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Computer Graphics
• (Realistic) pictorial synthesis of real and/or imaginary 

objects from their computer-based models (datasets)

• It typically includes modeling, rendering (graphics 
pipeline), and human-computer interaction

• So, we are focusing on computer graphics hardware, 
software, and mathematical foundations

• Computer Graphics is computation
– A new method of visual computing

• Why is Computer Graphics useful and important?

• Course challenges: more mathematics oriented, 
programming requirements, application-driven, inter-
disciplinary in nature, etc.



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computer Graphics Systems
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Output Devices

• Vector Devices

– Lasers (for example)

• Raster Devices

– CRT, LCD, bitmaps, etc.

– Most output devices are 2D

– Can you name any 3D output device?

CSE528



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Graphical Models
• 2D and 3D objects

– Triangles, quadrilaterals, polygons

– Spheres, cones, boxes

• Surface characteristics

– Color, reaction to light

– Texture, material properties

• Composite objects

– Other objects and their relationships to each other

• Lighting, fog, etc.

• Much, much more…

CSE528



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering

• Conversion of 3D model to 2D image

– Determine where the surfaces “project” to

– Determine what every screen pixel might see

– Determine the color of each surface

CSE528



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering Parameters

• Camera parameters

– Location

– Orientation

– Focal length

CSE528
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2D Graphics vs. 3D Graphics

• 2D

– X, Y - 2 dimensions only

– We won’t spend time on 2D graphics in this course

• 3D

– X, Y, and Z

– Space

• Rendering is typically the conversion of 3D to 

2D
CSE528
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3D Coordinate Systems

CSE528

X

Y

Z
Right-Hand Coordinate System

OpenGL uses this!
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Left-Hand Coordinate System

Direct3D uses this!
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How to Model/Render This?
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Render/Display a Box in OpenGL

• We render the 6 faces as polygons

– Polygons are specified as a list of vertices

– Vertices are specified in counter-clockwise order 

looking at the surface of the face!

A B

C
D

E F

GH
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Visualizing in 3D

X

Y

Z

1.0

z=1.0

x=1.0

y=1.0

A B

CD

E F

GH

Counter-clockwise



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL

• OpenGL is a software interface to graphics 

hardware

• Most widely used 3D graphics application 

program interface (API).

CSE528

Application

3-D world

Simulation

User Interface

OpenGL
Graphics Hardware

(rasterizer, texturing, 

lighting, transformations, 

etc.) 

Geometry, 

vertices, 

normals, colors, 

texture, etc.
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OpenGL Basics

• Truly open, independent of system platforms.

• Reliable, easy to use and well-documented.

• Default language is C/C++.

• Many online resources are currently available 

(explore them and use them)!

• OpenGL is a STATE MACHINE: polygons are 

affected by the current color, transformation, 

drawing mode, etc. 

CSE528 Lectures
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OpenGL Conventions

• OpenGL is a retained mode graphics system

– It has a state

– For example, glBegin(GL_POLYGON) puts us into a 

polygon rendering state

• C library

– All function names start with gl



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specifying Vertices for Objects

• Objects are represented by vertices

– glVertex3f (2.0, 4.1, 6.0);  

– glVertex2i (4, 5);

– glVertex3fv (vector);

• Current color affects any vertices

– glColor3f (0.0, 0.5, 1.0);

– glColor4ub (0, 128, 255, 0);

– glColor3dv (color);

CSE528 Lectures
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2D Drawing Primitives

CSE528

glBegin(GL_POLYGON);

glVertex2f(0.0, 0.0);

glVertex2f(0.0, 3.0);

glVertex2f(3.0, 3.0);

glVertex2f(4.0, 1.5);

glVertex2f(3.0, 0.0);

glEnd();
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OpenGL Polygon Rendering

GLdouble size = 1.0;

glBegin(GL_POLYGON); // front face

glVertex3d(0.0,   0.0,   size); 

glVertex3d(size,  0.0,   size);            

glVertex3d(size,  size, size);           

glVertex3d(0.0,   size,  size);            

glEnd();
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OpenGL Types

• Basic numeric types

– GLdouble = double

– GLfloat = float

– GLint = int

– GLshort = short

• Mostly, you’ll use GLdouble and GLfloat
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Defined glVertex3fv

Prefix

gl

glu

wgl

agl

Function

Vertex

Begin

End

Lighting

…

# Parms

1

2

3

4

…

Type

f (float)

d (double)

i (integer)

b (byte)

s (short)

Suffix

v (vector)

Only if varying arguments
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Function Suffixes

• Many functions have alternatives

– Alternatives are specified by the suffix

– glVertex2d

• 2 double parameters

• void glVertex2d(GLdouble x, GLdouble y);

– glVertex3f

• 3 float parameters

• void glVertex3f(GLfloat x, GLfloat y, GLfloat z);

– glVertex3fv
• void glVertex3fv(const GLfloat *v);
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All of Them…
• glVertex2d, glVertex2f, glVertex2i, glVertex2s, 

glVertex3d, glVertex3f, glVertex3i, glVertex3s, 

glVertex4d, glVertex4f, glVertex4i, glVertex4s, 

glVertex2dv, glVertex2fv, glVertex2iv, glVertex2sv, 

glVertex3dv, glVertex3fv, glVertex3iv, glVertex3sv, 

glVertex4dv, glVertex4fv, glVertex4iv, glVertex4sv
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Specifying Objects’ Vertices

• Vertices are specified only between 
glBegin(mode) and glEnd(), usually in a 

counter-clockwise order for polygons.

glBegin (GL_TRIANGLES);

glVertex2i (0, 0);

glVertex2i (2, 0);

glVertex2i (1, 1);

glEnd();

CSE528 Lectures
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Primitive Types
• Points: GL_POINTS

• Lines: GL_LINES,  GL_LINE_STRIP, GL_LINE_LOOP

• Triangles: GL_TRIANGLES, GL_TRIANGLE_STRIP,  

GL_TRIANGLE_FAN

• Quads: GL_QUADS,  GL_QUAD_STRIP

• Polygons: GL_POLYGON

CSE528 Lectures
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Vector Parameters

A B

C
D

E F

GH

GLdouble a[ ] = {0, 0, 1};

GLdouble b[ ] = {1, 0, 1};

GLdouble c[ ] = {1, 1, 1};

GLdouble d[ ] = {0, 1, 1};

glBegin(GL_POLYGON); // front face

glVertex3dv(a); 

glVertex3dv(b);            

glVertex3dv(c);           

glVertex3dv(d);            

glEnd();
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Specify a Color (No Lighting)

• glColor3f(red, green, blue);

• Most of the same suffixes apply…

GLdouble size = 1.0;

glColor3d(1.0, 0.0, 0.0); // red

glBegin(GL_POLYGON); // front face

glVertex3d(0.0,   0.0,   size); 

glVertex3d(size,  0.0,   size);            

glVertex3d(size,  size, size);           

glVertex3d(size,  0.0,   size);            

glEnd();

Colors range 

from 0 to 1
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How to Model/Render This?
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2D Views

CSE528

Top View

Front View Side View

a
b

cd

e f

gh

a
b

i j

e f

m n

f g

n o

3.00

1.00 1.00 1.00

YY

X Z

Z

X

3.00

1.00

1.00

1.00

1.00



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Top View
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Vertices’ Labels
Top View

Front View Side View

a b

cd

e f

gh

a b

Bottom labels
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The Basic Idea

• Describe an object using surfaces

• Surfaces are polygons

– Triangles, quadrilaterals, whatever

– Important thing is that they are flat

– They must also be convex

• Provide points in counter-clockwise order

– From the visible side
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Transformation and Viewing

OpenGL has 3 different matrix modes:
– GL_MODELVIEW

– GL_PROJECTION

– GL_TEXTURE

• Choose the matrix with: 

glMatrixMode(…);

CSE528
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Transforms Objects within the 
Scene 

• Modelview matrix

CSE528
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Set up Perspective Projection

Projection matrix

–glFrustrum (...);

–gluPerspective (fovy, aspect, 

near, far);

–glOrtho (...);

–gluLookAt (...);

CSE528
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Example

• Projection Matrix
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(64, (float)windowWidth / 

(float)windowHeight, 4, 4096);

gluLookAt(0.0, 0.0, 2.0, // camera position

0.0, 0.0, 0.0, // target position

0.0, 0.0, 2.0); // up vector

CSE528
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OpenGL Extensions
• The GL library is the core OpenGL system:

– modeling, viewing, lighting, clipping

• The GLU library (GL Utility) simplifies common 
tasks:

– creation of common objects (e.g. spheres, quadrics)

– specification of standard views (e.g. perspective, orthographic)

• The GLUT library (GL Utility Toolkit) provides 
the   interface with the window system.

– window management, menus, mouse interaction

CSE528
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Defining Cylinder

CSE528

GLUquadricOBJ *p;

P = gluNewQuadric(); /*set up object */

gluQuadricDrawStyle(GLU_LINE);/*render 

style*/

gluCylinder(p, BASE_RADIUS, TOP_RADIUS, 

BASE_HEIGHT, sections, slices);
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Quadric Objects in GLU

CSE528

disk partial disk sphere
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Platonic Solids
• Also known as the regular solids or regular 

polyhedra

• Convex polyhedra with equivalent faces 
composed of congruent regular polygons

• There are five such solids:

– Cube

– Dodecahedron

– Icosahedron

– Octahedron

– Tetrahedron
CSE528
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Platonic Solids

CSE528
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Platonic Solids

CSE528

glutWireTetrahedron()

glutWireOctahedron()

glutWireDodecahedron()

glutWireIcosahedron()
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GLUT Objects

• Wireframe or shaded forms

CSE528

glutWireCone()
glutWireTorus()

glutWireTeapot()
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OpenGL Utility Toolkit (GLUT)

CSE528

• GLUT is a library that handles system events 

and windowing across multiple platforms

• Includes some nice utilities

• We strongly suggest you use it
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GLUT – Starting Point

CSE528

int main (int argc, char *argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode (GLUT_DEPTH | GLUT_DOUBLE | 

GLUT_RGBA);

glutInitWindowSize (windowWidth, windowHeight); 

glutInitWindowPosition (0, 0);

glutCreateWindow (“248 Video Game!");

SetStates(); // Initialize rendering states*

RegisterCallbacks();  // Set event callbacks*

glutMainLoop(); // Start GLUT

return 0;

}

* Your code here
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Rendering States - Setup

CSE528

• OpenGL is a state machine: polygons are affected by 

the current color, transformation, drawing mode, etc.

• Enable and disable features such as lighting, texturing, 

and alpha blending.

– glEnable (GL_LIGHTING);

– glDisable (GL_FOG);

• Forgetting to enable something is a common source of 

bugs!
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GLUT Event Callbacks

• Register functions that are called when certain 

events happen

glutDisplayFunc( Display ); 

glutKeyboardFunc( Keyboard ); 

glutReshapeFunc( Reshape ); 

glutMouseFunc( Mouse ); 

glutPassiveMotionFunc( PassiveFunc ); 

glutMotionFunc( MouseDraggedFunc ); 

glutIdleFunc( Idle );

CSE528
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Lighting

• Lights have a position, type, color, among other 

things

• Types of lights include point light, directional 

light, and spotlight

– glEnable (GL_LIGHTING)

CSE528
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Normals and Lighting
• OpenGL handles light computations for you!

• You will need to compute normal vector (kept as state) –

vertex is assigned to the most recently set normal vector

...

glNormal3fv (n0);
glVertex3fv (v0);
glVertex3fv (v1);
glVertex3fv (v2);

...

• Note that, normal vectors are of unit length (remember 

normalization)!

CSE528
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Color Specification

CSE528

glColor3f(0.0, 0.0, 0.0);
draw_object(A); 
draw_object(B); 
glColor3f(1.0, 0.0, 0.0);                     

draw_object(C);

glColor3f(0.0, 0.0, 0.0);                             black 
glColor3f(1.0, 0.0, 0.0);                             red 
glColor3f(0.0, 1.0, 0.0);                             green 
glColor3f(1.0, 1.0, 0.0);                             yellow 
glColor3f(0.0, 0.0, 1.0);                             blue 
glColor3f(1.0, 0.0, 1.0);                             magenta 
glColor3f(0.0, 1.0, 1.0);                             cyan 
glColor3f(1.0, 1.0, 1.0);                             white
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Shading

• Two basic shading models supported by 

OpenGL (flat, smooth)

• glShadeModel (GL_FLAT); glShadeModel 

(GL_SMOOTH); 

CSE528
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Material Properties

• Some properties (pname)
– GL_AMBIENT: Ambient color of material

– GL_DIFFUSE: Diffuse color of material

– GL_SPECULAR: Specular component (for highlights)

– GL_SHININESS: Specular exponent (intensity of highlight)

• Material properties are associated with each 

polygon (corresponding light properties)
– glMaterial*(GLenum face, GLenum 

pname, TYPE param);

CSE528
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Material Selection

CSE528

Ambient 0.39

Diffuse 0.46

Specular 0.82

Shininess 0.75

Light intensity 0.52

Ambient 0.52

Diffuse 0.00

Specular 0.82

Shininess 0.10

Light intensity 0.31
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Texturing

CSE528
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Texturing

• Load your data (texture data)

– This may come from an image: ppm, tiff

– Or create at run time

– Final result is always an array

• Setting texture state

– Creating texture names with “binding”, scaling the 

image/data, building Mipmaps, setting filters, etc.

CSE528
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Texturing 

• Mapping the texture to the polygon

– specify (s,t) texture coordinates for (x,y,z) polygon 

vertices

– texture coordinates (s,t)are from 0,1: 
glTexCoord2f(s,t);

CSE528

s

t

0,0

1,1

0,0

1,1

(x0,y0,z0)

(x1,y1,z1)

1,0

0,1

(x2,y2,z2)

(x3,y3,z3)

+
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Advanced Texturing

• Advanced texturing techniques

– Mipmapping

– Multitextures

– Automatic texture generation

• Let OpenGL determine texture coordinates for you

– Environment Mapping

– Texture matrix stack

– Fragment Shaders

• Custom lighting effects

CSE528
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Alpha Blending

• When enabled, OpenGL uses the alpha channel 

to blend a new fragment’s color value with a 

color in the framebuffer

• Useful for overlaying textures or other effects

CSE528

New color Color in framebuffer

+ = ?

(r1,g1,b1,a1) (r0,g0,b0,a0)

(r’,g’,b’,a’)

“source” “destination”
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Fog

Simulate atmospheric effects

• glFog ():  Sets fog parameters

• glEnable (GL_FOG);

CSE528
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Other Features

• Display Lists: Speed up your game!

• Quadrics: Pre-made objects

– Also look at GLUT’s objects

• Evaluators: Bezier curves and surfaces

• Selection: Clicking on game objects with a 

mouse 

CSE528
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Buffers
• Multiple types of buffers

– Color buffers (front/back, left/right)

– Depth buffer (hidden surface removal)

– Stencil buffer (allows masking or stenciling)

– Accumulation buffer (antialiasing, depth of field)

• Clearing buffers:
// Clear to this color when screen is cleared.

glClearColor (0.0, 0.0, 0.0, 0.0);

// Clear color and depth buffers.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  

CSE528
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Double Buffering

• Double buffering:

– Draw on back buffer while front buffer is being 

displayed.

– When finished drawing, swap the two, and begin 

work on the new back buffer.

–glutSwapBuffers();

• Primary purpose: eliminate flicker

CSE528


