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Abstract 1 INTRODUCTION

) . L . Efficiently modeling and intuitively manipulating complex shapes
Recursive subdivision on an initial control mesh generates a vi- are of paramount significance to scientists and engineers in ge-
sually pleasing smooth surface in the limit. Nevertheless, users gmetric and solid modeling, engineering design, manufacturing,
must carefully specify the initial mesh and/or painstakingly ma- animation and simulation, analysis and evaluation, rapid and vir-
nipulate the control vertices at different levels of subdivision hier- a1 prototyping, visualization, and interaction with virtual envi-
archy to satisfy a diverse set of functional requirements and aes- ronments. Since 1970's, tensor-product Non-Uniform Rational B-
thetic criteria in the limit shape. This modeling drawback re- Splines (NURBS) have become an industry standard because of
sults from the lack of direct manipulation tools for the limit geo-  thejr many attractive properties. Nevertheless, the surface of ar-
metric shape. To improve the efficiency of interactive geometric pitrary topology can not be represented using a single NURBS due
modeling and engineering design, in this paper we integrate novel g the global planar parameterization of NURBS. It requires that
physics-based modeling techniques with powerful geometric subdi-the syrface be decomposed into a set of (timmed) NURBS patches.

vision principles, and develop a unified FEM-based methodology ynfortunately, NURBS patching and trimming suffers from the fol-
for arbitrary subdivision schemes. Strongly inspired by the recent |oying difficulties:

research on Dynamic NURBS (D-NURBS), we formulate and de-
velop a dynamic framework that permits users to directly manipu- 1. Trimming two NURBS patches to match along their com-

late the limit surface obtained from any subdivision procedure via mon boundary involves the complex computation of surface-
simulated "force” tools. The most significant contribution of our surface intersection (SSI), SSI algorithms generally are both
unified approach is the formulation of the limit surface of an ar- computationally expensive and prone to numerical errors due
bitrary subdivision scheme as being composed of a single type of to approximation; and

novel finite element. The specific geometric and dynamic features

of our subdivision-based finite elements depend on the subdivision 2. Complex and less intuitive continuity constraints across adja-

scheme used. We present our novel finite element method (FEM) for cent (trimmed) patches must be enforced throughout the de-

the modified butterfly and Catmull-Clark subdivision schemes, and formation process.

generalize our dynamic framework to be applicable to other subdi-

vision schemes. Our FEM-based approach significantly advances In general, considerable amount of human intervention is required

the state-of-the-art in physics-based geometric modeling since it to guarantee that the patchwork of the underlying geometry is seam-

provides a universal physics-based framework for any subdivision less.

scheme. In addition, we systematically devise a mechanism that Recently, subdivision geometry has emerged as a powerful ge-

allows users to directly (not via control meshes) deform any sub- ometric modeling technique which has been extensively employed

division surface; finally, we represent the limit surface of any sub- to model smooth shapes of arbitrary topology in graphics, com-
division scheme using a collection of subdivision-based novel fi- puter animation, and other disciplines, because of its unsurpassed
nite elements. Our experiments demonstrate that the new unifiedadvantages over industry-standard NURBS. In principle, the recur-

FEM-based framework not only promises a greater potential for sive subdivision scheme produces a visually pleasing smooth sur-

subdivision techniques in solid modeling, finite element analysis, face in the limit by repeated application of a fixed set of refinement

and engineering design; but that it will further foster the applica- rules on a user-specified initial control mesh. Subdivision principle,
bility of subdivision geometry in a wide range of visual computing in particular, can overcome the shortcomings of NURBS because of
applications such as visualization, virtual reality, computer graph- the following reasons:

ics, computer vision, robotics, and medical imaging as well.

e Subdivision naturally generalizes B-splines and NURBS. A
single subdivision surface can represent shape of arbitrary
topology. It requires neither trimming nor patching. Smooth-
ness requirements are automatically guaranteed.

e Subdivision allows modelers to arrange control vertices in a
more natural way, without the need to maintain a rectangu-
lar structure as required by NURBS. It greatly facilitates the
creation of geometric features.

e Subdivision potentially allows the initial model to be refined
locally. Local refinement is not possible with NURBS, since
an entire row and/or column of control points must be added
to preserve the rectangular structure.



Despite the prevalence of diverse subdivision schemes in the graph-the vertex mesh of arbitrary topology. Peters and Reif [18] pro-
ics and geometric modeling literature, it is almost impossible to ma- posed a simple subdivision scheme for smoothing polyhedra. Most
nipulate the limit surface (obtained through procedure-based subdi-recently, non-uniform Doo-Sabin and Catmull-Clark surfaces that
vision) in a direct, natural, and intuitive way. The current state- generalize non-uniform tensor-product B-spline surfaces to arbi-
of-the-art only permits modelers to interactively obtain the desired trary topologies were introduced by Sederbet@l. [24]. All the
effects on the smooth surface by kinematically manipulating the aforementioned schemes generalize recursive subdivision schemes
control vertices at various levels of subdivision hierarchy. This for generating limit surfaces with a known parameterization. Var-
design process is rather clumsy and laborious, in spite of the ex-ious issues involved with the use of these approximating subdivi-
istence of many modern interactive hardware devices. Moreover, sion schemes for character animation were discussed at length by
existing subdivision-based surfaces am yetreadily applicable DeRoseet al. [4].
for the efficient and accurate data exchange with standard formats The most well-known interpolation-based subdivision scheme
such as B-splines and NURBS, hampering their widespread usageis the “butterfly” algorithm proposed by Dyet al. [7]. Butterfly
in solid modeling and engineering design applications. In this pa- method, like other subdivision schemes, makes use of a small num-
per, we address the challenging problem of directly manipulating ber of neighboring vertices for subdivision. It requires simple data
the limit subdivision surface at arbitrary locations/areas, and offer structures and is rather straightforward to implement. Nevertheless,
a novel solution to this problem by embedding purely geometric it needs a topologically regular setting of the initial (control) mesh
subdivision schemes in a physics-based modeling framework. Un-in order to obtain a smoot&’* limit surface. Zorinet al.[28] has
like the existing geometric solutions that only allow operations on developed an improved interpolatory subdivision scheme (which
control vertices, our methodology and algorithms permit users to we call the modified butterfly scheme) that retains the simplic-
physically modify the shape of subdivision surfaces at desired lo- ity of the butterfly scheme and results in much smoother surfaces
cations viaforces Consequently, this gives the user an intuitive even from irregular initial meshes. These interpolatory subdivision
and natural feeling that is uniquely produced while modeling with schemes have extensive applications in wavelets on manifolds, mul-
real clay/play-dough. Additionally, we will demonstrate that the tiresolution editing, etc.
proposed model can efficiently recover shapes from a cloud of 3D A variational approach for interpolatory refinement has been pro-
points. posed by Kobbelt [11, 12] and by Kobbelt and Sudtei' [13]. In this
approach, the vertex positions in the refined mesh at each subdivi-
sion step are obtained by solving an optimization problem. There-
fore, these schemes are global, i.e., every new vertex position de-
The remainder of this paper is organized as follows. We shall briefly pends on all the vertex positions of the coarser level mesh. The local
review the previous work on subdivision surfaces in Section 2. In refinement property which makes the subdivision schemes attrac-
Section 3, we discuss the prior work of physics-based modeling tive for implementation in the graphics applications is not retained
technigues and highlight the primary advantages of physics-basedin the variational approach.
modeling in order to motivate our research contributions. Then, a  The derivation of various mathematical properties of the limit
dynamic framework for the interpolatory (modified) butterfly sub- surface generated by the subdivision algorithms is rather complex.
division scheme is detailed in Section 4. We reformulate the dy- Doo and Sabin [6] first analyzed the smoothness behavior of the
namic framework for the approximating Catmull-Clark subdivision limit surface using the Fourier transform and an eigen-analysis of
scheme using the proposed approach in Section 5. The dynamicthe subdivision matrix. Ball and Storry [1] and Reif [22] fur-
framework for Loop’s subdivision scheme is presented in Section 6. ther extended Doo and Sabin’s prior work on continuity proper-
Section 7 presents a solution on how to develop a dynamic frame-ties of subdivision surfaces by deriving various necessary and suf-
work for any subdivision scheme. Experiments and applications are ficient conditions on smoothness for different subdivision schemes.
discussed in Section 8. Finally, we conclude the paper in Section 9. Specific subdivision schemes were analyzed by several researchers
[23, 19, 29], including a recent one by Stam [25].

1.1 Overview

2 Background

3 Motivation
Chaikin [3] first introduced the concept of subdivision to the mod-
eling community for generating a smooth curve from an arbi- Subdivision geometry has offered users extraordinary power and
trary control polygon. Subsequently, a wide variety of subdivision flexibility especially when used for modeling complex shapes of
schemes for modeling smooth surfaces of arbitrary topology have arhitrary topology. Nevertheless, it constitutes a purely geometric
been derived following Chaikin's pioneering work on curve gen- representation, and hence does not exploit the full potential of the

eration. The existing subdivision schemes can be broadly catego-underlying geometric formulation owing to the following reasons:
rized into two distinct classes namely, (1) approximating subdivi-

sion techniques, and (2) interpolating subdivision techniques. e Modelers are faced with the tedium of indirect shape refine-

Among the approximating schemes, the techniques of Doo and
Sabin [5] and Catmull and Clark [2] generalize the idea of ob-
taining uniform biquadratic and bicubic B-spline patches, respec-
tively, from a rectangular control mesh. In [2], Catmull and Clark
developed an algorithm for recursively generating a smooth sur-
face from a polyhedral mesh of arbitrary topology. The Catmull-
Clark subdivision surface, defined by an arbitrary initial mesh, can
be reduced to a set of standard B-spline patches except at a finite
number of degenerate points. In [14], Loop presented a similar
subdivision scheme based on the generalization of quartic trian-
gular B-splines for triangular meshes. Hopgteal. [10] further
extended Loop’s work to produce piecewise smooth surfaces with
selected discontinuities. Halsteatlal. [9] proposed an algorithm
to construct a Catmull-Clark subdivision surface that interpolates

ment through time-consuming operations on a large number
of topologically irregular control vertices and less intuitive
modification on various subdivision rules. This process is
clumsy and laborious especially for effectively representing
and deforming highly complicated objects.

Control point manipulation is not natural due to the fact that
control points generally do not reside on the sculpted objects,
hence, it often requires designers to make many nonintuitive
decisions, and it is even more difficult to accurately quantify
the refinement effect at arbitrary localized regions. Despite
the advent of many modern 3D graphics interaction tools,
these indirect geometric operations remain non-intuitive and
laborious in general.



e Oftentimes it may not be enough to obtain the most “fair” using these models. Subdivision schemes, in contrast, can model
surface that interpolates a set of (ordered or unorganized) datacomplex surfaces of arbitrary topology, and hence are a good can-
points. Typical design requirements may be posed in both didate for incorporation of physics-based principles where by the
quantitative and qualitative terms. For example, a certain modeler can directly manipulate the (complicated) limit surface in
number of local features such as bulges or inflections may be an intuitive way.
strongly desired while requiring geometric objects to satisfy Previously we had introduced dynamic Catmull-Clark subdivi-
global smoothness criteria in solid modeling and/or interac- sion surfaces [15, 16, 21] where the smooth limit surface gener-
tive graphics applications. Therefore, it can be very frustrat- ated by the Catmull-Clark subdivision scheme was embedded in a
ing to enforce a diverse set of heterogeneous criteria simulta- physics-based modeling framework. The current research differs
neously via the indirect approach. significantly from our prior work because the new approach taken

) ) ) . in this paper is much more general. It aims to develop a systematic

In contrast, physics-based modeling can provide a superior ap-and universal mechanism with which any subdivision scheme can
proach to shape modeling that can overcome most of the limitations pe formulated within the physics-based framework. The primary
associated with traditional geometric modeling approaches. Free-mathematical technique we resort to is finite element analysis. We
form deformable models governed by the laws of continuum me- shaj| first formulate a dynamic representation and equation for an
chanics are of particular relevance in this context. Physics-basedinterpolatory subdivision scheme — the modified butterfly subdi-
design augments (rather than supersedes) standard geometric djisjon method — where the limit surface, unlike other generalized
sign, offering attractive new advantages: spline-based subdivision schemes, does not have any closed-form
analytic formulation. Moreover, we shall reformulate the dynamic
Catmull-Clark subdivision surface model using this novel method-
ology, and describe how to develop an unified dynamic framework
for any subdivision scheme. The key contribution of this unified
approach is to represent the smooth limit surface of any subdivision
scheme using a collection of a single type of novel finite elements.
The geometric and physical features of our subdivision-based finite
elements depend only on the subdivision scheme involved. Our
FEM-based approach significantly advances the state-of-the-art in
physics-based geometric modeling because

e Dynamic models respond to simulated forces in a natural and
predictable way. The dynamic formulation marries the model
geometry with time, mass, damping, and constraints via a
force balance equation. Dynamics facilitates interaction, es-
pecially direct manipulation and interactive sculpting of com-
plex geometric models for real-time shape variation.

e Geometric design is a time-varying process because design-
ers are often interested in not only the final static equilibrium
shape but the intermediate shape variation as well. Dynamic
models produce smooth, natural motions that are familiar and

can be easily controlled. 1. It provides a universal physics-based solution to any subdi-

vision scheme beyond prevalent spline-like subdivision tech-

¢ The equilibrium shape of a geometric object is characterized niques.

by a minimum of its potential energy, subject to imposed con-
straints. It is possible to formulate potential energy function-
als that satisfy local and global design criteria. In particu-
lar, the elastic energy functionals will allow the imposition

of global qualitative “fairness” criteria through quantitative

means.

2. A natural mechanism that allows users to intuitively deform
any subdivision surface has been systematically devised.

3. The limit surface of any subdivision schemes has been rep-
resented using a single type of novel subdivision-based finite
elements.

e Physics-based shape design can free designers from having to . . .
make nonintuitive decisions, such as moving control pointsto 4. Our subdivision-based finite elements are potentially of great
prescribed locations. In addition, non-expert users are able interest to FEM communities.
to concentrate on visual shape variation without necessarily
comprehending the underlying mathematical formulation.

Dynamic Butterfly Subdivision Sur-
e Physics-based modeling techniques and real-time dynamics faces
integrate geometry with physics in a natural and coherent way.
The unified formulation is potentially relevant throughout the
entire modeling, simulation, analysis, and manufacturing pro-
cess. More importantly, it is potentially possible to introduce
manufacturing constraints in the earlier design stage.

This section discusses a dynamic framework for an interpolatory
subdivision scheme namely, the (modified) butterfly subdivision
technique. First, a brief overview of the (modified) butterfly sub-
division scheme is presented. Next, a local geometric parameter-
I_ization technique for the limit surface of the (modified) butterfly
subdivision is detailed. Our parameterization method is then used
to derive the new triangular finite element model for thaterfly-
Free-form deformable models were first introduced to the mod- basedsubdivision scheme. Finally, the implementation details are
described. Note that, we will further generalize our physics-based

eling community by Terzopoulost al. [27], and were refined by . ' L - >
a number of researchers over the years. Qin and Terzopoulosformmat'on for other interpolatory subdivision schemes in Section

[20] developed D-NURBS which are very sophisticated physics-

based models suitable for representing a wide variety of free-form

as well as standard analytic shapes. The D-NURBS have the ad-4 1  The (Modified) Butterfly Subdivision

vantage of interactive and direct manipulation of NURBS curves

and surfaces, resulting in physically meaningful thus intuitively The butterfly subdivision scheme [7] starts with an initial triangu-
predictable motion and shape variation. However, a severe limi- lar mesh (a.k.a. the control mesh) defined by a set of control ver-
tation of the existing deformable models, including D-NURBS, is tices. In each step of subdivision, the initial (control) mesh is re-
that they are defined on a rectangular parametric domain. There-fined through the transformation of each triangular face into a patch
fore, it can be very difficult to model surfaces of arbitrary genus with four smallertriangular faces. After one step of refinement,

The dynamic approach subsumes all of the aforementioned mode
ing capabilities in a formulation which grounds everything in real-
world physical behavior.



as shown in Fig.2(a), is used to obtain the new vertex positions
corresponding to these edges);

2. Edges connecting a vertex of degree 6 and a vertex of de-
green # 6 (the corresponding stencil to obtain new ver-
tex position is shown in Fig.2(b), wherg¢ = .75 is the
weight associated with the vertex of degree 6, ands; =
(0.254cos(2mi/n)+0.5cos(47i/n))/n, i = 0,1,...,n—1,
are the weights associated with the vertices of degree 6); and

3. Edges connecting two vertices of degreée 6.

The last case can not occur except in the initial mesh as the newly
@ (b) introduced vertices are of degree 6, and the new vertex position
in this last case is obtained by averaging the positions obtained
through the use of stencil shown in Fig.2(b) at each of those two

Figure 1: (a) The control polygon with triangular faces. (b) The re- extraordinary vertices.

fined mesh obtained after one subdivision step using butterfly sub- )
division rules. 4.2 Formulation

This section systematically formulates the dynamic framework for
the modified butterfly subdivision scheme. Unlike the approximat-
ing schemes, the geometry of the limit surface obtained via mod-
ified butterfly subdivision does not have any closed-form analytic
expression even for a regular mesh. Therefore, the key issue is to
define an appropriate parametric domain and derive a local parame-
terization forbutterfly-basedubdivision. These relevant geometric
components are critical to the development of our physics-based
finite element model for the limit surface of butterfly scheme.

The smooth limit surface defined by the modified butterfly sub-
division technique is of arbitrary topology where a global parame-
terization is impossible. Nevertheless, the limit surface can be lo-
cally parameterized over the geometric domain defined by the ini-
tial mesh. The idea is to track an arbitrary point on the initial mesh
across the mesh hierarchy obtained via the subdivision process (see
Fig.3 and Fig.4), so that a correspondence can be established be-
(b) tween the point being tracked in the initial mesh and its image on

Figure 2: (a) The weighing factors of contributing vertex positions the limit surface.

for an edge connecting two vertices of degree 6; (b) the correspond-
ing case when one vertex is of degre@nd the other is of degree @ A
6.

the new mesh in théiner level retains the vertices of each trian-

gular face in the previous level and hence, interpolatesdiaeser

mesh in the previous level. In addition, every edge in each triangu- Figure 3: The smoothing effect of the subdivision process on the
lar face is split by adding a new vertex whose position is obtained triangles of the initial mesh.

by an affine combination of the neighboring vertex positions in the

coarser level. For instance, the mesh in Fig.1(b) is obtained by sub-  The modified butterfly subdivision scheme starts with an initial
dividing the initial mesh shown in Fig.1(a) once. Note that, all the set of triangular faces. The recursive application of the subdivision
newly introduced vertices corresponding to the edges in the original ryles smoothes out each triangular face, and in the limit, we obtain
mesh have degree 6, whereas the position and degree of all originaly smooth surface consisting of a collection of smooth triangular
vertices do not change in the refined mesh. _ patches. The subdivision process and the triangular decomposition
~ In the original butterfly scheme, the new vertices correspond- of the limit surface is depicted in Fig.3. Note that, the limit sur-
ing to the edges in the previous level are obtained using an eight-face can be represented by the same number of smooth triangular
point stencil. It produces a smooh' surface in the limit except  patches as that of the triangular faces in the initial mesh. Therefore,
at theextraordinarypoints corresponding to thextraordinaryver- the limit surfaces can be expressed as

tices (vertices with degree not equal to 6) in the initial mesh [28].

Since all the vertices introduced through subdivision have degree n

6, the number of extraordinary points in the smooth limit surface s = Z Sk, (2)
equals to the number of extraordinary vertices in the initial mesh. =1

Recently, theoriginal butterfly scheme has been modified by Zorin ) ) ) o

et al. [28] to obtain better smoothness properties at the extraordi- Wheren is the number of triangular faces in the initial mesh apd
nary points. In thisnodifiedbutterfly subdivision technique, all the  is the smooth triangular patch in the limit surface corresponding to

edges had been categorized into three classes: the k-th triangular face in the initial mesh. o
We now describe the parameterization of the limit surface over

1. Edges connecting two vertices of degree 6 (a 10 point stencil, the initial mesh. The procedure can be best explained through the




(a) (b)

©

Figure 4: Tracking a point through various levels of subdivision:
(a) initial mesh, (b) the selected section (enclosed by dotted lines)

of the mesh in (a), after one subdivision step, (c) the selected section

of the mesh in (b), after another subdivision step.

following example. A simple planar mesh shown in Fig.4(a) is cho-
sen as the initial mesh. An arbitrary poixtinside the triangular
faceabc is tracked over the meshes obtained through subdivision.
The vertices in the initial mesh are darkly shaded in Fig.4. After
one step of subdivision, the initial mesh is refined by addition of
new vertices which are lightly shaded. Another subdivision step
on this refined mesh leads to a finer mesh with introduction of new
vertices which are unshaded. It may be noted #mt point in-
side the smooth triangular patch in the limit surface corresponding
to the faceabc in the initial mesh depends only on the vertices in
the initial mesh which are within the 2-neighborhood of the ver-
ticesa, b and c due to the local nature of the subdivision process
(the k-neighborhood of a vertex includes all the vertices that can
be reached following at mogt edges from the given vertex). For
example, the verted, introduced after first subdivision step, can
be obtained using the 10 point stencil shown in Fig.2(a) on the edge
ab. All the contributing vertices in the initial mesh are within the
1-neighborhood of the verticesandb. A 10 point stencil can be
used again in the next subdivision step on the efigi® obtain the
vertexg. Some of the contributing vertices at this level of subdivi-
sion, for example, the (lightly shaded) 1-neighbors of the vetex
(exceptd ande) in Fig.4(b), depend on some vertices in the initial
mesh which are within the 2-neighborhood of the vertieds and
c in the initial mesh.

In the rest of the formulation, superscripts are used to indicate
the subdivision level. For example?,,,, denotes the collection
of vertices at levelj which control the smooth patch in the limit
surface corresponding to the triangular facev at the j-th level
of subdivision. Letv?,. be the collection of vertices in the initial
mesh that are within the 2-neighborhood of the vertieds andc
(marked black in Fig.4(a)). Let the number of such verticeg.be
Then, the vectow?,.., which is the concatenation of the, y, z)
positions for all ther vertices, is of dimensioBr. Based on the
above observation of thHzneighborhoogroperty, the geometry of
the smooth triangular patch in the limit surface corresponding to
the triangular faceube in the initial mesh is uniquely determined
by theser vertices. Because of the recursive characteristic, there
now exists four subdivision matric€®A qc),, (Aasc);, (Aabe),
and(Au.),, of dimension(3r, 3r) such that

Vagr = (Aabe),Vope
V;ed = (Aabc)1V2bca
Vefe (Aabe), Vobe,
thief = (Aabc)mV2bc7 2

where the subscripts [, » andm denote top, left, right and mid-
dle triangle positions, respectively (indicating the relative posi-
tion of thenewtriangle with respect to theriginal triangle), and
Vears Vied, Vese andvy, ; are the concatenation of tie, y, z) po-
sitions for the vertices In the 2-neighborhood of the corresponding
triangle within the newly obtained refined mesh after one subdi-
vision. Note that, the new vertices in this level of subdivision are
lightly shaded in Fig.4(b). The 2-neighborhood configuration of the
vertices in the newly obtained triangles is exactly the same as that
of the original triangle, hence local subdivision matrices are square
and the vector dimensions on both sides of (2) are the same.

Carrying out one more level of subdivision, a new set of vertices
which are unshaded in Fig.4(c) are obtained along with the old ver-
tices. Adopting a similar approach as in the derivation of (2), it can
be shown that

Vigi = (Aped);Voed
Vghg = (Abed)lvéed
Viin (Abed), Vied
v;;u- = (Abed)mvéed (3



The relative position and geometric structure of the trlangu coarser-levebriginal triangular face in thpreviouslevel), (A abc)

lar facedgi in Fig.4(c) with respect to the triangular faded is
topologically the same as of the triangular facdf in Fig.4(b)
with respect to the triangular faeéec. Therefore, we can obtain
(Abe_d)t = (Aabc)t-
rewritten as

V;Zigi = (Abed)tV;ed = (Aabc)tvéed
Vl?hg = (Abed)lV;ed = (Aabc)lV;ed
viin (Aped), Vied = (Aabc)rvéed

Vini = (Aved),, Viea = (Aae), Viea-  (4)

Combining (2) and (4), it can be shown that

V;Zigi = (A abc)t( abc)[vabm
Ving = (Aabe) (A abc)[vabca
vzm = ( abc)r( abc) Vabc,
v;;n = (Aabc)m(Aabc)[V2bc~ (5

Let x be a point with barycentric coordinatés?,., 3%, 7%.)
inside the triangular facebc. When the initial mesh is refineet,
becomes a point inside the triangular féed with barycentric co-
ordinates a4, Bied, Vieq)- Another level of subdivision causes
to be included in the triangular faaekyi with barycentric coordi-
nates(ag,;, Bi,i, Vae:)- Lets?, denote the j-th level approxima-
tion of the smooth triangular patch;. in the limit surface corre-
sponding to the triangular faaghc in the initial mesh. Now?,
can be written as

r T r
v2bc = [aﬂhbﬂc:cﬂm . -:ay:byacy: - .,a;,bz,c;, . ']T

where the subscripts, y and z indicate the x, y and z coordinates

Based on the similar reasoning, (3) can be

= (Ause),, - (Aase),(Aase), andBY, (x) = Bl (x)(AL,).

It may be noted that the sequence of applyi®g.s.),, (Aabe);,
(Aase), and (Agse),, depends on the triangle inside which the
tracked pointx falls after each subdivision step. Finally, the local
geometric parameterization procedure can be completed by writing

Sabc( ) ( lim szbc( ))ngc = Babc(x)V2bc' (8)

Jj—oo

Note that, Babc is the collection of basis functions at the ver-
tices of v0,.. It may also be noted that the modified butter-
fly subdivision scheme is atationary subdivision process, and
hence new vertex positions are obtained by affine combinations
of nearby vertices. This guarantees that each row of the matrices
(Aabe);s (Aabe);, (Aabe), and(Aqgpe),, sums to one. The largest
eigenvalue of such matrices isand therefore the mathematical
limit in (8) exists. Now, assuming the triangular fagkc is the

k-th face in the initial mesh, (8) can be rewritten as

sk(x) = By (x)vy = Bi(x)Axp, 9)

wherep is the concatenation of the (x,y,z) positions of all the ver-
tices in the initial mesh and the mati;,, when post-multiplied by
p. only selects the vertices) defining the k-th smooth triangular
patch in the limit surface. If there atevertices in the initial mesh
andr of them control theé:-th patch, them is a vector of dimension
3t, Ay, is a matrix of dimensiori3r, 3t), andBy (x) is a matrix of
dimension(3, 3r).

Combining (1) and (9), it can be shown that

SORTS

whereJ, a matrix of dimensior(3, 3¢), is the collection of basis

JAR)P = J(X)p, (10)

of the corresponding vertex position, respectively. The expressionsfunctions for the corresponding vertices in the initial mesh. The

forvi_y andvdgl can also be written in a similar manner. Next, the

matrix B2, can be constructed as follows:
/T; r r
"0 o 0 NS N~ ~
aabc7ﬂabc7’7abc707'"70707"' 70707"'70
r T r
ngc(x) = — 0 JB ——
07"'707aabc;/8abc77abc707"~ 70707'“70

T T

——
0,...,0,0,...,

> 3

0 0 0
Oaaabca/gabca’)/abm(L . '70

The matricesB;., and ngi can also be constructed in a similar
fashion. Nows?,.(x), s.;.(x), ands2,.(x) can be written as

Sgbc(x) = ngc(x)vgbc'
Stlzbc(x) - B;ed(x)v‘ged = B‘Iged (x)(Aabc)lvgbci (6)
Sabc(x) - Bégi(x)vczigi - Bégl (X) (Aabc)tv;ed

= Bc‘;gz(x) Aabc)t(AabC)lvgbc

Proceeding in a similar way, the expression i@gc(x), j-th
level approximation 0§, (x), is given by

J
A

N

Bfww(X) (AabC)m .. (AabC)t(Aabc)z ngc
B{ww( )(Aibc)‘&bc
= Bflbc( ) 2bc7 (7)

wherex is inside the triangular facevw at levely (with an assump-
tion thatuvw is the triangular face in theniddlewith respect to its

vector p is also known as the degrees of freedom vector of the
smooth limit surface.

We now treat the vertex positions in the initial mesh defining the
smooth limit surface as time variables in order to develop the new
dynamic butterfly subdivision model. The velocity of the surface
model can be expresseds#(x, p) = J(x)p, where an overstruck
dot denotes a time derivative ande S°, S° being the domain
defined by the initial mesh. Note th&? is the parametric domain
of the limit surface, each triangle of the initial control mesh serves
as a local parametric domain for its corresponding triangular patch.

4.3 Finite Element Procedure

In Section 4.2 we have demonstrated that the smooth limit sur-
face of butterfly subdivision can be represented by a collection of
smooth triangular patches. In our dynamic framework, we now con-
sider each patch of the limit surface as a finite element. The number
of such patches is equal to the number of triangular faces in the ini-
tial mesh as mentioned earlier. The concept of decomposing the
smooth limit surface into a collection of elements is illustrated in
Fig.5. We also show the parametric domain and control vertices for
shaded elements in Fig.5. The governing motion equation of this
subdivision-based FEM model is given by
Mp + Dp + Kp = f;, (11)
wheref,, is the generalized force vector, add, D, andK are
the mass, damping and stiffness matrices of the physical model. In
the interest of space, we provide an outline on how to derive the
mass, damping and stiffness matrices for these finite elements so
that a numerical solution to the governing second-order differential
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Figure 5: (a) An initial mesh, and (b) the corresponding limit sur-

the j-th level of approximation can be defined as

klm(|V{ - V‘Zn,| - Elm)z

o

5 |v{ — v i
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wherek;,, is the spring-controlling variabley] andvy,, thel-th
andm-th vertex in thej-th level mesh, are in the 1-neighborhood of
each other(2 is the domain defined by all such vertex pafs, is
the natural length of the spring connected betwe,éandv{n. Let

vi » D€ the concatenation of the (x,y,z) positions of all the vertices
in the j-th subdivision level of the triangular faeéc in the initial
mesh, so the internal force due to the above energy is

OFE’ , <
—('lbc = (K‘Zzbc){v‘;bc}

J
8Va,bc

fint

Note that, the vertex positions irj,, are obtained by a linear com-
bination of the vertex positions im?,.. and hence we can write

vl = (A, )v°,. where(AZ, ) is the transformation (subdi-
vision) matrix. Therefore, the expression for the elemental stiff-
ness matrix is given bia,. = (A7, ) (K7, )(A7, ). It may

be noted that this approach is applicable for modeling isotropic as

face. The domains of the shaded elements in the limit surface areWell as anisotropic phenomena becakigg, the spring-controlling

the corresponding triangular faces in the initial mesh. The encircled

vertices in (a) are the degrees of freedom for the corresponding el-

ement.

variable, can be a time-dependent function in general, in addition,
the entries i, . depend on the distance between the connected
vertices. Therefore, unlike other elemental matrices, the stiffness
matrix is a function of time which requires the recomputation at
each time step in principle. Note that, the above spring-like en-

equation can be obtained using popular finite element analysis tech-€79Y iS only one simple candidate of many possible choices. A
niques. We use the same example as in Section 4.2 (refer to Fig.4)large variety of functional formulations (such as simhim-plate-

to introduce the relevant concepts and derive our FEM model.

The mass matrix for the elemes,., corresponding to the tri-
angular faceibe, can be expressed as

Mabc = / H(X)ngc(X)Babc(X)dx- (12)
XESape

However, the basis functions (stored as entrid3 ji.) do not have
any analytic form, hence computing this integral is a difficult propo-
sition. We solve this problem by approximating the smooth trian-
gular patch in the limit surface corresponding to the fabe in

the initial mesh by a triangular mesh with faces obtained after
levels of subdivision of the original triangular faaéc (each sub-
division step splits one triangular face intariangular faces). In
addition, we choose a discretized form of mass distribution func-
tion which has non-zero values only at the vertex positions of the
j-th subdivision level mesh to simplify the implementation matter.
Then the mass matrix can be approximated as

k
Mo = 3 n(v){B, (v} {Bl,.(vD},  (13)

wherek is the number of vertices in the triangular mesh with
faces. This approximation has been found to be very effective and
efficient for the implementation of FEM procedure. The computa-
tion of elemental damping matrix follows suit.

Physics-based models have both kinetic and potential energies.

We now define the internal (e.g., elastic) energy of the subdivision-
based dynamic model by assigning deformation energy to each ele
ment. We take a similar approach as shown above and consider th
j-th level approximation of the element. Throughout this paper, in
particular, we assign spring-like energy to the approximated model
because of its simplicity and efficient computation. The energy at

under-tensiorenergy or complex curvature-based energy) can be
employed to describe a wide range of material and physical be-
haviors such as linear elastic deformation and/or non-linear plastic
deformation.

5 Dynamic Catmull-Clark Subdivision
Surfaces

This section considers a new FEM model based on an approximat-
ing subdivision scheme, namely, Catmull-Clark subdivision tech-
nigue. Please note, the dynamic formulation of Catmull-Clark sub-
division previously proposed in [15, 16, 21] could not be general-
ized to other approximating subdivision schemes. The framework
developed in this section can be easily generalized to other approx-
imating subdivision schemes as shown in Section 7. In fact, a dy-
namic framework for Loop’s technique (another popular approxi-
mating subdivision scheme) has been discussed in Section 6 using
the algorithm proposed in this section. We first outline the Catmull-
Clark subdivision scheme. Next, we present the dynamic formula-
tion. In particular, we address the difference between the current
work and prior results [15, 16, 21]. Finally, we discuss the finite
element implementation.

5.1 Catmull-Clark Subdivision Scheme

Catmull-Clark subdivision scheme, like any other subdivision
scheme, starts with an user-defined mesh of arbitrary topology. It
refines the initial mesh by adding new vertices, edges and faces with
each step of subdivision following a fixed set of subdivision rules.
In the limit, a sequence of recursively refined polyhedral meshes

will converge to a smooth surface. The subdivision rules are as

Efollows:

1. For each face, a new face point is introduced which is the
average of all the old vertices defining the face.



single type of finite elements. This is illustrated with a schematic
diagram in Fig.7.

@) (b) (©

Figure 6: Catmull-Clark subdivision: (a) initial mesh, (b) mesh
obtained after one step of Catmull-Clark subdivision, and (c) mesh
obtained after another subdivision step.

2. For each (non-boundary) edge, a new edge point is introduced
which is the average of the following four points: two old
vertices defining the edge and two new face points of the faces
adjacent to the edge. (@) (b)

3. For each (non-boundary) vert&% new vertex is introduced

whose position i + 22 4 (2=2V. \whereF is the average _ _ _

of the new face vertices of all faces adjacent to the old vertex Figure 7: A control mesh with an extraordinary vertex of degree 5

V, E is the average of the midpoints of all edges incident on and the corresponding limit surface: (a) using the concepts devel-

the old vertext” andn is the number of the edges incident on  0ped in [15, 16, 21], where the limit surface consists of quadrilat-

the vertex. eral normal elements and a pentagonal special element; (b) using
the unified approach developed in this paper, where the limit sur-
4. New edges are formed by connecting each new face point to face consists of one single type of quadrilateral finite element.

the new edge points of the edges defining the old face and by

connecting each new vertex point to the new edge points of  Following the concepts developed in [15, 16, 21], the limit sur-

all old edges incident on the old vertex point. face of the control mesh shown in Fig.7, consists of quadrilateral

bicubic B-spline patches corresponding to the faces marked 'n’

(faces with no extraordinary points), and a pentagonal patch cor-

responding to the faces marked 's’ (faces having one extraordinary

vertex of degree 5) (Fig.7(a)). However, in this section, it has been

shown that the entire limit surface can be expressed as a collection
Mhi guadrilateral patches as shown in Fig.7(b) using the algorithm
I|oroposed by Stam [25]. We next discuss a local parameterization
of the limit surface which is critical to embed the limit surface in a
dynamic framework.

As mentioned earlier, the control mesh (after at most one subdi-
vision step) for the Catmull-Clark subdivision scheme consists of
quadrilateral faces which lead to quadrilateral patches in the limit
surface. For the sake of formulation simplicity, it has been assumed
that each face has at most one extraordinary vertex. If this assump-
tion is not valid, then one more subdivision step needs to be per-
formed on the current control mesh in order to obtain a new control
mesh on which the following analysis can be carried out. The num-
ber of quadrilateral patches in the limit surface is equal to the num-
ber of non-boundary quadrilateral faces in the control mesh (Fig.8).
Therefore, the smooth limit surfasecan be expressed as

5. New faces are defined as faces enclosed by new edges.

An example of Catmull-Clark subdivision on an initial mesh is
shown in Fig.6. The most important property of the Catmull-Clark
subdivision surfaces is that a smooth surface can be generated fro
any control mesh of arbitrary topology. Catmull-Clark subdivision
surfaces include standard bicubic B-spline surfaces as their special
case (i.e., the limit surface is a bicubic B-spline surface for a rect-
angular mesh with all non-boundary vertices of degree 4). In addi-
tion, the aforementioned subdivision rules generalize the recursive
bicubic B-spline patch subdivision algorithm. For non-rectangular
meshes, the limit surface converges to a bicubic B-spline surface
except at a finite number of extraordinary points. These extraor-
dinary points correspond to extraordinary vertices (vertices whose
degree is not equal to 4) in the mesh. Note that, after the first sub-
division, all faces are quadrilaterals, hence all new vertices created
subsequently will have four incident edges. The number of extraor-
dinary points on the limit surface is a constant, and is equal to the
number of extraordinary vertices in the refined mesh obtained after
applying one step of the Catmull-Clark subdivision on the initial
mesh. The limit surface is curvature-continuous everywhere ex- n
cept at extraordinary vertices, where only tangent plane continuity s = Z s, (15)
is achieved. =

wheren is the number of non-boundary faces in the control mesh
ands; is the smooth quadrilateral patch corresponding tolitie

A systematic formulation of the newly proposed dynamic frame- non-boundary quadrilateral face in the control mesh. Each of these
work for Catmull-Clark subdivision surfaces is presented in this duadrilateral patches can be parameterized over the correspond-
section. The key difference between the dynamic model developeding non-boundary quadrilateral face in the control mesh. How-
in[15, 16, 21] and the one presented here is the representation of the2Ver, since a quadrilateral face can easily be reparameterized over
limit surface. The previously proposed approach leads to diverse a [0, 1]” domain, each quadrilateral patch is locally parameterized
types of finite elements, whereas the present approach leads to aver|0, 1]2.

5.2 Formulation



[15, 16, 21]. However, very recently an efficient scheme for eval-
uating Catmull-Clark subdivision surfaces at arbitrary parameter
values has been proposed by Stam [25]. The proposed approach,
involving eigen-analysis of the subdivision matrix, leads to an ana-
lytic expression of the quadrilateral patches which are parameter-
ized over an irregular face in the control mesh, and hence over
[0, 1]2 after reparameterization. Following the scheme developed
by Stam [25], the quadrilateral patch corresponding to the irregular
facej is given by

sj = Ja, (u,v)pj = (Ja,, (v, v)Aj)p = Jj(u,v)p,  (18)

where0 < u,v < 1 as beforeJg, (u, v) is the collection of basis
functions for the corresponding quadrilateral patch in the smooth
limit surface. The subscript;, is used to denote the fact that the
irregular face has an extraordinary vertex of degteeThe de-
tailed derivation and the analytic expressions of these basis func-
tions involving the eigenvalues and eigenvectors of the subdivision
matrix can be found in [25]. The other symbols used in (18) have
the usual meaningp; is the concatenation of th#k + 8 control
vertices defining the quadrilateral patch in the limit surfgsds

the concatenation of all the control vertex positions defining the
smooth limit surfaceA; is a selection matrix which when multi-
plied with p selects the corresponding set of control vertices, and
Figure 8: In Catmull-Clark subdivision, each non-boundary quadri- J;(u,v) = Jg, (u,v)A;.

lateral face in the control mesh has a corresponding quadrilateral
patch in the limit surface : (a) control mesh, (b) limit surface.

The non-boundary quadrilateral faces are of two types : (a)
faces having no extraordinary vertices (dubbed as “regular” faces
in [15, 16, 21], marked as in Fig.8(a)) and (b) faces with one
extraordinary vertex (dubbed as “irregular” faces in [15, 16, 21],
marked ag in Fig.8(a)). If there aren regular and — m irregular
faces, then (15) can be rewritten as

s:isi—{—nz_éns% (16)
i=1 j=1

wheres; is the quadrilateral patch corresponding to ith regu-
lar face ands; is the quadrilateral patch corresponding to ki
irregular face.

The quadrilateral patch in the limit surface corresponding to
eactheguIar face is a bicubic E_,-spllne _pa_ltch, vth_h IS _deflned_over Figure 9: (a) The marked 16 control vertices define the shaded
[0,1]7. The set of control vertices defining this bicubic B-spline g, ;aqrijateral patch associated with the shaded regular face in the
patch can be obtained using the adjacent face information. There-cqniq mesh. (b) The marked 14 control vertices define the shaded

fore, the quadrilateral patches in the smooth limit surface corre- g aqrilateral patch associated with the shaded irregular face in the
sponding to the regular faces in the control mesh can be easily eX-onirol mesh.

pressed analytically, which are essentially bicubic B-spline patches

@

defined by 16 control vertices over@ 1)* domain. ‘The analytic It may be noted that the number of control vertices in the ini-
expression for the quadrilateral patch corresponding to the regularta| mesh defining a quadrilateral patch in the smooth limit surface
facei is given by is 2k + 8, wherek = 4 in case the associated quadrilateral face
in the control mesh is regular, @& = degree of the extraordinary
si = Jo(u, v)pi = (Jo(u, v)As)p = Ji(u,v)p,  (17) vertex if the associated quadrilateral face is irregular. For example,

] ) o the shaded quadrilateral patch is associated with the shaded regu-
where0 < w,v < 1, Jy(u,v) is the collection of the bicubic B-  |ar face in Fig.9(a), and the 16 control vertices defining this patch
spline basis functionsp; is the concatenation of the 16 control  (which is actually a bicubic B-spline patch) are marked. Similarly,
vertex positions defining the bicubic B-spline patek; is a se- the shaded quadrilateral patch is associated with the shaded irregu-

lection matrix which when multiplied witlp, the concatenation of  |ar face in Fig.9(b), and the 14 control vertices defining this patch
all the control vertex positions defining the smooth limit surface, are highlighted. Now an expression of the smooth limit surface can
jel(ects)‘t:e corresponding set of control vertices, Aifd, v) = be formulated. Using (16), (17) and (18), it can be shown that
plu, v i
By contrast, the analytic expression of the quadrilateral patches m n—m
corresponding to the irregular faces in the control mesh was dif- s = ZJip + Z J;p
ficult to derive, and hence an alternative approach was taken in Py =



n—m

i (18)), wherek denotes the degree of the extraordinary vertex asso-
Q_Ji+ 2 e
i=1 Jj=1

ciated with the corresponding irregular face. These elemental ma-
trices are of siz¢2k + 8, 2k + 8). The generalized force vector for
= Jp, (19) these elements can also be determined in a similar fashion. It may
be noted that the limits of integration need to be chosen carefully for
whereJ = (3 Ji + 7" J;). Note that even though the  elemental stiffness matrices as the second derivative diverges near
initial mesh serves as the parametric domain of the smooth limit the extraordinary points for Catmull-Clark subdivision surfaces.
surface, each quadrilateral face in the initial mesh and consequently  Even though an analytical expression faran-B-splinequadri-
the smooth limit surface can be defined ovém,aif domain. lateral element in the limit surface exists, it is cumbersome to ac-
Once an analytic expression of the smooth limit surface of tually evaluate the elemental matrix expressions. Numerical inte-
Catmull-Clark subdivision is derived, we then develop the dynamic gration using Gaussian quadrature may be used to obtain approx-
model by considering the control vertex positions as time-varying imations of these elemental matrices. However, in this paper, an
variables. The velocity of the surface model can be expressed as@pproach similar to the FEM procedure presented in Section 4 is
s(x,u,v) = J(x,u,v)p, where an overstruck dot denotes a time Utilized because of its simplicity and effectiveness. An approxima-

derivative andk € S°, S° being the domain defined by the initial ~ tion of the smooth limit surface is obtained by refining the initial
mesh. control meshj times, and a spring-mass system is developed on

this j-th approximation level in a similar fashion as in Section 4.3.
.. . The physical matrices of this system is then used as an approxima-
5.3 Finite Element Implementation tion to the actual physical matrices. This approximation has been

The smooth limit surface of Catmull-Clark subdivision comprises a found to be very efficient for implementation purposes.

collection of quadrilateral patches. Each quadrilateral patch is con-

sidered as a finite element. Therefore, within the unified framework

the limit surface can be decomposed into a collection of single type 6 Dynamic Loop Subdivision Surfaces

of finite elements rather thawo different types as in [15, 16, 21].

Our new FEM technique significantly simplifies the data structure | oop's subdivision scheme starts with a triangular control mesh and
and system architecture. Consequently, more efficient algorithms generates a smooth surface with triangular patches in the limit. It is
for finite-element assembly, dynamic simulation, etc. can be de- an approximating subdivision scheme which generalizes recursive
vised using this unified approach. The motion equation of the dy- gypdivision schemes for obtainir@® quartic triangular B-spline
namic model is same as that of the dynamic model of butterfly- patches in a regular setting. In each step of Loop subdivision, each

based subdivision: (non-boundary) triangular face is refined into 4 triangular faces us-
.. . ing the following rules:
Mp + Dp + Kp = fp, (20) g the following rules
wheref, is the generalized force vector add, D, andK are 1. For each (non-boundary) vertéx of degreen, a new ver-
the mass, damping and stiffness matrices of the model. The expres- tex point is introduced. The position of this newly introduced
sions of the mass, damping and stiffness matrices for a quadrilateral vertex point is given brg(n)v+(v;+...+vn wherev is the po-
. . . . B R . a(n)+n 1
element (which is a bicubic B-spline) can be written as sition vector of verted/, vi, ..., vy are the vertex positions
Lt of the n vertices connected to vertédx, a(n) = %
M. :/ / pdp Jpdudv (22) cos(2m/n))2
o Jo ’ andg(n) = % — 2 6&2 [n)
1 1 ) L.
D, = 373, dud 22 2. For each (non-boundary) edd® a new edge point is intro-
/0 /0 el Soauan, 22) duced. LetE be the connecting edge between verticesand

V-, and is shared by facdg and F». If F; and F» have ver-
ticesVr, andVg, respectively (apart fron; andV5), then
Lo r r the position of the newly introduced edge point is given by
Koo = [ [ @@ (@0} + an{@))7 (@) Slvstua) ey ey il v, are the po-
0 0

8
sition vector of the verteX:, v, Vr, andVr, respectively.
AB1{(Tp)uu} {Tp)un} + Br2{(To)uo} {(T)un} ' ’

and

+522{(Jb)w}T{(Jb)w})dudv (23) 3. New edges are formed by connecting each new vertex point

) _ o . . ) to the new edge points corresponding to the edges incident

respectively, wherd,, is the bicubic B-spline basis matrip(u, v) on the old vertex, and by connecting each new edge point to

is the mass densityy(u, v) is the damping densityy;;(u, v) and the new edge points of the other edges in the two faces which
Bi; (u,v) are the tension and rigidity functions respectively. The shared the original edge.

subscriptu. andv denote partial derivatives with respectdcand
v respectively. The subscriptis used to indicate elemental matri-
ces which are of sizé16,16). Note that, the mass, damping and
stiffness matrices for these elements can be evaluated analytically,
provided the material properties (e.g., mass, damping, rigidity and  Examples of refining an initial mesh using Loop’s subdivision
bending distributions) have analytic expressions. In some cases,rules are shown in Fig.10 and 11. These subdivision rules ensure
these distribution functions can be assumed to be constant to sim-tangent plane continuity of the limit surface even in a irregular set-
plify the matter. ting, i.e., when the triangular control mesh has extraordinary ver-
The mass, damping and stiffness matrices for the quadrilateral tices whose degree is not equal to 6. A detailed discussion on how
elements which are not bicubic B-splines (corresponding to the ir- to obtain positions and normals in the smooth limit surface gener-
regular faces) can also be expressed analytically by simply replac-ated by the Loop subdivision scheme can be found in Hoppe et al.
ing the matrixJ, in (21), (22) and (23) with the matriX,,, (referto [10].

4. New faces are defined as faces enclosed by the new edges.
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Figure 10: (a) The control polygon with triangular faces; (b) mesh
obtained after one subdivision step using Loop’s subdivision rules.
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Figure 11: An initial mesh and the corresponding limit surface ob-
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initial mesh

limit surface

Figure 12: Each triangular patch in the limit surface can be associ-
ated with a non-boundary triangular face in the initial mesh, which
in turn can be parameterized over a triangle with verticé® at),
(1,0) and(0,1).

6.1 Local Parameterization

The limit surface obtained via Loop’s subdivision scheme can be
locally parameterized easily. This local parameterization scheme is
very similar in nature to the one described for Catmull-Clark sub-
division scheme in the previous section. For Loop’s scheme, the
smooth limit surface consists of triangular patches and the num-
ber of these triangular patches is the same as the number of non-
boundary triangular faces in the control mesh. Therefore, each of
the triangular patch in the limit can be locally parameterized over
the corresponding triangular face in the control mesh. In may be
noted that each triangular face in the control mesh can be parame-
terized over a triangular domain whose vertices are locat@y @y,

(0,1) and(1, 0), and hence each triangular patch and consequently
the smooth limit surface can be defined over this domain (refer
Fig.12).

The triangular patches in the smooth limit surface are of two
types. For a non-boundary triangular face in the control mesh with
no extraordinary vertices (i.e., with three vertices of degree 6), the
corresponding triangular patch in the limit surface is a particular
type of triangular B-spline (the three-direction quartic box spline)
whose analytic expression is easy to obtain. This triangular B-
spline patch is controlled by 12 vertices as shown in Fig.11 (the
set of enclosed vertices in the left hand side). The triangular patch
in the limit surface corresponding to a non-boundary triangular face
in the control mesh with one extraordinary vertex can also be ex-
pressed analytically using the schemes proposed by Stam [26]. This
triangular patch is controlled by + 6 vertices in the control mesh
wheren is the degree of the extraordinary vertex. The set of con-
trol vertices for a triangular patch of the later type is shown in the

tained using Loop’s subdivision rules. The domains of the shaded right hand side of Fig.11. Therefore, each triangular patch in the

triangular patches in the limit surface are the corresponding trian-

limit surface can be expressed analytically, and an expression for

gular faces in the initial mesh. The encircled vertices are the control the limit surface similar to (19) can be obtained.

vertices for the corresponding triangular patch in the limit surface.

Once an expression for the limit surface using Loop’s subdivi-
sion is obtained, the dynamic model can be developed following
an exactly similar procedure described for Catmull-Clark subdivi-
sion scheme in the previous section. The motion equation of the
dynamic Loop subdivision model can also be derived in a similar
fashion.



6.2 Finite Element Implementation

The implementation of the dynamic framework for Loop subdivi-

sion scheme using the unified approach treats each triangular patch

in the limit surface as a finite element. Each triangular patch has an

analytic expression, and hence the elemental physical matrices and

the generalized force vector can be derived analytically. The deriva-
tion of an exact expression for elemental matrices is cumbersome
for the triangular patches corresponding to the triangular faces with
an extraordinary vertex, and numerical integration using Gaussian
guadrature may be used for deriving an approximation. However, a

extraordinary vertices in the control mesh, and hence an ex-
pression of the limit surface can be obtained.

2. Once an expression of the limit surface is obtained, the dy-
namic framework can be developed by considering control
vertex positions as a function of time. The corresponding mo-

tion equation can be derived.

3. Each patch in the limit surface is treated as a finite element
in implementation. The elemental mass, damping and stiff-

ness matrices along with the generalized force vector can be
obtained by either analytic or numerical integration. Alterna-
tively, the control mesh can be subdividgtimes to obtain an
approximation of the smooth limit surface, and a spring-mass
system can be developed on this approximation mesh. The
physical matrices of this system provide an approximation to
the original physical matrices and works well in practice.

practical alternative for implementation is to subdivide the control
mesh;j times using Loop’s subdivision rules, and to build a spring-
mass system on thjsth level approximation as has been done for
the dynamic modified butterfly subdivision model in Section 4.3.
The physical matrices of this spring-mass system provide an ap-
proximation of the original physical matrices, and it works well in
practice.

7 The Unified Approach For Any Subdivi-
sion Scheme

8 Solid Modeling Applications

The proposed FEM-based dynamic subdivision models can be used
The dynamic framework for modified butterfly and Catmull-Clark to represent a wide variety of smooth shapes with arbitrary genus.
subdivision scheme can be generalized to any subdivision schemeThe smooth limit object can be sculpted by applying synthesized
The key observation is that the smooth limit surface can be viewed forces in a direct and intuitive way in shape design applications
as a collection of a single type finite elements. Because of the for solid modeling. The underlying shape from a cloud of 3D
nature of recursive refinement, any subdivision-based scheme espoints can also be recovered hierarchically using our FEM mod-
sentially defines a “natural” correspondence which leads to a lo- els. For data fitting applications, springs are attached to the initial-
cal parameterization of the smooth limit surface. The unique type ized model from the data points in 3D, and the initialized model
of the associated finite element results from the local parameteri- evolves dynamically according to the equation of motion subject to
zation scheme. This is evident from the triangular finite element the applied spring forces and various geometric constraints. When
patches developed for the modified butterfly subdivision scheme an optimal fit to the given data set is achieved, the number of con-
and from the quadrilateral finite element patches developed for trol vertices can be increased by replacing the original initial mesh
Catmull-Clark subdivision scheme. We will present a general out- by a new initial mesh obtained by applying a single subdivision
line on how to provide a dynamic framework for interpolatory and step. This increases the number of degrees of freedom to repre-
approximating subdivision schemes. sent the same limit surface and a new equilibrium position for the
model with a much better fit to the given data set can be achieved.
71 The fitting-error criteria for the discrete data can be computed ac-

) cording to distance between the data points and the points on the
Most of the interpolatory subdivision schemes are obtained by mod- limit surface where the corresponding springs are attached. We now
ifying the butterfly subdivision scheme [7]. Therefore, the frame- demonstrate modeling and data fitting examples using our dynamic
work for the modified butterfly subdivision scheme in Section 4 FEM model.
and its principles can be applied to other interpolatory subdivision  In a shape modeling application, the user can specify any mesh
schemes. The only difference is that the basis functions as well as the initial (control) mesh, and the corresponding limit surface
as the set of control vertices of arbitrary patch in the limit surface can be sculpted interactively by applying synthesized forces. In
depend on the chosen interpolatory subdivision rules. It may also Fig.13, we show several initial surfaces obtained from different
be noted that unlike the approximating schemes, the physical ma-control meshes and the corresponding modified surfaces after in-
trices can not be obtained analytically as the basis functions cor- teractive sculpting. To change the shape of an initial surface, the
responding to interpolatory subdivision schemes do not have any user can attach springs from different points in 3D to the nearest
analytic expressions in general. Even though these matrices canpoints on the limit surface such that the limit surface deforms to-
be obtained via numerical integration, the point-mass system con-wards these points to generate the desired shape. It may be noted
nected by springs as developed in Section 4 is more preferable forthat the user can specify these data points in several ways - directly
implementation purposes because of efficiency reasons. in 3D, on a 2D plane at a fixed height (using mouse input) or from a
file containing (x,y,z) coordinates of the points in 3D. Also, the dis-
tance between two control vertices of the initialized mesh is used
as the natural (rest) length of the spring attached between those
vertices. When the model deforming under the influence of spring
forces reaches an equilibrium, the control mesh can be subdivided
to obtain another control mesh with more degrees of freedom for the
same smooth limit surface if the error is unacceptable. For model-
1. The limit surface obtained via an approximating subdivision ing purposes, error is defined as the maximum distance between a

scheme can be expressed as a collection of smooth patcheslata point and the nearest point on the limit surface expressed as a
which can be locally parameterized over a corresponding face percentage of the diameter of the smallest sphere enclosing all the
in the control mesh. Each patch dssided if it is locally data points. The time needed for the initialized model to deform
parameterized over a-sided face. Analytic expressions for into the final shape depends on the number of degrees of freedom
each of these patches can be derived even in the presence obf the model as well as on the number of data points exerting force

Interpolatory Subdivision Schemes

7.2 Approximating Subdivision Schemes

The unified approach for a dynamic model of Catmull-Clark sub-
division can be generalized for other approximating subdivision
schemes as well. This generalized approach involves three steps:



on the model. Generally speaking, less number of degrees of free-fer a greater potential for popular subdivision techniques in solid
dom leads to faster deformation (a smaller system of equations isand geometric modeling, interactive graphics, finite element analy-
solved). For the examples shown in Fig.13, the deformations took sis, and engineering design applications.

approximately 30-45 seconds under normal system load on a Ultra-

SPARC 30 machine. A small time step is used for stability, and one

conjugate gradient iteration was necessary between each Euler stepACKnowledgments

The initial mesh of the smooth surface shown in Fig.13(a) has )

125 faces and 76 vertices (degrees of freedom), which is deformed This research was supported in part by the NSF CAREER award
to the smooth shape shown in Fig.13(c) by interactive spring force CCR-9896123, the NSF grant DMI-9896170, and a research grant
application. The initial mesh of the closed solid shape in Fig.13(e) from Ford Motor Company to H. Qin; the NSF grant 11S-9811042
has 24 faces and 14 vertices. This solid shape is deformed to theand the NIH grant R01-RR13197 to B.C. Vemuri. We wish to ac-
shape shown in Fig.13(g). The one hole torus in Fig.13(i) and the knowledge Dr. Hughes Hoppe and Dr. Kari Pulli for the data sets.
corresponding modified shape in Fig.13(k) have initial meshes with
64 faces and 32 vertices. A two hole torus with a control mesh
of 272 faces and 134 vertices, shown in Fig.13(m), is dynamically
sculpted to the shape shown in Fig.13(0).

We have also performed several experiments testing the applica-
bility of our model to recover the underlying shapes from a cloud of
points in 3D. In all the experiments, the initialized dynamic model
has a control mesh comprising of 24 triangular faces and 14 ver- 2]
tices whereas the control mesh of the fitted model has 384 triangu-
lar faces and 194 vertices. It may be noted that once an optimal
shape defined by a fixed humber of control vertices (determined by
subdivision levels) is recovered, the limit smooth model is capable 3] G.M. Chaikin, “An algorithm for high speed curve genera-
of refining itself in accordance with the data-fitting criteria, thereby tion,” Computer Vision, Graphics and Image Processira.
increasing the degrees of freedom of the recovered shape only when 3, no. 4, pp. 346 — 349, 1974.
necessary. For the fitting-error (defined as the maximum distance
between a data point and the nearest point on the limit surface ex- [4] T. DeRose, M. Kass and T. Truong, “Subdivision surfaces
pressed as a percentage of the diameter of the smallest sphere en-  in character animation,” i€omputer Graphics Proceedings
closing the object) of approximately 3%, the initialized model is ACM SIGGRAPH, Annual Conference Series, pp. 85 — 94,
refined twice. The data-fitting examples are shown in Fig.14. In July, 1998.
the first data fitting experiment, range data acquired from multiple
views of a light bulb is used and the model was initialized inside the [5] D. Doo, “A subdivision algorithm for smoothing down ir-
1000 data points (Fig.14(a)). The fitted dynamic model is shown regularly shaped polyhedrons,” Rroceedings on Interactive
in Fig.14(b). In the next experiment, the shape of a mechanical Techniques in Computer Aided Desigp. 157 — 165, 1978.
part is recovered from a range data-set containing 2031 data points ] ] ) )
(Fig.14(c) and (d)). We also recover the shape of a human head [6] D. Doo and M. Sabin, “Analysis of the behavior of recursive
from the data set as shown in Fig.14(e). The head data set has 1779  division surfaces near extraordinary pointSmputer Aided
3D points. The time of dynamic evolution for the fitting of range Design vol. 10, no. 6, pp. 356 — 360, 1978.
datasets used in the experiments is approximaetyinutes on a . S
Ultra-SPARC 30 Workstaption. It may bgpnoted thea:'tythe final shape [71 N Dyn, D. Levin and J.A. Gregory, "A butterfly subdivision
with a very low error tolerance is recovered using very few number scheme for surface interpolation with tension contréiCM
of control points in comparison to the large number of data points Transactions on Graphigsol. 9, no. 2, pp. 160 — 169, April,
present in the original range data set. 1990.

References

[1] A.A. Ball and D.J.T. Storry, “An investigation of curvature
variations over recursively generated B-spline surfackGM
Transactions on Graphi¢cwol. 9, no. 4, pp. 424 — 437, 1990.

E. Catmull and J. Clark, “Recursively generated B-spline sur-
faces on arbitrary topological meshe§bmputer Aided De-
sign vol. 10, no. 6, pp. 350 — 355, 1978.

[8] A. Habib and J. Warren, “Edge and vertex insertion for a
9 Conclusions class ofC* subdivision surfacesComputer Aided Geometric
Design to appear.

In this paper, we have presented a new FEM-based dynamic frame-
work where a single type of subdivision-based finite elements are
used to represent the smooth limit surface generated by any subdi- ProceedingsACM SIGGRAPH, Annual Conference Series,
vision scheme. The primary objective is to integrate physics-based

; . ) . L pp. 35 — 44, August, 1993.
modeling techniques with geometric subdivision methodology for

the interactive sculpting and direct manipulation of the limit surface [10] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin

[9] M. Halstead, M. Kass and T. DeRose, “Efficient, fair interpo-
lation using Catmull-Clark surfaces,” bomputer Graphics

of prevalent subdivision schemes. We have proposed a unified ap- J. McDonald. J. Schweitzer and W. Stuetzle. “Piecewise
proach and demonstrated how to transform any subdivision scheme smooth surface reconstruction.” @omputer Gréphics Pro-
into our dynamic modeling framework. Modelers cafysically ceedings ACM SIGGRAPH, Annual Conference Series, pp.
sculpt virtual objects defined through arbitrary procedure-based 295 — 302, July, 1994.

subdivision techniques in a natural and intuitive manner within the

proposed dynamic framework. Users can also directly enforce vari- [11] L. Kobbelt, “Interpolatory refinement by variational meth-
ous functional and aesthetic requirements on the limit surface with- ods,” in Approximation Theory VI|IC. Chui and L. Schu-
out the need to explicitly manipulate the control vertices. Further- maker, Eds., vol. 2 dfVavelets and Multilevel Approximatipn
more, this dynamic framework permits physics-based models to be pp. 217 — 224, World Scientific Publishing Co., 1995.
refined adaptively in a hierarchical fashion which is an intrinsic fea-

ture of subdivision geometry. Our experiments have demonstrated[12] L. Kobbelt, “A variational approach to subdivision,”
the applicability of the new unified FEM-based framework in solid Computer-Aided Geometric Desigwol. 13, pp. 743 — 761,
modeling and data fitting applications. This unified method will of- 1996.



[13] L. Kobbelt and P. Scluder, “Constructing variationally op-  [28]
timal curves through subdivision,” Tech. Rep. CS-TR-97-05,
California Institute of Technology Computer Science Depart-
ment Technical Report, 1997.

[14] C. Loop, Smooth subdivision surfaces based on triangles [29]
M.S. thesis, University of Utah, Department of Mathematics,
1987.

[15] C. Mandal, A dynamic framework for subdivi-
sion surfaces Ph.D. thesis, University of Florida,
Gainesville, 1998, Available as UF-CISE-TR-98-022
from http://www.cise.ufl.edu/tech-reports/tech-reports/tro98-
abstracts.shtml

[16] C. Mandal, H. Qin and B.C. Vemuri, “Dynamic smooth sub-
division surfaces for data visualization,” IEEE Visualiza-
tion’97 Conference ProceedingBhoenix,AZ, pp. 371 — 377,
October, 1997.

[17] C. Mandal, H. Qin and B.C. Vemuri. “Direct manipula-
tion of butterfly subdivision surfaces : A physics-based ap-
proach,” Technical Report CISE-TR-98-009, University of
Florida, 1998.

[18] J. Peters and U. Reif, “The simplest subdivision scheme for
smoothing polyhedra,ACM Transactions on Graphicsol.
16, no. 4, pp. 420 — 431, October, 1997.

[19] J. Peters and U. Reif, “Analysis of generalized
B-spline  subdivision  algorithms,” SIAM  Journal
of Numerical Analysis to appear, available at
ftp://ftp.cs.purdue.edu/pub/jorg/9697agb.ps.Z.

[20] H. Qin and D. Terzopoulos, “D-NURBS : A physics-based
framework for geometric design JEEE Transactions on Vi-
sualization and Computer Graphicgol. 2, no. 1, pp. 85— 96,
January - March, 1996.

[21] H. Qin, C. Mandal and B.C. Vemuri, “Dynamic Catmull-
Clark subdivision surfaces,”IEEE Transactions on Visual-
ization and Computer Graphigsol. 4, no. 3, pp. 215 — 229,
July - September, 1998.

[22] U. Reif, “A unified approach to subdivision algorithms near
extraordinary points,” Computer Aided Geometric Design
vol. 12 , no. 2, pp. 153 — 174, 1995.

[23] J.E. SchweitzerAnalysis and Application of Subdivision Sur-
faces Ph.D. thesis, University of Washington, Seattle, 1996.

[24] T.W. Sederberg, J. Zheng, D. Sewell and M. Sabin, “Non-
uniform recursive subdivision surfaces,” @omputer Graph-
ics ProceedingsACM SIGGRAPH, Annual Conference Se-
ries, pp. 387 — 394, July, 1998.

[25] J. Stam, “Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values,” @omputer Graphics
ProceedingsACM SIGGRAPH, Annual Conference Series,
pp. 395 — 404, July, 1998.

[26] J. Stam, “Evaluation of Loop subdivision surfaces,"dom-
puter Graphics Proceedings CDROMCM SIGGRAPH,
Annual Conference Series, July, 1998.

[27] D. Terzopoulos, J. Platt, A. Barr and K. Fleischer, “Elasti-
cally deformable models,” ii€omputer Graphics Proceed-
ings ACM SIGGRAPH, Annual Conference Series, pp. 205
—214,1987.

D. Zorin, P. Schoder and W. Sweldens, “Interpolating sub-
division for meshes with arbitrary topology,” i@omputer
Graphics ProceedingsACM SIGGRAPH, Annual Confer-
ence Series, pp. 189 — 192, August, 1996.

D. Zorin, “Smoothness of stationary subdivision on irregular
meshes,Tonstructive Approximatigrsubmitted, available as
Stanford Computer Science Lab Tech. Rep. CSL-TR-98-752,
1998.



(e)

Figure 14: (a), (c) and (e): Collection of points in 3D along with the
initialized model; (b), (d) and (f): the corresponding fitted dynamic
subdivision surface model.

Figure 13:First column : Initial shapes along with attached springs
for deformation. Second column: Deformation of initial shapes
due to spring forcesThird column : The final deformed shape.
Fourth column : Another view of the final deformed shape.



