumetric data, the seed model does not need to be 
completely inside the dataset, since the model will flip the 



normal tracking direction of the vertex if the vertex is 
detected to be outside the dataset. In the future, the model 
initialization should be automated by determining only 
one voxel of the dataset.  

 
3.2. Stressed edge resolution 

One phenomenon which oftentimes appears in a 
polygonal based deformable model is the local inter-
penetration of neighboring faces. Local inter-penetration 
typically occurs between two portions of the surface 
separated by a chain of stressed edges.  In practice, a 
stressed edge is identified if its two adjacent faces form an 
angle of less than 60 degrees (this value may vary across 
different systems). In this paper, we propose a simple, yet 
very powerful method that can efficiently solve this 
problem. At the beginning of each deformation cycle, all 
the stressed edges are detected by calculating the dihedral 
angle. Then each stressed edge is split into two small 
edges at the middle point and the middle point is further 
moved to the middle position of the two opposite vertices. 
Figure 1 demonstrates our method of resolving stressed 
edges.  

 
(a)  (b)  (c) 

Figure 1: Stressed edge resolution. (a) Edge BD is marked 
as stressed edge because the dihedral angle between its 
two adjacent faces ABD and EBD is less than the 
threshold. (b) Edge BD is split at the middle, and the 
middle point F of edge BD is connected with vertices A, 
B, D and E. (c) Finally, F is moved to the middle of 
vertices A and E. 
 
3.3. Local adaptive subdivision 

In order to control the smoothness of the model and the 
size of each polygon during the model-growing phase, we 
must allow the model to be able to increase its degrees of 
freedom during the deformation process. One simple, 
straightforward technique is global subdivision, i.e., 
globally subdivide the model whenever necessary. The 
drawback of the global subdivision approach is that it may 
generate a lot of unnecessary vertices on surface regions 
where a good approximation to the data boundary has 
already been achieved. Alternatively, we take advantage 
of the local adaptive subdivision approach, i.e., we only 
need to subdivide active regions that are still growing. A 
face is subdivided if its area is larger than certain user-
defined threshold, and moreover, at least one of its three 
vertices is still active. The typical subdivision rule is as 
follows. The algorithm will introduce a new vertex at the 

middle position of each old edge, and connect all the three 
new vertices. Thus four smaller new faces are generated 
from each old face. To maintain subdivision connectivity, 
all the triangles adjacent to the current face also need to 
be subdivided correspondingly. For example, in Figure 2, 
in order to subdivide the central triangle BDE, all the 
three adjacent triangles ADB, CBE and DFE need to be 
subdivided as well. And each of these three triangles is 
subdivided into two smaller ones by split the adjacent 
edge they share with the central triangle BDE. 

 
Figure 2: Local adaptive subdivision scheme. The solid 
lines are the old edges, the dashed lines are the new edges.  
 
3.4. Mesh optimization 

The algorithm can automatically construct the new 
subdivision mesh during the deformation phase. 
Therefore, it’s critical to improve and maintain the mesh 
quality throughout the process to ensure the model both 
locally smooth and globally well conditioned. Three mesh 
operations: edge swap, edge split, and edge collapse are 
applied at this step to achieve this goal. 

Edge swap is employed if doing so will increase the 
minimum angle within its adjacent faces. Repeated 
applications of this swap operation always keep increasing 
the minimum angle and hence result in a Delauny 
triangulation at the end of the procedure. That is, it 
maximizes the minimum angle on all the triangles of the 
mesh. And it is well known that the best possible surface 
triangulation over a set of points with known topology is 
the Delauny triangulation. In practice, an edge is swapped 
only if its local minimum-angle will be increased by 
certain small minimum. Also, edges with sharp dihedral 
angle (smaller than 90 degrees in our case) are not 
allowed to swap. These two conditions will guarantee that 
the edge-swapping algorithm always functions correctly 
and terminates eventually. 

During the deformation process, some nodes may 
cluster with each other, and some other nodes may be too 
far away from each other. To maintain an appropriate 
node density, two other operations are needed here: edge 
split and edge collapse. An edge-split is triggered if any 
two neighbors are too far apart. Similarly, if any node is 
too close to each of its neighbors, the node is destroyed 
using the edge collapse. In addition, skinny triangles are 
also eliminated at this step by edge collapsing. All the 
three inner-angles of each triangle are calculated. If any 



one of the three inner-angles of a triangle is too small, 
then the triangle containing the inner-angle will be 
eliminated by collapsing the edge opposite to this inner-
angle. To restore a quality mesh, the edge swapping is 
always applied after any edge split and edge collapse 
operations. Figure 3 illustrates the three mesh operations. 

 
edge swap         edge split      edge collapse 

Figure 3: Mesh optimization operations. 
 

3.5. Collision detection and topology change 
In order to recover shape of arbitrary, unknown 

topology, the model must be able to change its topology 
properly whenever a collision with other parts of the 
model is detected. Various kinds of collisions can be 
considered, such as face-to-face, edge-to-edge, vertex-to-
vertex, edge-to-face, etc. Techniques such as surface-
surface intersection and trimming have been proposed to 
solve collision detections. However, these techniques are 
usually very time consuming. We propose a novel 
distance based collision detection scheme that is simple, 
fast and efficient. Figure 4 illustrates the three steps of the 
scheme: (1) collision detection, (2) identify one-
neighborhood and put them into correspondence, and (3) 
change the topology. 

Collision detection: If the distance of two non-neighbor 
active vertices is smaller than the threshold, a collision 
will be identified and a merge-operation is triggered. If the 
distance between several pairs of active vertices is smaller 
than the threshold, the closest pair of vertices is chosen. 
For example, in Figure 4(a), because the distance between 
two active vertices A and B is smaller than the threshold, 
a collision between regions around vertex A and B is 
detected and a merge operation is triggered. 

Identify one-neighborhoods and put them into 
correspondence: To merge the two parts of the model. 
First, we need to identify and collect all the one-
neighborhood points for each of these two vertices. Then 
these two sets of points (i.e., one-neighborhood points) are 

sequenced separately and are put into correspondence. To 
do so, we use the same procedure as [12]: Iteratively 
refine the neighborhood with fewer edges by splitting its 
longest edge until both have the same number of nodes, 
then choose the alignment that minimizes the sum of 
squared distances between nodes. In Figure 4(a), 
originally the one-neighborhood of vertex A has five 
nodes: { A1, A2, A3, A4, A4} , the one-neighborhood of 
vertex B has six nodes: { B1, B2, B3, B4, B5, B6} .  To 
make these two one-neighborhoods have the same number 
of nodes, we first find the longest edge of the one-
neighborhood of vertex A, which is the edge between 
nodes A2 and A3. And then split this edge into two edges 
and insert a new node in between. Finally, we put these 
two sets of points into correspondence by finding the 
alignment that minimizes the sum of squared distances 
between nodes. In Figure 4(b), point set { A1, A2, …, A5}  
are corresponding to { B1, B2, …, B6}  respectively. 

Change the topology: After the two sets of points are 
put into correspondence, each points is connected with its 
corresponding points in the opposite point set. The two 
center vertices and all its incident edges are removed 
(Figure 4(c)). The newly created quadrilaterals are further 
triangulated by split each quadrilateral into two triangles 
along one of its diagonal (Figure 4 (d)). 

The mesh optimization processes will quickly smooth 
out any artifacts that may result from the matching 
procedure once the merge has been completed. 

 
   (a) 

 
   (b) 

 
   (c) 



 
   (d) 
Figure 4: Collision detection and topology change. (a) A 
collision is detected between the region around vertex A 
and the region around vertex B. (b) The one-
neighborhoods of vertex A and vertex B are put into 
correspondence. (c) The corresponding vertices between 
the one-neighborhoods of vertex A and vertex B are 
connected. Vertex A and vertex B and their incident edges 
are removed. The topology of the model is modified. (d) 
Each of the newly created quadrilaterals is split into two 
triangles. 
 
3.6. Global subdivision 

Once a rough estimation of the topology and geometry 
of a shape is achieved, the model can be subdivided 
several times to improve the fitting accuracy. We choose 
Loop’s scheme [7] in our model though other schemes 
would also achieve this goal. Figure 5 shows the Loop’s 
subdivision scheme. There are two kinds of new vertices 
generated at each level of subdivision: edge points and 
vertex points. Each old edge will generate a new edge 
point using the rule shown in Figure 5(a). Each old vertex 
will generate a new vertex point using the rule shown in 
Figure 5(b). By connecting each vertex point with its two 
adjacent edge point and connect the three edge points with 
each other, four smaller triangles are generated from each 
old triangle. After one level of global subdivision, the 
model will deform again based on the cost function 
explained above, and will arrive at a more accurate 
configuration of the shape because we now have more 
degrees of freedom for the model. Since the unknown 
topology of the underlying data set has already been 
recovered, there is no need for collision detection and 
topology change at this stage. 

            
     (a)         (b) 

Figure 5: Subdivision rules for Loop’s scheme: (a) Edge 

point rule. (b) Vertex point rule. 
k8

3=β  for  k> 3 and 

16

3=β  for k=3, k is the valence of the vertex. 

 

4. Experimental results 
We have built an experimental system using C++ and 

FLTK. Figure 6 to 9 show some of the experimental 
results we conducted using this system. 

Figure 6 and 7 demonstrate the shape recovery process 
from volumetric image data. The input dataset of Figure 6 
is a synthetic data of a torus with 84 by 23 by 84 voxels. 
The input dataset of Figure 7 is obtained from scanning a 
phantom of vertebral with 128 by 120 by 52 voxels. 
Starting from the leftmost, each figure shows the snapshot 
of different stages during the deformation process: Fig. 
6(a) and Fig. 7(a) are the model initialization stages; Fig. 
6(b) and Fig. 7(b) are the model growing stages without 
any topology changes; Fig. 6(c) and Fig. 7(c) are the first 
round recovered shape, the topology of the object has 
been correctly recovered; Fig. 6(d) and Fig. 7(d) are the 
refined shape after one level of global subdivision, the 
fitting accuracy of the geometry of the object has been 
greatly improved. In all figures, red regions represent 
parts of the model that are still active and growing, blue 
region represent parts of the model that have already 
reached the boundary of the object and are not active 
anymore. The algorithm also supports multiple seed 
model initialization. For example, in Figure 8(a), four 
seeds are initialized at different positions at the same time. 
Each model will grow independently (Fig. 8(b)) and will 
merge with other models whenever a collision is detected 
(Fig. 8 (c)). Fig. 8(d) shows the more refined model after 
one level of global subdivision. 

Figure 9 and 10 illustrate the shape recovery process 
from synthetic range datasets. The input dataset of Figure 
9 is obtained by sampling a sweeping surface with 10000 
data points. The input dataset of Figure 10 is obtained by 
sampling a subdivision surface with 6140 data points. The 
leftmost figures (Fig. 9(a) and Fig. 10(a)) are the range 
data with the seed model inside. The middle two figures 
(Fig. 9(b), Fig. 9(c) and Fig. 10(b), Fig. 10(c)) are the two 
snapshots of the model while they are still growing and 
deforming. The rightmost figures (Fig. 9(d) and Fig. 
10(d)) are the final shapes of the models. 

Table 1 summarizes the statistics of the examples. The 
fitting error is calculated by dividing the distance between 
the model vertex and the boundary of the object by the 
diameter of the smallest bounding sphere of the object. 
Table 2 lists the four weighting coefficients for calculating 
the local cost function associated with each vertex using 
equation (1). Currently, several parameters need to be set 
by the user at the beginning of the deformation process. 



They are: the face area threshold for local adaptive 
subdivision, the distance threshold for collision detection, 
and the edge length threshold for mesh operations such as 
edge split and edge collapse. In the future, we plan to 
simplify these parameters by conducting a preprocessing 
step and normalize the input dataset to the same scale. 
Then it should be possible for the algorithm to 
automatically set the proper parameters. 

Table 1: Recovered shape information. 
Figure 

# 
#Vertices #Edges #Faces Max. fitting 

error ( %) 
6(c) 371 1113 742 1.76 
6(d) 1489 4467 2978 1.36 
7(c) 1005 3015 2010 0.533 
7(d) 4299 8598 12897 0.38 
8(c) 2379 4774 7161 1.26 
8(d) 9848 29568 19712 0.94 
9(d) 5101 15303 10202 1.63 
10(d) 821 1650 2475 2.50 

 
Table 2: Weighting coefficients. 

0a  1a  2a  3a  

1 1 1.6 1 

 
5. Conclusion 

We have developed a novel modeling algorithm for 
shape recovery and representation in computer vision. 
Through the use of a new collision-detection method and 
a novel stressed-edge resolution scheme, coupled with 
mesh optimization techniques, the algorithm is able to 
overcome several limitations associated with conventional 
deformable models. It offers users a unified approach to 
deal with both volumetric image data and range data. The 
algorithm can recover the shape of arbitrary geometry and 
its unknown topology simultaneously. Because the 
underlying model is a subdivision-based model, it 
supports levels of detail naturally. After the initial 
estimation of both topology and geometry of the dataset is 
accomplished, the user can control the fitting quality 
easily by specifying the number of levels of global 
subdivision. Furthermore, the algorithm can be multi-
threaded, i.e., multiple seed models can be initialized at 
different locations at the same time. Throughout the 
deformation process, each seed model will grow 
independently and will merge with neighboring models 
whenever a collision occurs. Several improvements are 
possible in the near future. The time performance of the 
algorithm can be further enhanced by employing 
techniques such as hierarchical bounding box instead of 
the brute-force searching algorithm currently used for 
collision detection. Also, the initial position of the seed 
model should be automatically inferred from data 
distribution without user intervention. 

References
[1] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: 

Active contour models. International Journal of 
Computer Vision, pages 321-331, 1988. 

[2] Charles Loop. Smooth subdivision surfaces based on 
triangles. Master’s thesis, Department of 
Mathematics, University of Utah, August 1987. 

[3] W.E. Lorensen and H.E. Cline. Marching cubes: A 
high resolution 3d surface construction algorithm. 
Computer Graphics (SIGGRAPH’87 Proceedings), 
pages 163-169, July 1987. 

[4] C. Mandal, B.C. Vemuri, and H. Qin. Shape recovery 
using dynamic subdivision surfaces. In Proceedings 
of IEEE International Conference on Computer 
Vision (ICCV’98), pages 805-810, Bombay, India, 
January 1998. 

[5] T. McInerney and D. Terzopoulos. Topologically 
adaptable snakes. In Proceedings of IEEE 
International Conference on Computer Vision 
(ICCV’95), pages 840-845, Cambridge, MA, June, 
1995. 

[6] J.V. Miller. On GDM’s: Geometrically deformed 
models for the extraction of closed shapes from 
volume data. Masters thesis, Rensselaer Polytechnic 
Institute, Troy, New York, December 1990. 

[7] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. 
O’Bara, and M.J. Wozny. Geometric deformed 
models: a method for extracting closed geometric 
models from volume data. Computer Graphics 
(SIGGRAPH’91 Proceedings), pages 217-226, July 
1991. 

[8] H. Qin, C. Mandal, and B.C. Vemuri. Dynamic 
Catmull-Clark subdivision surfaces. IEEE 
Transactions on Visualization and Computer 
Graphics, 4(3):215-229, July 1998. 

[9] R. Szeliski, D. Tonnesen, and D. Terzopoulos. 
Modeling surfaces of arbitrary topology with dynamic 
particles. In IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition 
(CVPR’93), pages 82-87, New York, NY, June 1993. 

[10] D. Terzopoulos, and K. Fleischer. Deformable 
models. The Visual Computer 4(6), pages 306-331, 
1988. 

[11] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-
seeking models and 3d object reconstruction. 
International Journal of Computer Vision, pages 211-
221, 1987.  

[12] W. Welch and A. Witkin. Free-form shape design 
using triangulated surfaces. Computer Graphics 
(SIGGRAPH’94 Proceedings), pages 247-256, July 
1994. 



    
(a)     (b)      (c)     (d) 

Figure 6: Shape recovery from volumetric image data of a torus. 
 

    
(a)     (b)      (c)     (d) 

Figure 7: Shape recovery from volumetric image data of a phantom vertebral. 
 

    
(a)     (b)      (c)     (d) 

Figure 8: Shape recovery from volumetric image data using multiple seeds. 
 

    
(a)     (b)      (c)     (d) 

Figure 9: Shape recovery from synthetic range data of a sweeping surface. 

    
(a)     (b)      (c)     (d) 

Figure 10: Shape recovery from synthetic range data of a subdivision surface. 


