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Abstract

Recursive subdivision on an initial control mesh generates a vi-
sually pleasing smooth surface in the limit. Nevertheless, users
must carefully specify the initial mesh and/or painstakingly ma-
nipulate the control vertices at different levels of subdivision hier-
archy to satisfy a diverse set of functional requirements and aes-
thetic criteria in the limit shape. This modeling drawback re-
sults from the lack of direct manipulation tools for the limit geo-
metric shape. To improve the efficiency of interactive geometric
modeling and engineering design, in this paper we integrate novel
physics-based modeling techniques with powerful geometric subdi-
vision principles, and develop a unified FEM-based methodology
for arbitrary subdivision schemes. Strongly inspired by the recent
research on Dynamic NURBS (D-NURBS), we formulate and de-
velop a dynamic framework that permits users to directly manipu-
late the limit surface obtained from any subdivision procedure via
simulated ”force” tools. The most significant contribution of our
unified approach is the formulation of the limit surface of an ar-
bitrary subdivision scheme as being composed of a single type of
novel finite element. The specific geometric and dynamic features
of our subdivision-based finite elements depend on the subdivision
scheme used. We present our novel finite element method (FEM) for
the modified butterfly and Catmull-Clark subdivision schemes, and
generalize our dynamic framework to be applicable to other subdi-
vision schemes. Our FEM-based approach significantly advances
the state-of-the-art in physics-based geometric modeling since it
provides a universal physics-based framework for any subdivision
scheme. In addition, we systematically devise a mechanism that
allows users to directly (not via control meshes) deform any sub-
division surface; finally, we represent the limit surface of any sub-
division scheme using a collection of subdivision-based novel fi-
nite elements. Our experiments demonstrate that the new unified
FEM-based framework not only promises a greater potential for
subdivision techniques in solid modeling, finite element analysis,
and engineering design; but that it will further foster the applica-
bility of subdivision geometry in a wide range of visual computing
applications such as visualization, virtual reality, computer graph-
ics, computer vision, robotics, and medical imaging as well.

1 INTRODUCTION

Efficiently modeling and intuitively manipulating complex shapes
are of paramount significance to scientists and engineers in ge-
ometric and solid modeling, engineering design, manufacturing,
animation and simulation, analysis and evaluation, rapid and vir-
tual prototyping, visualization, and interaction with virtual envi-
ronments. Since 1970’s, tensor-product Non-Uniform Rational B-
Splines (NURBS) have become an industry standard because of
their many attractive properties. Nevertheless, the surface of ar-
bitrary topology can not be represented using a single NURBS due
to the global planar parameterization of NURBS. It requires that
the surface be decomposed into a set of (trimmed) NURBS patches.
Unfortunately, NURBS patching and trimming suffers from the fol-
lowing difficulties:

1. Trimming two NURBS patches to match along their com-
mon boundary involves the complex computation of surface-
surface intersection (SSI), SSI algorithms generally are both
computationally expensive and prone to numerical errors due
to approximation; and

2. Complex and less intuitive continuity constraints across adja-
cent (trimmed) patches must be enforced throughout the de-
formation process.

In general, considerable amount of human intervention is required
to guarantee that the patchwork of the underlying geometry is seam-
less.

Recently, subdivision geometry has emerged as a powerful ge-
ometric modeling technique which has been extensively employed
to model smooth shapes of arbitrary topology in graphics, com-
puter animation, and other disciplines, because of its unsurpassed
advantages over industry-standard NURBS. In principle, the recur-
sive subdivision scheme produces a visually pleasing smooth sur-
face in the limit by repeated application of a fixed set of refinement
rules on a user-specified initial control mesh. Subdivision principle,
in particular, can overcome the shortcomings of NURBS because of
the following reasons:

� Subdivision naturally generalizes B-splines and NURBS. A
single subdivision surface can represent shape of arbitrary
topology. It requires neither trimming nor patching. Smooth-
ness requirements are automatically guaranteed.

� Subdivision allows modelers to arrange control vertices in a
more natural way, without the need to maintain a rectangu-
lar structure as required by NURBS. It greatly facilitates the
creation of geometric features.

� Subdivision potentially allows the initial model to be refined
locally. Local refinement is not possible with NURBS, since
an entire row and/or column of control points must be added
to preserve the rectangular structure.



Despite the prevalence of diverse subdivision schemes in the graph-
ics and geometric modeling literature, it is almost impossible to ma-
nipulate the limit surface (obtained through procedure-based subdi-
vision) in a direct, natural, and intuitive way. The current state-
of-the-art only permits modelers to interactively obtain the desired
effects on the smooth surface by kinematically manipulating the
control vertices at various levels of subdivision hierarchy. This
design process is rather clumsy and laborious, in spite of the ex-
istence of many modern interactive hardware devices. Moreover,
existing subdivision-based surfaces arenot yetreadily applicable
for the efficient and accurate data exchange with standard formats
such as B-splines and NURBS, hampering their widespread usage
in solid modeling and engineering design applications. In this pa-
per, we address the challenging problem of directly manipulating
the limit subdivision surface at arbitrary locations/areas, and offer
a novel solution to this problem by embedding purely geometric
subdivision schemes in a physics-based modeling framework. Un-
like the existing geometric solutions that only allow operations on
control vertices, our methodology and algorithms permit users to
physically modify the shape of subdivision surfaces at desired lo-
cations viaforces. Consequently, this gives the user an intuitive
and natural feeling that is uniquely produced while modeling with
real clay/play-dough. Additionally, we will demonstrate that the
proposed model can efficiently recover shapes from a cloud of 3D
points.

1.1 Overview

The remainder of this paper is organized as follows. We shall briefly
review the previous work on subdivision surfaces in Section 2. In
Section 3, we discuss the prior work of physics-based modeling
techniques and highlight the primary advantages of physics-based
modeling in order to motivate our research contributions. Then, a
dynamic framework for the interpolatory (modified) butterfly sub-
division scheme is detailed in Section 4. We reformulate the dy-
namic framework for the approximating Catmull-Clark subdivision
scheme using the proposed approach in Section 5. The dynamic
framework for Loop’s subdivision scheme is presented in Section 6.
Section 7 presents a solution on how to develop a dynamic frame-
work for any subdivision scheme. Experiments and applications are
discussed in Section 8. Finally, we conclude the paper in Section 9.

2 Background

Chaikin [3] first introduced the concept of subdivision to the mod-
eling community for generating a smooth curve from an arbi-
trary control polygon. Subsequently, a wide variety of subdivision
schemes for modeling smooth surfaces of arbitrary topology have
been derived following Chaikin’s pioneering work on curve gen-
eration. The existing subdivision schemes can be broadly catego-
rized into two distinct classes namely, (1) approximating subdivi-
sion techniques, and (2) interpolating subdivision techniques.

Among the approximating schemes, the techniques of Doo and
Sabin [5] and Catmull and Clark [2] generalize the idea of ob-
taining uniform biquadratic and bicubic B-spline patches, respec-
tively, from a rectangular control mesh. In [2], Catmull and Clark
developed an algorithm for recursively generating a smooth sur-
face from a polyhedral mesh of arbitrary topology. The Catmull-
Clark subdivision surface, defined by an arbitrary initial mesh, can
be reduced to a set of standard B-spline patches except at a finite
number of degenerate points. In [14], Loop presented a similar
subdivision scheme based on the generalization of quartic trian-
gular B-splines for triangular meshes. Hoppeet al. [10] further
extended Loop’s work to produce piecewise smooth surfaces with
selected discontinuities. Halsteadet al. [9] proposed an algorithm
to construct a Catmull-Clark subdivision surface that interpolates

the vertex mesh of arbitrary topology. Peters and Reif [18] pro-
posed a simple subdivision scheme for smoothing polyhedra. Most
recently, non-uniform Doo-Sabin and Catmull-Clark surfaces that
generalize non-uniform tensor-product B-spline surfaces to arbi-
trary topologies were introduced by Sederberget al. [24]. All the
aforementioned schemes generalize recursive subdivision schemes
for generating limit surfaces with a known parameterization. Var-
ious issues involved with the use of these approximating subdivi-
sion schemes for character animation were discussed at length by
DeRoseet al. [4].

The most well-known interpolation-based subdivision scheme
is the “butterfly” algorithm proposed by Dynet al. [7]. Butterfly
method, like other subdivision schemes, makes use of a small num-
ber of neighboring vertices for subdivision. It requires simple data
structures and is rather straightforward to implement. Nevertheless,
it needs a topologically regular setting of the initial (control) mesh
in order to obtain a smoothC1 limit surface. Zorinet al. [28] has
developed an improved interpolatory subdivision scheme (which
we call themodifiedbutterfly scheme) that retains the simplic-
ity of the butterfly scheme and results in much smoother surfaces
even from irregular initial meshes. These interpolatory subdivision
schemes have extensive applications in wavelets on manifolds, mul-
tiresolution editing, etc.

A variational approach for interpolatory refinement has been pro-
posed by Kobbelt [11, 12] and by Kobbelt and Schr¨oder [13]. In this
approach, the vertex positions in the refined mesh at each subdivi-
sion step are obtained by solving an optimization problem. There-
fore, these schemes are global, i.e., every new vertex position de-
pends on all the vertex positions of the coarser level mesh. The local
refinement property which makes the subdivision schemes attrac-
tive for implementation in the graphics applications is not retained
in the variational approach.

The derivation of various mathematical properties of the limit
surface generated by the subdivision algorithms is rather complex.
Doo and Sabin [6] first analyzed the smoothness behavior of the
limit surface using the Fourier transform and an eigen-analysis of
the subdivision matrix. Ball and Storry [1] and Reif [22] fur-
ther extended Doo and Sabin’s prior work on continuity proper-
ties of subdivision surfaces by deriving various necessary and suf-
ficient conditions on smoothness for different subdivision schemes.
Specific subdivision schemes were analyzed by several researchers
[23, 19, 29], including a recent one by Stam [25].

3 Motivation

Subdivision geometry has offered users extraordinary power and
flexibility especially when used for modeling complex shapes of
arbitrary topology. Nevertheless, it constitutes a purely geometric
representation, and hence does not exploit the full potential of the
underlying geometric formulation owing to the following reasons:

� Modelers are faced with the tedium of indirect shape refine-
ment through time-consuming operations on a large number
of topologically irregular control vertices and less intuitive
modification on various subdivision rules. This process is
clumsy and laborious especially for effectively representing
and deforming highly complicated objects.

� Control point manipulation is not natural due to the fact that
control points generally do not reside on the sculpted objects,
hence, it often requires designers to make many nonintuitive
decisions, and it is even more difficult to accurately quantify
the refinement effect at arbitrary localized regions. Despite
the advent of many modern 3D graphics interaction tools,
these indirect geometric operations remain non-intuitive and
laborious in general.



� Oftentimes it may not be enough to obtain the most “fair”
surface that interpolates a set of (ordered or unorganized) data
points. Typical design requirements may be posed in both
quantitative and qualitative terms. For example, a certain
number of local features such as bulges or inflections may be
strongly desired while requiring geometric objects to satisfy
global smoothness criteria in solid modeling and/or interac-
tive graphics applications. Therefore, it can be very frustrat-
ing to enforce a diverse set of heterogeneous criteria simulta-
neously via the indirect approach.

In contrast, physics-based modeling can provide a superior ap-
proach to shape modeling that can overcome most of the limitations
associated with traditional geometric modeling approaches. Free-
form deformable models governed by the laws of continuum me-
chanics are of particular relevance in this context. Physics-based
design augments (rather than supersedes) standard geometric de-
sign, offering attractive new advantages:

� Dynamic models respond to simulated forces in a natural and
predictable way. The dynamic formulation marries the model
geometry with time, mass, damping, and constraints via a
force balance equation. Dynamics facilitates interaction, es-
pecially direct manipulation and interactive sculpting of com-
plex geometric models for real-time shape variation.

� Geometric design is a time-varying process because design-
ers are often interested in not only the final static equilibrium
shape but the intermediate shape variation as well. Dynamic
models produce smooth, natural motions that are familiar and
can be easily controlled.

� The equilibrium shape of a geometric object is characterized
by a minimum of its potential energy, subject to imposed con-
straints. It is possible to formulate potential energy function-
als that satisfy local and global design criteria. In particu-
lar, the elastic energy functionals will allow the imposition
of global qualitative “fairness” criteria through quantitative
means.

� Physics-based shape design can free designers from having to
make nonintuitive decisions, such as moving control points to
prescribed locations. In addition, non-expert users are able
to concentrate on visual shape variation without necessarily
comprehending the underlying mathematical formulation.

� Physics-based modeling techniques and real-time dynamics
integrate geometry with physics in a natural and coherent way.
The unified formulation is potentially relevant throughout the
entire modeling, simulation, analysis, and manufacturing pro-
cess. More importantly, it is potentially possible to introduce
manufacturing constraints in the earlier design stage.

The dynamic approach subsumes all of the aforementioned model-
ing capabilities in a formulation which grounds everything in real-
world physical behavior.

Free-form deformable models were first introduced to the mod-
eling community by Terzopouloset al. [27], and were refined by
a number of researchers over the years. Qin and Terzopoulos
[20] developed D-NURBS which are very sophisticated physics-
based models suitable for representing a wide variety of free-form
as well as standard analytic shapes. The D-NURBS have the ad-
vantage of interactive and direct manipulation of NURBS curves
and surfaces, resulting in physically meaningful thus intuitively
predictable motion and shape variation. However, a severe limi-
tation of the existing deformable models, including D-NURBS, is
that they are defined on a rectangular parametric domain. There-
fore, it can be very difficult to model surfaces of arbitrary genus

using these models. Subdivision schemes, in contrast, can model
complex surfaces of arbitrary topology, and hence are a good can-
didate for incorporation of physics-based principles where by the
modeler can directly manipulate the (complicated) limit surface in
an intuitive way.

Previously we had introduced dynamic Catmull-Clark subdivi-
sion surfaces [15, 16, 21] where the smooth limit surface gener-
ated by the Catmull-Clark subdivision scheme was embedded in a
physics-based modeling framework. The current research differs
significantly from our prior work because the new approach taken
in this paper is much more general. It aims to develop a systematic
and universal mechanism with which any subdivision scheme can
be formulated within the physics-based framework. The primary
mathematical technique we resort to is finite element analysis. We
shall first formulate a dynamic representation and equation for an
interpolatory subdivision scheme — the modified butterfly subdi-
vision method — where the limit surface, unlike other generalized
spline-based subdivision schemes, does not have any closed-form
analytic formulation. Moreover, we shall reformulate the dynamic
Catmull-Clark subdivision surface model using this novel method-
ology, and describe how to develop an unified dynamic framework
for any subdivision scheme. The key contribution of this unified
approach is to represent the smooth limit surface of any subdivision
scheme using a collection of a single type of novel finite elements.
The geometric and physical features of our subdivision-based finite
elements depend only on the subdivision scheme involved. Our
FEM-based approach significantly advances the state-of-the-art in
physics-based geometric modeling because

1. It provides a universal physics-based solution to any subdi-
vision scheme beyond prevalent spline-like subdivision tech-
niques.

2. A natural mechanism that allows users to intuitively deform
any subdivision surface has been systematically devised.

3. The limit surface of any subdivision schemes has been rep-
resented using a single type of novel subdivision-based finite
elements.

4. Our subdivision-based finite elements are potentially of great
interest to FEM communities.

4 Dynamic Butterfly Subdivision Sur-
faces

This section discusses a dynamic framework for an interpolatory
subdivision scheme namely, the (modified) butterfly subdivision
technique. First, a brief overview of the (modified) butterfly sub-
division scheme is presented. Next, a local geometric parameter-
ization technique for the limit surface of the (modified) butterfly
subdivision is detailed. Our parameterization method is then used
to derive the new triangular finite element model for thebutterfly-
basedsubdivision scheme. Finally, the implementation details are
described. Note that, we will further generalize our physics-based
formulation for other interpolatory subdivision schemes in Section
7.

4.1 The (Modified) Butterfly Subdivision

The butterfly subdivision scheme [7] starts with an initial triangu-
lar mesh (a.k.a. the control mesh) defined by a set of control ver-
tices. In each step of subdivision, the initial (control) mesh is re-
fined through the transformation of each triangular face into a patch
with four smaller triangular faces. After one step of refinement,
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Figure 1: (a) The control polygon with triangular faces. (b) The re-
fined mesh obtained after one subdivision step using butterfly sub-
division rules.
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Figure 2: (a) The weighing factors of contributing vertex positions
for an edge connecting two vertices of degree 6; (b) the correspond-
ing case when one vertex is of degreen and the other is of degree
6.

the new mesh in thefiner level retains the vertices of each trian-
gular face in the previous level and hence, interpolates thecoarser
mesh in the previous level. In addition, every edge in each triangu-
lar face is split by adding a new vertex whose position is obtained
by an affine combination of the neighboring vertex positions in the
coarser level. For instance, the mesh in Fig.1(b) is obtained by sub-
dividing the initial mesh shown in Fig.1(a) once. Note that, all the
newly introduced vertices corresponding to the edges in the original
mesh have degree 6, whereas the position and degree of all original
vertices do not change in the refined mesh.

In the original butterfly scheme, the new vertices correspond-
ing to the edges in the previous level are obtained using an eight-
point stencil. It produces a smoothC1 surface in the limit except
at theextraordinarypoints corresponding to theextraordinaryver-
tices (vertices with degree not equal to 6) in the initial mesh [28].
Since all the vertices introduced through subdivision have degree
6, the number of extraordinary points in the smooth limit surface
equals to the number of extraordinary vertices in the initial mesh.
Recently, theoriginal butterfly scheme has been modified by Zorin
et al. [28] to obtain better smoothness properties at the extraordi-
nary points. In thismodifiedbutterfly subdivision technique, all the
edges had been categorized into three classes:

1. Edges connecting two vertices of degree 6 (a 10 point stencil,

as shown in Fig.2(a), is used to obtain the new vertex positions
corresponding to these edges);

2. Edges connecting a vertex of degree 6 and a vertex of de-
green 6= 6 (the corresponding stencil to obtain new ver-
tex position is shown in Fig.2(b), whereq = :75 is the
weight associated with the vertex of degreen 6= 6, andsi =
(0:25+cos(2�i=n)+0:5cos(4�i=n))=n, i = 0; 1; : : : ; n�1,
are the weights associated with the vertices of degree 6); and

3. Edges connecting two vertices of degreen 6= 6.

The last case can not occur except in the initial mesh as the newly
introduced vertices are of degree 6, and the new vertex position
in this last case is obtained by averaging the positions obtained
through the use of stencil shown in Fig.2(b) at each of those two
extraordinary vertices.

4.2 Formulation

This section systematically formulates the dynamic framework for
the modified butterfly subdivision scheme. Unlike the approximat-
ing schemes, the geometry of the limit surface obtained via mod-
ified butterfly subdivision does not have any closed-form analytic
expression even for a regular mesh. Therefore, the key issue is to
define an appropriate parametric domain and derive a local parame-
terization forbutterfly-basedsubdivision. These relevant geometric
components are critical to the development of our physics-based
finite element model for the limit surface of butterfly scheme.

The smooth limit surface defined by the modified butterfly sub-
division technique is of arbitrary topology where a global parame-
terization is impossible. Nevertheless, the limit surface can be lo-
cally parameterized over the geometric domain defined by the ini-
tial mesh. The idea is to track an arbitrary point on the initial mesh
across the mesh hierarchy obtained via the subdivision process (see
Fig.3 and Fig.4), so that a correspondence can be established be-
tween the point being tracked in the initial mesh and its image on
the limit surface.

xxx . . .

Figure 3: The smoothing effect of the subdivision process on the
triangles of the initial mesh.

The modified butterfly subdivision scheme starts with an initial
set of triangular faces. The recursive application of the subdivision
rules smoothes out each triangular face, and in the limit, we obtain
a smooth surface consisting of a collection of smooth triangular
patches. The subdivision process and the triangular decomposition
of the limit surface is depicted in Fig.3. Note that, the limit sur-
face can be represented by the same number of smooth triangular
patches as that of the triangular faces in the initial mesh. Therefore,
the limit surfaces can be expressed as

s =

nX
k=1

sk; (1)

wheren is the number of triangular faces in the initial mesh andsk
is the smooth triangular patch in the limit surface corresponding to
thek-th triangular face in the initial mesh.

We now describe the parameterization of the limit surface over
the initial mesh. The procedure can be best explained through the
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Figure 4: Tracking a pointx through various levels of subdivision:
(a) initial mesh, (b) the selected section (enclosed by dotted lines)
of the mesh in (a), after one subdivision step, (c) the selected section
of the mesh in (b), after another subdivision step.

following example. A simple planar mesh shown in Fig.4(a) is cho-
sen as the initial mesh. An arbitrary pointx inside the triangular
faceabc is tracked over the meshes obtained through subdivision.
The vertices in the initial mesh are darkly shaded in Fig.4. After
one step of subdivision, the initial mesh is refined by addition of
new vertices which are lightly shaded. Another subdivision step
on this refined mesh leads to a finer mesh with introduction of new
vertices which are unshaded. It may be noted thatany point in-
side the smooth triangular patch in the limit surface corresponding
to the faceabc in the initial mesh depends only on the vertices in
the initial mesh which are within the 2-neighborhood of the ver-
ticesa;b andc due to the local nature of the subdivision process
(the k-neighborhood of a vertex includes all the vertices that can
be reached following at mostk edges from the given vertex). For
example, the vertexd, introduced after first subdivision step, can
be obtained using the 10 point stencil shown in Fig.2(a) on the edge
ab. All the contributing vertices in the initial mesh are within the
1-neighborhood of the verticesa andb. A 10 point stencil can be
used again in the next subdivision step on the edgedb to obtain the
vertexg. Some of the contributing vertices at this level of subdivi-
sion, for example, the (lightly shaded) 1-neighbors of the vertexb
(exceptd ande) in Fig.4(b), depend on some vertices in the initial
mesh which are within the 2-neighborhood of the verticesa;b and
c in the initial mesh.

In the rest of the formulation, superscripts are used to indicate
the subdivision level. For example,vjuvw denotes the collection
of vertices at levelj which control the smooth patch in the limit
surface corresponding to the triangular faceuvw at thej-th level
of subdivision. Letv0abc be the collection of vertices in the initial
mesh that are within the 2-neighborhood of the verticesa;b andc
(marked black in Fig.4(a)). Let the number of such vertices ber.
Then, the vectorv0abc, which is the concatenation of the(x; y; z)
positions for all ther vertices, is of dimension3r. Based on the
above observation of the2-neighborhoodproperty, the geometry of
the smooth triangular patch in the limit surface corresponding to
the triangular faceabc in the initial mesh is uniquely determined
by theser vertices. Because of the recursive characteristic, there
now exists four subdivision matrices(Aabc)t, (Aabc)l, (Aabc)r
and(Aabc)m of dimension(3r; 3r) such that

v
1
adf = (Aabc)tv

0
abc;

v
1
bed = (Aabc)lv

0
abc;

v
1
cfe = (Aabc)rv

0
abc;

v
1
def = (Aabc)mv

0
abc; (2)

where the subscriptst, l, r andm denote top, left, right and mid-
dle triangle positions, respectively (indicating the relative posi-
tion of thenew triangle with respect to theoriginal triangle), and
v1adf ;v

1
bed;v

1
cfe andv1def are the concatenation of the(x; y; z) po-

sitions for the vertices in the 2-neighborhood of the corresponding
triangle within the newly obtained refined mesh after one subdi-
vision. Note that, the new vertices in this level of subdivision are
lightly shaded in Fig.4(b). The 2-neighborhood configuration of the
vertices in the newly obtained triangles is exactly the same as that
of the original triangle, hence local subdivision matrices are square
and the vector dimensions on both sides of (2) are the same.

Carrying out one more level of subdivision, a new set of vertices
which are unshaded in Fig.4(c) are obtained along with the old ver-
tices. Adopting a similar approach as in the derivation of (2), it can
be shown that

v
2
dgi = (Abed)tv

1
bed

v
2
bhg = (Abed)lv

1
bed

v
2
eih = (Abed)rv

1
bed

v
2
ghi = (Abed)mv

1
bed (3)



The relative position and geometric structure of the triangu-
lar facedgi in Fig.4(c) with respect to the triangular facebed is
topologically the same as of the triangular faceadf in Fig.4(b)
with respect to the triangular faceabc. Therefore, we can obtain
(Abed)t = (Aabc)t. Based on the similar reasoning, (3) can be
rewritten as

v
2
dgi = (Abed)tv

1
bed = (Aabc)tv

1
bed

v
2
bhg = (Abed)lv

1
bed = (Aabc)lv

1
bed

v
2
eih = (Abed)rv

1
bed = (Aabc)rv

1
bed

v
2
ghi = (Abed)mv

1
bed = (Aabc)mv

1
bed: (4)

Combining (2) and (4), it can be shown that

v
2
dgi = (Aabc)t(Aabc)lv

0
abc;

v
2
bhg = (Aabc)l(Aabc)lv

0
abc;

v
2
eih = (Aabc)r(Aabc)lv

0
abc;

v
2
ghi = (Aabc)m(Aabc)lv

0
abc: (5)

Let x be a point with barycentric coordinates(�0abc; �
0
abc; 


0
abc)

inside the triangular faceabc. When the initial mesh is refined,x
becomes a point inside the triangular facebed with barycentric co-
ordinates(�1bed; �

1
bed; 


1
bed). Another level of subdivision causesx

to be included in the triangular facedgi with barycentric coordi-
nates(�2dgi; �

2
dgi; 


2
dgi). Let sjabc denote the j-th level approxima-

tion of the smooth triangular patchsabc in the limit surface corre-
sponding to the triangular faceabc in the initial mesh. Nowv0abc
can be written as

v
0
abc = [

rz }| {
ax; bx; cx; : : :;

rz }| {
ay; by; cy; : : :;

rz }| {
az; bz; cz; : : :]

T

where the subscriptsx, y andz indicate the x, y and z coordinates
of the corresponding vertex position, respectively. The expressions
for v1bed andv2dgi can also be written in a similar manner. Next, the
matrixB0

abc can be constructed as follows:

B
0
abc(x) =

2
6666664

rz }| {
�
0
abc; �

0
abc; 


0
abc; 0; : : : ; 0;

rz }| {
0; : : : ; 0;

rz }| {
0; : : : ; 0

rz }| {
0; : : : ; 0;

rz }| {
�
0
abc; �

0
abc; 


0
abc; 0; : : : ; 0;

rz }| {
0; : : : ; 0

rz }| {
0; : : : ; 0;

rz }| {
0; : : : ; 0;

rz }| {
�
0
abc; �

0
abc; 


0
abc; 0; : : : ; 0

3
7777775
:

The matricesB1
bed andB2

dgi can also be constructed in a similar
fashion. Nows0abc(x), s

1
abc(x), ands2abc(x) can be written as

s0abc(x) = B0
abc(x)v

0
abc,

s1abc(x) = B1
bed(x)v

1
bed =B1

bed(x)(Aabc)lv
0
abc,

s2abc(x) = B2
dgi(x)v

2
dgi =B2

dgi(x)(Aabc)tv
1
bed

= B2
dgi(x)(Aabc)t(Aabc)lv

0
abc.

(6)

Proceeding in a similar way, the expression fors
j
abc(x), j-th

level approximation ofsabc(x), is given by

s
j
abc(x) = B

j
uvw(x)

jz }| {
(Aabc)m : : : (Aabc)t(Aabc)l v

0
abc

= B
j
uvw(x)(A

j
abc)v

0
abc

= B
j
abc(x)v

0
abc; (7)

wherex is inside the triangular faceuvw at levelj (with an assump-
tion thatuvw is the triangular face in themiddlewith respect to its

coarser-leveloriginal triangular face in thepreviouslevel), (Aj
abc)

= (Aabc)m : : : (Aabc)t(Aabc)l andBj

abc(x) = Bj
uvw(x)(A

j

abc).
It may be noted that the sequence of applying(Aabc)t, (Aabc)l,
(Aabc)r and (Aabc)m depends on the triangle inside which the
tracked pointx falls after each subdivision step. Finally, the local
geometric parameterization procedure can be completed by writing

sabc(x) = ( lim
j!1

B
j
abc(x))v

0
abc = Babc(x)v

0
abc: (8)

Note that,Babc is the collection of basis functions at the ver-
tices of v0abc. It may also be noted that the modified butter-
fly subdivision scheme is astationary subdivision process, and
hence new vertex positions are obtained by affine combinations
of nearby vertices. This guarantees that each row of the matrices
(Aabc)t; (Aabc)l; (Aabc)r and(Aabc)m sums to one. The largest
eigenvalue of such matrices is1 and therefore the mathematical
limit in (8) exists. Now, assuming the triangular faceabc is the
k-th face in the initial mesh, (8) can be rewritten as

sk(x) = Bk(x)v
0
k = Bk(x)Akp; (9)

wherep is the concatenation of the (x,y,z) positions of all the ver-
tices in the initial mesh and the matrixAk, when post-multiplied by
p, only selects the verticesv0k defining the k-th smooth triangular
patch in the limit surface. If there aret vertices in the initial mesh
andr of them control thek-th patch, thenp is a vector of dimension
3t,Ak is a matrix of dimension(3r; 3t), andBk(x) is a matrix of
dimension(3; 3r).

Combining (1) and (9), it can be shown that

s(x) = (

nX
k=1

Bk(x)Ak)p = J(x)p; (10)

whereJ, a matrix of dimension(3; 3t), is the collection of basis
functions for the corresponding vertices in the initial mesh. The
vectorp is also known as the degrees of freedom vector of the
smooth limit surfaces.

We now treat the vertex positions in the initial mesh defining the
smooth limit surfaces as time variables in order to develop the new
dynamic butterfly subdivision model. The velocity of the surface
model can be expressed as_s(x;p) = J(x) _p, where an overstruck
dot denotes a time derivative andx 2 S0, S0 being the domain
defined by the initial mesh. Note that,S0 is the parametric domain
of the limit surface, each triangle of the initial control mesh serves
as a local parametric domain for its corresponding triangular patch.

4.3 Finite Element Procedure

In Section 4.2 we have demonstrated that the smooth limit sur-
face of butterfly subdivision can be represented by a collection of
smooth triangular patches. In our dynamic framework, we now con-
sider each patch of the limit surface as a finite element. The number
of such patches is equal to the number of triangular faces in the ini-
tial mesh as mentioned earlier. The concept of decomposing the
smooth limit surface into a collection of elements is illustrated in
Fig.5. We also show the parametric domain and control vertices for
shaded elements in Fig.5. The governing motion equation of this
subdivision-based FEM model is given by

M�p+D _p+Kp = fp; (11)

wherefp is the generalized force vector, andM, D, andK are
the mass, damping and stiffness matrices of the physical model. In
the interest of space, we provide an outline on how to derive the
mass, damping and stiffness matrices for these finite elements so
that a numerical solution to the governing second-order differential
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Figure 5: (a) An initial mesh, and (b) the corresponding limit sur-
face. The domains of the shaded elements in the limit surface are
the corresponding triangular faces in the initial mesh. The encircled
vertices in (a) are the degrees of freedom for the corresponding el-
ement.

equation can be obtained using popular finite element analysis tech-
niques. We use the same example as in Section 4.2 (refer to Fig.4)
to introduce the relevant concepts and derive our FEM model.

The mass matrix for the elementsabc, corresponding to the tri-
angular faceabc, can be expressed as

Mabc =

Z
x2sabc

�(x)B
T
abc(x)Babc(x)dx: (12)

However, the basis functions (stored as entries inBabc) do not have
any analytic form, hence computing this integral is a difficult propo-
sition. We solve this problem by approximating the smooth trian-
gular patch in the limit surface corresponding to the faceabc in
the initial mesh by a triangular mesh with4j faces obtained afterj
levels of subdivision of the original triangular faceabc (each sub-
division step splits one triangular face into4 triangular faces). In
addition, we choose a discretized form of mass distribution func-
tion which has non-zero values only at the vertex positions of the
j-th subdivision level mesh to simplify the implementation matter.
Then the mass matrix can be approximated as

Mabc =

kX
i=1

�(v
j
i )fB

j

abc(v
j
i )g

T
fB

j

abc(v
j
i )g; (13)

wherek is the number of vertices in the triangular mesh with4j

faces. This approximation has been found to be very effective and
efficient for the implementation of FEM procedure. The computa-
tion of elemental damping matrix follows suit.

Physics-based models have both kinetic and potential energies.
We now define the internal (e.g., elastic) energy of the subdivision-
based dynamic model by assigning deformation energy to each ele-
ment. We take a similar approach as shown above and consider the
j-th level approximation of the element. Throughout this paper, in
particular, we assign spring-like energy to the approximated model
because of its simplicity and efficient computation. The energy at

thej-th level of approximation can be defined as

Eabc � E
j
abc =

1

2

X



klm(jv
j
l � vjmj � `lm)2

jv
j

l � v
j
mj2

(v
j
l � v

j
m)

2
;

(14)
whereklm is the spring-controlling variable,vjl andvjm, the l-th
andm-th vertex in thej-th level mesh, are in the 1-neighborhood of
each other,
 is the domain defined by all such vertex pairs,`lm is
the natural length of the spring connected betweenv

j

l andvjm. Let
v
j

abc
be the concatenation of the (x,y,z) positions of all the vertices

in thej-th subdivision level of the triangular faceabc in the initial
mesh, so the internal force due to the above energy is

fint =
@E

j

abc

@v
j
abc

= (K
j
abc)fv

j
abcg

Note that, the vertex positions invjabc are obtained by a linear com-
bination of the vertex positions inv0abc, and hence we can write
v
j
abc = (A

j
abc)v

0
abc where(Aj

abc) is the transformation (subdi-
vision) matrix. Therefore, the expression for the elemental stiff-

ness matrix is given byKabc = (A
j

abc)
T
(K

j

abc)(A
j

abc). It may
be noted that this approach is applicable for modeling isotropic as
well as anisotropic phenomena becauseklm, the spring-controlling
variable, can be a time-dependent function in general, in addition,
the entries inKj

abc depend on the distance between the connected
vertices. Therefore, unlike other elemental matrices, the stiffness
matrix is a function of time which requires the recomputation at
each time step in principle. Note that, the above spring-like en-
ergy is only one simple candidate of many possible choices. A
large variety of functional formulations (such as simplethin-plate-
under-tensionenergy or complex curvature-based energy) can be
employed to describe a wide range of material and physical be-
haviors such as linear elastic deformation and/or non-linear plastic
deformation.

5 Dynamic Catmull-Clark Subdivision
Surfaces

This section considers a new FEM model based on an approximat-
ing subdivision scheme, namely, Catmull-Clark subdivision tech-
nique. Please note, the dynamic formulation of Catmull-Clark sub-
division previously proposed in [15, 16, 21] could not be general-
ized to other approximating subdivision schemes. The framework
developed in this section can be easily generalized to other approx-
imating subdivision schemes as shown in Section 7. In fact, a dy-
namic framework for Loop’s technique (another popular approxi-
mating subdivision scheme) has been discussed in Section 6 using
the algorithm proposed in this section. We first outline the Catmull-
Clark subdivision scheme. Next, we present the dynamic formula-
tion. In particular, we address the difference between the current
work and prior results [15, 16, 21]. Finally, we discuss the finite
element implementation.

5.1 Catmull-Clark Subdivision Scheme

Catmull-Clark subdivision scheme, like any other subdivision
scheme, starts with an user-defined mesh of arbitrary topology. It
refines the initial mesh by adding new vertices, edges and faces with
each step of subdivision following a fixed set of subdivision rules.
In the limit, a sequence of recursively refined polyhedral meshes
will converge to a smooth surface. The subdivision rules are as
follows:

1. For each face, a new face point is introduced which is the
average of all the old vertices defining the face.



(a) (b) (c)

Figure 6: Catmull-Clark subdivision: (a) initial mesh, (b) mesh
obtained after one step of Catmull-Clark subdivision, and (c) mesh
obtained after another subdivision step.

2. For each (non-boundary) edge, a new edge point is introduced
which is the average of the following four points: two old
vertices defining the edge and two new face points of the faces
adjacent to the edge.

3. For each (non-boundary) vertexV , new vertex is introduced
whose position isF

n
+ 2E

n
+

(n�3)V

n
, whereF is the average

of the new face vertices of all faces adjacent to the old vertex
V , E is the average of the midpoints of all edges incident on
the old vertexV andn is the number of the edges incident on
the vertex.

4. New edges are formed by connecting each new face point to
the new edge points of the edges defining the old face and by
connecting each new vertex point to the new edge points of
all old edges incident on the old vertex point.

5. New faces are defined as faces enclosed by new edges.

An example of Catmull-Clark subdivision on an initial mesh is
shown in Fig.6. The most important property of the Catmull-Clark
subdivision surfaces is that a smooth surface can be generated from
any control mesh of arbitrary topology. Catmull-Clark subdivision
surfaces include standard bicubic B-spline surfaces as their special
case (i.e., the limit surface is a bicubic B-spline surface for a rect-
angular mesh with all non-boundary vertices of degree 4). In addi-
tion, the aforementioned subdivision rules generalize the recursive
bicubic B-spline patch subdivision algorithm. For non-rectangular
meshes, the limit surface converges to a bicubic B-spline surface
except at a finite number of extraordinary points. These extraor-
dinary points correspond to extraordinary vertices (vertices whose
degree is not equal to 4) in the mesh. Note that, after the first sub-
division, all faces are quadrilaterals, hence all new vertices created
subsequently will have four incident edges. The number of extraor-
dinary points on the limit surface is a constant, and is equal to the
number of extraordinary vertices in the refined mesh obtained after
applying one step of the Catmull-Clark subdivision on the initial
mesh. The limit surface is curvature-continuous everywhere ex-
cept at extraordinary vertices, where only tangent plane continuity
is achieved.

5.2 Formulation

A systematic formulation of the newly proposed dynamic frame-
work for Catmull-Clark subdivision surfaces is presented in this
section. The key difference between the dynamic model developed
in [15, 16, 21] and the one presented here is the representation of the
limit surface. The previously proposed approach leads to diverse
types of finite elements, whereas the present approach leads to a

single type of finite elements. This is illustrated with a schematic
diagram in Fig.7.

�
�
�

�
�
�n

n

n n n n
n

n
n

n
n

n
n

n
n

n
n

n

n
n n n

n
n

n
n

n
n

n
n

s

s s
s

s

s

(a)

�
�
�

�
�
�

n
n

n

n
n n n

n
n

n
n

n
n

n
n

s

s s
s

s

e

e
e

e e
e
e
e e

e

ee
e e

e
e

e
e

e e

(b)

Figure 7: A control mesh with an extraordinary vertex of degree 5
and the corresponding limit surface: (a) using the concepts devel-
oped in [15, 16, 21], where the limit surface consists of quadrilat-
eral normal elements and a pentagonal special element; (b) using
the unified approach developed in this paper, where the limit sur-
face consists of one single type of quadrilateral finite element.

Following the concepts developed in [15, 16, 21], the limit sur-
face of the control mesh shown in Fig.7, consists of quadrilateral
bicubic B-spline patches corresponding to the faces marked ’n’
(faces with no extraordinary points), and a pentagonal patch cor-
responding to the faces marked ’s’ (faces having one extraordinary
vertex of degree 5) (Fig.7(a)). However, in this section, it has been
shown that the entire limit surface can be expressed as a collection
of quadrilateral patches as shown in Fig.7(b) using the algorithm
proposed by Stam [25]. We next discuss a local parameterization
of the limit surface which is critical to embed the limit surface in a
dynamic framework.

As mentioned earlier, the control mesh (after at most one subdi-
vision step) for the Catmull-Clark subdivision scheme consists of
quadrilateral faces which lead to quadrilateral patches in the limit
surface. For the sake of formulation simplicity, it has been assumed
that each face has at most one extraordinary vertex. If this assump-
tion is not valid, then one more subdivision step needs to be per-
formed on the current control mesh in order to obtain a new control
mesh on which the following analysis can be carried out. The num-
ber of quadrilateral patches in the limit surface is equal to the num-
ber of non-boundary quadrilateral faces in the control mesh (Fig.8).
Therefore, the smooth limit surfaces can be expressed as

s =

nX
l=1

sl; (15)

wheren is the number of non-boundary faces in the control mesh
andsl is the smooth quadrilateral patch corresponding to thel-th
non-boundary quadrilateral face in the control mesh. Each of these
quadrilateral patches can be parameterized over the correspond-
ing non-boundary quadrilateral face in the control mesh. How-
ever, since a quadrilateral face can easily be reparameterized over
a [0; 1]2 domain, each quadrilateral patch is locally parameterized
over [0; 1]2.
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Figure 8: In Catmull-Clark subdivision, each non-boundary quadri-
lateral face in the control mesh has a corresponding quadrilateral
patch in the limit surface : (a) control mesh, (b) limit surface.

The non-boundary quadrilateral faces are of two types : (a)
faces having no extraordinary vertices (dubbed as “regular” faces
in [15, 16, 21], marked as� in Fig.8(a)) and (b) faces with one
extraordinary vertex (dubbed as “irregular” faces in [15, 16, 21],
marked as� in Fig.8(a)). If there arem regular andn�m irregular
faces, then (15) can be rewritten as

s =

mX
i=1

si +

n�mX
j=1

sj ; (16)

wheresi is the quadrilateral patch corresponding to thei-th regu-
lar face andsj is the quadrilateral patch corresponding to thej-th
irregular face.

The quadrilateral patch in the limit surface corresponding to
each regular face is a bicubic B-spline patch, which is defined over
[0; 1]2. The set of control vertices defining this bicubic B-spline
patch can be obtained using the adjacent face information. There-
fore, the quadrilateral patches in the smooth limit surface corre-
sponding to the regular faces in the control mesh can be easily ex-
pressed analytically, which are essentially bicubic B-spline patches
defined by 16 control vertices over a[0; 1]2 domain. The analytic
expression for the quadrilateral patch corresponding to the regular
facei is given by

si = Jb(u; v)pi = (Jb(u; v)Ai)p = Ji(u; v)p; (17)

where0 � u; v � 1, Jb(u; v) is the collection of the bicubic B-
spline basis functions,pi is the concatenation of the 16 control
vertex positions defining the bicubic B-spline patch,Ai is a se-
lection matrix which when multiplied withp, the concatenation of
all the control vertex positions defining the smooth limit surface,
selects the corresponding set of control vertices, andJi(u; v) =
Jb(u; v)Ai.

By contrast, the analytic expression of the quadrilateral patches
corresponding to the irregular faces in the control mesh was dif-
ficult to derive, and hence an alternative approach was taken in

[15, 16, 21]. However, very recently an efficient scheme for eval-
uating Catmull-Clark subdivision surfaces at arbitrary parameter
values has been proposed by Stam [25]. The proposed approach,
involving eigen-analysis of the subdivision matrix, leads to an ana-
lytic expression of the quadrilateral patches which are parameter-
ized over an irregular face in the control mesh, and hence over
[0; 1]

2 after reparameterization. Following the scheme developed
by Stam [25], the quadrilateral patch corresponding to the irregular
facej is given by

sj = Jdk(u; v)pj = (Jdk(u; v)Aj)p = Jj(u; v)p; (18)

where0 � u; v � 1 as before.Jdk(u; v) is the collection of basis
functions for the corresponding quadrilateral patch in the smooth
limit surface. The subscriptdk is used to denote the fact that the
irregular face has an extraordinary vertex of degreek. The de-
tailed derivation and the analytic expressions of these basis func-
tions involving the eigenvalues and eigenvectors of the subdivision
matrix can be found in [25]. The other symbols used in (18) have
the usual meaning:pj is the concatenation of the2k + 8 control
vertices defining the quadrilateral patch in the limit surface,p is
the concatenation of all the control vertex positions defining the
smooth limit surface,Aj is a selection matrix which when multi-
plied withp selects the corresponding set of control vertices, and
Jj(u; v) = Jdk(u; v)Aj .

(a) (b)

Figure 9: (a) The marked 16 control vertices define the shaded
quadrilateral patch associated with the shaded regular face in the
control mesh. (b) The marked 14 control vertices define the shaded
quadrilateral patch associated with the shaded irregular face in the
control mesh.

It may be noted that the number of control vertices in the ini-
tial mesh defining a quadrilateral patch in the smooth limit surface
is 2k + 8, wherek = 4 in case the associated quadrilateral face
in the control mesh is regular, ork = degree of the extraordinary
vertex if the associated quadrilateral face is irregular. For example,
the shaded quadrilateral patch is associated with the shaded regu-
lar face in Fig.9(a), and the 16 control vertices defining this patch
(which is actually a bicubic B-spline patch) are marked. Similarly,
the shaded quadrilateral patch is associated with the shaded irregu-
lar face in Fig.9(b), and the 14 control vertices defining this patch
are highlighted. Now an expression of the smooth limit surface can
be formulated. Using (16), (17) and (18), it can be shown that

s =

mX
i=1

Jip+

n�mX
j=1

Jjp



= (

mX
i=1

Ji +

n�mX
j=1

Jj)p

= Jp; (19)

whereJ = (
Pm

i=1
Ji +

Pn�m

j=1
Jj). Note that even though the

initial mesh serves as the parametric domain of the smooth limit
surface, each quadrilateral face in the initial mesh and consequently
the smooth limit surface can be defined over a[0; 1]

2 domain.
Once an analytic expression of the smooth limit surface of

Catmull-Clark subdivision is derived, we then develop the dynamic
model by considering the control vertex positions as time-varying
variables. The velocity of the surface model can be expressed as
_s(x; u; v) = J(x; u; v) _p, where an overstruck dot denotes a time
derivative andx 2 S0, S0 being the domain defined by the initial
mesh.

5.3 Finite Element Implementation

The smooth limit surface of Catmull-Clark subdivision comprises a
collection of quadrilateral patches. Each quadrilateral patch is con-
sidered as a finite element. Therefore, within the unified framework
the limit surface can be decomposed into a collection of single type
of finite elements rather thantwo different types as in [15, 16, 21].
Our new FEM technique significantly simplifies the data structure
and system architecture. Consequently, more efficient algorithms
for finite-element assembly, dynamic simulation, etc. can be de-
vised using this unified approach. The motion equation of the dy-
namic model is same as that of the dynamic model of butterfly-
based subdivision:

M�p+D _p+Kp = fp; (20)

where fp is the generalized force vector andM, D, andK are
the mass, damping and stiffness matrices of the model. The expres-
sions of the mass, damping and stiffness matrices for a quadrilateral
element (which is a bicubic B-spline) can be written as

Me =

Z 1

0

Z 1

0

�J
T
b Jbdudv; (21)

De =

Z 1

0

Z 1

0


J
T
b Jbdudv; (22)

and

Ke =

Z 1

0

Z 1

0

(�11f(Jb)ug
T
f(Jb)ug+ �22f(Jb)vg

T
f(Jb)vg

+�11f(Jb)uug
T
f(Jb)uug+ �12f(Jb)uvg

T
f(Jb)uvg

+�22f(Jb)vvg
T
f(Jb)vvg)dudv (23)

respectively, whereJb is the bicubic B-spline basis matrix,�(u; v)
is the mass density,
(u; v) is the damping density,�ii(u; v) and
�ij(u; v) are the tension and rigidity functions respectively. The
subscriptu andv denote partial derivatives with respect tou and
v respectively. The subscripte is used to indicate elemental matri-
ces which are of size(16; 16). Note that, the mass, damping and
stiffness matrices for these elements can be evaluated analytically,
provided the material properties (e.g., mass, damping, rigidity and
bending distributions) have analytic expressions. In some cases,
these distribution functions can be assumed to be constant to sim-
plify the matter.

The mass, damping and stiffness matrices for the quadrilateral
elements which are not bicubic B-splines (corresponding to the ir-
regular faces) can also be expressed analytically by simply replac-
ing the matrixJb in (21), (22) and (23) with the matrixJdk (refer to

(18)), wherek denotes the degree of the extraordinary vertex asso-
ciated with the corresponding irregular face. These elemental ma-
trices are of size(2k+8; 2k+8). The generalized force vector for
these elements can also be determined in a similar fashion. It may
be noted that the limits of integration need to be chosen carefully for
elemental stiffness matrices as the second derivative diverges near
the extraordinary points for Catmull-Clark subdivision surfaces.

Even though an analytical expression for anon-B-splinequadri-
lateral element in the limit surface exists, it is cumbersome to ac-
tually evaluate the elemental matrix expressions. Numerical inte-
gration using Gaussian quadrature may be used to obtain approx-
imations of these elemental matrices. However, in this paper, an
approach similar to the FEM procedure presented in Section 4 is
utilized because of its simplicity and effectiveness. An approxima-
tion of the smooth limit surface is obtained by refining the initial
control meshj times, and a spring-mass system is developed on
this j-th approximation level in a similar fashion as in Section 4.3.
The physical matrices of this system is then used as an approxima-
tion to the actual physical matrices. This approximation has been
found to be very efficient for implementation purposes.

6 Dynamic Loop Subdivision Surfaces

Loop’s subdivision scheme starts with a triangular control mesh and
generates a smooth surface with triangular patches in the limit. It is
an approximating subdivision scheme which generalizes recursive
subdivision schemes for obtainingC2 quartic triangular B-spline
patches in a regular setting. In each step of Loop subdivision, each
(non-boundary) triangular face is refined into 4 triangular faces us-
ing the following rules:

1. For each (non-boundary) vertexV of degreen, a new ver-
tex point is introduced. The position of this newly introduced
vertex point is given by�(n)v+v1+:::+vn

�(n)+n
, wherev is the po-

sition vector of vertexV , v1; : : : ;vn are the vertex positions
of then vertices connected to vertexV , �(n) =

n(1��(n))

�(n)

and�(n) = 5

8
�

(3+2cos(2�=n))2

64
.

2. For each (non-boundary) edgeE, a new edge point is intro-
duced. LetE be the connecting edge between verticesV1 and
V2, and is shared by facesF1 andF2. If F1 andF2 have ver-
ticesVF1 andVF2 respectively (apart fromV1 andV2), then
the position of the newly introduced edge point is given by
3(v1+v2)+vF1

+vF2
8

, wherev1, v2, vF1 andvF2 are the po-
sition vector of the vertexV1, V2, VF1 andVF2 respectively.

3. New edges are formed by connecting each new vertex point
to the new edge points corresponding to the edges incident
on the old vertex, and by connecting each new edge point to
the new edge points of the other edges in the two faces which
shared the original edge.

4. New faces are defined as faces enclosed by the new edges.

Examples of refining an initial mesh using Loop’s subdivision
rules are shown in Fig.10 and 11. These subdivision rules ensure
tangent plane continuity of the limit surface even in a irregular set-
ting, i.e., when the triangular control mesh has extraordinary ver-
tices whose degree is not equal to 6. A detailed discussion on how
to obtain positions and normals in the smooth limit surface gener-
ated by the Loop subdivision scheme can be found in Hoppe et al.
[10].



(a) (b)

Figure 10: (a) The control polygon with triangular faces; (b) mesh
obtained after one subdivision step using Loop’s subdivision rules.

control  mesh

limit  surface

Figure 11: An initial mesh and the corresponding limit surface ob-
tained using Loop’s subdivision rules. The domains of the shaded
triangular patches in the limit surface are the corresponding trian-
gular faces in the initial mesh. The encircled vertices are the control
vertices for the corresponding triangular patch in the limit surface.

limit  surface

initial  mesh

(1,0)

(0,1)

(0,0)

Figure 12: Each triangular patch in the limit surface can be associ-
ated with a non-boundary triangular face in the initial mesh, which
in turn can be parameterized over a triangle with vertices at(0; 0),
(1; 0) and(0; 1).

6.1 Local Parameterization

The limit surface obtained via Loop’s subdivision scheme can be
locally parameterized easily. This local parameterization scheme is
very similar in nature to the one described for Catmull-Clark sub-
division scheme in the previous section. For Loop’s scheme, the
smooth limit surface consists of triangular patches and the num-
ber of these triangular patches is the same as the number of non-
boundary triangular faces in the control mesh. Therefore, each of
the triangular patch in the limit can be locally parameterized over
the corresponding triangular face in the control mesh. In may be
noted that each triangular face in the control mesh can be parame-
terized over a triangular domain whose vertices are located at(0; 0),
(0; 1) and(1; 0), and hence each triangular patch and consequently
the smooth limit surface can be defined over this domain (refer
Fig.12).

The triangular patches in the smooth limit surface are of two
types. For a non-boundary triangular face in the control mesh with
no extraordinary vertices (i.e., with three vertices of degree 6), the
corresponding triangular patch in the limit surface is a particular
type of triangular B-spline (the three-direction quartic box spline)
whose analytic expression is easy to obtain. This triangular B-
spline patch is controlled by 12 vertices as shown in Fig.11 (the
set of enclosed vertices in the left hand side). The triangular patch
in the limit surface corresponding to a non-boundary triangular face
in the control mesh with one extraordinary vertex can also be ex-
pressed analytically using the schemes proposed by Stam [26]. This
triangular patch is controlled byn+ 6 vertices in the control mesh
wheren is the degree of the extraordinary vertex. The set of con-
trol vertices for a triangular patch of the later type is shown in the
right hand side of Fig.11. Therefore, each triangular patch in the
limit surface can be expressed analytically, and an expression for
the limit surface similar to (19) can be obtained.

Once an expression for the limit surface using Loop’s subdivi-
sion is obtained, the dynamic model can be developed following
an exactly similar procedure described for Catmull-Clark subdivi-
sion scheme in the previous section. The motion equation of the
dynamic Loop subdivision model can also be derived in a similar
fashion.



6.2 Finite Element Implementation

The implementation of the dynamic framework for Loop subdivi-
sion scheme using the unified approach treats each triangular patch
in the limit surface as a finite element. Each triangular patch has an
analytic expression, and hence the elemental physical matrices and
the generalized force vector can be derived analytically. The deriva-
tion of an exact expression for elemental matrices is cumbersome
for the triangular patches corresponding to the triangular faces with
an extraordinary vertex, and numerical integration using Gaussian
quadrature may be used for deriving an approximation. However, a
practical alternative for implementation is to subdivide the control
meshj times using Loop’s subdivision rules, and to build a spring-
mass system on thisj-th level approximation as has been done for
the dynamic modified butterfly subdivision model in Section 4.3.
The physical matrices of this spring-mass system provide an ap-
proximation of the original physical matrices, and it works well in
practice.

7 The Unified Approach For Any Subdivi-
sion Scheme

The dynamic framework for modified butterfly and Catmull-Clark
subdivision scheme can be generalized to any subdivision scheme.
The key observation is that the smooth limit surface can be viewed
as a collection of a single type finite elements. Because of the
nature of recursive refinement, any subdivision-based scheme es-
sentially defines a “natural” correspondence which leads to a lo-
cal parameterization of the smooth limit surface. The unique type
of the associated finite element results from the local parameteri-
zation scheme. This is evident from the triangular finite element
patches developed for the modified butterfly subdivision scheme
and from the quadrilateral finite element patches developed for
Catmull-Clark subdivision scheme. We will present a general out-
line on how to provide a dynamic framework for interpolatory and
approximating subdivision schemes.

7.1 Interpolatory Subdivision Schemes

Most of the interpolatory subdivision schemes are obtained by mod-
ifying the butterfly subdivision scheme [7]. Therefore, the frame-
work for the modified butterfly subdivision scheme in Section 4
and its principles can be applied to other interpolatory subdivision
schemes. The only difference is that the basis functions as well
as the set of control vertices of arbitrary patch in the limit surface
depend on the chosen interpolatory subdivision rules. It may also
be noted that unlike the approximating schemes, the physical ma-
trices can not be obtained analytically as the basis functions cor-
responding to interpolatory subdivision schemes do not have any
analytic expressions in general. Even though these matrices can
be obtained via numerical integration, the point-mass system con-
nected by springs as developed in Section 4 is more preferable for
implementation purposes because of efficiency reasons.

7.2 Approximating Subdivision Schemes

The unified approach for a dynamic model of Catmull-Clark sub-
division can be generalized for other approximating subdivision
schemes as well. This generalized approach involves three steps:

1. The limit surface obtained via an approximating subdivision
scheme can be expressed as a collection of smooth patches
which can be locally parameterized over a corresponding face
in the control mesh. Each patch isn-sided if it is locally
parameterized over an-sided face. Analytic expressions for
each of these patches can be derived even in the presence of

extraordinary vertices in the control mesh, and hence an ex-
pression of the limit surface can be obtained.

2. Once an expression of the limit surface is obtained, the dy-
namic framework can be developed by considering control
vertex positions as a function of time. The corresponding mo-
tion equation can be derived.

3. Each patch in the limit surface is treated as a finite element
in implementation. The elemental mass, damping and stiff-
ness matrices along with the generalized force vector can be
obtained by either analytic or numerical integration. Alterna-
tively, the control mesh can be subdividedj times to obtain an
approximation of the smooth limit surface, and a spring-mass
system can be developed on this approximation mesh. The
physical matrices of this system provide an approximation to
the original physical matrices and works well in practice.

8 Solid Modeling Applications

The proposed FEM-based dynamic subdivision models can be used
to represent a wide variety of smooth shapes with arbitrary genus.
The smooth limit object can be sculpted by applying synthesized
forces in a direct and intuitive way in shape design applications
for solid modeling. The underlying shape from a cloud of 3D
points can also be recovered hierarchically using our FEM mod-
els. For data fitting applications, springs are attached to the initial-
ized model from the data points in 3D, and the initialized model
evolves dynamically according to the equation of motion subject to
the applied spring forces and various geometric constraints. When
an optimal fit to the given data set is achieved, the number of con-
trol vertices can be increased by replacing the original initial mesh
by a new initial mesh obtained by applying a single subdivision
step. This increases the number of degrees of freedom to repre-
sent the same limit surface and a new equilibrium position for the
model with a much better fit to the given data set can be achieved.
The fitting-error criteria for the discrete data can be computed ac-
cording to distance between the data points and the points on the
limit surface where the corresponding springs are attached. We now
demonstrate modeling and data fitting examples using our dynamic
FEM model.

In a shape modeling application, the user can specify any mesh
as the initial (control) mesh, and the corresponding limit surface
can be sculpted interactively by applying synthesized forces. In
Fig.13, we show several initial surfaces obtained from different
control meshes and the corresponding modified surfaces after in-
teractive sculpting. To change the shape of an initial surface, the
user can attach springs from different points in 3D to the nearest
points on the limit surface such that the limit surface deforms to-
wards these points to generate the desired shape. It may be noted
that the user can specify these data points in several ways - directly
in 3D, on a 2D plane at a fixed height (using mouse input) or from a
file containing (x,y,z) coordinates of the points in 3D. Also, the dis-
tance between two control vertices of the initialized mesh is used
as the natural (rest) length of the spring attached between those
vertices. When the model deforming under the influence of spring
forces reaches an equilibrium, the control mesh can be subdivided
to obtain another control mesh with more degrees of freedom for the
same smooth limit surface if the error is unacceptable. For model-
ing purposes, error is defined as the maximum distance between a
data point and the nearest point on the limit surface expressed as a
percentage of the diameter of the smallest sphere enclosing all the
data points. The time needed for the initialized model to deform
into the final shape depends on the number of degrees of freedom
of the model as well as on the number of data points exerting force



on the model. Generally speaking, less number of degrees of free-
dom leads to faster deformation (a smaller system of equations is
solved). For the examples shown in Fig.13, the deformations took
approximately 30-45 seconds under normal system load on a Ultra-
SPARC 30 machine. A small time step is used for stability, and one
conjugate gradient iteration was necessary between each Euler step.

The initial mesh of the smooth surface shown in Fig.13(a) has
125 faces and 76 vertices (degrees of freedom), which is deformed
to the smooth shape shown in Fig.13(c) by interactive spring force
application. The initial mesh of the closed solid shape in Fig.13(e)
has 24 faces and 14 vertices. This solid shape is deformed to the
shape shown in Fig.13(g). The one hole torus in Fig.13(i) and the
corresponding modified shape in Fig.13(k) have initial meshes with
64 faces and 32 vertices. A two hole torus with a control mesh
of 272 faces and 134 vertices, shown in Fig.13(m), is dynamically
sculpted to the shape shown in Fig.13(o).

We have also performed several experiments testing the applica-
bility of our model to recover the underlying shapes from a cloud of
points in 3D. In all the experiments, the initialized dynamic model
has a control mesh comprising of 24 triangular faces and 14 ver-
tices whereas the control mesh of the fitted model has 384 triangu-
lar faces and 194 vertices. It may be noted that once an optimal
shape defined by a fixed number of control vertices (determined by
subdivision levels) is recovered, the limit smooth model is capable
of refining itself in accordance with the data-fitting criteria, thereby
increasing the degrees of freedom of the recovered shape only when
necessary. For the fitting-error (defined as the maximum distance
between a data point and the nearest point on the limit surface ex-
pressed as a percentage of the diameter of the smallest sphere en-
closing the object) of approximately 3%, the initialized model is
refined twice. The data-fitting examples are shown in Fig.14. In
the first data fitting experiment, range data acquired from multiple
views of a light bulb is used and the model was initialized inside the
1000 data points (Fig.14(a)). The fitted dynamic model is shown
in Fig.14(b). In the next experiment, the shape of a mechanical
part is recovered from a range data-set containing 2031 data points
(Fig.14(c) and (d)). We also recover the shape of a human head
from the data set as shown in Fig.14(e). The head data set has 1779
3D points. The time of dynamic evolution for the fitting of range
datasets used in the experiments is approximately3 minutes on a
Ultra-SPARC 30 workstation. It may be noted that the final shape
with a very low error tolerance is recovered using very few number
of control points in comparison to the large number of data points
present in the original range data set.

9 Conclusions

In this paper, we have presented a new FEM-based dynamic frame-
work where a single type of subdivision-based finite elements are
used to represent the smooth limit surface generated by any subdi-
vision scheme. The primary objective is to integrate physics-based
modeling techniques with geometric subdivision methodology for
the interactive sculpting and direct manipulation of the limit surface
of prevalent subdivision schemes. We have proposed a unified ap-
proach and demonstrated how to transform any subdivision scheme
into our dynamic modeling framework. Modelers canphysically
sculpt virtual objects defined through arbitrary procedure-based
subdivision techniques in a natural and intuitive manner within the
proposed dynamic framework. Users can also directly enforce vari-
ous functional and aesthetic requirements on the limit surface with-
out the need to explicitly manipulate the control vertices. Further-
more, this dynamic framework permits physics-based models to be
refined adaptively in a hierarchical fashion which is an intrinsic fea-
ture of subdivision geometry. Our experiments have demonstrated
the applicability of the new unified FEM-based framework in solid
modeling and data fitting applications. This unified method will of-

fer a greater potential for popular subdivision techniques in solid
and geometric modeling, interactive graphics, finite element analy-
sis, and engineering design applications.
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Figure 13:First column : Initial shapes along with attached springs
for deformation. Second column: Deformation of initial shapes
due to spring forces.Third column : The final deformed shape.
Fourth column : Another view of the final deformed shape.
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Figure 14: (a), (c) and (e): Collection of points in 3D along with the
initialized model; (b), (d) and (f): the corresponding fitted dynamic
subdivision surface model.


