CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
State University of New York at Stony Brook (Stony Brook University)
Stony Brook, New York 11794--4400
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.sunysb.edu
http://www.cs.sunysb.edu/~qin

Parametric Curves

Parametric Representations

- We are going to start the topic of parametric representation, especially for curves and surfaces
- But first, let us look at the concept of explicit, nonparametric representation

Explicit Representation

- Consider one example: a function $f(\theta)=\sin (\theta)$.
- This is the explicit description of a curve in 2 dimensions with parameter θ.
- This is an example of an unbounded curve (in that we can take values of θ from $-\infty$...+ $+\infty$. We'll limit our curve to the domain ($0 \ldots 2 \pi$). This gives the following curve:

Modeling vs. Rendering

- Now we must determine how fine or coarse a representation we need to use in order to display this curve.
- We will sample the curve at regular intervals of θ along the length of the curve. In this example, the curve will be sampled at regular points a unit distance apart (i.e. at $\theta=0,1,2 \ldots$).
- This yields the following sample points which we will join by straight lines which is the way the curve will be finally displayed on the raster:

Surfaces

- Note that the final representation is not very smooth. If the intervals are chosen carefully, however (for example, by relating the interval distance to the size of a pixel of the raster), then the curve representation will appear continuous and smooth.
- This technique may be extended to surfaces in the same manner (surfăces require 2 parameters):

Parametric Curves

- Please remember to make comparisons between parametric representations and the following equations:
- Explicit representation:
- $y=f(x)$
- Implicit representation:
- $f(x, y)=0$

Parametric Curves

-Why use parametric curves?

- Why curves (rather than polylines)?
- reduce the number of points
- interactive manipulation is easier
- Why parametric (as opposed to $\mathrm{y}, \mathrm{z}=\mathrm{f}(\mathrm{x})$))?
- arbitrary curves can be easily represented
- rotational invariance
- Why parametric (rather than implicit)?
- simplicity and efficiency

Explicit Representation

- Explicit, non-parametric representation will naturally lead to the concept of parametric curves and surfaces
- Bézier curves (de Casteljau '59, P. Bézier '62).
- Spline curves/surfaces (de Boor '72, Gordon et al. '74, Böhm '83).
- Bernstein-Bézier solids (Lasser '85), tensor product trivariate B-spline solid
 (Greissmair et all. '89).

$$
f(t, s)=\left(t, s, 1-\left(t^{2}+s^{2}\right)\right)
$$

Line (Geometric Line)

- Parametric representation $\mathbf{l}\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u$

$$
u \in[0,1]
$$

- Parametric representation is not unique
- In general

$$
\begin{aligned}
& \mathbf{p}(u) \\
& u \in[a, b]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{l}\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right)=\mathbf{0 . 5}\left(\mathbf{p}_{1}+\mathbf{p}_{0}\right)+\mathbf{0 . 5}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) v \\
& v \in[-1,1]
\end{aligned}
$$

- Re-parameterization (variable transformation)

$$
\begin{aligned}
& v=(u-a) /(b-a) \\
& u=(b-a) v+a \\
& \mathbf{q}(v)=\mathbf{p}((b-a) v+a) \\
& v \in[0,1]
\end{aligned}
$$

Basic Concepts

- Linear interpolation: $\mathbf{v}=\mathbf{v}_{0}(1-t)+\mathbf{v}_{1}(t)$
- Local coordinates: $\quad \mathbf{v} \in\left[\mathbf{v}_{0}, \mathbf{v}_{1}\right], t \in[0,1]$
- Re-parameterization: $f(u), u=g(v), f(g(v))=h(v)$
- Affine transformation:
- Polynomials

$$
f(a x+b y)=a f(x)+b f(y)
$$

- Continuity

Linear Interpolation

- Simplest "curve" between two points

$$
\begin{aligned}
& x(t)=g_{1 x}(1-t)+g_{2 x}(t) \\
& y(t)=g_{1 y}(1-t)+g_{2 y}(t) \\
& z(t)=g_{1 z}(1-t)+g_{2 z}(t)
\end{aligned}
$$

Linear and Bilinear Interpolation

Fundamental Features

- Geometry
- Position, direction, length, area, normal, tangent, etc.
- Interaction
- Size, continuity, collision, intersection
- Topology
- Differential
- Curvature, arc-length
- Physical
- Computer representation \& data structure
- Others!

Mathematical Formulations

- Point:
$\mathbf{p}=\left[\begin{array}{l}\mathbf{a}_{x} \\ \mathbf{a}_{y} \\ \mathbf{a}_{z}\end{array}\right]$
- Line: $\quad \mathbf{l}(u)=\left[\begin{array}{lll}\mathbf{a} & \mathbf{a} & \mathbf{a}\end{array}\right]^{T} u+\left[\begin{array}{lll}\mathbf{b} & \mathbf{b} & \mathbf{b}\end{array}\right]^{T}$
- Quadratic curve:

$$
\mathbf{q}(u)=\left[\begin{array}{lll}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z}
\end{array}\right]^{T} u^{2}+\left[\begin{array}{lll}
\mathbf{b}_{x} & \mathbf{b}_{y} & \mathbf{b}_{z}
\end{array}\right]^{T} u+\left[\begin{array}{lll}
\mathbf{c}_{x} & \mathbf{c}_{y} & \mathbf{c}_{z}
\end{array}\right]^{T}
$$

- Parametric domain and reparameterization:

$$
u \in\left[u_{s}, u_{e}\right] ; v \in[0,1] ; v=\left(u-u_{s}\right) /\left(u_{e}-u_{s}\right)
$$

Parametric Cubic Curves

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}, \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}, \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}, \quad 0 \leq t \leq 1 .
\end{aligned}
$$

Parameterization: The Basic Concept

Splines

- For a 3D spline, we have 3 polynomials:
$\left.\begin{array}{l}x(u)=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x} \\ y(u)=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d_{y} \\ z(u)=a_{z} u^{3}+b_{z} u^{2}+c_{z} u+d_{z}\end{array}\right\} \rightarrow\left[\begin{array}{lll}x(u) & y(u) & z(u)\end{array}\right]=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]\left[\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z}\end{array}\right] \rightarrow \mathbf{p}(u)=\mathbf{u} . \mathbf{C}$

12 unknowns

4 3D points required

Interpolation Curves

- Curve is constraimed to pass through all control points
- Given points $P_{0}, P_{1 s}, \ldots P_{n s}$ fiind lowest degree polynomial which passes through the points

$$
\begin{aligned}
& x(t)=a_{n-1} t^{n-1}+\ldots .+a_{2} t^{2}+a_{1} t+a_{0} \\
& y(t)=b_{n-1} t^{n-1}+\ldots .+b_{2} t^{2}+b_{1} t+b_{0}
\end{aligned}
$$

Parametric Polynomials

- High-order polynomials
$\mathbf{c}(u)=\left[\begin{array}{l}\mathbf{a}_{0, x} \\ \mathbf{a}_{0, y} \\ \mathbf{a}_{0, z}\end{array}\right]+\ldots+\left[\begin{array}{c}\mathbf{a}_{i, x} \\ \mathbf{a}_{i, y} \\ \mathbf{a}_{i, z}\end{array}\right] u^{i}+\ldots+\left[\begin{array}{c}\mathbf{a}_{n, x} \\ \mathbf{a}_{n, y} \\ \mathbf{a}_{n, z}\end{array}\right] u^{n}$
- No intuitive insight for the curved shape
- Difficult for piecewise smooth curves

Parametric Polynomials

Definition: What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

Interpolation Curves / Splines (Prior to the Digital Representation)

Interpolation vs. Approximation Curves

Interpolation vs. Approximation Curves

- Interpolation Curve - over constrained \rightarrow lots of (undesirable?) oscillations

Interpolating Splines: Applications

- Idea: Use key frames to indicate a series of positions that must be "hit"
- For example:
- Camera location
- Path for character to follow
- Animation of walking, gesturing, or facial expressions
- Morphing
- Use splines for smooth interpolation

How to Define a Curve?

- Specify a set of points for interpolation and/or approximation with fixed or unfixed parameterization

- Specify the derivatives at some locations
- What is the geometric meaning to specify derivatives?
- A set of constraints
- Solve constraint equations

One Example

- Two end-vertices: c(0) and c(1)
- One mid-point: c(0.5)
- Tangent at the mid-point: $c^{\prime}(0.5)$
- Assuming 3D curve

Cubic Polynomials

- Parametric representation (u is in [0,1])
$\left[\begin{array}{l}x(u) \\ y(u) \\ z(u)\end{array}\right]=\left[\begin{array}{l}a_{3} \\ b_{3} \\ c_{3}\end{array}\right] u^{3}+\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right] u^{2}+\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right] u+\left[\begin{array}{l}a_{0} \\ b_{0} \\ c_{0}\end{array}\right]$
- Each components are treated independently
- High-dimension curves can be easily defïned
- Alternatively ${ }_{x(u)=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]\left[\begin{array}{llll}a_{3} & a_{2} & a_{1} & a_{0}\end{array}\right]^{T}=U A}$

$$
\begin{aligned}
& y(u)=U B \\
& z(u)=U C
\end{aligned}
$$

Cubic Polynomial Example

- Constraints: two end-points, one mid-point, and tangent at the mid-point

$$
\begin{aligned}
& x(0)=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] A \\
& x(0.5)=\left[\begin{array}{llll}
0.5^{3} & 0.5^{2} & 0.5^{1} & 1
\end{array}\right] A \\
& x^{\prime}(0.5)=\left[\begin{array}{llll}
3(0.5)^{2} & 2(0.5) & 1 & 0
\end{array}\right] A \\
& x(1)=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] A
\end{aligned}
$$

- In matrix form
$\left[\begin{array}{c}x(0) \\ x(0.5) \\ x^{\prime}(0.5) \\ x(1)\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0.125 & 0.25 & 0.5 & 1 \\ 0.75 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] A$

Solve this Linear Equation

- Invert the Matrix

$$
A=\left[\begin{array}{cccc}
-4 & 0 & -4 & 4 \\
8 & -4 & 6 & -4 \\
-5 & 4 & -2 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(0.5) \\
x^{\prime}(0.5) \\
x(1)
\end{array}\right]
$$

- Rewrite the curve expression

$$
\left.\begin{array}{llll}
x(u)=U M[x(0) & x(0.5) & x^{\prime}(0.5) & x(1)
\end{array}\right]^{T}
$$

Basis Functions

- Special polynomials

$$
\begin{aligned}
& f_{1}(u)=-4 u^{3}+8 u^{2}-5 u+1 \\
& f_{2}(u)=-4 u^{2}+4 u \\
& f_{3}(u)=-4 u^{3}+6 u^{2}-2 u \\
& f_{4}(u)=4 u^{3}-4 u^{2}+1
\end{aligned}
$$

- What is the image of these basis functions?
- Polynomial curve can be defïned by

$$
\mathbf{c}(u)=\mathbf{c}(0) f_{1}(u)+\mathbf{c}(0.5) f_{2}(u)+\mathbf{c}^{\prime}(0.5) f_{3}(u)+\mathbf{c}(1) f_{4}(u)
$$

- Observations
- More intuitive, easy to control, polynomials

Lagrange Curve

- Point interpolation

Lagrange Curves

- Curve

$$
\mathbf{c}(u)=\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{a} \\
\mathbf{a}
\end{array}\right] L_{0}^{n}(u)+\ldots+\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{a} \\
\mathbf{a}
\end{array}\right] L_{n}^{n}(u)
$$

- Lagrange polynomials of degree n :
- Knot sequence:

$$
\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{n}
$$

$L_{i}^{n}(u)$

- Kronecker delta: $L_{i}^{n}\left(u_{j}\right)=\delta_{i j}$
- The curve interpolate all the data point, but unwanted oscillation

Lagrange Basis Functions

$$
\begin{aligned}
& L_{i}^{n}\left(u_{j}\right)=\left\{\begin{array}{cc}
1 & i=j(i, j=0,1, \ldots, n) \\
0 & \text { Otherwise }
\end{array}\right. \\
& L_{0}^{n}(u)=\frac{\left(u-u_{1}\right)\left(u-u_{2}\right) \ldots\left(u-u_{n}\right)}{\left(u_{0}-u_{1}\right)\left(u_{0}-u_{2}\right) \ldots\left(u_{0}-u_{n}\right)} \\
& L_{i}^{n}(u)=\frac{\left(u-u_{0}\right) \ldots\left(u-u_{i-1}\right)\left(u-u_{i+1}\right) \ldots\left(u-u_{n}\right)}{\left(u_{i}-u_{0}\right) \ldots\left(u_{i}-u_{i-1}\right)\left(u_{i}-u_{i+1}\right) \ldots\left(u_{i}-u_{n}\right)} \\
& L_{n}^{n}(u)=\frac{\left(u-u_{0}\right) \ldots\left(u-u_{n-2}\right)\left(u-u_{n-1}\right)}{\left(u_{n}-u_{0}\right) \ldots\left(u_{n}-u_{n-2}\right)\left(u_{n}-u_{n-1}\right)}
\end{aligned}
$$

Cubic Hermite Splines

Cubic Hermite Curve

- Hermite curve

$$
\mathbf{c}(u)=\left[\begin{array}{l}
x(u) \\
y(u) \\
z(u)
\end{array}\right]
$$

- Two end-points and two tangents at end-points
- Matrix inversion
$\left[\begin{array}{c}x(0) \\ x(1) \\ x^{\prime}(0) \\ x^{\prime}(1)\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0\end{array}\right] A$

$$
\left.\begin{array}{l}
x(u)=U\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
x^{\prime}(0) \\
x^{\prime}(1)
\end{array}\right] \\
y(u)=U M\left[\begin{array}{llll}
y(0) & y(1) & y^{\prime}(0) & y^{\prime}(1)
\end{array}\right]^{T} \\
z(u)=U M\left[\begin{array}{lll}
z(0) & z(1) & z^{\prime}(0)
\end{array} z^{\prime}(1)\right.
\end{array}\right]
$$

Hermite Curve

- Basis functions

$$
\begin{aligned}
& f_{1}(u)=2 u^{3}-3 u^{2}+1 \\
& f_{2}(u)=-2 u^{3}+3 u^{2} \\
& f_{3}(u)=u^{3}-2 u^{2}+u \\
& f_{4}(u)=u^{3}-u^{2}
\end{aligned}
$$

- Display the image of these basis functions and the Hermite curve itself

$$
\mathbf{c}(u)=\mathbf{c}(0) f_{1}(u)+\mathbf{c}(1) f_{2}(u)+\mathbf{c}^{\prime}(0) f_{3}(u)+\mathbf{c}^{\prime}(1) f_{4}(u)
$$

Cubic Hermite Splines

- Two vertices and two tangent vectors:

$$
\begin{aligned}
& \mathbf{c}(0)=\mathbf{v}_{0}, \mathbf{c}(1)=\mathbf{v}_{1} \\
& \mathbf{c}^{(1)}(0)=\mathbf{d}_{0}, \mathbf{c}^{(1)}(1)=\mathbf{d}_{1}
\end{aligned}
$$

- Hermite curve

$$
\begin{aligned}
& \mathbf{c}(u)=\mathbf{v}_{0} H_{0}^{3}(u)+\mathbf{v}_{1} H_{1}^{3}(u)+\mathbf{d}_{0} H_{2}^{3}(u)+\mathbf{d}_{1} H_{3}^{3}(u) \\
& H_{0}^{3}(u)=f_{1}(u), H_{1}^{3}(u)=f_{2}(u), H_{2}^{3}(u)=f_{3}(u), H_{3}^{3}(u)=f_{4}(u)
\end{aligned}
$$

Hermite Basis Functions

Varying the Magnitude of the

Tangent Vector

```
y(t)
4 \text { Tangent vector}
direction R1 at point
P for each curve
```

Tangent vector direction R_{4} at point P_{4}; magnitude fixed for each curve

Varying the Direction of the Tangent Vector

Hermite Splines

- Higher-order polynomials

$$
\begin{aligned}
& \mathbf{c}(u)=\mathbf{v}_{0}^{0} H_{0}^{n}(u)+\mathbf{v}_{0}^{1} H_{1}^{n}(u)+\ldots+\mathbf{v}_{0}^{(n-1) / 2} H_{(n-1) / 2}^{n}(u) \\
& +\mathbf{v}_{1}^{(n-1) / 2} H_{(n+1) / 2}^{n}(u)+\ldots+\mathbf{v}_{1}^{1} H_{(n-1)}^{n}(u)+\mathbf{v}_{1}^{0} H_{n}^{n}(u) ; \\
& \mathbf{v}_{0}^{i}=\mathbf{c}^{(i)}(0), \mathbf{v}_{1}^{i}=\mathbf{c}^{(i)}(1), i=0, \ldots(n-1) / 2 ;
\end{aligned}
$$

- Note that, n is odd!
- Geometric intuition
- Higher-order derivatives are required

Why Cubic Polynomials

- Lowest degree for specifying curve in space
- Lowest degree for specifying points to interpolate and tangents to interpolate
- Commonly used in computer graphics
- Lower degree has too little flexibility
- Higher degree is unnecessarily complex, exhibit undesired wiggles

Variations of Hermite Curve

- Variations of Hermite curves

$$
\begin{aligned}
& \mathbf{p}_{0}=\mathbf{c}(0) \\
& \mathbf{p}_{3}=\mathbf{c}(1) \\
& \mathbf{c}^{\prime}(0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right), \mathbf{p}_{1}=\mathbf{p}_{0}+\mathbf{c}^{\prime}(0) / 3 \\
& \mathbf{c}^{\prime}(1)=3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right), \mathbf{p}_{2}=\mathbf{p}_{3}-\mathbf{c}^{\prime}(1) / 3
\end{aligned}
$$

- In matrix form (x-component only)
$\left[\begin{array}{c}\mathbf{c}(0)_{x} \\ \mathbf{c}(1)_{x} \\ \mathbf{c}^{\prime}(0)_{x} \\ \mathbf{c}^{\prime}(1)_{x}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3\end{array}\right]\left[\begin{array}{l}\mathbf{p}_{0, x} \\ \mathbf{p}_{0, x} \\ \mathbf{p}_{0, x} \\ \mathbf{p}_{0, x}\end{array}\right]$

Cubic Bezier Curves

- Four control points to Bezier curve
- Curve geometry

Cubic Bézier Curve

- 4 control points
- Curve passes through the first \& last control points
- Curve is tangent at \mathbf{P}_{0} to $\left(\mathbf{P}_{0}-\mathbf{P}_{1}\right)$ and at \mathbf{P}_{4} to $\left(\mathbf{P}_{4}-\mathbf{P}_{3}\right)$

Curve Mathematics (Cubic)

- Bezier curve

$$
\boldsymbol{c}(u)=\sum_{i=0}^{3} \mathbf{p}_{i} \boldsymbol{B}_{i}^{3}(u)
$$

- Control points and basis functions

$$
\begin{aligned}
& B_{0}^{3}(u)=(1-u)^{3} \\
& B_{1}^{3}(u)=3 u(1-u)^{2} \\
& B_{2}^{3}(u)=3 u^{2}(1-u) \\
& B_{3}^{3}(u)=u^{3}
\end{aligned}
$$

- Image and properties of basis functions

Cubic Bézier Basis Functions

- \mathbf{P}_{3}

$$
\left.B_{1}\left(\frac{1}{v}\right)=\left(1-\frac{1}{2}\right)^{3}, B_{2}\left(\frac{1}{2}\right)=\frac{2}{2}\left(1-\frac{1}{2}\right)^{2}, B 3\left(\frac{1}{2}\right)=\frac{2}{2}\left(1-\frac{1}{2}\right) ; \frac{3}{2}\right)=\frac{1}{2}
$$

$$
Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}
$$

The Bernstein Polynomials ($\mathrm{n}=3$)

Recursive Evaluation

- Recursive linear interpolation

$$
\begin{aligned}
& \text { (1-u) (u) } \\
& \begin{array}{llll}
\mathbf{p}_{0}^{0} & \mathbf{p}_{1}^{0} & \mathbf{p}_{2}^{0} & \mathbf{p}_{3}^{0}
\end{array} \\
& \begin{array}{lll}
\mathbf{p}_{0}^{1} & \mathbf{p}_{1}^{1} & \mathbf{p}_{2}^{1}
\end{array} \\
& \mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2} \\
& \mathbf{p}_{0}^{3}=\mathbf{c}(u)
\end{aligned}
$$

Recursive Subdivision Algorithm

- de Casteljau's algorithm for constructing Bézier curves

Basic Properties (Cubic)

- The curve passes through the first and the last points (end-point interpolation)
- Linear combination of control points and basis functions
- Basis functions are all polynomials
- Basis functions sum to one (partition of unity)
- All is functions are non-negative
- Convex hull (both necessary and sufficient)
- Predictability

Derivatives

- Tangent vectors can easily evaluated at the endpoints $\quad \mathbf{c}^{\prime}(0)=3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) ; \mathbf{c}^{\prime}(1)=\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)$
- Second derivatives at end-points can also be easily computed:

$$
\begin{aligned}
& \mathbf{c}^{(2)}(0)=2 \times 3\left(\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)-\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)\right)=6\left(\mathbf{p}_{2}-2 \mathbf{p}_{1}+\mathbf{p}_{0}\right) \\
& \mathbf{c}^{(2)}(1)=2 \times 3\left(\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)-\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)\right)=6\left(\mathbf{p}_{3}-2 \mathbf{p}_{2}+\mathbf{p}_{1}\right)
\end{aligned}
$$

Derivative Curve

- The derivative of a cubic Bezier curve is a quadratic Bezier curve

$$
\begin{aligned}
& \mathbf{c}^{\prime}(u)=-3(1-u)^{2} \mathbf{p}_{0}+3\left((1-u)^{2}-2 u(1-u)\right) \mathbf{p}_{1}+3\left(2 u(1-u)-u^{2}\right) \mathbf{p}_{2}+3 u^{2} \mathbf{p}_{3}= \\
& 3\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)(1-u)^{2}+3\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) 2 u(1-u)+3\left(\mathbf{p}_{3}-\mathbf{p}_{2}\right) u^{2}
\end{aligned}
$$

More Properties (Cubic)

- Two curve spans are obtained, and both of them are standard Bezier curves (through reparameterization)

$$
\begin{aligned}
& c(v), v \in[0, u] \\
& c(v), v \in[u, 1] \\
& c_{l}(u), u \in[0,1] \\
& c_{r}(u), u \in[0,1]
\end{aligned}
$$

- The control points for the left and the right are

$$
\begin{aligned}
& \mathbf{P}_{0}^{0}, \mathbf{P}_{0}^{1}, \mathbf{P}_{0}^{2}, \mathbf{P}_{0}^{3} \\
& \mathbf{P}_{0}^{3}, P_{1}^{2}, \mathbf{P}_{2}^{1}, \mathbf{P}_{3}^{0}
\end{aligned}
$$

High-Degree Curves

- Generalizing to high-degree curves
- Advantages:

- Easy to compute, Infinitely differentiable
- Disadvantages:
- Computationally complex, undulation, undesired wiggles
- How about high-order Hermite? Not natural!!!

Higher-Order Bézier Curves

- > 4 control points
- Bernstein Polynomials as the basis functions

$$
B_{i}^{n}(t)=\frac{n!}{i!(n-i)!} t^{i}(1-t)^{n-i}
$$

$$
0 \leq i \leq n
$$

- Every control point affects the entire curve
- Not simply a local effect
- More difficult to control for modeling

The Bernstein Polynomials

Figure 4.6 Bézier basis functions: (a) Three points, $n=2$; (b) Four points, $n=3$; (c) Five points, $n=4$; (d) Six points, $n=5$.

Bezier Curves (Degree n)

- Curve: $c(u)=\sum_{i=0}^{n} p_{i} B_{i}^{n}(u)$
- Control points p_{i}
- Basis functions $B_{i}^{n}(u)$ are bernstein polynomials of degree n :

$$
\begin{aligned}
& B_{i}^{n}(u)=\binom{n}{i} u^{i}(1-u)^{n-i} \\
& \binom{n}{i}=\frac{n!}{(n-i)!i!}
\end{aligned}
$$

Recursive Computation:
 The De Casteljau Algorithm

$$
B_{i}^{n}(u)=(1-u) B_{i}^{n-1}(u)+u B_{i-1}^{n-1}(u)
$$

$$
\begin{aligned}
B_{i}^{n}(u) & =\binom{n}{i} u^{i}(1-u)^{n-i} \\
& =\binom{n-1}{/ i} u^{i}(1-u)^{n-i}+\binom{n-1}{i-1} u^{i}(1-u)^{n-i} \\
& =(1-u) B_{i}^{n-1}(u)+u B_{i-1}^{n-1}(u)
\end{aligned}
$$

Recursive Computation

$$
\begin{aligned}
& \mathbf{p}_{i}^{0}=\mathbf{p}_{i}, i=0,1,2, \ldots n \\
& \mathbf{p}_{i}^{j}=(1-u) \mathbf{p}_{i}^{j-1}+u \mathbf{p}_{i+1}^{j-1} \\
& \mathbf{c}(u)=\mathbf{p}_{0}^{n}(u)
\end{aligned}
$$

Recursive Computation

- $\mathrm{N}+1$ levels

$$
\begin{aligned}
& \text { (1-u) (u) } \\
& \mathrm{P}_{0}^{\mathrm{O}} \ldots \mathrm{P}_{n}^{0} \\
& \mathbf{P}_{0}^{1} \quad \cdots \quad \mathbf{P}_{n-1}^{1} \\
& P_{0}^{n-1} P_{1}^{n-1} \\
& p_{0}^{n}=c(u)
\end{aligned}
$$

Properties

- End point interpolation.
- Basis functions are non-negative.
- The summation of basis functions are unity
- Binomial Expansion Theorem:

$$
1=[u+(1-u)]^{n}=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Convex hull: the curve is bounded by the convex hull defined by the control points.

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(\mathbf{O})=\mathbf{p}_{0}, \mathbf{c}(1)=\mathbf{p}_{n}$
- Binomial expansion theorem

$$
((1-u)+u)^{n}=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Convex hull: the curve is bounded by the convex hull defined by control points

More properties

- Recursive subdivision and evaluation
- Symmetry: $c(u)$ and $c(1-u)$ are defined by the same set of point points, but different ordering

$\mathbf{p}_{0}, \ldots, \mathbf{p}_{n} ;$

 $\mathbf{p}_{n}, \ldots, \mathbf{p}_{0}$
Tangents and Derivatives

- End-point tangents: $\mathbf{c}^{\prime}(0)=n\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)$

$$
\mathbf{c}^{\prime}(1)=n\left(\mathbf{p}_{n}-\mathbf{p}_{n-1}\right)
$$

- I-th derivatives at two end-points depend on

$$
\begin{aligned}
& \mathbf{p}_{0}, \ldots, \mathbf{p}_{i} ; \\
& \mathbf{p}_{n}, \ldots, \mathbf{p}_{n-i}
\end{aligned}
$$

- Derivatives at non-end-points involve all control points

Tangents and Derivatives

End-point tangents:

$$
\begin{gathered}
c^{\prime}(0)=n\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
\mathbf{c}^{\prime}(1)=n\left(\mathbf{p}_{n}-\mathbf{p}_{n-1}\right)
\end{gathered}
$$

i-th derivatives:
$c^{(i)}(0)$ depends only on p_{0}, \ldots, p_{i}
$\mathrm{c}^{(i)}(1)$ depends only on $\mathrm{p}_{n}, \ldots, \mathrm{p}_{n-i}$
Derivatives at non-end-points: $\mathbf{c}^{(i)}(u)$ involve all control points

Other Advanced Topics

- Efficient evaluation algorithm
- Differentiation and integration
- Degree elevation
- Use a polynomial of degree ($\mathrm{n}+1$) to express that of degree (n)
- Composite curves
- Geometric continuity
- Display of curve

Bezier Curve Rendering

- Use its control polygon to approximate the curve
- Recursive subdivision till the tolerance is satisfied
- Algorithm go here
- If the current control polygon is flat (with tolerance), then output the line segments, else subdivide the curve at $\mathrm{u}=0.5$
- Compute control points for the left half and the right half, respectively
- Recursively call the same procedure for the left one and the right one

High-Degree polynomials

- More degrees of freedom
- Easy to compute
- Infinitely differentiable
- Drawbacks:
- High-order
- Global control
- Expensive to compute, complex
- undulation

Piecewise Polynomials

- Piecewise --- different polynomials for different parts of the curve
- Advantages --- flexible, low-degree
- Disadvantages --- how to ensure smoothness at the joints (continuity)

Piecewise Curves

Piecewise Bezier Curves

Continuity

- One of the fundamental concepts
- Commonly used cases:

- Consider two curves: $a(u)$ and $b(u)(u$ is in [0,1])

Continuity

- One of the fundamental concepts.
- Commonly used cases: $\mathrm{C}^{0}, \mathrm{C}^{1}, \mathrm{C}^{2}$, etc.
- C^{0} Continuity: Position.
- C^{1} Continuity: Velocity.
- C^{2} Continuity: Acceleration.

Continuity

- Continuity between two parametric curves:
- Geometric continuity
- G^{0} : the two curves are connected
- G^{1} : the two tangents have the same direction
- Parametric continuity
- C^{0} : the two curves are connected
- \mathbf{C}^{1} : the two tangents are equal

Continuity Definitions:

- C^{0} continuous
- curve/surface has no breaks/gaps/holes
- "watertight"
- C^{1} continuous

- curve/surface derivative is continuous
- "looks smooth, no facets"
- C^{2} continuous
- curve/surface $2^{\text {nd }}$ derivative is continuous
nemence Actually important for shading

Positional Continuity

$\mathbf{a}(1)=\mathbf{b}(0)$

Derivative Continuity

$\mathbf{a}(1)=\mathbf{b}(0)$
 $\mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)$

General Continuity

- Cn continuity: derivatives (up to n-th) are the same at the joining point

$$
\begin{aligned}
& \mathbf{a}^{(i)}(1)=\mathbf{b}^{(i)}(\mathrm{O}) \\
& i=0,1,2, \ldots, n
\end{aligned}
$$

- The prior definition is for parametric continuity
- Parametric continuity depends of parameterization! But, parameterization is not unique!
- Different parametric representations may express the same geometry
- Re-parameterization can be easily implemented
- Another type of continuity: geometric continuity, or Gn

Geometric Continuity

- G0 and G1

Geometric Continuity

- Depend on the curve geometry
- DO NOT depend on the underlying parameterization
- G0: the same joint
- G1: two curve tangents at the joint align, but may (or may not) have the same magnitude
- G1: it is C1 after the reparameterization
- Which condition is stronger???
- Examples

Hermite Spline

- A Hermite spline is a curve for which the user provides:
- The endpoints of the curve
- The parametric derivatives of the curve at the endpoints (tangent directions with magnitude)
- The parametric derivatives are $d x / d t t, d y / d t$, $d t / d t$
- That is enough to define a cubic Hermite spline

Control Point Interpretation

End Point

Start Point

Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints.
- C^{0} continuity:

$$
a(1)=b(0)
$$

- C^{1} continuity:

$$
\begin{aligned}
& a^{a}(1)=b(0) \\
& a^{\prime}(1)=b^{\prime}(0)
\end{aligned}
$$

- G^{I} continuity:

$$
\begin{aligned}
& a(1)=b(0) \\
& a^{\prime}(1)=\alpha b^{3}(0)
\end{aligned}
$$

Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints
- C0 continuity $\quad \mathbf{a}(1)=b(0)$
- C1 continuity $\mathbf{a}(1)=\mathbf{b}(0)$

$$
\mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)
$$

- G1 continuity

$$
\begin{aligned}
& \mathbf{a}(1)=\mathbf{b}(0) \\
& \mathbf{a}^{\prime}(1)=\alpha \mathbf{b}^{\prime}(0)
\end{aligned}
$$

Obtaining Geometric Continuity G1

$$
\left[\begin{array}{l}
P_{1} \\
P_{4} \\
R_{1} \\
R_{4}
\end{array}\right] \text { and }\left[\begin{array}{c}
P_{4} \\
P_{7} \\
k R_{4} \\
R_{7}
\end{array}\right] \text {, with } k>0 .
$$

for parametric continuity $\mathrm{C}^{1}, \mathrm{k}=1$

Piecewise Hermite Curves

Hermite Spline

- Say the user provides

$$
\mathbf{x}_{0}, \mathbf{x}_{1},\left.\frac{d \mathbf{x}_{0}}{d t}\right|_{0},\left.\frac{d \mathbf{x}_{1}}{d t}\right|_{1}
$$

- A cubic spline has degree 3, and is of the form:

$$
x=a t^{3}+b t^{2}+c t+d
$$

- For some constants a, b, c and d derived from the control points, but how?
- We have constraints:
- The curve must pass through x_{0}, when $t=0$
- The derivative must be $x_{0}{ }_{0}$ when $t=0$
- The curve must pass through x_{11} when $t=1$
- The derivative must be $x_{1}{ }_{1}$ when $t=1$

Hermite Spline

- Solving for the unknowns gives:
- Rearranging gives:

$$
\begin{aligned}
& a=-2 x_{1}+2 x_{0}+x_{1}^{\prime}+x_{0}^{\prime} \\
& b=3 x_{1}-3 x_{0}-x_{1}^{\prime}-2 x_{0}^{\prime} \\
& c=x_{0}^{\prime} \\
& d=x_{0}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{x} & =\mathbf{x}_{1}\left(-2 t^{3}+3 t^{2}\right) \\
& +\mathbf{x}_{0}\left(2 t^{3}-3 t^{2}+1\right) \\
& +\mathbf{x}_{1}^{\prime}\left(t^{3}-t^{2}\right) \\
& +\mathbf{x}_{0}^{\prime}\left(t^{3}-2 t^{2}+t\right)
\end{aligned}
$$

$x=\left[\begin{array}{llll}x_{1} & x_{0} & x_{1}^{\prime} & x_{0}^{\prime}\end{array}\right]\left[\begin{array}{cccc}-2 & 3 & 0 & 0 \\ 2 & -3 & 0 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0\end{array}\right]\left[\begin{array}{c}t^{3} \\ t^{2} \\ t \\ 1\end{array}\right]$

Basis Functions

- A point on a Hermite curve is obtained by multiplying each control point by some function and summing

Piecewise Hermite Curves

piecewise hermite curves

Piecewise Bezier Curves

Connecting Cubic Bézier Curves

- How can we guarantee C0 continuity (no gaps between two curves)?
- How can we guarantee C1 continuity (tangent vectors match)?
- Asymmetric: Curve goes through some control points but misses others

Connecting Cubic Bézier Curves

Curve Editor

- Where is this curve
- C^{0} continuous?
- G^{1} continuous?
- C^{1} continuous?
- What's the relationship between:
- the \# of control points, and
- the \# of cubic Bézier sub-curves?

Piecewise Bezier Curves

- C 0 continuity
- G1 continuity

$$
\begin{aligned}
& \mathbf{p}_{3}=\mathbf{q}_{0} \\
& \left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
& \mathbf{p}_{3}=\mathbf{q}_{0} \\
& \left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\alpha\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)
\end{aligned}
$$

- C2 continuity

$\mathbf{p}_{3}=\mathbf{q}_{0}$

$$
\begin{aligned}
& \mathbf{p}_{3}=\mathbf{q}_{0} \\
& \left(\mathbf{p}_{3}-\mathbf{p}_{2}\right)=\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right)
\end{aligned}
$$

- Geometric interpretation

$$
\mathbf{p}_{3}-2 \mathbf{p}_{2}+\mathbf{p}_{1}=\mathbf{q}_{2}-2 \mathbf{q}_{1}+\mathbf{q}_{0}
$$

- G2 continuity

Piecewise C2 Bezier Curves

Continuity Summary

- C0: straightforward, but not enough
- C3: too constrained
- Piecewise curves with Hermite and Bezier representations satisfying various continuity conditions
- Interactive system for C2 interpolating splines using piecewise Bezier curves
- Advantages and disadvantages

C2 Interpolating Splines

Natural C2 Cubic Splines

- A set of piecewise cubic polynomials
$\mathbf{c}_{i}(u)=\left[\begin{array}{l}x(u) \\ y(u) \\ z(u)\end{array}\right]$
- C2 continuity at each vertex

C² Interpolating Splines

C² Interpolating Splines

- Interpolate all control points
- Equivalent to a thin strip of metal in a physical sense.
- Forced to pass through a set of desired points.
- Advantages:
- interpolation,
$=\mathrm{C}^{2}$
- Disadvantages:
- No local control (if one point is changes, the entire curve will move)
- How to overcome the drawbacks: B-splines.

Natural C2 Cubic Splines

Natural Splines

- Interpolate all control points
- Equivalent to a thin strip of metal in a physical sense
- Forced to pass through a set of desired points
- No local control (global control)
- N+1 control points
- N pieces
- $2(n-1)$ conditions
- We need two additional conditions

Natural Splines

- Interactive design system
- Specify derivatives at two end-points
- Specify the two internal control points that define the first curve span
- Natural end conditions: second-order derivatives at two end points are defined to be zero
- Advantages: interpolation, C2
- Disadvantages: no local control (if one point is changed, the entire curve will move)
- How to overcome this drawback: B-Splines

[^0]
Center for Visual Computing

B-Splines Motivation

- The goal is local control!!!
- B-splines provide local control
- Do not interpolate control points
- C2 continuity
- Alternatively
- Catmull-Rom Splines
- Keep interpolations
- Give up C2 continuity (only C1 is achieved)
- Will be discussed later!!!

C2 Approximating Splines

From B-Splines to Bezier

Cubic B-spline Curves (One Curve Span)

- ≥ 4 control points
- Locally cubic
- Curve is not constrained to pass through any

Cubic B-spline Curve (One Curve Span)

$$
Q(t)=\frac{(1-t)^{3}}{6} \bar{F}_{-3}+\frac{3^{3}-\theta t^{2}+4}{6} F_{i-2}+\frac{-\xi^{3}+3 t^{2}+3 t+1}{\theta} F_{i-1}+\frac{t^{3}}{6} F_{i}
$$

Cubic B-Spline Curve (Many Curve Spans)

- cam be chaimed together with a hiigher-order comtimuity
- better controll locally (windowiog)

Bézier Curve vs. B-Spline Curve

- Bezier curve is NOT the same as B-Spline curve!

Bezier is not the same as B-spline

- But we can convert between the curves using the basis functions:

$$
\begin{aligned}
B_{\text {Bezier }} & =\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
B_{B-\text { Spline }} & =\frac{1}{6}\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Bézier Curve vs．B－Spline Curve

Bézier
\square 回回 Curve Editor

Convertina between Bézier \& B-Spline
 - $\square_{\text {- }}$

 original control points as Bézier

> original control points as BSpline

Uniform B-Splines

- B-spline control points: $\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{n}$
- Piecewise Bezier curves with C2 continuity at joints
- Bezier control points:

$$
\begin{aligned}
& \mathbf{v}_{\mathrm{o}}=\mathbf{p}_{\mathrm{o}} \\
& \mathbf{v}_{1}=\frac{2 \mathbf{p}_{1}+\mathbf{p}_{2}}{3} \\
& \mathbf{v}_{2}=\frac{\mathbf{p}_{1}+2 \mathbf{p}_{2}}{3} \\
& \mathbf{v}_{\mathrm{o}}=\frac{1}{2}\left(\frac{\mathbf{p}_{\mathrm{o}}+2 \mathbf{p}_{1}}{3}+\frac{2 \mathbf{p}_{1}+\mathbf{p}_{2}}{3}\right)=\frac{1}{6}\left(\mathbf{p}_{\mathrm{o}}+4 \mathbf{p}_{1}+\mathbf{p}_{2}\right) \\
& \mathbf{v}_{3}=\frac{1}{6}\left(\mathbf{p}_{1}+4 \mathbf{p}_{2}+\mathbf{p}_{3}\right)
\end{aligned}
$$

Uniform B-Splines

- In general, I-th segment of B-splines is determined by four consecutive B-spline control points

$$
\begin{aligned}
& \mathbf{v}_{1}=\frac{2 \mathbf{p}_{i+1}+\mathbf{p}_{i+2}}{3} \\
& \mathbf{v}_{2}=\frac{\mathbf{p}_{i+1}+2 \mathbf{p}_{i+2}}{3} \\
& \mathbf{v}_{0}=\frac{1}{6}\left(\mathbf{p}_{i}+4 \mathbf{p}_{i+1}+\mathbf{p}_{i+2}\right) \\
& \mathbf{v}_{3}=\frac{1}{6}\left(\mathbf{p}_{i+1}+4 \mathbf{p}_{i+2}+\mathbf{p}_{i+3}\right)
\end{aligned}
$$

Uniform B-Splines

- In matrix form

$$
\left[\begin{array}{l}
\mathbf{v}_{0} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{llll}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i} \\
\mathbf{p}_{i+1} \\
\mathbf{p}_{i+2} \\
\mathbf{p}_{i+3}
\end{array}\right]
$$

- Question: how many Bezier segments???

B-Spline Properties

- C2 continuity, Approximation, Local control, convex hull
- Each segment is determined by four control points
- Questions: what happens if we put more than one control points in the same location???
- Double vertices, triple vertices, collinear vertices
- End conditions
- Double endpoints: curve will be tangent to line between first distinct points
- Triple endpoint: curve interpolate endpoint, start with a line segment
- B-spline display: transformitto-Bezier-curves

Catmull-Rom Splines

Catmull-Rom Splines

- Keep interpolation
- Give up C2 continuity
- Control tangents locally
- Idea: Bezier curve between successive points
- How to determine two internal vertices

Catmull-Rom Spline

- Different from Bezier curves in that we can have arbitrary number of control points, but only 4 of them influence each section of curve
- And it is interpolating (goes through points) instead of approximating (goes "near" points)
- Four points define curve between $2^{\text {nd }}$ and $3^{\text {rd }}$

Catmull-Rom Spline: Example

$\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$

Catmull-Rom Splines

- In matrix form
$\left[\begin{array}{c}\mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3}\end{array}\right]=\frac{1}{6}\left[\begin{array}{cccc}0 & 6 & 0 & 0 \\ -1 & 6 & 1 & 0 \\ 0 & 1 & 6 & -1 \\ 0 & 0 & 6 & 0\end{array}\right]\left[\begin{array}{c}\mathbf{p}_{i-1} \\ \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2}\end{array}\right]$
- Problem: boundary conditions
- Properties: C1, interpolation, local control, non-convex-hull

Cardinal Splines

- Four vertices define end-points and their associated tangents

$$
\begin{aligned}
& \mathbf{c}(0)=\mathbf{v}_{1}, \mathbf{c}(1)=\mathbf{v}_{2} \\
& \mathbf{c}^{(1)}(0)=\frac{1}{2}(1-\alpha)\left(\mathbf{v}_{2}-\mathbf{v}_{0}\right) \\
& \mathbf{c}^{(1)}(1)=\frac{1}{2}(1-\alpha)\left(\mathbf{v}_{3}-\mathbf{v}_{1}\right)
\end{aligned}
$$

- Special case: Catmull-Rom splines when $\alpha=0$
- More general case: Kochanek-Bartels splines
- Tension, bias, continuity parameters

Cardinal Splines

Kochanek-Bartels Splines

- Four vertices to define four conditions

$$
\begin{aligned}
& \mathbf{c}(0)=\mathbf{v}_{1}, \mathbf{c}(1)=\mathbf{v}_{2} \\
& \mathbf{c}^{(1)}(0)=\frac{1}{2}(1-\alpha)\left((1+\beta)(1-\gamma)\left(\mathbf{v}_{1}-\mathbf{v}_{0}\right)+(1-\beta)(1+\gamma)\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right)\right) \\
& \mathbf{c}^{(1)}(1)=\frac{1}{2}(1-\alpha)\left((1+\beta)(1+\gamma)\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right)+(1-\beta)(1-\gamma)\left(\mathbf{v}_{3}-\mathbf{v}_{2}\right)\right)
\end{aligned}
$$

- Tension parameter:
- Bias parameter:
- Continuity parameter:

Piecewise B-Splines

B-Spline Basis Functions

$$
\begin{aligned}
& B_{i, 1}(u)= \begin{cases}1 & u_{i}<=u<u_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& B_{i, k}(u)=\frac{u-u_{i}}{u_{i+k-1}-u_{i}} B_{i, k-1}(u)+\frac{u_{i+k}-u}{u_{i+k}-u_{i+1}} B_{i+1, k-1}(u)
\end{aligned}
$$

B-Spline Basis Functions

B-Spline Basis Functions

Basis Functions

- Linear examples

$$
\begin{aligned}
& B_{0,2}(u)=\left\{\begin{array}{cl}
u & u \in[0,1] \\
2-u & u \in[1,2]
\end{array}\right. \\
& B_{1,2}(u)=\left\{\begin{array}{cl}
u-1 & u \in[1,2] \\
3-u & u \in[2,3]
\end{array}\right. \\
& B_{2,2}(u)= \begin{cases}u-2 & u \in[2,3] \\
4-u & u \in[3,4]\end{cases}
\end{aligned}
$$

- How does it look like???

Basis Functions

- Quadratic cases (knot vector is [0,1,2,3,4,5,6])

$$
\begin{aligned}
& B_{0,3}(u)=\left\{\begin{array}{cc}
\frac{1}{2} u^{2}, & 0<=u<1 \\
\frac{1}{2} u(2-u)+\frac{1}{2}(u-1)(3-u), & 1<=u<2 \\
\frac{1}{2}(3-u)^{2}, & 2<=u<3
\end{array}\right. \\
& B_{1,3}(u)=\left\{\begin{array}{cc}
\frac{1}{2}(u-1)^{2}, & 1<=u<2 \\
\frac{1}{2}(u-1)(3-u)+\frac{1}{2}(u-2)(4-u), & 2<=u<3 \\
\frac{1}{2}(4-u)^{2}, & 3<=u<4
\end{array}\right. \\
& B_{2,3}(u)=\ldots \ldots
\end{aligned}
$$

- Cubic example

B-Spline Basis Function Image

B-Spline Basis Functions

B-Spline Basis Function

B-Spline Basis Function

B-Spline Basis Function

Higher-degree basis
functions are obtained via convolution

B-Spline Basis Function

Area under the product curve

B-Spline Basis Function

B-Spline Basis Function

Degree One

B-Spline Basis Function

B-Spline Basis Function

Degree Three

B-Spline Basis Function

B-Spline Basis Functions

B-Spline Basis Function

B-Splines

B-Splines

B-Spline Applications

Data Interpolation with B-Splines

B-Spline Data Interpolation

Zero Degree

Nearest Neighbor

B-Spline Data Interpolation

Zero Degree

Nearest Neighbor

B-Spline Data Interpolation

Zero Degree

Nearest Neighbor

B-Spline Data Interpolation

Zero Degree
Nearest Neighbor

BSplines Interpolation

First Order
Linear Interpolation

BSplines Interpolation

First Order
Linear Interpolation

BSplines Interpolation

First Order
Linear Interpolation

BSplines Interpolation

First Order
Linear Interpolator

BSplines Interpolation

 Second OrderQuadratic Interpolation

BSplines Interpolation

 Second OrderQuadratic Interpolation

BSplines Interpolation

 Second OrderQuadratic Interpolation

BSplines Interpolation

Second Order
Quadratic Interpolator

BSplines Interpolation

Third Order
Cubic Interpolation

BSplines Interpolation

Third Order
Cubic Interpolation

BSplines Interpolation

Third Order
Cubic Interpolation

BSplines Interpolation

Third Order
Cubic Interpolator

B-Splines

- Mathematics

$$
\mathbf{c}(u)=\sum_{i=0}^{n} \mathbf{p}_{i} B_{i, k}(u)
$$

- Control points and basis functions of degree (k 1)
- Piecewise polynomials
- Basis functions are defined recursively
- We also have to introduce a knot sequence
$(n+k+1)$ in a non-decreasing order

$$
u_{0}, u_{1}, u_{2}, u_{3}, \ldots \ldots, u_{n+k}
$$

- Note that, the parametric domain: $u \in\left[u_{k-1}, u_{n+1}\right]$

Basis Functions

$$
B_{2,4} \quad B_{3,4} .
$$

B-Spline Facts

- The curve is a linear combination of control points and their associated basis functions (($\mathrm{n}+1)$ control points and basis functions, respectively)
- Basis functions are piecewise polynomials defined (recursively) over a set of non-decreasing knots

$\left\{u_{0}, \ldots . . ., u_{k-1}, \ldots \ldots, u_{n+1}, \ldots \ldots ., u_{n+k}\right\}$

- The degree of basis functions is independent of the number of control points (note that, I is index, k is the order, $\mathrm{k}-1$ is the degree)
- The first k and last k knots do NOT contribute to the parametric domain. Parametric domain is only defined by-a-subset of knots

B-Spline Properties

- $\mathrm{C}(\mathrm{u})$: piecewise polynomial of degree ($\mathrm{k}-1$)
- Continuity at joints: C(k-2)
- The number of control points and basis functions: $(\mathrm{n}+1)$
- One typical basis function is defined over k subintervals which are specified by $k+1$ knots ([u(k), $\mathrm{u}(\mathrm{I}+\mathrm{k})]$)
- There are $n+k+1$ knots in total, knot sequence divides the parametric axis into $n+k$ sub-intervals
- There are $(\mathrm{n}+1)-(\mathrm{k}-1)=\mathrm{n}-\mathrm{k}+2$ sub-intervals within the parametric domain ([u(k-1), u(n+1)])

B-Spline Properties

- There are $n-k+2$ piecewise polynomials
- Each curve span is influenced by k control points
- Each control points at most affects k curve spans
- Local control!!!
- Convex hull
- The degree of B-spline polynomial can be independent from the number of control points
- Compare B-spline with Bezier!!!
- Key components: control points, basis functions, knots, parametric domain, local vs. global control, continuity

B-Spline Properties

- Partition of unity, positivity, and recursive evaluation of basis functions
- Special cases: Bezier splines
- Efficient algorithms and tools
- Evaluation, knot insertion, degree elevation, derivative, integration, continuity
- Composite Bezier curves for B-splines

Uniform B-Spline

Another Formulation

- Uniform B-spline
- Parameter normalization (u is in [0,1])
- End-point positions and tangents

$$
\begin{aligned}
& c(O)=\frac{1}{6}\left(p_{0}+4 p_{1}+p_{2}\right) \\
& \boldsymbol{c}(1)=\frac{1}{6}\left(p_{1}+4 p_{2}+p_{3}\right) \\
& \boldsymbol{c}^{\prime}(O)=\frac{1}{2}\left(\mathbf{p}_{2}-p_{0}\right) \\
& c^{\prime}(1)=\frac{1}{2}\left(p_{3}-p_{1}\right)
\end{aligned}
$$

Another Formulation

- Matrix representation

- Basis matrix
$M=\frac{1}{6}\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0\end{array}\right]$

Basis Functions

- Note that, u is now in $[0,1]$

$$
\begin{aligned}
& B_{0,4}(u)=\frac{1}{6}(1-u)^{3} \\
& B_{1,4}(u)=\frac{1}{6}\left(3 u^{3}-6 u^{2}+4\right) \\
& B_{2,4}(u)=\frac{1}{6}\left(-3 u^{3}+3 u^{2}+3 u+1\right) \\
& B_{3,4}(u)=\frac{1}{6}(u)^{3}
\end{aligned}
$$

B-Spline Basis Functions

Uniform Non-rational B-Splines

Uniform Non-rational B-Splines

Uniform Non-rational B-Splines multiple control points

B-Spline Rendering

- Transform it to a set of Bezier curves
- Convert the I-th span into a Bezier representation

$$
\begin{aligned}
& \mathbf{P}_{i}, \mathbf{P}_{i+1}, \ldots \ldots, \mathbf{P}_{i+k-1} \\
& \mathbf{V}_{\mathrm{O}}, \mathbf{V}_{1}, \ldots, \ldots, \mathbf{V}_{k-1}
\end{aligned}
$$

- Consider the entire B-spline curve

$$
\begin{aligned}
& \mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \ldots \ldots, \mathbf{p}_{n} \\
& \mathbf{v}_{0}, \ldots \ldots, \mathbf{v}_{3}, \mathbf{v}_{4}, \ldots \ldots, \mathbf{v}_{7}, \ldots \ldots, \mathbf{v}_{4(n-3)}, \ldots \ldots, \mathbf{v}_{4(n-3)+3}
\end{aligned}
$$

Matrix Expression

- The matrix structure and components of B ?

- The matrix structure and components of A?

B-Spline Discretization

- Parametric domain: $[\mathrm{u}(\mathrm{k}-1), \mathrm{u}(\mathrm{n}+1)]$
- There are $n+2-k$ curve spans (pieces)
- Assuming $m+1$ points per span (uniform sampling)
- Total sampling points $m(n+2-k)+1=1$
- B-spline discretization with corresponding parametric values:

$$
\begin{aligned}
& \mathbf{q}_{0}, \ldots \ldots, \mathbf{q}_{l-1} \\
& \mathbf{v}_{0}, \ldots \ldots, \mathbf{v}_{l-1} \\
& \mathbf{q}_{i}=\mathbf{c}\left(v_{i}\right)=\sum_{j=0}^{n} \mathbf{p}_{j} \boldsymbol{B}_{j, k}\left(v_{i}\right)
\end{aligned}
$$

B-Spline Discretization

- Matrix equation

- A is $(\mathrm{l}) \mathrm{x}(\mathrm{n}+1)$ matrix, in general (l$)$ is much larger than ($\mathrm{n}+1$), so A is sparse
- The linear discretization for both modeling and rendering

Displaying Bezier Spline

- A Bezier curve with 4 control points:

$$
\begin{array}{llll}
-P_{0} & P_{1} & P_{2} & P_{3}
\end{array}
$$

- Can be split into 2 new Bezier curves:

$$
\begin{array}{llll}
-P_{0} & P_{1}^{\prime} & P_{2}^{\prime} & P_{3}^{\prime} \\
-P_{3}^{\prime} & P_{4}^{\prime} & P_{5}^{\prime} & P_{3}
\end{array}
$$

Connecting Cubic B-Spline Curves

- What's the relationship between
- the \# of control points, and
- the \# of cubic BSpline subcurves?

B-Spline Curve Control Points

Default BSpline

BSpline with
Discontinuity

BSpline which passes through end points

From B-Splines to NURBS

- What are NURBS???
- Non Uniform Rational B-Splines (NURBS)
- Rational curve motivation
- Polynomial-based splines can not represent commonlyused analytic shapes such as conic sections (e.g., circles, ellipses, parabolas)
- Rational splines can achieve this goal
- NURBS are a unified representation
- Polynomial, conic section, etc.
- Industry standard

NURBS (as Generalized B-Splines)

- B-Spline: uniform cubic B-Spline
- NURBS: Non-Uniform Rational B-Spline - non-uniform = different spacing between the blending functions, a.k.a. knots
- rational $=$ ratio of polynomials (instead of cubic)

From B-Splines to NURBS

- B-splines

$$
\mathbf{c}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}
\mathbf{p}_{i, x} w_{i} \\
\mathbf{p}_{i, y} w_{i} \\
\mathbf{p}_{i, z} w_{i} \\
w_{i}
\end{array}\right] \boldsymbol{B}_{i, k}(u)
$$

- NURBS (curve)

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} \boldsymbol{B}_{i, k}(\boldsymbol{u})}{\sum_{i=0}^{n} w_{i} \boldsymbol{B}_{i, k}(\boldsymbol{u})}
$$

NURBS

- NURBS mathematics:

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i, k}(u)}{\sum_{i=0}^{n} w_{i} B_{i, k}(u)}
$$

- Geometric Meaning--- obtained from projection!
- B-splines in homogenous representation
$\mathbf{C}(\mathbf{u})=\left[\begin{array}{c}x(u) \\ y(u) \\ z(u) \\ w(u)\end{array}\right]=\sum_{i=0}^{n}\left[\begin{array}{c}\mathbf{p}_{i, x} w_{i} \\ \mathbf{p}_{i, y} w_{i} \\ \mathbf{p}_{i, z} w_{i} \\ w_{i}\end{array}\right] B_{i, k}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}\mathbf{p}_{i} w_{i} \\ \mathbf{w}_{i}\end{array}\right] B_{i, k}(u)$

Geometric NURBS

- Non-Uniform Rational B-Splines (NURBS)
- CAGD industry standard --- useful properties
- Degrees of freedom
- Control points
- Weights

Rational Bezier Curve

- Projecting a Bezier curye onto w=1 plane

Revisit Two Important Concepts

- Perspective Projection
- Homogeneous Coordinates

Perspective Projection

Consider Linear Case

$$
\begin{aligned}
& \frac{\left[\begin{array}{l}
x_{0} w_{0} \\
y_{0} w_{0}
\end{array}\right](1-u)+\left[\begin{array}{l}
x_{1} w_{1} \\
y_{1} w_{1}
\end{array}\right](u)}{w_{0}(1-u)+w_{1}(u)} \\
& \text { or } \\
& {\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right](1-u)+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right](u)}
\end{aligned}
$$

From Bezier Spline to NURBS

- B-splines (Bezier Spline)
- NURBS (curve)

$$
\mathbf{c}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}
\mathbf{p}_{i, x} \\
\mathbf{p}_{i, y} \\
\mathbf{p}_{i, z} \\
1
\end{array}\right] \boldsymbol{B}_{i, k}(\boldsymbol{u})
$$

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} \boldsymbol{B}_{i, k}(u)}{\sum_{i=0}^{n} w_{i} \boldsymbol{B}_{i, k}(u)}
$$

Two Examples

- B-splines (Bezier Spline)

$$
\mathbf{c}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}
\mathbf{p}_{i, x} \\
\mathbf{p}_{i, y} \\
\mathbf{p}_{i, z} \\
\mathbf{1}
\end{array}\right] \boldsymbol{B}_{i, k}(u)
$$

- NURBS (curve)

Quadratic:

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i, k}(u)}{\sum_{i=0}^{n} w_{i} \boldsymbol{B}_{i, k}(u)}
$$

$$
(1-u)^{2}
$$

$$
2(1-u) u
$$

$$
(u)^{2}
$$

Consider Quadratic Case

$$
\begin{aligned}
& \frac{\left[\begin{array}{l}
x_{0} w_{0} \\
y_{0} w_{0}
\end{array}\right](1-u)^{2}+\left[\begin{array}{l}
x_{1} w_{1} \\
y_{1} w_{1}
\end{array}\right] 2(1-u)(u)+\left[\begin{array}{l}
x_{2} w_{2} \\
y_{2} w_{2}
\end{array}\right](u)^{2}}{w_{0}(1-u)^{2}+w_{1} 2(1-u)(u)+w_{2}(u)^{2}} \\
& \text { or } \\
& {\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right](1-u)^{2}+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] 2(1-u)(u)+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right](u)^{2}}
\end{aligned}
$$

From B-Splines to NURBS

NURBS Weights

- Weight increase "attracts" the curve towards the associated control point
- Weight decrease "pushes away" the curve from the associated control point

NURBS

NURBS for Analytic Shapes

- Conic sections
- Natural quadrics
- Extruded surfáces
- Ruled surfáces
- Surfáces of revolution

NURBS Circle

NURBS Curve

- Geometric components
- Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning --- obtained from projection
- Properties of NURBS
- Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights

NURBS Properties

- Generalization of B-splines and Bezier splines
- Unified formulation for free-form and analytic shape
- Weights as extra DOFs
- Various smoothness requirements
- Powerful geometric toolkits
- Efficient and fast evaluation algorithm
- Invariance under standard transformations
- Composite curves
- Continuity conditions

Properties of NURBS

- Represent standard shapes.
- Invariant under perspective projection.
- B-Spline is a special case.
- Weights as extra degrees of freedom.
- Can represent analytic shapes such as circles.

Geometric Modeling Techniques

- Control Point Manipulation.
- Weight Modification.
- Knot Vector Variation.
- Dynamic Modeling

Control Point Manipulation

Weight Modification

Knot Vector Variation

Dynamic Modeling

[^0]: 1

