CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin Rm. 151, NEW CS Building **Department of Computer Science** Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 gin@cs.stonybrook.edu; or gin@cs.sunysb.edu; http:///www.cs.stonybrook.edu/~qin

Department of Computer Science Center for Visual Computing

Introduction to Geometric Modeling

• What is geometric modeling

- Representation of existing objects (mathematical tools to represent shape geometry of real-world objects, both natural and manufactured ones)
- Reverse engineering (from physical prototypes to digital prototypes)
- Design of new objects (shape editing, deformation, manipulation)
- Rendering leading to visual interpretation

Application of geometric modeling

 Graphics, CAD, CAGD, CAM/CAE, robotics, vision, virtual reality, scientific visualization, animation, physical simulation, computer games, etc.

Department of Computer Science Center for Visual Computing

Geometry Representations

- Various strengths and weaknesses
 - Ease of use for design
 - Ease/speed for rendering
 - Simplicity
 - Smoothness
 - Collision detection
 - Flexibility (in more than one sense)
 - Suitability for simulation, and many others...

Department of Computer Science Center for Visual Computing

Point-based Graphics

- Modeling
- Rendering
- Animation / Simulation (Physics-based modeling)

Data Acquisition

- Laser scanners obtaining millions to billions of points (x, y, z coordinates)
- Consider regular images a few million pixels
- More points (than pixels)

Department of Computer Science Center for Visual Computing

Point-based Graphics

- Laser scanners
 - Millions to billions of points
- Typical image
 - At most a few million pixels
- More points than pixels...

Department of Computer Science Center for Visual Computing

Point-based Graphics

- Surfaces represented only by points
 - There are also normals (in addition to (x,y,z) coordintes)
 - No topology no connectivity information
- How can we do
 - Rendering
 - Modeling operations
 - Simulation

Department of Computer Science Center for Visual Computing

Point-based Surface Descriptions

Department of Computer Science Center for Visual Computing

CSE528 Lecture

STATE UNIVERSITY OF NEW YORK

Point Rendering

- For each point draw a little "splat"
 - Use associated normal for shading
 - Possibly apply texture
- If "splats" are small compared to spacing then gaps result
- Splatting too many points would waste time

Rendering

- "QSplat" algorithm
 - Build hierarchical tree of the points
 - Use bounding spheres to estimate size of clusters
 - Render clusters based on screen size
 - Use cluster-normals for internal nodes

Department of Computer Science Center for Visual Computing

Rendering – Qsplat Algorithm

Renderin

15-pixel cutoff 130,712 points 132 ms

Department of Computer Science Center for Visual Computing

10-pixel cutoff 259,975 points 215 ms

5-pixel cutoff 1,017,149 points 722 ms

I-pixel cutoff 14,835,967 points 8308 ms

Rendering

Rendering

(a) Points

(b) Polygons – same number of primitives as (a) Same rendering time as (a)

(c) Polygons – same number of vertices as (a) Twice the rendering time of (a)

Department of Computer Science Center for Visual Computing

Defining a Point Cloud Surface

- Modeling a point-cloud surface
- Two related methods
 - Surface is a point attractor
 - Point-set surfaces
 - Implicit surface
 - Multi-level Partition of Unity Implicits
 - Implicit Moving Least-Squares

Department of Computer Science Center for Visual Computing

Point-Set Surfaces

- Surface is the attractor of a repeated projection process
 - Find nearby points
 - Fit plane (weighted)
 - Project into plane
 - Repeat
- Does it converge?
- How to weight points?

Department of Computer Science Center for Visual Computing

Standard Least-Squares Fitting

 ϕ_1

$\begin{bmatrix} B^{\mathsf{T}} & B & c = B^{\mathsf{T}} & \phi \end{bmatrix}$

Department of Computer Science Center for Visual Computing

 $b^{\mathsf{T}}(p_1)$

 $\vdots \ b^{\mathsf{T}}(p_N)$

Moving Least-Square Interpolation

Department of Computer Science

Center for Visual Computing

Least Squares

Department of Computer Science Center for Visual Computing

Moving Least-Squares Fitting

Department of Computer Science Center for Visual Computing

Moving Least-Squares Fitting

$$egin{bmatrix} w(x,p_1) \ &\ddots \ &w(x,p_N) \end{bmatrix} egin{bmatrix} b^{\mathsf{T}}(p_1) \ &arepsilon \ &arepsilo$$

$$egin{aligned} c &= egin{bmatrix} w(x,p_1) & & \ &\ddots & \ &w(x,p_N) \end{bmatrix} egin{bmatrix} \phi_1 & & \ &\vdots & \ &\phi_N \end{bmatrix} \ w(x,p_N) \end{bmatrix} egin{bmatrix} \phi_1 & & \ &\vdots & \ &\phi_N \end{bmatrix} \ w(r) &= rac{1}{\left(r^2+\epsilon^2
ight)} \ B^{ extsf{T}} \left(W(x)
ight)^2 B c(x) = B^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} \ egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix} egin{bmatrix} w(x) &= b^{ extsf{T}} \left(W(x)
ight)^2 G c(x) \end{bmatrix}$$

Editing Operations

- Implicit functions can be
 - Combined with booleans for CSG
 - Warped
 - Offset
 - Composed
 - And more....

Department of Computer Science Center for Visual Computing CSE528

Editing Operations

- Implicit functions can be
 - Combined with Booleans for CSG
 - Warped
 - Offset
 - Composed
 - And more....

f = 0

f = 0.025

f = -0.025

 $f = -0.075, \alpha = 1.0$

Department of Computer Science Center for Visual Computing

Editing Operations

- Implicit functions can be
 - Combined with Booleans for CSG
 - Warped
 - Offset
 - Composed
 - And more....

Department of Computer Science Center for Visual Computing

Point-based Simulation

- MLS originated in mechanics literature
- Natural use in graphics for the animation purpose

Implicit Moving Least-Squares

- Shape (surface) is implicitly defined by point cloud
- Define a scalar function that is zero passing through all the points

Implicit Moving Least-Squares

 Sample Points

Normal vectors

Implicit Moving Least-Squares

Function is zero on boundary | Decreases in outward direction

Department of Computer Science Center for Visual Computing

Particles

Department of Computer Science Center for Visual Computing

Department of Computer Science Center for Visual Computing

Algorithmic Primitives

 Algorithms for trees, mountains, grass, fur, lightning, fire,

Department of Computer Science Center for Visual Computing CSE528 Lect

Moving Least Squares

- Theory, and
- Techniques

Department of Computer Science Center for Visual Computing

Scattered Data Fitting

Scattered Data Approximation and Interpolation

 Scattered data: an arbitrary set of points in Rd space, and these scattered data carry scalar quantities (i.e., a scalar field in d dimensional parametric space)

Least Squares Approximation

- Commonly-used basis functions include: quadratic, linear, constant terms
- For example:

 y^2 $\mathbf{b}(\mathbf{x}) = \begin{vmatrix} 1 & x & y & x^2 \end{vmatrix}$ XV $\mathbf{b}(\mathbf{x}) = |1|$ x y z'' $\mathbf{b}(\mathbf{x}) = [1]$

Least Squares Approximation

- Problem statement: we have n points in Rd space, and we want to obtain a globally defined function f(x) that can approximate the given scalar values at these points in the least-squares senses
- We are considering the space of polynomials of total degree m in d spatial dimensions

$$\min_{f\in P_m^d} \sum_i \left\| (f(x_i) - f_i) \right\|^2$$

$$f(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \bullet \mathbf{c}$$

$$\mathbf{b}(\mathbf{x}) = \begin{bmatrix} b_1(\mathbf{x}) & b_2(\mathbf{x}) & \dots & b_k(\mathbf{x}) \end{bmatrix}^T$$

$$\mathbf{c} = \begin{bmatrix} c_1 & c_2 & \dots & c_k \end{bmatrix}^T$$

Department of Computer Science Center for Visual Computing

Solution

- Function minimization: the partial derivatives of the error functional must be set to zero
- We now obtain a linear system of equations

 ∂E

$$\sum_{i} 2b_{j}(\mathbf{x}_{i}) \left[\mathbf{b}(\mathbf{x}_{i})^{T} \mathbf{c} - f_{i} \right] = 0$$

Department of Computer Science Center for Visual Computing CSE528 Lectures

ST NY BR K STATE UNIVERSITY OF NEW YORK

Solution

 $\sum \left[\mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T \mathbf{c} - \mathbf{b}(\mathbf{x}_i) f_i \right] = \mathbf{0}$ $\mathbf{c} = \left| \sum_{i} \mathbf{b}(\mathbf{x}_{i}) \mathbf{b}(\mathbf{x}_{i})^{T} \right|^{-1} \sum_{i} \mathbf{b}(\mathbf{x}_{i}) f_{i}$

Department of Computer Science Center for Visual Computing

Weighted Least Squares Approximation

 In the weighted least squares formulation, we will have to use a different error functional that now has a weighting function term inside the formulation

 $\min_{f \in P_m^d} \sum_{i} \theta(\|\overline{\mathbf{x}} - \mathbf{x}_i\|) \|(f(\mathbf{x}_i) - f_i)\|^2$

Department of Computer Science Center for Visual Computing

Weighting Function Choices

The weighting function should be locally defined

 d^2 $\theta(d) = e^{-\frac{1}{h^2}}$ $\theta(d) = (1 - d / h)^4 (4d / h + 1)$ $\theta(d) = \frac{1}{d^2 + \varepsilon^2}$ Center fo

Solution

- Once again, we take partial derivatives of the error functional
- Function minimization: the partial derivatives of the error functional must be set to zero
- We now obtain a linear system of equations

 ∂E $\partial \mathbf{c}(\mathbf{\bar{x}})$

 $\left[\theta(d_i) 2b_i(\mathbf{x}_i) \right] \mathbf{b}(\mathbf{x}_i)^T \mathbf{c}(\mathbf{\overline{x}}) - f_i \right] = 0$

Department of Comp Center for Visual (

Solution

- The weighting functions participate in the solution
- Note that, this solution is actually locally meaningful, and it is applicable in a small neighborhood

 $\sum \left[\theta(d_i) \mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T \mathbf{c}(\overline{\mathbf{x}}) - \theta(d_i) \mathbf{b}(\mathbf{x}_i) f_i \right] = \mathbf{0}$ $\mathbf{c}(\overline{\mathbf{x}}) = \left[\theta(d_i) \sum_i \mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T \right]^{-1} \sum_i \theta(d_i) \mathbf{b}(\mathbf{x}_i) f_i$

STATE UNIVERSITY OF NEW YORK

Global Approximation

• The concept of Partition-of-Unity (POU)

$$\varphi_j(\mathbf{x}) = \frac{\theta_j(\mathbf{x})}{\sum_{1}^{n} \theta_i(\mathbf{x})}$$
$$f(\mathbf{x}) = \sum_j \varphi_j(\mathbf{x}) \mathbf{b}(\mathbf{x})^T \mathbf{c}(\overline{\mathbf{x}})$$

Department of Computer Science Center for Visual Computing

Moving Lease Squares

 Moving Least Squares Approximants

$$f(x) = \sum_{i} \phi_{i}(x) f_{i} = \sum_{j} b_{j}(x) c_{j}(x)$$

$$\min_{c} \sum_{i} \theta(\|\mathbf{x} - \mathbf{x}_{i}\|) \| (\mathbf{b}(\mathbf{x}_{i})^{T} \mathbf{c}(\mathbf{x}) - f_{i}) \|^{2}$$

Department of Computer Science Center for Visual Computing

MLS Basis Functions

$$\phi_i(\mathbf{x}) = \mathbf{b}(\mathbf{x})^T \mathbf{A}(\mathbf{x})^{-1} \mathbf{B}_i(\mathbf{x})$$
$$\mathbf{A}(\mathbf{x}) = \sum_{i=1}^n \theta_i(\mathbf{x}) \mathbf{b}(\mathbf{x}_i) \mathbf{b}(\mathbf{x}_i)^T$$
$$\mathbf{B}(\mathbf{x}) = \begin{bmatrix} \theta_1(\mathbf{x}) \mathbf{b}(\mathbf{x}_1) & \theta_2(\mathbf{x}) \mathbf{b}(\mathbf{x}_2) & \dots & \theta_n(\mathbf{x}) \mathbf{b}(\mathbf{x}_n) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

CSE528 Lectures

ST NY BR K

Weighing Functions

• A cubic spline weight function is a good choice

Department of Computer Science Center for Visual Computing

Partition of Unity

 When b is a constant term, MLS basis functions reduce to partition-of-unity basis functions for all the weighting functions

Other Applications

- In addition to point-based Graphics (discussed earlier), MLS is a widespread and very powerful tool in Graphics, with many applications
- Surface reconstruction from points
- Interpolating or approximating implicit surfaces
- Simulation
- Animation
- Partition of Unity
- Physics-based modeling, simulation, and animation

Department of Computer Science Center for Visual Computing

Image Editing

Department of Computer Science Center for Visual Computing

Surface Reconstruction

Department of Computer Science Center for Visual Computing

