
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

CSE528 Computer Graphics:
Theory, Algorithms, and

Applications

Hong Qin

Rm. 151, NEW CS Building

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu; or qin@cs.sunysb.edu;

http://www.cs.stonybrook.edu/~qin

mailto:qin@cs.stonybrook.edu
mailto:qin@cs.sunysb.edu

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry Representations

• What is geometric modeling
– Representation of existing objects (mathematical tools to

represent shape geometry of real-world objects, both natural and
manufactured ones)

– Reverse engineering (from physical prototypes to digital
prototypes)

– Design of new objects (shape editing, deformation,
manipulation)

– Rendering - leading to visual interpretation

• Application of geometric modeling
– Graphics, CAD, CAGD, CAM/CAE, robotics, vision, virtual

reality, scientific visualization, animation, physical simulation,
computer games, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Hierarchical Models

Now we are learning and examining the
geometric modeling techniques from the

data structure’s perspective

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Representing Objects in Graphics

• Objects represented as symbols

• Defined in model coordinates; transformed into

world coordinates (M = TRS)
glMatrixMode(GL_MODELVIEW);

glLoadIdentity(); glTranslatef(…);

glRotatef(…); glScalef(…);

glutSolidCylinder(…);

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Geometry Representations
• Modeling primitives

– Polygon

– Sphere, ellipsoid, torus, superquadrics

– NURBS, surfaces of revolutions, smoothed polygons

– Particles

– Skin & bones

• Approaches to modeling complex shapes

– Tools such as extrude, revolve, loft, split, stitch, blend

– Constructive solid geometry (CSG)

– Hierarchy; kinematic joints

– Inverse kinematics

– Keyframes

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Overview

CSE528 Lectures

• Data structures for interactive graphics

– CSG-tree

– BSP-tree

– Quadtrees and Octrees

• Modeling

• Computer animation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hierarchical Modeling

CSE528 Lectures

• Hierarchical model: a group of parts

(including meshes) are related by a tree (or

graph) structure
– Properties of children are derived from their parents

– Most useful for animating articulated objects (human

figures, low-life animals, robots, etc.)

• Consider a walking (humanoid, classic)

robot:
– How would you move the robot around?

– Does the entire robot move in the same way?

– Does the position of one part of the robot depend on other

parts?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Two-link Robot Example

CSE528 Lectures

Move body

Draw body

left arm
l Rotate about shoulder

Draw upper arm

Translate (l,0,0)

Rotate about origin of

lower arm

Draw lower arm

Important issues:
Every node has its own

local coordinate

system.

This makes specifying

transformations much

easier.

What are we assuming

about the “upper arm”

coordinate system?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hierarchical Models

CSE528 Lectures

• Generally represented as a tree, with

transformations and instances at any node
– Can use a general graph, but resolving inheritance conflicts is a problem

• Rendered by traversing the tree, applying the

transformations, and rendering the instances

• Particularly useful for animation
– Human is a hierarchy of body, head, upper arm, lower arm, etc…

– Animate by changing the transformations at the nodes

• Other things can be inherited (colors, surface

properties, etc.)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hierarchical Models

• When animation is desired, objects may have

parts that move with respect to each other

– Object represented as hierarchy

– Often there are joints with motion constraints

– For example, represent wheels of car as sub-objects

with rotational motion (car moves 2 pi r per rotation)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Directed Acyclic Graph (DAG)
Models
• Could use tree to

represent object

• Actually, a DAG
(directed acyclic
graph) is better:
can re-use objects

• Note that each arrow needs a
separate modeling transform

• In object-oriented graphics, also
need motion constraints with each
arrow

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Robot

• Traverse DAG using DFS (or BFS)

• Push and pop matrices along the way

(e.g., left-child right-sibling)

(joint position parameters?)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Primitives

CSE528 Lectures

• The basic type of

primitive is the

polygon

• Number of

polygons: tradeoff

between render time

and model accuracy

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Bones and Skin

• Skeleton with joined “bones”

• Can add “skin” on top of bones

• Automatic or

hand-tuned

skinning

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Animation

• Suppose you want

the robot to

pick up a can of oil

to drink, how?

• You could set the

joint positions at

each moment in

the animation

(kinematics)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Inverse Kinematics

• You can’t just invert the

joint transformations

• Joint settings aren’t even

necessarily unique for a

hand position!

• Inverse kinematics:

figure out from the hand

position where the joints

should be set.

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Using Inverse Kinematics

• Specify joint

constraints

and priorities

• Move end effector

(or object pose)

• Let the system figure

out joint positions

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Data Structure for Modeling

• Data structure for geometry representations

• How to represent complex objects made up of

union, intersection, difference of other objects

• Spatial data structure

• Tree-based decomposition of space

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSG Tree

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Constructive Solid Geometry (CSG)

• Based on a tree structure, like hierarchical modeling,

but now:
– The internal nodes are set operations: union, intersection or difference

(sometimes complement)

– The edges of the tree have transformations associated with them

– The leaves contain only geometry

• Allows complex shapes with only a few primitives
– Common primitives are cylinders, cubes, etc, or quadric surfaces

• Motivated by computer aided design and manufacture
– Difference is like drilling or milling

– A common format in CAD products

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Constructive Solid Geometry (CSG)

CSE528 Lectures

Object made by CSG Converted to polygons

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtrees and Octrees

• Build a tree where successive levels represent

better resolution (smaller voxels)

• Large uniform spaces result in shallow trees

• Quadtree is for 2D (four children for each node)

• Octree is for 3D (eight children for each node)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtree

CSE528 Lectures

• Quadtree: divide space into four quadrants. Mark

as Empty, Full, or Partially full.

• Recursively subdivide partially full regions

• Saves much time, space over 2D pixel data!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtree Structure

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtree Example

CSE528 Lectures

top left top right bot left bot right

Octree principle is the same, but there are 8 children

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtree Algorithms

• How would you

– render a quadtree shape?

– find the intersection of a ray with a quadtree shape?

– Take the union of two quadtrees?

– Intersection?

– Find the neighbors of a cell?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Octrees

• Generalize to cut up a cube into 8 sub-cubes,

each of which may be E, F, or P (and

subdivided)

• Much more efficient

than a 3D array of

cells for 3D

volumetric data

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Spatial Data Structure
• Beyond graphics spatial representations

• Octree also serves as a spatial data structure itself – specifically

designed for storing spatial information

• Frequently used to store information about where polygons, or

other primitives, are located in a scene

• Speeds up many computations by making it fast to determine when

something is relevant or not (another example is BSP-tree which

speeds up visibility test)

• Other spatial data structures include BSP trees, KD-Trees, Interval

trees, …

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Handling Large-scale Spatial
Datasets

• Example application: image-based rendering

– Suppose you have many digital images of a scene,

with depth information for pixels

– How to find efficiently the points that are in front?

• Other applications:

– Speeding up ray-tracing with many objects

– Rendering contours of 3D

volumetric data such as MRI scans

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Spatial Enumeration
• Basic idea: describe something using space it occupies,

break the volume of interest into lots of tiny cubes, and

use cubes inside the object to represent (approximate) the

object

• Works well for medical data (e.g., MRI or CAT scans)

• Enumerates the volume - data is associated with each

voxel (volume element)

– Problems: for anything other than small volumes or low

resolutions, the number of voxels explodes

– Note that the number of voxels grows with the cube of linear

dimension
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering Octrees
• Relying on volume rendering techniques to handle octrees

and associated data directly

• Converting to polygons by a few methods:

– Just take faces of voxels that are on the boundary

– Find iso-surfaces within the volume and render those

– Typically do some interpolation (smoothing) to get rid of the

artifacts from the voxelization

• Typically render with colors that indicate something about

the data, but other methods exist

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Applications of Octrees

• Contour finding in MRI data

• 3D scanning and rendering

• Efficient ray tracing

• Intersection, collision testing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP Tree for Shape Modeling

• Right is “front” of polygon; left is “back”

• In and Out nodes show regions of space inside or

outside the object

• (Or, just store split pieces of polygons at leaves)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Building a BSP Tree

• Inserting a polygon:

– If tree is empty make it the root

– If polygon to be inserted intersects plane of polygon

of current node, split and insert half on each side

recursively.

– Else insert on appropriate side recursively

• Problem: the number of faces could grow

dramatically
– Worst case (O(n2))…but usually it doesn’t grow too badly in practice…

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Traversing a BSP Tree
• Binary Space Partition tree: a binary tree with a

polygon at each node
– Children in left subtree are behind polygon

– Children in right subtree are in front of polygon

• Traversing a BSP-tree:
– If null pointer, do nothing

– Else, draw far subtree, then polygon at current node, then near
subtree

– Far and near are determined by location of viewer

• Runtime of traversal?

• Drawbacks?
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hidden Surface Removal (HSR)

• How to render in 3D with hidden surface

removal when you don’t have a hardware depth-

buffer?

• Can you think of any other ways of removing

hidden surfaces quickly?

• Principle: a polygon can’t be occluded by

another polygon that is behind it.

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Tree

• The painter’s algorithm for hidden surface

removal works by drawing all faces, from back

to front

• How to get a listing of the faces in back-to-front

order?

• Put them into a binary tree and traverse the tree

(but in what order?)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

BSP-Tree Summary
• Returns polygons not necessarily in sorted order, but

in an order that is correct for back-to-front rendering

• Widely used when Z-buffer hardware may not be
available (e.g., game engines)

• Guarantees back-to-front rendering for alpha
blending

• Works well (linear-time traversals) in the number of
split polygons

• [And we hope the number of polygons doesn’t grow
too much through splitting]

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Bounding Volume Hierarchy (BVH)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Boxes

• Bounding boxes

• Data structures for spatial

acceleration

– Regular grid

– Adaptive grids

– Hierarchical bounding

volumes

• Flattening the transformation

hierarchy

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Regular Grid ONLY

• Advantages?

– easy to construct

– easy to traverse

• Disadvantages?

– may be only sparsely filled

– geometry may still be clumped

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Adaptive Grids

Nested Grids Quadtree/(Octree)

• Subdivide until each cell contains no more tha n elements, or

maximum depth d is reached

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Primitives in an Adaptive Grid
• Can live at intermediate levels, or be pushed to lowest

level of grid

Quadtree/(Octree)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328

Adaptive Grid Discussion
• Advantages?

– grid complexity matches geometric density

• Disadvantages?

– more expensive to traverse (especially octree)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy
• Find bounding box of objects

• Split objects into two groups

• Recurse

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy
• Find bounding box of objects

• Split objects into two groups

• Recurse

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy
• Find bounding box of objects

• Split objects into two groups

• Recurse

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy
• Find bounding box of objects

• Split objects into two groups

• Recurse

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy
• Find bounding box of objects

• Split objects into two groups

• Recurse

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Where to split objects?
• At midpoint OR

• Sort, and put half of the objects on each side OR

• Use modeling hierarchy

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Intersection with BVH
• Check sub-volume with closer intersection first

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Intersection with BVH
• Don't return intersection immediately if the other

subvolume may have a closer intersection

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Bounding Volume Hierarchy Discussion

• Advantages

– easy to construct

– easy to traverse

– binary

• Disadvantages

– may be difficult to choose a good split for a node

– poor split may result in minimal spatial pruning

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Summary

• 3D modeling uses advanced primitives and ways

of cutting, joining them

• Inverse kinematics determines joint position

from end effector motions

• Keyframe animation involves important poses

and inbetweening

• 3D morphing animates surface control points

• 3D spatial subdivision trees include CSG-trees,

BSP-trees, Quadtrees, and Octrees
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Example for
Hierarchical Modeling

• OpenGL defines glPushMatrix() and glPopMatrix()

– Takes the current matrix and pushes it onto a stack, or

pops the matrix off the top of the stack and makes it the

current matrix

– Note: Pushing does not change the current matrix

• Rendering a hierarchy (recursive):

CSE528 Lectures

RenderNode(tree)

glPushMatrix()

Apply node transformation

Draw node contents

RenderNode(children)

glPopMatrix()

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

OpenGL Examples

• OpenGL defines display lists for encapsulating

commands that are executed frequently

CSE528 Lectures

list_id = glGenLists(1);

glNewList(list_id, GL_COMPILE);

glBegin(GL_TRIANGLES);

draw some stuff

glEnd();

glEndList();

And later

glCallList(list_id);

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Instancing

• Sometimes you need many copies of the “same”

object

– Like chairs in a room

• Define one chair, the base or the prototype

• Create many instances (copies) of it, and apply a

different transformation to each

• Appears in scene description languages (Renderman,

Inventor) as “defining” a label for an object

• What does it save?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Instancing

• Many things, called primitives, are conveniently

described by a label and a few parameters
– Cylinder: Radius, length, does it have end-caps, …

– Bolts: length, diameter, thread pitch, …

– Other examples?

• This is a modeling format:
– Provide software that knows how to draw the object given the

parameters, or knows how to produce a polygonal mesh

– How you manage the model depends on the rendering style

– Can be an exact representation

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rendering Instances

• Generally, provide a routine that takes the

parameters and produces a polygonal

representation
– Conveniently brings parametric instancing into the rendering

pipeline

– May include texture maps, normal vectors, colors, etc

– OpenGL utility library (GLu) defines routines for cubes,

cylinders, disks, and other common shapes

– Renderman does similar things, so does POVray, …

• The procedure may be dynamic
– For example, adjust the polygon resolution according to

distance from the viewer
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Display Lists

• Why use display lists?

• Almost any command can go in a display list
– Viewing transformation set-up

– Lighting set-up

– Surface property set-up

• But some things can’t
– Causes strange bugs – always check that a command can go in a

display list

• The list can be:
– GL_COMPILE: things don’t get drawn, just stored

– GL_COMPILE_AND_EXECUTE: things are drawn, and also

stored

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Display Lists (Pros vs. Cons)

• You should use display lists when:

– You do the same thing over and over again

– The commands are supported

– Nothing changes about the way you do it

• Advantages:

– Can’t be much slower than the original way

– Can be much much faster

• Disadvantages:

– Can’t use various commands that would offer other

speedups

• For example, can’t use glVertexPointer()

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528

Questions?

