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Parametric Representations 
• We are going to start the topic of parametric 

representation, especially for curves and surfaces 

• But first, let us look at the concept of explicit, non-

parametric representation 
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Explicit Representation 

• Consider one example:  a function f() = sin(). 

• This is the explicit description of a curve in 2 

dimensions with parameter .   

• This is an example of an unbounded curve (in 

that we can take values of  from -...+.  We’ll 

limit our curve to the domain (0...2).  This 

gives the following curve: 
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Modeling vs. Rendering 

• Now we must determine how fine or coarse a representation we 

need to use in order to display this curve.   

• We will sample the curve at regular intervals of  along the 

length of the curve.  In this example, the curve will be sampled at 

regular points a unit distance apart (i.e. at  = 0, 1, 2...).   

• This yields the following sample points which we will join by 

straight lines which is the way the curve will be finally displayed 

on the raster: 
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Surfaces 

• Note that the final representation is not very smooth.  If 

the intervals are chosen carefully, however (for 

example, by relating the interval distance to the size of a 

pixel of the raster), then the curve representation will 

appear continuous and smooth. 

• This technique may be extended to surfaces in the same 

manner (surfaces require 2 parameters): 
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Parametric Curves 

• Please remember to make comparisons between 

parametric representations and the following 

equations: 

– Explicit representation: 

• y = f(x) 

– Implicit representation: 

• f(x,y) = 0 
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Parametric Curves 

• Why use parametric curves? 

– Why curves (rather than polylines)? 

• reduce the number of points 

• interactive manipulation is easier 

– Why parametric (as opposed to y,z=f(x))? 

• arbitrary curves can be easily represented 

• rotational invariance 

– Why parametric (rather than implicit)? 

• simplicity and efficiency 
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Explicit Representation 
• Explicit, non-parametric 

representation will naturally 
lead to the concept of 
parametric curves and 
surfaces 

– Bézier curves (de Casteljau 
’59, P. Bézier ’62). 

– Spline curves/surfaces (de 
Boor ’72, Gordon et al. ’74, 
Böhm ’83). 

– Bernstein-Bézier solids 
(Lasser ’85), tensor product 
trivariate B-spline solid 
(Greissmair et al. ’89). 
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Line (Geometric Line) 
• Parametric representation 

 

• Parametric representation is not unique 

• In general 

 

• Re-parameterization (variable transformation) 
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Basic Concepts 
• Linear interpolation: 

 

• Local coordinates:  

• Re-parameterization:  

• Affine transformation:  

 

• Polynomials 

• Continuity 
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Linear Interpolation 
• Simplest "curve" between two points 
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Linear and Bilinear Interpolation 
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Fundamental Features 
• Geometry 

– Position, direction, length, area, normal, tangent, etc. 

• Interaction 

– Size, continuity, collision, intersection 

• Topology 

• Differential 

– Curvature, arc-length 

• Physical 

• Computer representation & data structure 

• Others! 
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Mathematical Formulations 
• Point: 

 

 

• Line: 

• Quadratic curve: 

 

 

• Parametric domain and reparameterization: 
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Parametric Cubic Curves 
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Splines 

• For a 3D spline, we have 3 polynomials: 

 up

Defines the variation in x with 
distance u along the curve 

12 unknowns 
 4 3D points required 
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Interpolation Curves 
 

 

• Curve is constrained to pass through  
all control points 

• Given points P0, P1, ... Pn, find lowest degree 
polynomial which passes through the points 
 
 x(t) = an-1t

n-1  + .... + a2t
2 + a1t + a0 

 y(t) = bn-1t
n-1  + .... + b2t

2 + b1t + b0 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Parametric Polynomials 
• High-order polynomials 

 

 

 

 

 

• No intuitive insight for the curved shape 

• Difficult for piecewise smooth curves 
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Parametric Polynomials 
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BSpline 

(approximation) 

Definition:  What's a Spline? 
• Smooth curve defined by some control points 

• Moving the control points changes the curve 

 

 

Interpolation Bézier (approximation) 
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Interpolation Curves / Splines (Prior 
to the Digital Representation) 
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Interpolation vs. Approximation 
Curves 

Interpolation 

curve must pass 

through control points 

Approximation 

curve is influenced 

by control points 
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Interpolation vs. Approximation 
Curves 

• Interpolation Curve – over constrained →  
lots of  (undesirable?)  oscillations 

 

 

 

 

 

 

• Approximation Curve – more reasonable? 
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Interpolating Splines: Applications  
• Idea: Use key frames to indicate a series of positions 

that must be “hit”  

• For example: 

– Camera location 

– Path for character to follow 

– Animation of walking, gesturing, or facial expressions 

• Morphing 

• Use splines for smooth interpolation 
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How to Define a Curve? 
• Specify a set of points for interpolation and/or 

approximation with fixed or unfixed parameterization 

 

 

 

 

• Specify the derivatives at some locations 

• What is the geometric meaning to specify derivatives? 

• A set of constraints 

• Solve constraint equations 
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One Example 

• Two end-vertices: c(0) and c(1) 

• One mid-point: c(0.5) 

• Tangent at the mid-point: c’(0.5) 

• Assuming 3D curve 
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Cubic Polynomials 

• Parametric representation (u is in [0,1]) 

 

 

• Each components are treated independently 

• High-dimension curves can be easily defined 

• Alternatively 
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Cubic Polynomial Example 

• Constraints: two end-points, one mid-point, and 

tangent at the mid-point 

 

 

 

• In matrix form 
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Solve this Linear Equation 

• Invert the Matrix 

 

 

 

• Rewrite the curve expression 
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Basis Functions 

• Special polynomials 

 

 

• What is the image of these basis functions? 

• Polynomial curve can be defined by 

 

• Observations 

– More intuitive, easy to control, polynomials 
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Lagrange Curve 

• Point interpolation 
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Lagrange Curves 

• Curve 

 

 

• Lagrange polynomials of degree n: 

• Knot sequence:  

• Kronecker delta:  

• The curve interpolate all the data point,  but 

unwanted oscillation 
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Lagrange Basis Functions 
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Cubic Hermite Splines 

 

C(0) 

C’(0) 

C(1) 

C’(1) 
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Cubic Hermite Curve 

• Hermite curve 

 

• Two end-points and two tangents at end-points 

 

• Matrix inversion 
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Hermite Curve 

• Basis functions 

 

 

• Display the image of these basis functions and 

the Hermite curve itself 
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Cubic Hermite Splines 

• Two vertices and two tangent vectors: 

 

 

• Hermite curve 
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Hermite Basis Functions 
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Varying the Magnitude of the 
Tangent Vector 
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Varying the Direction of the 
Tangent Vector 
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Hermite Splines 

• Higher-order polynomials 

 

 

 

 

• Note that, n is odd! 

• Geometric intuition 

• Higher-order derivatives are required 
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Why Cubic Polynomials 

• Lowest degree for specifying curve in space 

• Lowest degree for specifying points to 

interpolate and tangents to interpolate 

• Commonly used in computer graphics 

• Lower degree has too little flexibility 

• Higher degree is unnecessarily complex, exhibit 

undesired wiggles 
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Variations of Hermite Curve 

• Variations of Hermite curves 

 

 

• In matrix form (x-component only) 
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Cubic Bezier Curves 

• Four control points to Bezier curve 

• Curve geometry 
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Cubic Bézier Curve 
• 4 control points 

• Curve passes through the first & last control points 

• Curve is tangent at P0 to (P0-P1) and at P4 to (P4-P3) 
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Curve Mathematics (Cubic) 

• Bezier curve 

 

• Control points and basis functions 

 

 

 

 

• Image and properties of basis functions 
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Cubic Bézier Basis Functions 
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The Bernstein Polynomials 
(n=3) 
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Recursive Evaluation 

• Recursive linear interpolation 
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Recursive Subdivision Algorithm 

• de Casteljau's algorithm for constructing Bézier 

curves 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Basic Properties (Cubic) 
• The curve passes through the first and the last 

points (end-point interpolation) 

• Linear combination of control points and basis 
functions 

• Basis functions are all polynomials 

• Basis functions sum to one (partition of unity) 

• All is functions are non-negative 

• Convex hull (both necessary and sufficient) 

• Predictability 
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Derivatives 

• Tangent vectors can easily evaluated at the end-

points 

• Second derivatives at end-points can also be 

easily computed: 

 

)p(pc);p(pc 2301 )1('3)0(' 

)pp(p))p(p)p((pc

)pp(p))p(p)p((pc

1231223

)2(

0120112

)2(

2632)1(

2632)0(







STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Derivative Curve 

• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve 
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More Properties (Cubic) 

• Two curve spans are obtained, and both of them 

are standard Bezier curves (through 

reparameterization) 

 

 

• The control points for the left and the right are 
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High-Degree Curves 
• Generalizing to high-degree curves 

 

 

• Advantages: 

– Easy to compute, Infinitely differentiable 

• Disadvantages: 

– Computationally complex, undulation, undesired 
wiggles 

• How about high-order Hermite? Not natural!!! 
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Higher-Order Bézier Curves 

• > 4 control points 

• Bernstein Polynomials as the basis functions 

 

 

 

• Every control point affects the entire curve  

– Not simply a local effect  

– More difficult to control for modeling 
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The Bernstein Polynomials 
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Bezier Curves (Degree n) 

• Curve: 
 

• Control points 
 

• Basis functions           are bernstein polynomials 

of degree n: 
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Recursive Computation: 
The De Casteljau Algorithm 
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Recursive Computation 
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Recursive Computation 

• N+1 levels 
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Properties 
• End point interpolation. 

• Basis functions are non-negative. 

• The summation of basis functions are unity 

– Binomial Expansion Theorem: 

 

 

 

• Convex hull: the curve is bounded by the convex 
hull defined by the control points. 
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Properties 

• Basis functions are non-negative 

• The summation of all basis functions is unity 

• End-point interpolation 

• Binomial expansion theorem 

 

 

• Convex hull: the curve is bounded by the convex 

hull defined by control points 
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More properties 

• Recursive subdivision and evaluation 

• Symmetry: c(u) and c(1-u) are defined by the 

same set of point points, but different ordering 
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Tangents and Derivatives 

• End-point tangents: 

 

• I-th derivatives at two end-points depend on 

 

 

 

• Derivatives at non-end-points involve all control 

points 
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Tangents and Derivatives 
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Other Advanced Topics 

• Efficient evaluation algorithm 

• Differentiation and integration 

• Degree elevation 

– Use a polynomial of degree (n+1) to express that of 

degree (n) 

• Composite curves 

• Geometric continuity 

• Display of curve 
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Bezier Curve Rendering 
• Use its control polygon to approximate the curve 

• Recursive subdivision till the tolerance is satisfied 

• Algorithm go here 

– If the current control polygon is flat (with tolerance), then 

output the line segments, else subdivide the curve at u=0.5 

– Compute control points for the left half and the right half, 

respectively 

– Recursively call the same procedure for the left one and the 

right one 
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High-Degree polynomials 

• More degrees of freedom 

• Easy to compute 

• Infinitely differentiable 

• Drawbacks: 

– High-order 

– Global control 

– Expensive to compute, complex 

– undulation 
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Piecewise Polynomials 

• Piecewise --- different polynomials for different 

parts of the curve 

• Advantages --- flexible, low-degree 

• Disadvantages --- how to ensure smoothness at 

the joints (continuity) 
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Piecewise Curves 
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Piecewise Bezier Curves 

 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Continuity 

• One of the fundamental concepts 

• Commonly used cases: 

 

• Consider two curves: a(u) and b(u) (u is in [0,1]) 

210 ,, CCC
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Continuity 

• One of the fundamental concepts. 

• Commonly used cases: C0 ,C1 ,C2 , etc. 

• C0 Continuity: Position. 

• C1 Continuity: Velocity. 

• C2 Continuity: Acceleration. 
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Continuity 

• Continuity between two parametric curves: 

– Geometric continuity 

• G0: the two curves are connected 

• G1: the two tangents have the same direction 

– Parametric continuity 

• C0: the two curves are connected 

• C1: the two tangents are equal 
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Continuity Definitions: 

• C0 continuous 

– curve/surface has no breaks/gaps/holes 

– "watertight" 

• C1 continuous 

– curve/surface derivative is continuous 

– "looks smooth, no facets" 

• C2 continuous 

– curve/surface 2nd derivative  

is continuous 

– Actually important for shading 
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Positional Continuity 
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Derivative Continuity 
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General Continuity 
• Cn continuity: derivatives (up to n-th) are the same at 

the joining point 

 

• The prior definition is for parametric continuity 

• Parametric continuity depends of parameterization! But, 
parameterization is not unique! 

• Different parametric representations may express the 
same geometry 

• Re-parameterization can be easily implemented 

• Another type of continuity: geometric continuity, or Gn 
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Geometric Continuity 

• G0 and G1 
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Geometric Continuity 
• Depend on the curve geometry 

• DO NOT depend on the underlying 
parameterization 

• G0: the same joint 

• G1: two curve tangents at the joint align, but 
may (or may not) have the same magnitude 

• G1: it is C1 after the reparameterization 

• Which condition is stronger??? 

• Examples  
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Hermite Spline 
 

• A Hermite spline is a curve for which the user 
provides: 

– The endpoints of the curve 

– The parametric derivatives of the curve at the 
endpoints (tangent directions with magnitude) 

• The parametric derivatives are dx/dt, dy/dt, dz/dt  

– That is enough to define a cubic Hermite spline 
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Control Point Interpretation 

0x

0dt

dx

1dt

dx

1x

Start Point 

End Point 

Start Tangent End Tangent 
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Piecewise Hermite Curves 
• How to build an interactive system to satisfy various 

constraints. 

• C0 continuity:   

  a(1) = b(0) 

• C1 continuity: 

  a(1) = b(0) 

  a’(1) = b’(0) 

• G1 continuity: 

  a(1) = b(0) 

  a’(1) = b’(0) 
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Piecewise Hermite Curves 

• How to build an interactive system to satisfy 

various constraints 

• C0 continuity 

• C1 continuity 

 

• G1 continuity 
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Obtaining Geometric Continuity G1 

for parametric continuity C1, k = 1 
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Piecewise Hermite Curves 
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Hermite Spline 
• Say the user provides 

  

• A cubic spline has degree 3, and is of the form: 

 

– For some constants a, b, c and d derived from the control 

points, but how? 

• We have constraints: 

– The curve must pass through x0 when t=0 

– The derivative must be x’0 when t=0 

– The curve must pass through x1 when t=1 

– The derivative must be x’1 when t=1 
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Hermite Spline 

• Solving for the unknowns gives: 

 

 

• Rearranging gives: 0
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Basis Functions 

• A point on a Hermite curve is obtained by 

multiplying each control point by some function 

and summing 
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Piecewise Hermite Curves 
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Piecewise Bezier Curves 
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Connecting Cubic Bézier Curves 

• How can we guarantee C0 continuity (no gaps between two 

curves)? 

• How can we guarantee C1 continuity (tangent vectors match)? 

• Asymmetric:  Curve goes through some control points but misses 

others 
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Connecting Cubic Bézier Curves 

• Where is this curve 

– C0 continuous? 

– G1 continuous? 

– C1 continuous? 

• What’s the relationship 

between:  

– the # of control points, 

and  

– the # of  

cubic Bézier sub-curves? 
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Piecewise Bezier Curves 
• C0 continuity 

• C1 continuity 

 

• G1 continuity 

 

• C2 continuity 

 

 

• Geometric interpretation 

• G2 continuity 
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Piecewise C2 Bezier Curves 
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Continuity Summary 

• C0: straightforward, but not enough 

• C3: too constrained 

• Piecewise curves with Hermite and Bezier 

representations satisfying various continuity 

conditions 

• Interactive system for C2 interpolating splines 

using piecewise Bezier curves 

• Advantages and disadvantages 
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C2 Interpolating Splines 
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Natural C2 Cubic Splines 

• A set of piecewise cubic polynomials 

 

 

 

• C2 continuity at each vertex 
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C2 Interpolating Splines 
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C2 Interpolating Splines 
• Interpolate all control points 

• Equivalent to a thin strip of metal in a physical sense. 

• Forced to pass through a set of desired points. 

• Advantages:  

– interpolation,  

– C2  

• Disadvantages: 

– No local control (if one point is changes, the entire curve will 
move) 

• How to overcome the drawbacks: B-splines. 
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Natural C2 Cubic Splines 
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Natural Splines 
• Interpolate all control points 

• Equivalent to a thin strip of metal in a physical 
sense 

• Forced to pass through a set of desired points 

• No local control (global control) 

• N+1 control points 

• N pieces 

• 2(n-1) conditions 

• We need two additional conditions 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Natural Splines 
• Interactive design system 

– Specify derivatives at two end-points 

– Specify the two internal control points that define the 
first curve span 

– Natural end conditions: second-order derivatives at 
two end points are defined to be zero 

• Advantages: interpolation, C2 

• Disadvantages: no local control (if one point is 
changed, the entire curve will move) 

• How to overcome this drawback: B-Splines 
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B-Splines Motivation 
• The goal is local control!!! 

• B-splines provide local control 

• Do not interpolate control points 

• C2 continuity 

• Alternatively 

– Catmull-Rom Splines 

– Keep interpolations 

– Give up C2 continuity (only C1 is achieved) 

– Will be discussed later!!! 
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C2 Approximating Splines 
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From B-Splines to Bezier 
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Cubic B-spline Curves (One Curve 
Span) 

• ≥ 4 control points 

• Locally cubic 

• Curve is not constrained to pass through any 

control points 
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Cubic B-spline Curve (One Curve 
Span) 
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Cubic B-Spline Curve (Many Curve 
Spans) 

• can be chained together with a higher-order continuity 

• better control locally (windowing) 
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Bézier Curve vs. B-Spline Curve 

• Bezier curve is NOT the same as B-Spline 

curve! 

Bézier 

B-Spline 
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Bezier is not the same as B-spline 

• But we can convert between the curves using the 

basis functions: 
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Bézier Curve vs. B-Spline Curve 

Bézier B-Spline 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Converting between Bézier & B-Spline 

original 

control 

points as 

Bézier 

original 

control 

points as 

BSpline 

new 

Bézier 

control 

points to 

match 

BSpline 

new 

BSpline 

control 

points to 

match  

Bézier 
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Uniform B-Splines 

• B-spline control points:  

• Piecewise Bezier curves with C2 continuity at 

joints 

• Bezier control points: 
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Uniform B-Splines 

• In general, I-th segment of B-splines is 

determined by four consecutive B-spline control 

points 
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Uniform B-Splines 

• In matrix form 

 

 

 

• Question: how many Bezier segments??? 
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B-Spline Properties 
• C2 continuity, Approximation, Local control, convex 

hull 

• Each segment is determined by four control points 

• Questions: what happens if we put more than one 
control points in the same location??? 

– Double vertices, triple vertices, collinear vertices 

• End conditions 

– Double endpoints: curve will be tangent to line between  first 
distinct points 

– Triple endpoint: curve interpolate endpoint, start with a line 
segment 

• B-spline display: transform it to Bezier curves 
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Catmull-Rom Splines 
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Catmull-Rom Splines 

• Keep interpolation 

• Give up C2 continuity 

• Control tangents locally 

• Idea: Bezier curve between successive points 

• How to determine two internal vertices 
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Catmull-Rom Spline  
• Different from Bezier curves in that we can have 

arbitrary number of control points, but only 4 of them 
influence each section of curve 

– And it is interpolating (goes through points) instead of 
approximating (goes “near” points) 

• Four points define curve between 2nd and 3rd  
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Catmull-Rom Spline: Example 

from Hearn & Baker 

(p0, p1, p2, p3) 

(p1, p2, p3, p0) 

(p2, p3, p0, p1) 

(p3, p0, p1, p2) 

Closed curve 
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Catmull-Rom Splines 

• In matrix form 

 

 

• Problem: boundary conditions 

• Properties: C1, interpolation, local control, non-

convex-hull 
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Cardinal Splines 

• Four vertices define end-points and their 

associated tangents 

 

 

• Special case: Catmull-Rom splines when  

• More general case: Kochanek-Bartels splines 

– Tension, bias, continuity parameters 
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Cardinal Splines 
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Kochanek-Bartels Splines 

• Four vertices to define four conditions 

 

 

 

 

– Tension parameter: 

– Bias parameter: 

– Continuity parameter: 
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Piecewise B-Splines 
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B-Spline Basis Functions 
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B-Spline Basis Functions 
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B-Spline Basis Functions 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Basis Functions 

• Linear examples 

 

 

 

 

 

 

• How does it look like??? 




























]4,3[4

]3,2[2
)(

]3,2[3

]2,1[1
)(

]2,1[2

]1,0[
)(

2,2

2,1

2,0

uu

uu
uB

uu

uu
uB

uu

uu
uB



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

Basis Functions 
• Quadratic cases (knot vector is [0,1,2,3,4,5,6]) 

 

 

 

 

 

 

 

• Cubic example 
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B-Spline Basis Function Image 
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B-Spline Basis Functions 
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B-Spline Basis Function 

-2 -1 1 2 0 

Degree Zero 
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B-Spline Basis Function 
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Degree Zero 
Piece-wise 
polynomials 

Y =  1 
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B-Spline Basis Function 

Higher-degree 
basis 

functions are 
obtained via 
convolution 
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B-Spline Basis Function 
Area under the product 
curve 
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B-Spline Basis Function 
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B-Spline Basis Function 
Degree One 
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B-Spline Basis Function 
Degree One 

-2 -1 1 2 0 

Piece-wise 

Y = ( 1 - X ) Y = ( X + 1 ) 
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B-Spline Basis Function 
Convolution 
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B-Spline Basis Function 
Convolution 
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B-Spline Basis Function 
Degree Two 
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B-Spline Basis Function 
Degree Two 

-2 -1 1 2 0 

Piece-wise 

Y = ( X – 3/2 )2 / 2 

Y = ( 1 – 2 X2 ) 

Y = ( X + 3/2 )2 / 2 
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B-Spline Basis Function 
Convolution 
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B-Spline Basis Function 
Convolution 
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B-Spline Basis Function 
Degree Three 
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B-Spline Basis Function 
Degree Three 

-2 -1 1 2 0 

Piece-wise 

Y = ( 3X3 - 6X2 + 4 )/6 

Y = (2-X)3 / 6 Y = (2+X)3 / 6 

Y = ( - 3X3 - 6X2 + 4 )/6 
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B-Spline Basis Functions 
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B-Spline Basis Function 
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B-Splines 
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B-Spline Applications 

Data Interpolation 

with  

B-Splines 
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B-Spline Data Interpolation 
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B-Spline Data Interpolation 
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B-Spline Data Interpolation 
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B-Spline Data Interpolation 
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BSplines Interpolation 
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BSplines Interpolation 
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BSplines Interpolation 

-2 -1 1 2 0 

First Order Linear Interpolation 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

BSplines Interpolation 
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BSplines Interpolation 

-2 -1 1 2 0 

Second Order Quadratic Interpolation 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

BSplines Interpolation 
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BSplines Interpolation 
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BSplines Interpolation 
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BSplines Interpolation 
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BSplines Interpolation 
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Third Order Cubic Interpolation 
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BSplines Interpolation 
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Third Order Cubic Interpolation 
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BSplines Interpolation 
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B-Splines 
• Mathematics 

• Control points and basis functions of degree (k-
1) 

• Piecewise polynomials 

• Basis functions are defined recursively 

• We also have to introduce a knot sequence 
(n+k+1) in a non-decreasing order 

 

• Note that, the parametric domain:  
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Basis Functions 
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B-Spline Facts 
• The curve is a linear combination of control points and 

their associated basis functions ((n+1) control points 
and basis functions, respectively) 

• Basis functions are piecewise polynomials defined 
(recursively) over a set of non-decreasing knots 

 

• The degree of basis functions is independent of the 
number of control points (note that, I is index, k is the 
order, k-1 is the degree) 

• The first k and last k knots do NOT contribute to the 
parametric domain. Parametric domain is only defined 
by a subset of knots 

},......,,......,,......,{ 110 knnk uuuu 
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B-Spline Properties 
• C(u): piecewise polynomial of degree (k-1) 

• Continuity at joints: C(k-2) 

• The number of control points and basis functions: (n+1) 

• One typical basis function is defined over k sub-
intervals which are specified by k+1 knots 
([u(k),u(I+k)]) 

• There are n+k+1 knots in total, knot sequence divides 
the parametric axis into n+k sub-intervals 

• There are (n+1)-(k-1)=n-k+2 sub-intervals within the 
parametric domain ([u(k-1),u(n+1)]) 
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B-Spline Properties 
• There are n-k+2 piecewise polynomials 

• Each curve span is influenced by k control points 

• Each control points at most affects k curve spans 

• Local control!!! 

• Convex hull 

• The degree of B-spline polynomial can be independent 
from the number of control points 

• Compare B-spline with Bezier!!! 

• Key components: control points, basis functions, knots, 
parametric domain, local vs. global control, continuity 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

B-Spline Properties 

• Partition of unity, positivity, and recursive 

evaluation of basis functions 

• Special cases: Bezier splines 

• Efficient algorithms and tools 

– Evaluation, knot insertion, degree elevation, 

derivative, integration, continuity 

• Composite Bezier curves for B-splines 
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Uniform B-Spline 
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Another Formulation 

• Uniform B-spline 

• Parameter normalization (u is in [0,1]) 

• End-point positions and tangents 
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Another Formulation 

• Matrix representation 

 

 

 

• Basis matrix 
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Basis Functions 

• Note that, u is now in [0,1] 
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B-Spline Basis Functions 
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Uniform Non-rational B-Splines 
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Uniform Non-rational B-Splines 
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Uniform Non-rational B-Splines 
multiple control points 
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B-Spline Rendering 

• Transform it to a set of Bezier curves 

• Convert the I-th span into a Bezier representation 

 

 

• Consider the entire B-spline curve 
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Matrix Expression 

 

 

 

• The matrix structure and components of B? 

 

 

• The matrix structure and components of A? 
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B-Spline Discretization 

• Parametric domain: [u(k-1),u(n+1)] 

• There are n+2-k curve spans (pieces) 

• Assuming m+1 points per span (uniform 

sampling) 

• Total sampling points m(n+2-k)+1=l 

• B-spline discretization with corresponding 

parametric values: 
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B-Spline Discretization 

• Matrix equation 

 

 

 

• A is (l)x(n+1) matrix, in general (l) is much 

larger than (n+1), so A is sparse 

• The linear discretization for both modeling and 

rendering 
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Displaying Bezier Spline 
• A Bezier curve with 4 control points:  

– P0     P1     P2     P3  

• Can be split into 2 new Bezier curves:  

– P0     P’1     P’2     P’3  

– P’3     P’4     P’5     P3  

 

A Bézier curve 

is bounded by 

the convex hull 

of its control 

points.  
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Connecting Cubic B-Spline Curves 

• What’s the 

relationship 

between  

– the # of control 

points, and  

– the # of  

cubic BSpline 

subcurves? 
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B-Spline Curve Control Points 

Default BSpline BSpline with 

Discontinuity 

BSpline which 

passes through  

end points 
Repeat interior 

control point Repeat end points 
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From B-Splines to NURBS 
• What are NURBS??? 

• Non Uniform Rational B-Splines (NURBS) 

• Rational curve motivation 

• Polynomial-based splines can not represent commonly-
used analytic shapes such as conic sections (e.g., circles, 
ellipses, parabolas) 

• Rational splines can achieve this goal 

• NURBS are a unified representation 

– Polynomial, conic section, etc. 

– Industry standard 
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NURBS (as Generalized B-Splines) 

• B-Spline:  uniform cubic B-Spline 

 

• NURBS:  Non-Uniform Rational B-Spline 

– non-uniform = different spacing between the 

blending functions, a.k.a. knots 

– rational = ratio of polynomials (instead of cubic) 

 



STNY BRK 
STATE UNIVERSITY OF NEW YORK 

Department of Computer Science 

Center for Visual Computing 

CSE528 Lectures 

From B-Splines to NURBS 

• B-splines 

 

 

• NURBS (curve) 
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NURBS 

• NURBS mathematics: 

 

 

• Geometric Meaning--- obtained from projection! 

• B-splines in homogenous representation 

  

c(u)=       = 
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Geometric NURBS 

• Non-Uniform Rational B-Splines (NURBS) 

• CAGD industry standard --- useful properties 

• Degrees of freedom 

– Control points 

– Weights 
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Rational Bezier Curve 

• Projecting a Bezier curve onto w=1 plane 
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Revisit Two Important Concepts 

• Perspective Projection 

• Homogeneous Coordinates 
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Perspective Projection 
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Consider Linear Case 
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From Bezier Spline to NURBS 

• B-splines (Bezier Spline) 

 

 

• NURBS (curve) 
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Two Examples 
• B-splines (Bezier Spline) 

 

 

 

 

• NURBS (curve) 
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Consider Quadratic Case 
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From B-Splines to NURBS 
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NURBS Weights 

• Weight increase “attracts” the curve towards the 

associated control point 

• Weight decrease “pushes away” the curve from 

the associated control point 
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NURBS 
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NURBS for Analytic Shapes 

• Conic sections 

• Natural quadrics 

• Extruded surfaces 

• Ruled surfaces 

• Surfaces of revolution 
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NURBS Circle 
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NURBS Curve 
• Geometric components 

– Control points, parametric domain, weights, knots 

• Homogeneous representation of B-splines 

• Geometric meaning --- obtained from projection 

• Properties of NURBS 

– Represent standard shapes, invariant under 
perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common 
analytic shapes such as circles, clear geometric 
meaning of weights 
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NURBS Properties 
• Generalization of B-splines and Bezier splines 

• Unified formulation for free-form and analytic shape 

• Weights as extra DOFs 

• Various smoothness requirements 

• Powerful geometric toolkits 

• Efficient and fast evaluation algorithm 

• Invariance under standard transformations 

• Composite curves 

• Continuity conditions 
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Properties of NURBS 

• Represent standard shapes. 

• Invariant under perspective projection. 

• B-Spline is a special case. 

• Weights as extra degrees of freedom. 

• Can represent analytic shapes such as circles.  
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Geometric Modeling Techniques 

• Control Point Manipulation. 

• Weight Modification. 

• Knot Vector Variation. 

• Dynamic Modeling 
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Control Point Manipulation 
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Weight Modification 
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Knot Vector Variation 
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Dynamic Modeling 


