CSE528 Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin Rm.151, NEW CS Department of Computer Science Stony Brook University (State University of New York) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 gin@cs.sunysb.edu; or gin@cs.stonybrook.edu; http:///www.cs.stonybrook.edu/~qin

Goals

- **Systems:** be able to write fairly complex interactive 3D graphics programs (in OpenGL)
- Theory: Understand mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is <u>not</u> about the specifics of 3D graphics programs and APIs like Maya, Alias, AutoCAD, DirectX but about the concepts underlying them

Key Elements for the Course

• 3D Graphics Pipeline

Modeling (Creating 3D Geometry)

Rendering (Creating, shading images from geometry, lighting, materials)

Application-driven Computer Graphics

- Entertainment (movies), art
- Design (CAD)
- Video games
- Education, simulators, augmented reality

Modeling

- Polygons
- Constructive solid geometry
- Parametric surfaces
- Implicit surfaces
- Subdivision surfaces
- Particle systems
- Volumes

Modeling

- Spline curves, surfaces: $70^{s} 80^{s}$
- Utah teapot: Famous 3D model

More recently: Triangle meshes often acquired from real objects

Animation

- Scripted
- Key-frame interpolation
- Inverse kinematics
- Dynamics

Department of Computer Science

The Graphics Pipeline

ST NY BR K

Department of Computer Science

What is Computer Graphics?

- Anything to do with visual representations on a computer
- Includes much of 2D graphics we take for granted
- And 3D graphics modeling and rendering (focus of this course)
- Auxiliary problems: Display devices, physics and math for computational problems

The term Computer Graphics was coined by William Fetter of Boeing in 1960 First graphic system in mid 1950s USAF SAGE radar data (developed MIT)

Before Computer Graphics

ST NY BR K

Department of Computer Science

Where Are We Coming From: TEXT

Manchester Mark I

Display

ľ	100		 				*****			 	*****			*****	
ł,		*****	 						*****	 					

			 	-					*****	 	*****			*****	
			 							 	*****		*****	*****	
			 							 	*****			*****	
			 	*****		*****	*****			 	*****				
	-	-	 							 					
			 		*****					 *****				*****	

			 							 *****				*****	

			 					-		 *****					

			 					-		 				*****	
	-		 							 	*****	*****	*****	*****	

			 	-						 					
	-		 							 	*****				

	-		 							 					

	-		 							 					

ST NY BR K

Department of Computer Science

From Text to GUIs

Department of Center for V

 Invented at PARC about 1975. Used in the Apple Macintosh, and now prevalent everywhere.

	E NORD	=CHARI			
	Neuristic reasoning is reason- ing not regarded as final and strict but as provisional and plausible only, whose purpose is to discover the solution of the present problem. We are often obliged to use heuristic TS E PLAN 1 1 2 January 3 Sales \$2000.00				
	Material \$4000.00	2			
	COMMAND: Alpha Delete Entry Forma Quit Print List Transfer	Gallery Help Insert List			
Xerox Star	Chart:1 designed for Scre	tows free chart:			
es	^p hoto 9				

K

YORK

Input Hardware

2**D**

- light pen, tablet, mouse, joystick, track ball, touch panel, etc.
- 1970s & 80s CCD analog image sensor + frame grabber
- 1990s & 2000's CMOS digital sensor + in-camera processing
 → high-X imaging (dynamic range, resolution, depth of field,...)

Input Hardware

1020-

M,

0

1_{m3} 1_{m2}

 \rightarrow

[Nayar00]

1_{Im0}

1/m1

Department of Computer Science

Display Hardware

- Vector displays
 - 1963 modified oscilloscope
 - 1974 Evans and Sutherland Picture System

Ivan Sutherland (1963) – SKETCHPAD Drawing

- Sketchpad (Sutherland, MIT 1963)
- First interactive graphics system
- Many of concepts for drawing in current systems
 - Pop-up menus
 - Constraint-based drawing
 - Hierarchical modeling

2D Graphics

Many of the standard operations you're used to:

- Text
- Graphical User Interfaces (Windows, MacOS, ...)
 Image processing and paint programs (Photoshop,)
- Drawing and presentation (Powerpoint,)

Department of Computer Science

Paint Systems

 SuperPaint system: Richard Shoup, Alvy Ray Smith (PARC, 1973-79)

 Nowadays, image processing programs like Photoshop can draw, paint, edit, etc.

Image Processing

- Digitally alter images, crop, scale, composite
- Add or remove objects
- Sports broadcasts for TV (combine 2D and 3D processing)

Computer Graphics History

ST NY BR K STATE UNIVERSITY OF NEW YORK

Rendering: 1960s (Visibility)

- Roberts (1963), Appel (1967) hidden-line algorithms
- Warnock (1969), Watkins (1970) hiddensurface
- Sutherland (1974) visibility = sorting

Department of Computer Science

Rendering: 1970s (Lighting)

1970s - raster graphics

- Gouraud (1971) diffuse lighting, Phong (1974) - specular lighting
- Blinn (1974) curved surfaces, texture
- Catmull (1974) Z-buffer hidden-surface algorithm

Department of Computer Science

Rendering (1980s, 90s: Global Illumination)

Early 1980s - global illumination

- Whitted (1980) ray tracing
- Goral, Torrance et al. (1984) radiosity
- Kajiya (1986) the rendering equation

History

• Brief history of significant developments in computer graphics field

Display Hardware

- Raster displays
 - 1975 Evans and Sutherland frame buffer
 - 1980s cheap frame buffers → bit-mapped personal computers
 - -1990s liquid-crystal displays \rightarrow laptops
 - -2000s micro-mirror projectors \rightarrow digital cinema
- Others
 - stereo, head-mounted displays
 - autostereoscopic displays

Input Hardware

- 3D
 - 3D trackers
 - multiple cameras
 - active rangefinders
- Others
 - data gloves
 - voice

Department of Computer Science

Rendering

- 1960s the visibility problem
 - Roberts (1963), Appel (1967) hidden-line algorithms
 - Warnock (1969), Watkins (1970) hidden-surface algorithms
 - Sutherland (1974) visibility = sorting

1970s

- Raster graphics
- Gouraud (1971) diffuse lighting
- Phong (1974) specular lighting
- Blinn (1974) curved surfaces, texture
- Catmull (1974) Z-buffer hidden-surface algorithm
- Crow (1977) anti-aliasing

ST NY BR K STATE UNIVERSITY OF NEW YORK

Early 1980s

Global illumination

- Whitted (1980) ray tracing
- Goral, Torrance et al. (1984), Cohen (1985) radiosity
- Kajiya (1986) the rendering equation

Late 1980s

• Early 1980s - Global illumination

- Whitted (1980) - ray tracing

- Goral, Torrance et al. (1984), Cohen (1985) radiosity
- Kajiya (1986) the rendering equation

Photorealism

- Cook (1984) shade trees
- Perlin (1985) shading languages

- Hanrahan and Lawson (1990) - RenderMan

Department of Computer Science

Photorealism

- Driving force behind computer graphics for many years
- Quality of image is judged by how closely they resemble a photograph
- Images are rendered by running a physicssimulation which emulates the behavior of light inside the modeled scene

Effects needed for Photorealism

- Shadows
- Reflections (Mirrors)
- Transparency
- Interreflections
- Detail (Textures etc.)
- Complex Illumination
- Realistic Materials
- And many more

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Early 1990s

- Non-photorealistic rendering
 - Drebin et al. (1988), Levoy (1988) volume rendering
 - Haeberli (1990) impressionistic paint programs
 - Salesin et al. (1994-) automatic pen-and-ink illustration
 - Meier (1996) painterly rendering

Department of Computer Science

ST NY BR K STATE UNIVERSITY OF NEW YORK

Non-Photorealistic Rendering (NPR)

- Images are judged by how effectively they communicate
- Involves stylization and communication, usually driven by human perception
- Knowledge and techniques long used by artists and illustrators
- Emphasis on specific features of a scene, expose subtle attributes, omit extraneous information
- Brings together art and science

Early 1990s

- Non-photorealistic rendering
 - Drebin et al. (1988), Levoy (1988) volume rendering
 - Haeberli (1990) impressionistic paint programs
 - Salesin et al. (1994-) automatic pen-and-ink illustration
 - Meier (1996) painterly rendering

Department of Computer Science

The Graphics Pipeline

The Traditional Pipeline

The New Pipeline?

