CSE528 Computer Graphics -Theories, Algorithms, and Applications

Hong Qin Rm.151, NEW CS Building **Department of Computer Science** Stony Brook University (State University of New York) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 gin@cs.stonybrook.edu; or gin@cs.sunysb.edu http:///www.cs.stonybrook.edu/~qin

Department of Computer Science Center for Visual Computing

Course Website

• http://www.cs.stonybrook.edu/~cse528 or

 <u>http://www3.cs.stonybrook.edu/~qin/courses/gra</u> <u>phics/graphics.html</u>

Department of Computer Science Center for Visual Computing

CSE528 TA

- Mr. Xi HAN (Hong's senior PhD student)
- <u>xihan1@cs.stonybrook.edu</u>
- Office hours: WF 3-4pm, or by appointments
- TA help page (OpenGL resources and submission instructions, directly managed by Xi): <u>https://www3.cs.stonybrook.edu/~xihan1/courses/cse528/ta a_help_page.html</u>
- 2-3 OpenGL tutorials during this semester, or depending on the actual demands from students

Department of Computer Science Center for Visual Computing

Course Lectures and Office Hours

- Lecture time: TuTh 1:15-2:35pm
- Location: OLD Computer Science Building Rm.2120
- Office hours: TuTh 2:35-4:05pm, or by appointment

Department of Computer Science Center for Visual Computing

Grading Schemes

- Three exams (two midterm exams + one final exam): 30% (10% each)
- Class attendance: 10%
- Homework (non-programming): 15%
- Programming assignments: 45%
- **Bonus: up to 15%**
- (Optional, one course project, details to be discussed in class)

Department of Computer Science Center for Visual Computing

Late Submission Penalty

• 25% per day!!!

Department of Computer Science Center for Visual Computing

The Course Objectives

- Provide graduate students a comprehensive knowledge on computer graphics concepts, theory, algorithms, techniques, and applications for modeling, simulation, rendering, animation, human-computer interactions, and other key elements of visual computing
- Demonstrate the significance of these mathematical and computational tools and graphics algorithms in visual computing and relevant areas
- Emphasize a ``hands-on" approach to both the better understanding of graphics concept/theory/algorithms and the effective use of graphics techniques in various applications

Course Facts

- This is an entry-level graduate course for both MS and PhD students (a quals course for PhD students)!!!
- Can I take this course? YES, if YOU
 - are a graduate student with CS background, have skills in calculus and linear algebra, or talk to the instructor
- You do NOT need to take CSE328 prior to this course
- However, if you had taken CSE328, or CSE332, or equivalent courses elsewhere, it would definitely help!
- One suggested (BUT NOT required) textbook, several suggested references
- Lecture notes are important!!! Class attendance is critical!!!

Department of Computer Science Center for Visual Computing

Basic Requirements for Graphics Programming Assignments

- Interactive interface (graphics-based)
- Intuitive and easy to understand
- Efficient (fast, high-performance)
- Basic functionalities
- Examples
- Flexible and easy to generalize

Department of Computer Science Center for Visual Computing

OpenGL Tutorials

• Tutorials for Modern OpenGL (3.3+)

<u>http:///www.opengl-tutorial.org/</u>

<u>http://en.wikibooks.org/wiki/OpenGL_Programming</u>

 Many online resources for OpenGL are available (for both reading materials and codes)

Department of Computer Science Center for Visual Computing

My Contact Information

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Tel: (631)632-8450; Fax: (631)632-8334 gin@cs.stonybrook.edu; gin@cs.sunysb.edu http:///www.cs.stonybrook.edu/~qin Office: Room 151, NEW CS Building

Department of Computer Science Center for Visual Computing

What is Computer Graphics

- Computer Graphics: The pictorial <u>synthesis</u> of real or imaginary objects from their <u>computer-generated-models</u>.
- Computer graphics is the production of (usually) images where none existed before.

Department of Computer Science Center for Visual Computing

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Related Terminologies

- Image Processing: Analysis or reconstruction of objects from image data. Basically, this is the inverse of computer graphics in that it starts with the image and works from there.
- Computer Vision
- Computer Generated Imagery (CGI): Production of imagery using computers. Includes both computer graphics and image processing.

Department of Computer Science Center for Visual Computing

Key Components

- Computer graphics pipeline, basic concepts, theory, algorithms, and techniques
- Modeling: representation choices of different models
- Rendering: simulating light and shadow, camera control, visibility, discretization of models
- HCI (human-computer interface): specialized I/O devices, graphical user interfaces
- Animation: lifelike characters, natural phenomena, surrounding virtual environments
- Advanced topics

Key Components

- Possible advanced topics, including (but not just limited to)
 - Image processing techniques,
 - Data modeling techniques,
 - Image-based modeling and rendering,
 - Radiosity, Photo mapping/tracing,
 - Non-photorealistic rendering,
 - Image vectorization, etc.

You are welcome to suggest new topics!

Main Concentrations

- Mathematical concepts, modeling and rendering theory, and computational tools
- Fundamental algorithms in representation, modeling, simulation, rendering, animation, etc.
- Geometric (and graphical and visual) modeling and simulation techniques, and geometric processing and analysis tools
- A large variety of applications in graphics and visualization as well as other visual computing areas
- Several advanced topics and they are all researchoriented, representing the most sophisticated ones

Our Course

- A subset of key concepts, theory, algorithms, techniques, and applications
- Extensive topics with a main focus on our unique course mission
- Comprehensive lectures (focusing on geometric intuition, good ideas, and application needs)
- Numerous slides, figures, images, and videos for easy understanding (after all, this is the nature of graphics and visualization)
- Active students' involvements

What is Computer Graphics

The creation of, manipulation of, analysis of, and interaction with pictorial representations of objects and data using computers - Dictionary of Computing **Computer Graphics is also called Image Synthesis** A picture is worth a thousand words

- Chinese Proverb

Department of Computer Science Center for Visual Computing

Computer Graphics

- (Realistic) pictorial synthesis of real and/or imaginary objects from their computer-based models (datasets)
- It typically includes modeling, rendering (graphics pipeline), and human-computer interaction
- So, we are focusing on computer graphics hardware, software, and mathematical foundations
- Computer Graphics is computation
 - A new method of visual computing
- Why is Computer Graphics useful and important?
- Course challenges: more mathematics oriented, programming requirements, application-driven, interdisciplinary in nature, etc.

Computer Graphics Systems

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Output Devices

Vector Devices

- Lasers (for example)

Raster Devices

 CRT, LCD, bitmaps, etc.

Most output devices are 2D
Can you name any 3D output devices?

Department of Computer Science Center for Visual Computing

Graphical Models

- 2D and 3D objects
 - Triangles, quadrilaterals, polygons
 - Spheres, cones, boxes
- Surface characteristics
 - Color, reaction to light
 - Texture, material properties
- Composite objects
 - Other objects and their relationships to each other
- Lighting, fog, etc.
- Much, much more...

Rendering

- Conversion of 3D model to 2D image
 - Determine where the surfaces "project" to.
 - Determine what every screen pixel might see.
 - Determine the color of each surface

Rendering Parameters

- Camera parameters
 - Location
 - Orientation
 - Focal length

ST NY BR K

Department of Computer Science Center for Visual Computing

3D Graphics vs. 2D Graphics

- 2D
 - -X, Y 2 dimensions only
 - We won't spend time on 2D graphics in this course
- 3D
 - -X, Y, and Z
 - Space

Rendering is typically the conversion of 3D to 2D

Department of Computer Science Center for Visual Computing

3D Coordinate Systems

OpenGL uses this!

Department of Computer Science Center for Visual Computing

Left-Hand Coordinate System

Direct3D uses this!

Department of Computer Science Center for Visual Computing

Mathematical Background

- Computer Graphics has a strong 2D/3D geometry component
- Basic linear algebra is also helpful matrices, vectors, dot products, cross products, etc.
- More continuous math (vs. discrete math) than in other typical computer science courses
- Function plots, curves, and surfaces

Department of Computer Science Center for Visual Computing

Primary Topics

- Overview, applications
- Basic components, history development
- Hardware, system architecture, raster-scan graphics
- Line drawing, scan conversion
- 2D transformation and viewing
- 3D transformation and viewing
- Hierarchical modeling
- Interface
- Geometric models
- Color representations
- Hidden object removal
- Illumination models
- Advanced topics

Primary Topics

- Local Illumination and Graphics Rendering
- Texture Mapping Techniques
- Procedural Modeling Fundamentals and Various Techniques
- Radial Basis Functions and Applications
- Ray Tracing
- Geometry-driven Deformation and FFD
- Computer Animation
- Hidden Surface Removal
- Differential Geometry

Department of Computer Science Center for Visual Computing

A Very Good Textbook for General Issues in Computer Graphics

- Computer Graphics with OpenGL, Fourth Edition, Donald Hearn, M. Pauline Baker, and Warren R. Carithers, Prentice Hall, 2011.
- A recommended textbook (BUT NOT REQUIRED)!

Department of Computer Science Center for Visual Computing

OpenGL Reference Books

- 1. OpenGL Programming Guide,
- 2. OpenGL Reference Manual,
- 3. OpenGL Superbible
- 4. <u>http://www.opengl.org</u> and many online resources (for reading materials and codes)

Why Graphics and Visualization

- A Chinese proverb: " a picture is worth a thousand words."
- "A picture is worth more than a thousand words." – ancient proverb

Department of Computer Science Center for Visual Computing

What is Visualization

Visualization is a method of extracting meaningful information from complex or voluminous datasets through the use of interactive graphics and imaging

Department of Computer Science Center for Visual Computing

Why Graphics and Visualization

- Enable scientists (also engineers, physicians, general users) to observe their simulation and computation
- Enable them to describe, explore, and summarize their datasets (models) and gain insights
- Offer a method of SEEING the UNSEEN
- Reason about quantitative information
- Enrich the discovery process and facilitate new inventions

Why Graphics and Visualization

- Analyze and communicate information
- Revolutionize the way scientists/engineers/physicians conduct research and advance technologies
- About 50% of the brain neurons are associated with vision
- The gigabit bandwidth of human eye/visual system permits much faster perception of visual information and identify their spatial relationships than any other modes
 - Computerized human face recognition

Entertainment

Department of Computer Science Center for Visual Computing

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Graphics Examples

Department of Computer Science Center for Visual Computing

More Examples

Images

Points

Volumes

ST NY BR K

Department of Computer Science Center for Visual Computing

Medicine and Health-care

Department of Computer Science Center for Visual Computing

More Examples

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Terrain Modeling and Rendering

Department of Computer Science Center for Visual Computing

What Are Our Ultimate Goals?

- A large variety of datasets (acquired via scanning devices, super-computer simulation, mathematical descriptions, etc.)
- A pipeline of data processing that consists of data modeling (reconstruction), representation, manipulation (rigid transformation or deformation), classification (segmentation), feature extraction, simulation, analysis, visual display, conversion, storage, etc.
- Visual information processing in the intelligent way (Intelligent Information Processing)

What Are Our Ultimate Goals?

- Datasets that are huge, multi-dimensional, timeevolving, unstructured, multi-attributes (geometric info. + material distributions), scattered (both temporal and spatial)....
- We are investigating mathematical tools and computational techniques for data modeling, reconstruction, manipulation, simulation, analysis, and display

Department of Computer Science Center for Visual Computing

Challenges

- TOO MUCH data
- The number of data sources keeps increasing
- Sensor quality and resolution are increasing
- Existing instruments are still available
- The speed of supercomputer is faster than ever
- We must do something (besides collecting and storing the datasets)
- We must deal with the huge datasets effectively
- Visual communication, improve our visual interaction with data

Challenges

- Data-driving, scientific computing to steer calculations
- Real-time interaction with computer and data experimentation
- Drive and gain insight into the scientific discovery process

Department of Computer Science Center for Visual Computing

Related Fields

- Computer graphics (image synthesis)
 - Generate images from complex multivariate datasets
- Image processing, signal processing
- Image understanding (pattern recognition)
 - Interpret image data
- Computational vision
- Human-computer interaction
 - Mechanisms to communicate, use, perceive visual information
- Computer-aided design
- Neurological/physiological studies on human brain and our visual system

Department of Computer Science Center for Visual Computing

Computer Graphics Pipeline

- Data acquisition and representation
- Modeling data and their (time-varying) behaviors (e.g., physical experiments or computational simulations)
- Graphics system and software environments for data rendering
- Image-based techniques

Department of Computer Science Center for Visual Computing

Data Sources

- Scanned, computed, modeled data
- The first process is data-gathering
- Large variety of data sources and attributes
- Extremely large-scale datasets
- Require real-time processing

Data Acquisition and Processing

- Pixels and voxels
- Regular & irregular grids
- Numerical simulations
- Surface or volumetric data
- Scalar, vector, tensor data with multiple attributes
- Higher-dimensional and/or time-varying data
- Popular techniques
 - Contouring, iso-surfaces, triangulation, marching cubes, slicing, segmentation, volume rendering, reconstruction
- Image-based processing techniques

- Sampling, filtering, anti-aliasing, image analysis & manipulation

Department of Computer Science Center for Visual Computing

Information Domain

- Sciences (e.g., statistics, physics)
- Engineering (e.g., empirical observations for quality control)
- Social events (e.g., population census)
- Economic activities (e.g., stock trading)
- Medicine (e.g., computed tomograph (CT), magnetic resonance imaging (MRI), X-rays, ultrasound, various imaging modalities)
- Geology

Information Domain

- Biology (e.g., electronic microscopes, DNA sequences, molecular models, drug design)
- Computer-based simulations (e.g., computational fluid dynamics, differential equation solver, finite element analysis)
- Satellite data (e.g., earth resource, military intelligence, weather and atmospheric data)
- Spacecraft data (e.g., planetary data)
- Radio telescope, atmospheric radar, ocean sonar, etc.
- Instrumental devices recording geophysical and seismic activities (e.g., earthquake)

Graphics and Visualization

- Data acquisition, representation, and modeling
- Imaging processing
- Visualization (displaying) methods and algorithms
- More advanced research topics

Department of Computer Science Center for Visual Computing

Pathway to Success

- Highly-motivated
- Hard-working
- Start as soon as possible
- Communicate with the instructor on a regular basis
- Actively interact with your fellow students
- Visit libraries and internets frequently for papers and software system
- Read as many papers as possible
- Work on your course project

Computer Graphics

- "The purpose of scientific computing is insight, not numbers," by Richard Hamming many years ago
- These fields are all within computer science and engineering, yet computer graphics spans multidisciplines
- Computer Graphics (another definition)

 Application of computers to the disciplines of sciences/engineering

Department of Computer Science Center for Visual Computing

Computer Graphics

• Computer Graphics is application-driven, so what are its applications?

Applications

- Simulation and training: flight, driving
- Scientific visualization: weather, natural phenomena, physical process, chemical reaction, nuclear process
- Science: Mathematics, physics (differential equations) biology (molecular dynamics, structural biology)
- Environments sciences
- Engineering (computational fluid dynamics)
- Computer-aided design/manufacturing (CAD/CAM): architecture, mechanical part, electrical design (VLSI)

Applications

- Art and Entertainment, animation, commercial advertising, movies, games, and video
- Education, and graphical presentation
- Medicine: 3D medical imaging and analysis
- Financial world
- Law
- WWW: graphical design and e-commerce
- Communications, interface, interaction
- Military
- Others: geographic information system, graphical user interfaces, image and geometric databases, virtual reality, etc.

Key Components

- Modeling: representation choices of different models
- Rendering: simulating light and shadow, camera control, visibility, discretization of models
- HCI (human-computer interface): specialized I/O devices, graphical user interfaces
- Animation: lifelike characters, natural phenomena, surrounding virtual environments

Journals and Conferences

- Computer Graphics (proceedings of ACM SIGGRAPH)
- ACM Transactions on Graphics
- IEEE Transactions on Visualization and Computer Graphics
- IEEE Computer Graphics and Applications
- Computer-Aided Design
- Computer Aided Geometric Design
- Others!!!

Department of Computer Science Center for Visual Computing