
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

CSE528 Computer Graphics:
Theory, Algorithms, and

Applications

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~qin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Computer Graphics
• (Realistic) pictorial synthesis of real and/or imaginary

objects from their computer-based models (datasets)

• It typically includes modeling, rendering (graphics
pipeline), and human-computer interaction

• So, we are focusing on computer graphics hardware,
software, and mathematical foundations

• Computer Graphics is computation
– A new method of visual computing

• Why is Computer Graphics useful and important?

• Course challenges: more mathematics oriented,
programming requirements, application-driven, inter-
disciplinary in nature, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computer Graphics Systems

CSE528

Graphical

Models

Rendering

Output Device

Rendering

Parameters

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Output Devices

• Vector Devices

– Lasers (for example)

• Raster Devices

– CRT, LCD, bitmaps, etc.

– Most output devices are 2D

– Can you name any 3D output device?

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Graphical Models
• 2D and 3D objects

– Triangles, quadrilaterals, polygons

– Spheres, cones, boxes

• Surface characteristics

– Color, reaction to light

– Texture, material properties

• Composite objects

– Other objects and their relationships to each other

• Lighting, fog, etc.

• Much, much more…

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering

• Conversion of 3D model to 2D image

– Determine where the surfaces “project” to

– Determine what every screen pixel might see

– Determine the color of each surface

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering Parameters

• Camera parameters

– Location

– Orientation

– Focal length

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Graphics vs. 3D Graphics

• 2D

– X, Y - 2 dimensions only

– We won’t spend time on 2D graphics in this course

• 3D

– X, Y, and Z

– Space

• Rendering is typically the conversion of 3D to

2D
CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3D Coordinate Systems

CSE528

X

Y

Z
Right-Hand Coordinate System

OpenGL uses this!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

X

Y
Z

Left-Hand Coordinate System

Direct3D uses this!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

How to Model/Render This?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Render/Display a Box in OpenGL

• We render the 6 faces as polygons

– Polygons are specified as a list of vertices

– Vertices are specified in counter-clockwise order

looking at the surface of the face!

A B

C
D

E F

GH

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Visualizing in 3D

X

Y

Z

1.0

z=1.0

x=1.0

y=1.0

A B

CD

E F

GH

Counter-clockwise

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL

• OpenGL is a software interface to graphics

hardware

• Most widely used 3D graphics application

program interface (API).

CSE528

Application

3-D world

Simulation

User Interface

OpenGL
Graphics Hardware

(rasterizer, texturing,

lighting, transformations,

etc.)

Geometry,

vertices,

normals, colors,

texture, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Basics

• Truly open, independent of system platforms.

• Reliable, easy to use and well-documented.

• Default language is C/C++.

• Many online resources are currently available

(explore them and use them)!

• OpenGL is a STATE MACHINE: polygons are

affected by the current color, transformation,

drawing mode, etc.

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Conventions

• OpenGL is a retained mode graphics system

– It has a state

– For example, glBegin(GL_POLYGON) puts us into a

polygon rendering state

• C library

– All function names start with gl

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specifying Vertices for Objects

• Objects are represented by vertices

– glVertex3f (2.0, 4.1, 6.0);

– glVertex2i (4, 5);

– glVertex3fv (vector);

• Current color affects any vertices

– glColor3f (0.0, 0.5, 1.0);

– glColor4ub (0, 128, 255, 0);

– glColor3dv (color);

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Drawing Primitives

CSE528

glBegin(GL_POLYGON);

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 3.0);

glVertex2f(3.0, 3.0);

glVertex2f(4.0, 1.5);

glVertex2f(3.0, 0.0);

glEnd();

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Polygon Rendering

GLdouble size = 1.0;

glBegin(GL_POLYGON); // front face

glVertex3d(0.0, 0.0, size);

glVertex3d(size, 0.0, size);

glVertex3d(size, size, size);

glVertex3d(0.0, size, size);

glEnd();

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Types

• Basic numeric types

– GLdouble = double

– GLfloat = float

– GLint = int

– GLshort = short

• Mostly, you’ll use GLdouble and GLfloat

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defined glVertex3fv

Prefix

gl

glu

wgl

agl

Function

Vertex

Begin

End

Lighting

…

Parms

1

2

3

4

…

Type

f (float)

d (double)

i (integer)

b (byte)

s (short)

Suffix

v (vector)

Only if varying arguments

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Function Suffixes

• Many functions have alternatives

– Alternatives are specified by the suffix

– glVertex2d

• 2 double parameters

• void glVertex2d(GLdouble x, GLdouble y);

– glVertex3f

• 3 float parameters

• void glVertex3f(GLfloat x, GLfloat y, GLfloat z);

– glVertex3fv
• void glVertex3fv(const GLfloat *v);

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

All of Them…
• glVertex2d, glVertex2f, glVertex2i, glVertex2s,

glVertex3d, glVertex3f, glVertex3i, glVertex3s,

glVertex4d, glVertex4f, glVertex4i, glVertex4s,

glVertex2dv, glVertex2fv, glVertex2iv, glVertex2sv,

glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv,

glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specifying Objects’ Vertices

• Vertices are specified only between
glBegin(mode) and glEnd(), usually in a

counter-clockwise order for polygons.

glBegin (GL_TRIANGLES);

glVertex2i (0, 0);

glVertex2i (2, 0);

glVertex2i (1, 1);

glEnd();

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Primitive Types
• Points: GL_POINTS

• Lines: GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP

• Triangles: GL_TRIANGLES, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN

• Quads: GL_QUADS, GL_QUAD_STRIP

• Polygons: GL_POLYGON

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Vector Parameters

A B

C
D

E F

GH

GLdouble a[] = {0, 0, 1};

GLdouble b[] = {1, 0, 1};

GLdouble c[] = {1, 1, 1};

GLdouble d[] = {0, 1, 1};

glBegin(GL_POLYGON); // front face

glVertex3dv(a);

glVertex3dv(b);

glVertex3dv(c);

glVertex3dv(d);

glEnd();

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specify a Color (No Lighting)

• glColor3f(red, green, blue);

• Most of the same suffixes apply…

GLdouble size = 1.0;

glColor3d(1.0, 0.0, 0.0); // red

glBegin(GL_POLYGON); // front face

glVertex3d(0.0, 0.0, size);

glVertex3d(size, 0.0, size);

glVertex3d(size, size, size);

glVertex3d(size, 0.0, size);

glEnd();

Colors range

from 0 to 1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

How to Model/Render This?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Views

CSE528

Top View

Front View Side View

a
b

cd

e f

gh

a
b

i j

e f

m n

f g

n o

3.00

1.00 1.00 1.00

YY

X Z

Z

X

3.00

1.00

1.00

1.00

1.00

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Top View

Front View Side View

a
b

cd

e f

gh

a
b

i j

e f

m n

f g

n o

3.00

1.00 1.00 1.00

YY

X Z

Z

X

3.00

1.00

1.00

1.00

1.00

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Vertices’ Labels
Top View

Front View Side View

a b

cd

e f

gh

a b

Bottom labels

i j

kl

m n

op

i j

e f

m n

f g

n o

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The Basic Idea

• Describe an object using surfaces

• Surfaces are polygons

– Triangles, quadrilaterals, whatever

– Important thing is that they are flat

– They must also be convex

• Provide points in counter-clockwise order

– From the visible side

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Transformation and Viewing

OpenGL has 3 different matrix modes:
– GL_MODELVIEW

– GL_PROJECTION

– GL_TEXTURE

• Choose the matrix with:

glMatrixMode(…);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Transforms Objects within the
Scene

• Modelview matrix

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Set up Perspective Projection

Projection matrix

–glFrustrum (...);

–gluPerspective (fovy, aspect,

near, far);

–glOrtho (...);

–gluLookAt (...);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Example

• Projection Matrix
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(64, (float)windowWidth /

(float)windowHeight, 4, 4096);

gluLookAt(0.0, 0.0, 2.0, // camera position

0.0, 0.0, 0.0, // target position

0.0, 0.0, 2.0); // up vector

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Extensions
• The GL library is the core OpenGL system:

– modeling, viewing, lighting, clipping

• The GLU library (GL Utility) simplifies common
tasks:

– creation of common objects (e.g. spheres, quadrics)

– specification of standard views (e.g. perspective, orthographic)

• The GLUT library (GL Utility Toolkit) provides
the interface with the window system.

– window management, menus, mouse interaction

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defining Cylinder

CSE528

GLUquadricOBJ *p;

P = gluNewQuadric(); /*set up object */

gluQuadricDrawStyle(GLU_LINE);/*render

style*/

gluCylinder(p, BASE_RADIUS, TOP_RADIUS,

BASE_HEIGHT, sections, slices);

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadric Objects in GLU

CSE528

disk partial disk sphere

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Platonic Solids
• Also known as the regular solids or regular

polyhedra

• Convex polyhedra with equivalent faces
composed of congruent regular polygons

• There are five such solids:

– Cube

– Dodecahedron

– Icosahedron

– Octahedron

– Tetrahedron
CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Platonic Solids

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Platonic Solids

CSE528

glutWireTetrahedron()

glutWireOctahedron()

glutWireDodecahedron()

glutWireIcosahedron()

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

GLUT Objects

• Wireframe or shaded forms

CSE528

glutWireCone()
glutWireTorus()

glutWireTeapot()

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Utility Toolkit (GLUT)

CSE528

• GLUT is a library that handles system events

and windowing across multiple platforms

• Includes some nice utilities

• We strongly suggest you use it

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

GLUT – Starting Point

CSE528

int main (int argc, char *argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE |

GLUT_RGBA);

glutInitWindowSize (windowWidth, windowHeight);

glutInitWindowPosition (0, 0);

glutCreateWindow (“248 Video Game!");

SetStates(); // Initialize rendering states*

RegisterCallbacks(); // Set event callbacks*

glutMainLoop(); // Start GLUT

return 0;

}

* Your code here

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering States - Setup

CSE528

• OpenGL is a state machine: polygons are affected by

the current color, transformation, drawing mode, etc.

• Enable and disable features such as lighting, texturing,

and alpha blending.

– glEnable (GL_LIGHTING);

– glDisable (GL_FOG);

• Forgetting to enable something is a common source of

bugs!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

GLUT Event Callbacks

• Register functions that are called when certain

events happen

glutDisplayFunc(Display);

glutKeyboardFunc(Keyboard);

glutReshapeFunc(Reshape);

glutMouseFunc(Mouse);

glutPassiveMotionFunc(PassiveFunc);

glutMotionFunc(MouseDraggedFunc);

glutIdleFunc(Idle);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Lighting

• Lights have a position, type, color, among other

things

• Types of lights include point light, directional

light, and spotlight

– glEnable (GL_LIGHTING)

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Normals and Lighting
• OpenGL handles light computations for you!

• You will need to compute normal vector (kept as state) –

vertex is assigned to the most recently set normal vector

...

glNormal3fv (n0);
glVertex3fv (v0);
glVertex3fv (v1);
glVertex3fv (v2);

...

• Note that, normal vectors are of unit length (remember

normalization)!

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Color Specification

CSE528

glColor3f(0.0, 0.0, 0.0);
draw_object(A);
draw_object(B);
glColor3f(1.0, 0.0, 0.0);

draw_object(C);

glColor3f(0.0, 0.0, 0.0); black
glColor3f(1.0, 0.0, 0.0); red
glColor3f(0.0, 1.0, 0.0); green
glColor3f(1.0, 1.0, 0.0); yellow
glColor3f(0.0, 0.0, 1.0); blue
glColor3f(1.0, 0.0, 1.0); magenta
glColor3f(0.0, 1.0, 1.0); cyan
glColor3f(1.0, 1.0, 1.0); white

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Shading

• Two basic shading models supported by

OpenGL (flat, smooth)

• glShadeModel (GL_FLAT); glShadeModel

(GL_SMOOTH);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Material Properties

• Some properties (pname)
– GL_AMBIENT: Ambient color of material

– GL_DIFFUSE: Diffuse color of material

– GL_SPECULAR: Specular component (for highlights)

– GL_SHININESS: Specular exponent (intensity of highlight)

• Material properties are associated with each

polygon (corresponding light properties)
– glMaterial*(GLenum face, GLenum

pname, TYPE param);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Material Selection

CSE528

Ambient 0.39

Diffuse 0.46

Specular 0.82

Shininess 0.75

Light intensity 0.52

Ambient 0.52

Diffuse 0.00

Specular 0.82

Shininess 0.10

Light intensity 0.31

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Texturing

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Texturing

• Load your data (texture data)

– This may come from an image: ppm, tiff

– Or create at run time

– Final result is always an array

• Setting texture state

– Creating texture names with “binding”, scaling the

image/data, building Mipmaps, setting filters, etc.

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Texturing

• Mapping the texture to the polygon

– specify (s,t) texture coordinates for (x,y,z) polygon

vertices

– texture coordinates (s,t)are from 0,1:
glTexCoord2f(s,t);

CSE528

s

t

0,0

1,1

0,0

1,1

(x0,y0,z0)

(x1,y1,z1)

1,0

0,1

(x2,y2,z2)

(x3,y3,z3)

+

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Advanced Texturing

• Advanced texturing techniques

– Mipmapping

– Multitextures

– Automatic texture generation

• Let OpenGL determine texture coordinates for you

– Environment Mapping

– Texture matrix stack

– Fragment Shaders

• Custom lighting effects

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Alpha Blending

• When enabled, OpenGL uses the alpha channel

to blend a new fragment’s color value with a

color in the framebuffer

• Useful for overlaying textures or other effects

CSE528

New color Color in framebuffer

+ = ?

(r1,g1,b1,a1) (r0,g0,b0,a0)

(r’,g’,b’,a’)

“source” “destination”

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fog

Simulate atmospheric effects

• glFog (): Sets fog parameters

• glEnable (GL_FOG);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Other Features

• Display Lists: Speed up your game!

• Quadrics: Pre-made objects

– Also look at GLUT’s objects

• Evaluators: Bezier curves and surfaces

• Selection: Clicking on game objects with a

mouse

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Buffers
• Multiple types of buffers

– Color buffers (front/back, left/right)

– Depth buffer (hidden surface removal)

– Stencil buffer (allows masking or stenciling)

– Accumulation buffer (antialiasing, depth of field)

• Clearing buffers:
// Clear to this color when screen is cleared.

glClearColor (0.0, 0.0, 0.0, 0.0);

// Clear color and depth buffers.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

CSE528

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Double Buffering

• Double buffering:

– Draw on back buffer while front buffer is being

displayed.

– When finished drawing, swap the two, and begin

work on the new back buffer.

–glutSwapBuffers();

• Primary purpose: eliminate flicker

CSE528

