CSE528 Computer Graphics: Theory, Algorithms, and Applications

**Hong Qin Department of Computer Science** State University of New York at Stony Brook (Stony **Brook University**) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu http:///www.cs.sunysb.edu/~qin

Department of Computer Science Center for Visual Computing



#### **Parametric Curves**

Department of Computer Science Center for Visual Computing



#### **Parametric Representations**

- We are going to start the topic of parametric representation, especially for curves and surfaces
- But first, let us look at the concept of explicit, nonparametric representation







#### **Explicit Representation**

- Consider one example: a function  $f(\theta) = sin(\theta)$ .
- This is the explicit description of a curve in 2 dimensions with parameter  $\theta$ .
- This is an example of an unbounded curve (in that we can take values of  $\theta$  from -∞...+∞. We'll limit our curve to the domain (0...2 $\pi$ ). This gives the following curve:





Department of Computer Science Center for Visual Computing

#### Modeling vs. Rendering

- Now we must determine how fine or coarse a representation we need to use in order to display this curve.
- We will sample the curve at regular intervals of  $\theta$  along the length of the curve. In this example, the curve will be sampled at regular points a unit distance apart (i.e. at  $\theta = 0, 1, 2...$ ).
- This yields the following sample points which we will join by straight lines which is the way the curve will be finally displayed on the raster:





CSE528 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

#### Surfaces

- Note that the final representation is not very smooth. If the intervals are chosen carefully, however (for example, by relating the interval distance to the size of a pixel of the raster), then the curve representation will appear continuous and smooth.
- This technique may be extended to surfaces in the same manner (surfaces require 2 parameters):







Department of Computer Science Center for Visual Computing

#### Parametric Curves

- Please remember to make comparisons between parametric representations and the following equations:
  - Explicit representation:
    - y = f(x)
  - Implicit representation:
    - f(x,y) = 0



Department of Computer Science Center for Visual Computing

#### Parametric Curves

- Why use parametric curves?
  - Why curves (rather than polylines)?
    - reduce the number of points
    - interactive manipulation is easier
  - Why parametric (as opposed to y,z=f(x))?
    - arbitrary curves can be easily represented
    - rotational invariance
  - Why parametric (rather than implicit)?
    - simplicity and efficiency

#### **Explicit Representation**

- Explicit, non-parametric representation will naturally lead to the concept of parametric curves and surfaces
  - Bézier curves (de Casteljau '59, P. Bézier '62).
  - Spline curves/surfaces (de Boor '72, Gordon *et al.* '74, Böhm '83).
  - Bernstein-Bézier solids (Lasser '85), tensor product trivariate B-spline solid (Greissmair *et al.* '89).



#### $f(t,s) = (t, s, 1-(t^2+s^2))$



Department of Computer Science Center for Visual Computing

## Line (Geometric Line)

• Parametric representation

$$\mathbf{l}(\mathbf{p}_0, \mathbf{p}_1) = \mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u$$
$$u \in [0, 1]$$

- Parametric representation is not unique
- In general  $\mathbf{p}(u)$ ,  $u \in [a, b]$

$$l(\mathbf{p}_0, \mathbf{p}_1) = 0.5(\mathbf{p}_1 + \mathbf{p}_0) + 0.5(\mathbf{p}_1 - \mathbf{p}_0)v$$
  
v \in [-1,1]

Re-parameterization (variable transformation)

$$v = (u - a)/(b - a)$$
$$u = (b - a)v + a$$
$$\mathbf{q}(v) = \mathbf{p}((b - a)v + a)$$
$$v \in [0,1]$$

Department of Computer Science Center for Visual Computing



#### **Basic Concepts**

• Linear interpolation:

$$\mathbf{v} = \mathbf{v}_0(1-t) + \mathbf{v}_1(t)$$

 $\mathbf{v} \in [\mathbf{v}_0, \mathbf{v}_1], t \in [0,1]$ 

- Local coordinates:
  - **Re-parameterization:** f(u), u = g(v), f(g(v)) = h(v)
- Affine transformation:

$$f(ax+by) = af(x)+bf(y)$$
$$a+b=1$$

- Polynomials
- Continuity



Department of Computer Science Center for Visual Computing

#### **Linear Interpolation**

Simplest "curve" between two points



Department of Computer Science Center for Visual Computing



### Linear and Bilinear Interpolation





Department of Computer Science Center for Visual Computing

### **Fundamental Features**

- Geometry
  - Position, direction, length, area, normal, tangent, etc.
- Interaction
  - Size, continuity, collision, intersection
- Topology
- Differential
  - Curvature, arc-length
- Physical
- Computer representation & data structure
- Others!



### **Mathematical Formulations**

• Point:  

$$\mathbf{p} = \begin{bmatrix} \mathbf{a}_{x} \\ \mathbf{a}_{y} \\ \mathbf{a}_{z} \end{bmatrix}$$
• Line:  

$$\mathbf{l}(u) = \begin{bmatrix} \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix}^{T} u + \begin{bmatrix} \mathbf{b} & \mathbf{b} & \mathbf{b} \end{bmatrix}^{T}$$
• Quadratic curve:

$$\mathbf{q}(u) = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \end{bmatrix}^T u^2 + \begin{bmatrix} \mathbf{b}_x & \mathbf{b}_y & \mathbf{b}_z \end{bmatrix}^T u + \begin{bmatrix} \mathbf{c}_x & \mathbf{c}_y & \mathbf{c}_z \end{bmatrix}^T$$

Parametric domain and reparameterization:

$$u \in [u_s, u_e]; v \in [0,1]; v = (u - u_s)/(u_e - u_s)$$

Department of Computer Science Center for Visual Computing



#### Parametric Cubic Curves

$$\begin{aligned} x(t) &= a_x t^3 + b_x t^2 + c_x t + d_x, \\ y(t) &= a_y t^3 + b_y t^2 + c_y t + d_y, \\ z(t) &= a_z t^3 + b_z t^2 + c_z t + d_z, \quad 0 \le t \le 1. \end{aligned}$$

Department of Computer Science Center for Visual Computing





#### Parameterization: The Basic Concept



# **Splines**

#### • For a 3D spline, we have 3 polynomials:

$$\begin{aligned} x(u) &= a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x} \\ y(u) &= a_{y}u^{3} + b_{y}u^{2} + c_{y}u + d_{y} \\ z(u) &= a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z} \end{aligned} \right\} \rightarrow [x(u) \quad y(u) \quad z(u)] = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z} \end{bmatrix} \rightarrow \mathbf{p}(u) = \mathbf{u}.\mathbf{C}$$

**12** unknowns ∴ 4 3D points required

#### Defines the variation in x with distance u along the curve

Department of Computer Science Center for Visual Computing CSE528 Lectures



p(u)

### **Interpolation Curves**

- Curve is constrained to pass through all control points
- Given points P<sub>0</sub>, P<sub>1</sub>, ... P<sub>n</sub>, find lowest degree polynomial which passes through the points

$$\begin{aligned} \mathbf{x}(t) &= \mathbf{a}_{n-1} t^{n-1} + \dots + \mathbf{a}_2 t^2 + \mathbf{a}_1 t + \mathbf{a}_0 \\ \mathbf{y}(t) &= \mathbf{b}_{n-1} t^{n-1} + \dots + \mathbf{b}_2 t^2 + \mathbf{b}_1 t + \mathbf{b}_0 \end{aligned}$$

Department of Computer Science Center for Visual Computing



### **Parametric Polynomials**

• High-order polynomials

$$\mathbf{c}(\boldsymbol{u}) = \begin{bmatrix} \mathbf{a}_{0,x} \\ \mathbf{a}_{0,y} \\ \mathbf{a}_{0,z} \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{a}_{i,x} \\ \mathbf{a}_{i,y} \\ \mathbf{a}_{i,z} \end{bmatrix} \boldsymbol{u}^{i} + \dots + \begin{bmatrix} \mathbf{a}_{n,x} \\ \mathbf{a}_{n,y} \\ \mathbf{a}_{n,z} \end{bmatrix} \boldsymbol{u}^{n}$$

No intuitive insight for the curved shape
Difficult for piecewise smooth curves



Department of Computer Science Center for Visual Computing

### **Parametric Polynomials**



Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

# **Definition:** What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve



Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

# Interpolation Curves / Splines (Prior to the Digital Representation)

The ducks and spline are used to make tighter curves

> NY BR K NIVERSITY OF NEW YORK

Department of Computer Center for Visual Comp duck

spline

#### Interpolation vs. Approximation Curves



#### Interpolation

#### curve must pass through control points

#### Approximation

curve is influenced by control points



Department of Computer Science Center for Visual Computing

#### Interpolation vs. Approximation Curves

 Interpolation Curve – over constrained → lots of (undesirable?) oscillations



Department of Computer Science Center for Visual Computing



# **Interpolating Splines: Applications**

- Idea: Use key frames to indicate a series of positions that must be "hit"
- For example:
  - Camera location
  - Path for character to follow
  - Animation of walking, gesturing, or facial expressions
    - Morphing
- Use splines for smooth interpolation



Department of Computer Science Center for Visual Computing

# How to Define a Curve?

• Specify a set of points for interpolation and/or approximation with fixed or unfixed parameterization

$$\begin{bmatrix} x(u_i) \\ y(u_i) \\ z(u_i) \end{bmatrix}$$

$$\begin{bmatrix} x'(u_i) \\ y'(u_i) \\ z'(u_i) \end{bmatrix}$$

- Specify the derivatives at some locations
- What is the geometric meaning to specify derivatives?
- A set of constraints
- Solve constraint equations



### **One Example**

- Two end-vertices: c(0) and c(1)
- One mid-point: c(0.5)
- Tangent at the mid-point: c'(0.5)
- Assuming 3D curve



Department of Computer Science Center for Visual Computing



# **Cubic Polynomials**

• Parametric representation (u is in [0,1])

$$\begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} = \begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix} u^3 + \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} u^2 + \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} u + \begin{bmatrix} a_0 \\ b_0 \\ c_0 \end{bmatrix}$$

- Each components are treated independently
- High-dimension curves can be easily defined

• Alternatively  $x(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T = UA$ y(u) = UBz(u) = UC

Department of Computer Science Center for Visual Computing



# **Cubic Polynomial Example**

• Constraints: two end-points, one mid-point, and tangent at the mid-point

$$x(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} A$$
  

$$x(0.5) = \begin{bmatrix} 0.5^3 & 0.5^2 & 0.5^1 & 1 \end{bmatrix} A$$
  

$$x'(0.5) = \begin{bmatrix} 3(0.5)^2 & 2(0.5) & 1 & 0 \end{bmatrix} A$$
  

$$x(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} A$$

• In matrix form

$$\begin{bmatrix} x(0) \\ x(0.5) \\ x'(0.5) \\ x(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0.125 & 0.25 & 0.5 & 1 \\ 0.75 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} A$$

Department of Computer Science Center for Visual Computing



#### Solve this Linear Equation

• Invert the Matrix

$$A = \begin{bmatrix} -4 & 0 & -4 & 4 \\ 8 & -4 & 6 & -4 \\ -5 & 4 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(0.5) \\ x'(0.5) \\ x(1) \end{bmatrix}$$

#### Rewrite the curve expression

$$x(u) = UM[x(0) \quad x(0.5) \quad x'(0.5) \quad x(1)]^{T}$$
  
$$y(u) = UM[y(0) \quad y(0.5) \quad y'(0.5) \quad y(1)]^{T}$$
  
$$z(u) = UM[z(0) \quad z(0.5) \quad z'(0.5) \quad z(1)]^{T}$$

ST NY BR K

CSE528 Lectures

Department of Computer Science Center for Visual Computing

#### **Basis Functions**

• Special polynomials

$$f_{1}(u) = -4u^{3} + 8u^{2} - 5u + 1$$
  

$$f_{2}(u) = -4u^{2} + 4u$$
  

$$f_{3}(u) = -4u^{3} + 6u^{2} - 2u$$
  

$$f_{4}(u) = 4u^{3} - 4u^{2} + 1$$

- What is the image of these basis functions?
- Polynomial curve can be defined by

 $\mathbf{c}(u) = \mathbf{c}(0)f_1(u) + \mathbf{c}(0.5)f_2(u) + \mathbf{c}'(0.5)f_3(u) + \mathbf{c}(1)f_4(u)$ 

#### Observations

- More intuitive, easy to control, polynomials

Department of Computer Science Center for Visual Computing



### Lagrange Curve

• Point interpolation





### Lagrange Curves

• Curve  $\mathbf{c}(u) = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{bmatrix} L_0^n(u) + \dots + \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{bmatrix} L_n^n(u)$ 

- Lagrange polynomials of degree n:  $L_i^n(u)$
- Knot sequence:  $\mathcal{U}_0, \ldots, \mathcal{U}_n$

• Kronecker delta: 
$$L_i^n(u_j) = \delta_{ij}$$

• The curve interpolate all the data point, but unwanted oscillation



### Lagrange Basis Functions

$$\begin{split} L_i^n(u_j) &= \begin{cases} 1 & i = j(i, j = 0, 1, ..., n) \\ 0 & Otherwise \end{cases} \\ L_0^n(u) &= \frac{(u - u_1)(u - u_2)...(u - u_n)}{(u_0 - u_1)(u_0 - u_2)...(u_0 - u_n)} \\ L_i^n(u) &= \frac{(u - u_0)...(u - u_{i-1})(u - u_{i+1})...(u - u_n)}{(u_i - u_0)...(u_i - u_{i-1})(u_i - u_{i+1})...(u_i - u_n)} \\ L_n^n(u) &= \frac{(u - u_0)...(u - u_{n-2})(u - u_{n-1})}{(u_n - u_0)...(u_n - u_{n-2})(u_n - u_{n-1})} \end{split}$$

ST NY BR K

Department of Computer Science Center for Visual Computing

### **Cubic Hermite Splines**



ST NY BR K

Department of Computer Science Center for Visual Computing

# **Cubic Hermite Curve**

• Hermite curve

$$\mathbf{c}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix}$$

• Two end-points and two tangents at end-points  $\begin{bmatrix} r(0) \\ r(0) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

**–** –

$$\begin{vmatrix} x(0) \\ x(1) \\ x'(0) \\ x'(1) \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{vmatrix} A$$

Matrix inversion

$$x(u) = U \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x'(0) \\ x'(1) \end{bmatrix}$$
$$y(u) = UM \begin{bmatrix} y(0) & y(1) & y'(0) & y'(1) \end{bmatrix}^{T}$$
$$z(u) = UM \begin{bmatrix} z(0) & z(1) & z'(0) & z'(1) \end{bmatrix}^{T}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

CSE528 Lecture

Department of Computer Science Center for Visual Computing

## Hermite Curve

Basis functions

$$f_{1}(u) = 2u^{3} - 3u^{2} + 1$$
  

$$f_{2}(u) = -2u^{3} + 3u^{2}$$
  

$$f_{3}(u) = u^{3} - 2u^{2} + u$$
  

$$f_{4}(u) = u^{3} - u^{2}$$

 Display the image of these basis functions and the Hermite curve itself

 $\mathbf{c}(u) = \mathbf{c}(0)f_1(u) + \mathbf{c}(1)f_2(u) + \mathbf{c}'(0)f_3(u) + \mathbf{c}'(1)f_4(u)$ 



Department of Computer Science Center for Visual Computing

# **Cubic Hermite Splines**

• Two vertices and two tangent vectors:

$$\mathbf{c}(0) = \mathbf{v}_0, \mathbf{c}(1) = \mathbf{v}_1;$$
  
 $\mathbf{c}^{(1)}(0) = \mathbf{d}_0, \mathbf{c}^{(1)}(1) = \mathbf{d}_1;$ 

#### • Hermite curve

$$\mathbf{c}(u) = \mathbf{v}_0 H_0^3(u) + \mathbf{v}_1 H_1^3(u) + \mathbf{d}_0 H_2^3(u) + \mathbf{d}_1 H_3^3(u);$$
  

$$H_0^3(u) = f_1(u), H_1^3(u) = f_2(u), H_2^3(u) = f_3(u), H_3^3(u) = f_4(u)$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

## Hermite Basis Functions



Department of Computer Science Center for Visual Computing



# Varying the Magnitude of the **Tangent Vector**



Center for Visu

# Varying the Direction of the Tangent Vector



# Hermite Splines

• Higher-order polynomials

$$\mathbf{c}(u) = \mathbf{v}_0^0 H_0^n(u) + \mathbf{v}_0^1 H_1^n(u) + \dots + \mathbf{v}_0^{(n-1)/2} H_{(n-1)/2}^n(u) + \mathbf{v}_1^{(n-1)/2} H_{(n+1)/2}^n(u) + \dots + \mathbf{v}_1^1 H_{(n-1)}^n(u) + \mathbf{v}_1^0 H_n^n(u); \mathbf{v}_0^i = \mathbf{c}^{(i)}(0), \mathbf{v}_1^i = \mathbf{c}^{(i)}(1), i = 0, \dots (n-1)/2;$$

- Note that, n is odd!
- Geometric intuition
- Higher-order derivatives are required

Department of Computer Science Center for Visual Computing



# Why Cubic Polynomials

- Lowest degree for specifying curve in space
- Lowest degree for specifying points to interpolate and tangents to interpolate
- Commonly used in computer graphics
- Lower degree has too little flexibility
- Higher degree is unnecessarily complex, exhibit undesired wiggles



# Variations of Hermite Curve

Variations of Hermite curves

 $p_0 = c(0)$   $p_3 = c(1)$   $c'(0) = 3(p_1 - p_0), p_1 = p_0 + c'(0)/3$  $c'(1) = 3(p_3 - p_2), p_2 = p_3 - c'(1)/3$ 

• In matrix form (x-component only)

$$\begin{bmatrix} \mathbf{c}(0)_{x} \\ \mathbf{c}(1)_{x} \\ \mathbf{c}'(0)_{x} \\ \mathbf{c}'(1)_{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \end{bmatrix}$$

Department of Computer Science Center for Visual Computing



# **Cubic Bezier Curves**

- Four control points to Bezier curve
- Curve geometry



Department of Computer Science Center for Visual Computing

# **Cubic Bézier Curve**

- 4 control points
- Curve passes through the first & last control points
- Curve is tangent at  $P_0$  to  $(P_0 P_1)$  and at  $P_4$  to  $(P_4 P_3)$



Department of Comp Center for Visual C

# **Curve Mathematics (Cubic)**

• Bezier curve

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(u)$$

Control points and basis functions

$$B_0^3(u) = (1-u)^3$$
  

$$B_1^3(u) = 3u(1-u)^2$$
  

$$B_2^3(u) = 3u^2(1-u)$$
  

$$B_3^3(u) = u^3$$

Image and properties of basis functions

Department of Computer Science Center for Visual Computing



# **Cubic Bézier Basis Functions**



$$B_1(t) = (1-t)^3; B_2(t) = 3t(1-t)^2; B_3(t) = 3t^2(1-t); B_4(t) = t^3$$

$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

Department of Computer Science Center for Visual Computing



# The Bernstein Polynomials (n=3)



Department of Computer Science Center for Visual Computing



#### **Recursive Evaluation**

• Recursive linear interpolation

$$(1-u) \quad (u)$$

$$\mathbf{p}_{0}^{0} \quad \mathbf{p}_{1}^{0} \quad \mathbf{p}_{2}^{0} \quad \mathbf{p}_{3}^{0}$$

$$\mathbf{p}_{0}^{1} \quad \mathbf{p}_{1}^{1} \quad \mathbf{p}_{2}^{1}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{3} = \mathbf{c}(u)$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

# **Recursive Subdivision Algorithm**

 de Casteljau's algorithm for constructing Bézier curves





Department of Computer Science Center for Visual Computing

# **Basic Properties (Cubic)**

- The curve passes through the first and the last points (end-point interpolation)
- Linear combination of control points and basis functions
- Basis functions are all polynomials
- Basis functions sum to one (partition of unity)
- All is functions are non-negative
- Convex hull (both necessary and sufficient)
- Predictability



#### Derivatives

- Tangent vectors can easily evaluated at the endpoints  $\mathbf{c}'(0) = 3(\mathbf{p}_1 - \mathbf{p}_0); \mathbf{c}'(1) = (\mathbf{p}_3 - \mathbf{p}_2)$
- Second derivatives at end-points can also be easily computed:

$$\mathbf{c}^{(2)}(0) = 2 \times 3((\mathbf{p}_2 - \mathbf{p}_1) - (\mathbf{p}_1 - \mathbf{p}_0)) = 6(\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0)$$
$$\mathbf{c}^{(2)}(1) = 2 \times 3((\mathbf{p}_3 - \mathbf{p}_2) - (\mathbf{p}_2 - \mathbf{p}_1)) = 6(\mathbf{p}_3 - 2\mathbf{p}_2 + \mathbf{p}_1)$$



Department of Computer Science Center for Visual Computing

## **Derivative Curve**

• The derivative of a cubic Bezier curve is a quadratic Bezier curve

$$\mathbf{c}'(u) = -3(1-u)^2 \mathbf{p}_0 + 3((1-u)^2 - 2u(1-u))\mathbf{p}_1 + 3(2u(1-u) - u^2)\mathbf{p}_2 + 3u^2\mathbf{p}_3 =$$

$$3(\mathbf{p}_1 - \mathbf{p}_0)(1 - u)^2 + 3(\mathbf{p}_2 - \mathbf{p}_1)2u(1 - u) + 3(\mathbf{p}_3 - \mathbf{p}_2)u^2$$

Department of Computer Science Center for Visual Computing





# More Properties (Cubic)

Two curve spans are obtained, and both of them are standard Bezier curves (through reparameterization)
 C(ν), ν ∈ [0, μ]

$$\mathbf{c}(v), v \in [0, u]$$
  
 $\mathbf{c}(v), v \in [u, 1]$   
 $\mathbf{c}_{l}(u), u \in [0, 1]$   
 $\mathbf{c}_{r}(u), u \in [0, 1]$ 

The control points for the left and the right are

$$\mathbf{p}_{0}^{0}, \mathbf{p}_{0}^{1}, \mathbf{p}_{0}^{2}, \mathbf{p}_{0}^{3}$$
  
 $\mathbf{p}_{0}^{3}, \mathbf{p}_{1}^{2}, \mathbf{p}_{2}^{1}, \mathbf{p}_{3}^{0}$ 

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

# High-Degree Curves

• Generalizing to high-degree curves

$$\begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} = \sum_{i=0}^{n} \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} u^i$$

- Advantages:
  - Easy to compute, Infinitely differentiable
- Disadvantages:
  - Computationally complex, undulation, undesired wiggles
- How about high-order Hermite? Not natural!!!



# Higher-Order Bézier Curves

- >4 control points
- Bernstein Polynomials as the basis functions

$$B_i^n(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}, \qquad 0 \le i \le n$$

Every control point affects the entire curve

 Not simply a local effect
 More difficult to control for modeling

Department of Computer Science Center for Visual Computing



# The Bernstein Polynomials



Figure 4.6 Bézier basis functions: (a) Three points, n = 2; (b) Four points, n = 3; (c) Five points, n = 4; (d) Six points, n = 5.

Department of Computer Science Center for Visual Computing



# Bezier Curves (Degree n)

• **Curve:** 
$$c(u) = \sum_{i=0}^{n} p_i B_i^n(u)$$

- Control points  $p_i$
- Basis functions  $B_i^n(u)$  are bernstein polynomials of degree n:

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$
$$\binom{n}{i} = \frac{n!}{(n-i)!i!}$$

Department of Computer Science Center for Visual Computing



#### Recursive Computation: The De Casteljau Algorithm

$$B_i^n(u) = (1-u)B_i^{n-1}(u) + uB_{i-1}^{n-1}(u)$$

$$B_{i}^{n}(u) = \binom{n}{i} u^{i} (1-u)^{n-i}$$
  
=  $\binom{n-1}{i} u^{i} (1-u)^{n-i} + \binom{n-1}{i-1} u^{i} (1-u)^{n-i}$   
=  $(1-u)B_{i}^{n-1}(u) + uB_{i-1}^{n-1}(u)$ 

ST NY BR K

Department of Computer Science Center for Visual Computing

## **Recursive Computation**

$$\mathbf{p}_{i}^{0} = \mathbf{p}_{i}, i = 0, 1, 2, ... n$$
$$\mathbf{p}_{i}^{j} = (1 - u)\mathbf{p}_{i}^{j-1} + u\mathbf{p}_{i+1}^{j-1}$$
$$\mathbf{c}(u) = \mathbf{p}_{0}^{n}(u)$$

Department of Computer Science Center for Visual Computing



## **Recursive Computation**

#### • N+1 levels



Department of Computer Science Center for Visual Computing



#### Properties

- End point interpolation.
- Basis functions are non-negative.
- The summation of basis functions are unity

   Binomial Expansion Theorem:

$$1 = [u + (1 - u)]^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1 - u)^{n - i}$$

#### Convex hull: the curve is bounded by the convex hull defined by the control points.

Department of Computer Science Center for Visual Computing



#### **Properties**

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation  $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

 Convex hull: the curve is bounded by the convex hull defined by control points

Department of Computer Science Center for Visual Computing



## More properties

- Recursive subdivision and evaluation
- Symmetry: c(u) and c(1-u) are defined by the same set of point points, but different ordering

$$p_0,...,p_n;$$
  
 $p_n,...,p_0$ 



Department of Computer Science Center for Visual Computing

## **Tangents and Derivatives**

- End-point tangents:  $\mathbf{c}'(0) = n(\mathbf{p}_1 \mathbf{p}_0)$  $\mathbf{c}'(1) = n(\mathbf{p}_n - \mathbf{p}_{n-1})$
- I-th derivatives at two end-points depend on

$$p_0,...,p_i;$$
  
 $p_n,...,p_{n-i}$ 

#### Derivatives at non-end-points involve all control points

Department of Computer Science Center for Visual Computing



## **Tangents and Derivatives**

End-point tangents:

$$\mathbf{c}'(0) = n(\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{c}'(1) = n(\mathbf{p}_n - \mathbf{p}_{n-1})$$

i-th derivatives:  $c^{(i)}(0)$  depends only on  $p_0, \ldots, p_i$  $c^{(i)}(1)$  depends only on  $p_n, \ldots, p_{n-i}$ 

Derivatives at non-end-points:  $c^{(i)}(u)$  involve all control points

Department of Computer Science Center for Visual Computing



# **Other Advanced Topics**

- Efficient evaluation algorithm
- Differentiation and integration
- Degree elevation
  - Use a polynomial of degree (n+1) to express that of degree (n)
- Composite curves
- Geometric continuity
- Display of curve

# **Bezier Curve Rendering**

- Use its control polygon to approximate the curve
- Recursive subdivision till the tolerance is satisfied
- Algorithm go here
  - If the current control polygon is flat (with tolerance), then output the line segments, else subdivide the curve at u=0.5
  - Compute control points for the left half and the right half, respectively
  - Recursively call the same procedure for the left one and the right one



Department of Computer Science Center for Visual Computing

# High-Degree polynomials

- More degrees of freedom
- Easy to compute
- Infinitely differentiable
- Drawbacks:
  - High-order
  - Global control
  - Expensive to compute, complex
  - undulation

# **Piecewise Polynomials**

- Piecewise ---- different polynomials for different parts of the curve
- Advantages ---- flexible, low-degree
- Disadvantages ---- how to ensure smoothness at the joints (continuity)



Department of Computer Science Center for Visual Computing

### **Piecewise Curves**



Department of Computer Science Center for Visual Computing



### **Piecewise Bezier Curves**



Department of Computer Science Center for Visual Computing



# Continuity

- One of the fundamental concepts
- Commonly used cases:

$$C^0, C^1, C^2$$

• Consider two curves: a(u) and b(u) (u is in [0,1])



Department of Computer Science Center for Visual Computing



# Continuity

- One of the fundamental concepts.
- Commonly used cases: C<sup>0</sup>,C<sup>1</sup>,C<sup>2</sup>, etc.
- C<sup>0</sup> Continuity: Position.
- C<sup>1</sup> Continuity: Velocity.
- C<sup>2</sup> Continuity: Acceleration.



# Continuity

- Continuity between two parametric curves:
  - Geometric continuity
    - G<sup>0</sup>: the two curves are connected
    - G<sup>1</sup>: the two tangents have the same direction
  - Parametric continuity
    - C<sup>0</sup>: the two curves are connected
    - C<sup>1</sup>: the two tangents are equal



Department of Computer Science Center for Visual Computing

# **Continuity Definitions:**

- C<sup>0</sup> continuous
  - curve/surface has no breaks/gaps/holes
  - "watertight"
- C<sup>1</sup> continuous
  - curve/surface derivative is continuous
  - "looks smooth, no facets"
- C<sup>2</sup> continuous
  - curve/surface 2<sup>nd</sup> derivative is continuous

Department of Comparetually important for shading





STATE UNIVERSITY OF NEW YORK

## **Positional Continuity**

$$\mathbf{a}(1) = \mathbf{b}(0)$$

Department of Computer Science Center for Visual Computing

CSE528 Lectures



### **Derivative Continuity**

### a(1) = b(0)a'(1) = b'(0)

Department of Computer Science Center for Visual Computing





# **General Continuity**

- Cn continuity: derivatives (up to n-th) are the same at the joining point  $\mathbf{a}^{(i)}(1) = \mathbf{b}^{(i)}(0)$
- The prior definition is for parametric continuity
- Parametric continuity depends of parameterization! But, parameterization is not unique!

 $i = 0, 1, 2, \dots, n$ 

- Different parametric representations may express the same geometry
- Re-parameterization can be easily implemented
- Another type of continuity: geometric continuity, or Gn



### **Geometric Continuity**

#### • **G0** and **G1**

Department of Computer Science Center for Visual Computing



# **Geometric Continuity**

- Depend on the curve geometry
- DO NOT depend on the underlying parameterization
- G0: the same joint
- G1: two curve tangents at the joint align, but may (or may not) have the same magnitude
- G1: it is C1 after the reparameterization
- Which condition is stronger???
- Examples



# Hermite Spline

- A *Hermite spline* is a curve for which the user provides:
  - The endpoints of the curve
  - The parametric derivatives of the curve at the endpoints (tangent directions with magnitude)
    - The parametric derivatives are dx/dt, dy/dt, dz/dt
  - That is enough to define a *cubic* Hermite spline



# **Control Point Interpretation**



Department of Computer Science Center for Visual Computing



## Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints.
- $C^0$  continuity: a(1) = b(0)
- C<sup>1</sup> continuity:
  - a(1) = b(0)a'(1) = b'(0)
- $G^1$  continuity: a(1) = b(0) $a'(1) = \alpha b'(0)$





### **Piecewise Hermite Curves**

• How to build an interactive system to satisfy various constraints

....

- C0 continuity
- C1 continuity

$$\mathbf{a}(1) = \mathbf{b}(0)$$

a(1) = b(0)a'(1) = b'(0)

• G1 continuity

$$\mathbf{a}(1) = \mathbf{b}(0)$$
$$\mathbf{a}'(1) = \alpha \mathbf{b}'(0)$$

Department of Computer Science Center for Visual Computing



# Obtaining Geometric Continuity G<sup>1</sup>

$$\begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} \text{ and } \begin{bmatrix} P_4 \\ P_7 \\ kR_4 \\ R_7 \end{bmatrix}, \text{ with } k > 0.$$

#### for parametric continuity $C^1$ , k = 1





ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

### **Piecewise Hermite Curves**



Department of Computer Science Center for Visual Computing



# Hermite Spline

• Say the user provides

$$\left\|\mathbf{x}_{0},\mathbf{x}_{1},\frac{d\mathbf{x}_{0}}{dt}\right\|_{0},\frac{d\mathbf{x}_{1}}{dt}\right\|_{1}$$

• A cubic spline has degree 3, and is of the form:

$$x = at^3 + bt^2 + ct + d$$

- For some constants a, b, c and d derived from the control points, but how?
- We have constraints:
  - The curve must pass through  $x_0$  when t=0
  - The derivative must be  $x'_0$  when t=0
  - The curve must pass through  $x_l$  when t=l
  - The derivative must be  $x'_{l}$  when t=l

Department of Computer Science Center for Visual Computing



### Hermite Spline

• Solving for the unknowns gives:

$$a = -2x_1 + 2x_0 + x'_1 + x'_0$$
  

$$b = 3x_1 - 3x_0 - x'_1 - 2x'_0$$
  

$$c = x'_0$$
  

$$d = x_0$$

#### • Rearranging gives:

$$\mathbf{x} = \mathbf{x}_{1}(-2t^{3} + 3t^{2}) \quad \text{or} \\ + \mathbf{x}_{0}(2t^{3} - 3t^{2} + 1) \\ + \mathbf{x}_{1}'(t^{3} - t^{2}) \\ + \mathbf{x}_{0}'(t^{3} - 2t^{2} + t)$$

$$x = \begin{bmatrix} x_1 & x_0 & x_1' & x_0' \end{bmatrix} \begin{bmatrix} -2 & 3 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$



Department of Computer Science Center for Visual Computing

### **Basis Functions**

 A point on a Hermite curve is obtained by multiplying each control point by some function and summing



Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

### **Piecewise Hermite Curves**

#### piecewise hermite curves



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

### **Piecewise Bezier Curves**





Department of Computer Science Center for Visual Computing

# **Connecting Cubic Bézier Curves**



- How can we guarantee C0 continuity (no gaps between two curves)?
- How can we guarantee C1 continuity (tangent vectors match)?
- Asymmetric: Curve goes through some control points but misses others

Department of Computer Science Center for Visual Computing



# **Connecting Cubic Bézier Curves**



- Where is this curve
  - C<sup>0</sup> continuous?
  - G<sup>1</sup> continuous?
  - C<sup>1</sup> continuous?
- What's the relationship between:
  - the # of control points, and
  - the # of cubic Bézier sub-curves?



### Piecewise Bezier Curves

- C0 continuity
- C1 continuity
- G1 continuity
- C2 continuity

$$p_{3} = q_{0}$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = (q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = \alpha(q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = \alpha(q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = (q_{1} - q_{0})$$

$$p_{3} - 2p_{2} + p_{1} = q_{2} - 2q_{1} + q_{0}$$

- Geometric interpretation
- G2 continuity •

Department of Computer Science Center for Visual Computing



**M**()

### Piecewise C2 Bezier Curves





Department of Computer Science Center for Visual Computing

# **Continuity Summary**

- C0: straightforward, but not enough
- C3: too constrained
- Piecewise curves with Hermite and Bezier representations satisfying various continuity conditions
- Interactive system for C2 interpolating splines using piecewise Bezier curves
- Advantages and disadvantages



# C2 Interpolating Splines

Department of Computer Science Center for Visual Computing





## Natural C2 Cubic Splines

• A set of piecewise cubic polynomials

 $\mathbf{c}_{i}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix}$ 

### • C2 continuity at each vertex

Department of Computer Science Center for Visual Computing





### C<sup>2</sup> Interpolating Splines



Department of Computer Science Center for Visual Computing



# C<sup>2</sup> Interpolating Splines

- Interpolate all control points
- Equivalent to a thin strip of metal in a physical sense.
- Forced to pass through a set of desired points.
- Advantages:
  - interpolation,
  - C<sup>2</sup>

#### • Disadvantages:

- No local control (if one point is changes, the entire curve will move)
- How to overcome the drawbacks: B-splines.



# Natural C2 Cubic Splines



ST NY BR K

Department of Computer Science Center for Visual Computing

# **Natural Splines**

- Interpolate all control points
- Equivalent to a thin strip of metal in a physical sense
- Forced to pass through a set of desired points
- No local control (global control)
- N+1 control points
- N pieces
- 2(n-1) conditions
- We need two additional conditions

Department of Computer Science Center for Visual Computing



# **Natural Splines**

- Interactive design system
  - Specify derivatives at two end-points
  - Specify the two internal control points that define the first curve span
  - Natural end conditions: second-order derivatives at two end points are defined to be zero
- Advantages: interpolation, C2
- Disadvantages: no local control (if one point is changed, the entire curve will move)
- How to overcome this drawback: B-Splines

Department of Computer Science Center for Visual Computing



Department of Computer Science Center for Visual Computing





# **B-Splines Motivation**

- The goal is local control!!!
- B-splines provide local control
- Do not interpolate control points
- C2 continuity
- Alternatively
  - Catmull-Rom Splines
  - Keep interpolations
  - Give up C2 continuity (only C1 is achieved)
  - Will be discussed later!!!



## C2 Approximating Splines



Department of Computer Science Center for Visual Computing



#### From B-Splines to Bezier



Department of Computer Science Center for Visual Computing



# Cubic B-spline Curves (One Curve Span)

- $\geq$  4 control points
- Locally cubic
- Curve is not constrained to pass through any control points



# Cubic B-spline Curve (One Curve Span)



$$Q\langle t\rangle = \frac{\langle 1-t\rangle^3}{6}P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6}P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6}P_{i-1} + \frac{t^3}{6}P_i$$

Department of Computer Science Center for Visual Computing



# Cubic B-Spline Curve (Many Curve Spans)

- can be chained together with a higher-order continuity
- better control locally (windowing)



### Bézier Curve vs. B-Spline Curve

Bezier curve is NOT the same as B-Spline curve!



#### Bézier









ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

#### Bezier is not the same as B-spline

• But we can convert between the curves using the basis functions:

$$B_{Bezier} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix}$$



Department of Computer Science Center for Visual Computing

## Bézier Curve vs. B-Spline Curve







Department of Computer Science Center for Visual Computing

CSE528 Lectures

STONY BROCK



STATE UNIVERSITY OF NEW YORK

#### **Uniform B-Splines**

- **B-spline control points:**  $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n$
- Piecewise Bezier curves with C2 continuity at joints
- Bezier control points:

$$\mathbf{v}_{0} = \mathbf{p}_{0}$$

$$\mathbf{v}_{1} = \frac{2\mathbf{p}_{1} + \mathbf{p}_{2}}{3}$$

$$\mathbf{v}_{2} = \frac{\mathbf{p}_{1} + 2\mathbf{p}_{2}}{3}$$

$$\mathbf{v}_{0} = \frac{1}{2}\left(\frac{\mathbf{p}_{0} + 2\mathbf{p}_{1}}{3} + \frac{2\mathbf{p}_{1} + \mathbf{p}_{2}}{3}\right) = \frac{1}{6}\left(\mathbf{p}_{0} + 4\mathbf{p}_{1} + \mathbf{p}_{2}\right)$$

$$\mathbf{v}_{3} = \frac{1}{6}\left(\mathbf{p}_{1} + 4\mathbf{p}_{2} + \mathbf{p}_{3}\right)$$

Department of Computer Science Center for Visual Computing



#### **Uniform B-Splines**

 In general, I-th segment of B-splines is determined by four consecutive B-spline control points

$$\mathbf{v}_{1} = \frac{2\mathbf{p}_{i+1} + \mathbf{p}_{i+2}}{3}$$
$$\mathbf{v}_{2} = \frac{\mathbf{p}_{i+1} + 2\mathbf{p}_{i+2}}{3}$$
$$\mathbf{v}_{0} = \frac{1}{6}(\mathbf{p}_{i} + 4\mathbf{p}_{i+1} + \mathbf{p}_{i+2})$$
$$\mathbf{v}_{3} = \frac{1}{6}(\mathbf{p}_{i+1} + 4\mathbf{p}_{i+2} + \mathbf{p}_{i+3})$$

Department of Computer Science Center for Visual Computing



### **Uniform B-Splines**

• In matrix form

$$\begin{bmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \\ \mathbf{p}_{i+3} \end{bmatrix}$$

Question: how many Bezier segments???



Department of Computer Science Center for Visual Computing

#### **B-Spline Properties**

- C2 continuity, Approximation, Local control, convex hull
- Each segment is determined by four control points
- Questions: what happens if we put more than one control points in the same location???
  - Double vertices, triple vertices, collinear vertices
- End conditions
  - Double endpoints: curve will be tangent to line between first distinct points
  - Triple endpoint: curve interpolate endpoint, start with a line segment

STATE UNIVERSITY OF NEW YORK

#### B-spline display: transform it to Bezier curves

Department of Computer Science Center for Visual Computing

#### **Catmull-Rom Splines**



Department of Computer Science Center for Visual Computing



#### **Catmull-Rom Splines**

- Keep interpolation
- Give up C2 continuity
- Control tangents locally
- Idea: Bezier curve between successive points
- How to determine two internal vertices  $\mathbf{c}(0) = \mathbf{p}_{i} = \mathbf{v}_{0}, \mathbf{c}(1) = \mathbf{p}_{i+1} = \mathbf{v}_{3}$   $\mathbf{c}'(0) = \frac{\mathbf{p}_{i+1} - \mathbf{p}_{i-1}}{2} = 3(\mathbf{v}_{1} - \mathbf{v}_{0})$   $\mathbf{c}'(1) = \frac{\mathbf{p}_{i+2} - \mathbf{p}_{i}}{2} = 3(\mathbf{v}_{3} - \mathbf{v}_{2})$   $\mathbf{v}_{1} = \frac{\mathbf{p}_{i+1} + 6\mathbf{p}_{i} - \mathbf{p}_{i-1}}{6}$   $\mathbf{v}_{2} = \frac{-\mathbf{p}_{i+2} + 6\mathbf{p}_{i+1} + \mathbf{p}_{i}}{6}$



Department of Computer Science Center for Visual Computing

### **Catmull-Rom Spline**

- Different from Bezier curves in that we can have arbitrary number of control points, but only 4 of them influence each section of curve
  - And it is interpolating (goes through points) instead of approximating (goes "near" points)
- Four points define curve between 2<sup>nd</sup> and 3<sup>rd</sup>





Department of Computer Science Center for Visual Computing

#### Catmull-Rom Spline: Example

#### $(\mathbf{p}_0, \, \mathbf{p}_1, \, \mathbf{p}_2, \, \mathbf{p}_3)$



STATE UNIVERSITY OF NEW YORK

Center for Visual Computing

#### **Catmull-Rom Splines**

• In matrix form

$$\begin{bmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 6 & 0 & 0 \\ -1 & 6 & 1 & 0 \\ 0 & 1 & 6 & -1 \\ 0 & 0 & 6 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i-1} \\ \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \end{bmatrix}$$

- Problem: boundary conditions
- Properties: C1, interpolation, local control, nonconvex-hull



Department of Computer Science Center for Visual Computing

### **Cardinal Splines**

• Special case: Catmull-Rom splines when  $\alpha = 0$ 

 $\mathbf{c}^{(1)}(1) = \frac{1}{2}(1-\alpha)(\mathbf{v}_3 - \mathbf{v}_1)$ 

More general case: Kochanek-Bartels splines

 Tension, bias, continuity parameters



Department of Computer Science Center for Visual Computing

#### **Cardinal Splines**

Department of Computer Science Center for Visual Computing



#### **Kochanek-Bartels Splines**

• Four vertices to define four conditions

$$\mathbf{c}(0) = \mathbf{v}_1, \mathbf{c}(1) = \mathbf{v}_2$$
  

$$\mathbf{c}^{(1)}(0) = \frac{1}{2}(1-\alpha)((1+\beta)(1-\gamma)(\mathbf{v}_1 - \mathbf{v}_0) + (1-\beta)(1+\gamma)(\mathbf{v}_2 - \mathbf{v}_1))$$
  

$$\mathbf{c}^{(1)}(1) = \frac{1}{2}(1-\alpha)((1+\beta)(1+\gamma)(\mathbf{v}_2 - \mathbf{v}_1) + (1-\beta)(1-\gamma)(\mathbf{v}_3 - \mathbf{v}_2))$$

Tension parameter:
Bias parameter:
Continuity parameter:

$$\alpha$$
  
 $\beta$ 

Department of Computer Science Center for Visual Computing



#### **Piecewise B-Splines**



Department of Computer Science Center for Visual Computing



$$B_{i,1}(u) = \begin{cases} 1 & u_i <= u < u_{i+1} \\ 0 & otherwise \end{cases}$$
$$B_{i,k}(u) = \frac{u - u_i}{u_{i+k-1} - u_i} B_{i,k-1}(u) + \frac{u_{i+k} - u}{u_{i+k} - u_{i+1}} B_{i+1,k-1}(u)$$

Department of Computer Science Center for Visual Computing





Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK



ST NY BR

STATE UNIVERSITY OF NEW YORK

K

Department of Computer Science Center for Visual Computing

#### **Basis Functions**

• Linear examples

$$B_{0,2}(u) = \begin{cases} u & u \in [0,1] \\ 2 - u & u \in [1,2] \end{cases}$$
$$B_{1,2}(u) = \begin{cases} u - 1 & u \in [1,2] \\ 3 - u & u \in [2,3] \end{cases}$$
$$B_{2,2}(u) = \begin{cases} u - 2 & u \in [2,3] \\ 4 - u & u \in [3,4] \end{cases}$$

#### • How does it look like???

Department of Computer Science Center for Visual Computing



#### **Basis Functions**

• Quadratic cases (knot vector is [0,1,2,3,4,5,6])

$$B_{0,3}(u) = \begin{cases} \frac{1}{2}u^2, & 0 \le u \le 1\\ \frac{1}{2}u(2-u) + \frac{1}{2}(u-1)(3-u), 1 \le u \le 2\\ \frac{1}{2}(3-u)^2, & 2 \le u \le 3\\ \frac{1}{2}(3-u)^2, & 1 \le u \le 2\\ \frac{1}{2}(u-1)(3-u) + \frac{1}{2}(u-2)(4-u), 2 \le u \le 3\\ \frac{1}{2}(4-u)^2, & 3 \le u \le 4\\ \end{bmatrix}$$
$$B_{2,3}(u) = \dots$$
$$B_{3,3}(u) = \dots$$

Department of Computer Science Center for Visual Computing

•



#### **B-Spline Basis Function Image**

Department of Computer Science Center for Visual Computing





NY BR

JNIVERSITY OF NEW YORK

Department of Comput Center for Visual Con



ST NY BR K

CSE528 Lecture

Department of Computer Science Center for Visual Computing





Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K



ST NY BR K

CSE528 Lecture

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K



Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing



Department of Computer Science Center for Visual Computing



# **B-Splines**



Department of Computer Science Center for Visual Computing



## **B-Splines**



CSE528 Lecture

Department of Computer Science Center for Visual Computing ST NY BR K

## **B-Spline Applications**

Data Interpolation with B-Splines

Department of Computer Science Center for Visual Computing





ST NY BR K

CSE528 Lecture

Department of Computer Science Center for Visual Computing





Department of Computer Science Center for Visual Computing





Department of Computer Science Center for Visual Computing



ST NY BR K

Department of Computer Science Center for Visual Computing

### First Order

#### Linear Interpolation



Department of Computer Science Center for Visual Computing CSE528 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

### First Order

#### Linear Interpolation



Department of Computer Science Center for Visual Computing



### First Order

#### Linear Interpolation



ST NY BR K

CSE528 I

Department of Computer Science Center for Visual Computing

### First Order

#### Linear Interpolator



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

### Second Order

#### **Quadratic Interpolation**







### Second Order

#### **Quadratic Interpolation**



Department of Computer Science Center for Visual Computing



### Second Order

#### **Quadratic Interpolation**



Department of Computer Science Center for Visual Computing



### Second Order

#### Quadratic Interpolator



Department of Computer Science Center for Visual Computing



### Third Order

#### **Cubic Interpolation**



Department of Computer Science Center for Visual Computing



### Third Order

#### Cubic Interpolation



Department of Computer Science Center for Visual Computing



### Third Order

#### Cubic Interpolation







### Third Order

#### Cubic Interpolator



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

## **B-Splines**

• Mathematics

$$\mathbf{c}(u) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,k}(u)$$

- Control points and basis functions of degree (k-1)
- Piecewise polynomials
- Basis functions are defined recursively
- We also have to introduce a knot sequence (n+k+1) in a non-decreasing order

 $\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3, \dots, \mathcal{U}_{n+k}$ 

### • Note that, the parametric domain: $u \in [u_{k-1}, u_{n+1}]$

Department of Computer Science Center for Visual Computing



### **Basis Functions**

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

## **B-Spline Facts**

- The curve is a linear combination of control points and their associated basis functions ((n+1) control points and basis functions, respectively)
- Basis functions are piecewise polynomials defined (recursively) over a set of non-decreasing knots

 $\{u_0, \dots, u_{k-1}, \dots, u_{n+1}, \dots, u_{n+k}\}$ 

STATE UNIVERSITY OF NEW YORK

- The degree of basis functions is independent of the number of control points (note that, I is index, k is the order, k-1 is the degree)
- The first k and last k knots do NOT contribute to the parametric domain. Parametric domain is only defined by a subset of knots

Center for Visual Computing

## **B-Spline Properties**

- C(u): piecewise polynomial of degree (k-1)
- Continuity at joints: C(k-2)
- The number of control points and basis functions: (n+1)
- One typical basis function is defined over k subintervals which are specified by k+1 knots ([u(k),u(I+k)])
- There are n+k+1 knots in total, knot sequence divides the parametric axis into n+k sub-intervals
- There are (n+1)-(k-1)=n-k+2 sub-intervals within the parametric domain ([u(k-1),u(n+1)])



## **B-Spline Properties**

- There are n-k+2 piecewise polynomials
- Each curve span is influenced by k control points
- Each control points at most affects k curve spans
- Local control!!!
- Convex hull
- The degree of B-spline polynomial can be independent from the number of control points
- Compare B-spline with Bezier!!!
- Key components: control points, basis functions, knots, parametric domain, local vs. global control, continuity



## **B-Spline Properties**

- Partition of unity, positivity, and recursive evaluation of basis functions
- Special cases: Bezier splines
- Efficient algorithms and tools
  - Evaluation, knot insertion, degree elevation, derivative, integration, continuity
- Composite Bezier curves for B-splines



Department of Computer Science Center for Visual Computing

## **Uniform B-Spline**



Department of Computer Science Center for Visual Computing





#### **Another Formulation**

- Uniform B-spline
- Parameter normalization (u is in [0,1])
- End-point positions and tangents

$$\mathbf{c}(0) = \frac{1}{6} (\mathbf{p}_0 + 4\mathbf{p}_1 + \mathbf{p}_2)$$
  

$$\mathbf{c}(1) = \frac{1}{6} (\mathbf{p}_1 + 4\mathbf{p}_2 + \mathbf{p}_3)$$
  

$$\mathbf{c}'(0) = \frac{1}{2} (\mathbf{p}_2 - \mathbf{p}_0)$$
  

$$\mathbf{c}'(1) = \frac{1}{2} (\mathbf{p}_3 - \mathbf{p}_1)$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

## **Another Formulation**

• Matrix representation

$$\mathbf{c}(u) = UM_{h} \begin{bmatrix} \mathbf{c}(0) \\ \mathbf{c}(1) \\ \mathbf{c}'(0) \\ \mathbf{c}'(1) \end{bmatrix} = UM_{h}M' \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} = UM\mathbf{p}$$

#### • Basis matrix

$$M = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix}$$

Department of Computer Science Center for Visual Computing



## **Basis Functions**

• Note that, u is now in [0,1]

$$B_{0,4}(u) = \frac{1}{6}(1-u)^3$$
  

$$B_{1,4}(u) = \frac{1}{6}(3u^3 - 6u^2 + 4)$$
  

$$B_{2,4}(u) = \frac{1}{6}(-3u^3 + 3u^2 + 3u + 1)$$
  

$$B_{3,4}(u) = \frac{1}{6}(u)^3$$

Department of Computer Science Center for Visual Computing



#### **B-Spline Basis Functions**



Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

## **Uniform Non-rational B-Splines**



Departm Center

# **Uniform Non-rational B-Splines**



#### Uniform Non-rational B-Splines multiple control points



## **B-Spline Rendering**

- Transform it to a set of Bezier curves
- Convert the I-th span into a Bezier representation

 $\mathbf{p}_i, \mathbf{p}_{i+1}, \dots, \mathbf{p}_{i+k-1}$  $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$ 

Consider the entire B-spline curve

$$\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$$
  
 $\mathbf{v}_0, \dots, \mathbf{v}_3, \mathbf{v}_4, \dots, \mathbf{v}_7, \dots, \mathbf{v}_{4(n-3)}, \dots, \mathbf{v}_{4(n-3)+3}$ 

Department of Computer Science Center for Visual Computing



#### Matrix Expression

$$\begin{bmatrix} \mathbf{v}_0 \\ \vdots \\ \mathbf{v}_{4(n-3)+3} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \mathbf{p}_0 \\ \vdots \\ \mathbf{p}_n \end{bmatrix}$$

• The matrix structure and components of B?

$$\mathbf{q} = \mathbf{A}\mathbf{v} = \mathbf{A}\mathbf{B}\mathbf{p}$$

• The matrix structure and components of A?

Department of Computer Science Center for Visual Computing



#### **B-Spline Discretization**

- Parametric domain: [u(k-1),u(n+1)]
- There are n+2-k curve spans (pieces)
- Assuming m+1 points per span (uniform sampling)
- Total sampling points m(n+2-k)+1=1
- B-spline discretization with corresponding parametric values:  $\mathbf{q}_0, \dots, \mathbf{q}_{l-1}$  $\mathbf{v}_0, \dots, \mathbf{v}_{l-1}$

$$\mathbf{q}_i = \mathbf{c}(v_i) = \sum_{j=0}^n \mathbf{p}_j B_{j,k}(v_i)$$



Department of Computer Science Center for Visual Computing

## **B-Spline Discretization**

• Matrix equation

$$\mathbf{q}_{0} \\ \vdots \\ \mathbf{q}_{l-1} \end{bmatrix} = \begin{bmatrix} B_{0,k}(v_{0}) & \cdots & B_{n,k}(v_{0}) \\ \vdots & \ddots & \vdots \\ B_{0,k}(v_{l-1}) & \cdots & B_{n,k}(v_{l-1}) \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0} \\ \vdots \\ \mathbf{p}_{n} \end{bmatrix}$$

• A is (l)x(n+1) matrix, in general (l) is much larger than (n+1), so A is sparse

The linear discretization for both modeling and rendering



## **Displaying Bezier Spline**

- A Bezier curve with 4 control points:
  - $-P_0$   $P_1$   $P_2$   $P_3$
- Can be split into 2 new Bezier curves:



A Bézier curve is bounded by the convex hull of its control points.







Department of Computer Science Center for Visual Computing

## **Connecting Cubic B-Spline Curves**



- What's the relationship between
  - the # of control points, and
  - the # of cubic BSpline subcurves?



## **B-Spline Curve Control Points**



Repeat interior control point

passes through end points

Repeat end points

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

## From B-Splines to NURBS

- What are NURBS???
- Non Uniform Rational B-Splines (NURBS)
- Rational curve motivation
- Polynomial-based splines can not represent commonlyused analytic shapes such as conic sections (e.g., circles, ellipses, parabolas)
- Rational splines can achieve this goal
- NURBS are a unified representation
  - Polynomial, conic section, etc.
  - Industry standard

# NURBS (as Generalized B-Splines)

• B-Spline: uniform cubic B-Spline

- NURBS: Non-Uniform Rational B-Spline

   non-uniform = different spacing between the blending functions, a.k.a. knots
  - rational = ratio of polynomials (instead of cubic)



Department of Computer Science Center for Visual Computing

#### From B-Splines to NURBS

• B-splines

$$\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} W_i \\ \mathbf{p}_{i,y} W_i \\ \mathbf{p}_{i,z} W_i \\ W_i \end{bmatrix} B_{i,k}(u)$$

• NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science Center for Visual Computing



#### NURBS

#### • NURBS mathematics:

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

- Geometric Meaning---- obtained from projection!
- B-splines in homogenous representation

$$\mathbf{C(u)} = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \\ w(u) \end{bmatrix} = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x}w_i \\ \mathbf{p}_{i,y}w_i \\ \mathbf{p}_{i,z}w_i \\ w_i \end{bmatrix} B_{i,k}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_iw_i \\ \mathbf{w}_i \end{bmatrix} B_{i,k}(u)$$

Department of Computer Science Center for Visual Computing



## Geometric NURBS

- Non-Uniform Rational B-Splines (NURBS)
- CAGD industry standard ---- useful properties
- Degrees of freedom
  - Control points
  - Weights



#### **Rational Bezier Curve**

Projecting a Bezier curve onto w=1 plane

Department of Computer Science Center for Visual Computing



#### **Revisit Two Important Concepts**

- Perspective Projection
- Homogeneous Coordinates

Department of Computer Science Center for Visual Computing





## **Perspective Projection**



Department of Computer Science Center for Visual Computing



#### **Consider Linear Case**

$$\begin{bmatrix} x_{0}w_{0} \\ y_{0}w_{0} \end{bmatrix} (1-u) + \begin{bmatrix} x_{1}w_{1} \\ y_{1}w_{1} \end{bmatrix} (u)$$

$$w_{0}(1-u) + w_{1}(u)$$
or
$$\begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix} (1-u) + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} (u)$$

Department of Computer Science Center for Visual Computing



### From Bezier Spline to NURBS

#### • B-splines (Bezier Spline)

$$\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} \\ \mathbf{p}_{i,y} \\ \mathbf{p}_{i,z} \\ 1 \end{bmatrix} B_{i,k}(u)$$

#### • NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science Center for Visual Computing



#### **Two Examples**

• B-splines (Bezier Spline)

$$\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} \\ \mathbf{p}_{i,y} \\ \mathbf{p}_{i,z} \\ 1 \end{bmatrix} B_{i,k}(u)$$

#### • NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science Center for Visual Computing CSE528 Lectures

Linear :

(1 - u)

(U) Quadratic :

 $(1-u)^2$ 

2(1-u)u

 $(u)^2$ 



## **Consider Quadratic Case**

$$\begin{bmatrix} x_{0}w_{0} \\ y_{0}w_{0} \end{bmatrix} (1-u)^{2} + \begin{bmatrix} x_{1}w_{1} \\ y_{1}w_{1} \end{bmatrix} 2(1-u)(u) + \begin{bmatrix} x_{2}w_{2} \\ y_{2}w_{2} \end{bmatrix} (u)^{2}$$

$$w_{0}(1-u)^{2} + w_{1}2(1-u)(u) + w_{2}(u)^{2}$$
or
$$\begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix} (1-u)^{2} + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} 2(1-u)(u) + \begin{bmatrix} x_{2} \\ y_{2} \end{bmatrix} (u)^{2}$$

Department of Computer Science Center for Visual Computing



## From B-Splines to NURBS



Department of Computer Science Center for Visual Computing



## **NURBS Weights**

- Weight increase "attracts" the curve towards the associated control point
- Weight decrease "pushes away" the curve from the associated control point



Department of Computer Science Center for Visual Computing

### NURBS





Department of Computer Science Center for Visual Computing

# **NURBS for Analytic Shapes**

- Conic sections
- Natural quadrics
- Extruded surfaces
- Ruled surfaces
- Surfaces of revolution

Department of Computer Science Center for Visual Computing

#### **NURBS** Circle



ST NY BR K

Department of Computer Science Center for Visual Computing

## **NURBS** Curve

- Geometric components
  - Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning ---- obtained from projection
- Properties of NURBS

 Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights





## **NURBS** Properties

- Generalization of B-splines and Bezier splines
- Unified formulation for free-form and analytic shape
- Weights as extra DOFs
- Various smoothness requirements
- Powerful geometric toolkits
- Efficient and fast evaluation algorithm
- Invariance under standard transformations
- Composite curves
- Continuity conditions



### **Properties of NURBS**

- Represent standard shapes.
- Invariant under perspective projection.
- B-Spline is a special case.
- Weights as extra degrees of freedom.
- Can represent analytic shapes such as circles.

Department of Computer Science Center for Visual Computing

#### **Geometric Modeling Techniques**

- Control Point Manipulation.
- Weight Modification.
- Knot Vector Variation.
- Dynamic Modeling



## **Control Point Manipulation**



Department of Computer Science Center for Visual Computing



## Weight Modification



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

#### **Knot Vector Variation**



Department of Computer Science Center for Visual Computing



## **Dynamic Modeling**



Department of Computer Science Center for Visual Computing

