
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

CSE528 Computer Graphics:
Theory, Algorithms, and

Applications

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~qin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterization
Per-pixel operations: ray-casting/ray-tracing Screen = matrix

Texturing

Aliasing / antialiasing

Scan conversion of lines:

• naive version

• Bresenham algorithm (integer-only)

Scan conversion of polygons

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Line Drawing (Rasterization)

CSE528 Lectures

• Convert continuous line to a set of discretized

points

• Rasterization

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Drawing of Line Geometry

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Algorithm Assumption

• Point samples on 2D integer lattice

• Bi-level display: on or off

• Line endpoints are all integer coordinates

• All line slopes are: |k| <=1

• Lines are ONE pixel thick

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Line Geometry

• Explicit representation

• y = mx + b,

• The geometric meanings of these parameters: m –

slope of the line; b – where it intercept y-axis

(where x = 0)

• More derivations to simplify the equation

– dy = y1 – y0

– dx = x1 – x0

– m = (dy) / (dx)
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Algorithm

• Draw-line(x0, y0, x1, y1)
1. Let dy = y1 – y0

2. Let dx = x1 – x0

3. For x = x0 to x1

4. y = rounding-operation(y0 + (x – x0) (dy / dx)

5. draw-point(x,y)

6. End for

• Why does the above procedure work?

• Explicit definition of the line geometry

– y = (dy / dx) (x – x0) + y0
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rendering Line Geometry
(Rasterization)

• One of the fundamental tasks in computer

graphics is 2D line drawing: How to render a

line segment from (x1, y1) to (x2, y2)?

• Where do we start?

• Use the equation

y = mx + h (explicit)

• What about horizontal

vs. vertical lines?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Further Improvement

• A more efficient algorithm

1. x = x0; y = y0

2. draw-point(x,y)

3. For x from x0 + 1 to x1

4. y = y + (dy / dx)

5. End for

• Note that, m = (dy / dx), and m is a float or

double

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

DDA Algorithm

• So a digital differential analyzer (DDA)

for (x=x1; x<=x2; x++)

y += m;

draw_pixel(x, y, color)

• Handle slopes 0 <= m <= 1; handle others

symmetrically

• Does this

need floating

point operations?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Further Improvement

• We are now seeking an integer-ONLY algorithm

to handle all line geometry

• The above procedures will fail

• We must explore new schemes (beyond the line

geometry we have already know till now)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Algorithm

• Implicit expression for the line geometry

– f(x,y) = (x – x0)*(dy) – (y – y0)*(dx)

• What does this formulation provide us (compared

with the previous derivations)?

• Fundamental ideas – spatial partitioning based on

the signs!

– If f(x,y) =0, then (x,y) is on the line

– If f(x,y) >0, then (x,y) is below the line

– If f(x,y) <0, then (x,y) is above the line

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Motivation

• Line geometry y=mx+b (explicit representation),

not good enough for this task!

• Consider f(x,y)=0 (implicit representation)

instead

• Clear geometry meaning and spatial relationship

between a point and a line (on the line, below the

line, above the line)

• A generic expression f(x,y)=ax+by+c=0

• Where does it come from?
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Implicit Representation

CSE528 Lectures

f(x,y)<0

f(x,y)=0f(x,y)=0

f(x,y)>0

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Line Geometry (AGAIN)

• f(x,y)=(x-x1)dy – (y-y1)dx

• dy=y2-y1

• dx=x2-x1

• Please DO understand the geometric meanings

of these symbols

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Motivation

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Motivation

• We are actually considering d = f(xp + 1, yp +0.5)

• There are three different cases

– If d < 0, line is below the (current) midpoint, then

choose E

– If d >0, lie is above the midpoint, choose NE

– If d =0, line is passing through the midpoint, either E

or NE

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Algorithm

• If E is chosen, then the NEW E would be (x+2,

y), the NEW NE would be (x+2, y+1); the NEW

MIDPOINT is (x+2,y+0.5)

• If NE is chosen, then the NEW E would be

(x+2,y+1), the new NE would be (x+2,y+2); the

NEW MIDPOINT is (x+2,y+0.5)

• Back to the line geometry derivation…

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Algorithm

• Midpoint algorithm is a recursive algorithm!

• For recursive algorithm, we MUST consider the

subsequent steps (by traversing all cases

respectively)!

• If E is chosen, then the NEW E is (xp + 2, yp), the

NEW NE is (xp + 2, yp +1), the NEW midpoint is

(xp + 2, yp + 0.5)

– d_new = f (xp + 2, yp + 0.5)

– d_old = f (xp + 1, yp +0.5)

– d_new = d_old + (dy)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Algorithm

• If NE is chosen, the NEW E is (xp +2, yp +1), the

NEW NE is (xp + 2, yp + 2), the NEW midpoint

is (xp + 2, y + 1.5)
– d_new = f(xp + 2, yp + 1.5)

– d_old = f(xp +1, yp + 0.5)

– d_new = d_old + (dy – dx)

• This process MUST repeat recursively, stepping

along x from x0 to x1

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Initialization

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Initialization

• How about the initialization process

• At the beginning,

– xp = x0

– yp = y0

– d_old = f(x0 +1, y0 +0.5) = (dy) – (dx) * (1/2)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Algorithm

• draw-line(x0, y0, x1, y1)
– Int x0, y0, x1, y1

– { int dx, dy, inc_E, inc_NE, x, y,

– real d

– dx = x1 – x0

– dy = y1 – y0

– d = (dy) – (dx) * (1/2)

– inc_E = dy

– inc_NE = dy – dx

– y = y0

– for x from x0 to x1

– if d>0, then d = d + inc_NE, y + 1, else d = d + inc_E

– end for

– }

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Algorithm

• d is NOT an integer, however, ONLY the sign

MATTERS!

• We prefer an integer-ONLY algorithm!!!

– g(x,y) = 2 f(x,y)

– d becomes 2d

– then d = 2(dy) – (dx)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Integer-only Algorithm

• Midpoint algorithm is an integer-only algorithm

• The complete c-code implementation is available

from the textbook and/or internet!

• The fundamental assumption is that, the line slope

is positive, but controllable (its value is no more

than 1)

• What about other cases?

• Possible generalizations to cover all cases?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Bresenham’s Algorithm

• The DDA algorithm requires a floating point add

and round for each pixel: Can we eliminate?

• Note that at each step we will go E or NE. How

to decide which one (from two possible points)?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Bresenham’s Algorithm

• Also called the midpoint algorithm

• The key idea: consider d=f(x+1,y+0.5) and only

pay attention to its sign!!!

• Midpoint algorithm is a recursive algorithm

• For recursive algorithm, we MUST consider the

subsequent step!

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Bresenham Decision Variable
• Bresenham algorithm uses decision variable d=a-b, where a

and b are distances to NE and E pixels

• If d>=0, go NE;

if d<0, go E

• Let d=(x2-x1)(a-b) = dx(a-b)

[only sign matters]

• Substitute for a and b using

line equation to get integer

math (but lots of it)

• d=(a-b) dx = (2j+3) dx - (2i+3) dy - 2(y1dx-x1dy)

• But note that dk+1=dk + 2dy (E) or 2(dy-dx) (NE)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Bresenham’s Algorithm

• Set up loop computing d at x1, y1
for (x=x1; x<=x2;)

x++;

d += 2dy;

if (d >= 0) {

y++;

d –= 2dx; }

drawpoint(x,y);

• Pure integer math, and not much of it

• So easy that it’s built into one graphics instruction (for

several points in parallel)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Possible Extensions

• The idea is generalizable to other geometric

primitives

• Algorithms for circle-drawing

• Algorithms for ellipses, conic section drawing

• Once again, the book (or the internet) has all the

c-code programs for such tasks

• Generations to polynomial curves?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Modifying the Previous Algorithm

• Make it an integer-ONLY algorithm

• Our earlier assumptions

– slopes: 0 <= (dy) / (dx) <=1

– line endpoints are all integer coordinates

• How about other cases

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Handling All Other Cases

• Generalizations

– negative slope

– slope larger than 1

• If the slope is larger than 1, we use symmetry to

switch x and y (you are NOT displaying (x,y),

you should display (y,x))!

• In negative slope, we should use x and (-y)

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Extensions to Handle Curves

• Generalizations to handle all cases for line

drawing

• Algorithms for circle-drawing

• Algorithms for ellipses, conic section drawing

• Algorithms for cubic curve drawing

• Algorithms to handle any type of curves?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Circles

• Implicit expression of a circle f(x,y)=0

• Remember the key idea is that, ONLY the sign

matters!
– If f(x,y)=0, then (x,y) is on the circle

– If f(x,y)>0, then (x,y) is outside the circle

– If f(x,y)<0, then (x,y) is inside the circle

• Equations for ellipses?

• The key message: the slope is controllable!!!

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan Conversion

• At this point in the pipeline, we have only

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with

integer screen coordinates (ix, iy), depth, and

color

• Send fragments into fragment-processing pipeline

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Graphics Rendering Pipeline

• Geometric processing: normalization, clipping,

hidden surface removal, lighting, projection (front

end)

• Rasterization or scan conversion, including

texture mapping (back end)

• Fragment processing and display

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometric Processing
• Front-end processing steps (3D floating point; may be

done on the CPU)
– Evaluators (converting curved surfaces to polygons)

– Normalization (modeling transformation, convert to world coordinates)

– Projection (convert to screen coordinates)

– Hidden-surface removal (object space)

– Computing texture coordinates

– Computing vertex normals

– Lighting (assign vertex colors)

– Clipping

– Perspective division

– Backface culling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterization
• Back-end processing works on 2D objects in

screen coordinates

• Processing includes
– Scan conversion of primitives including shading

– Texture mapping

– Fog

– Scissors test

– Alpha test

– Stencil test

– Depth-buffer test

– Other fragment operations: blending, dithering, logical operations

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• The earlier task allows us to draw line segments,

polylines, curves, is it sufficient for 2D graphics?

• What are still missing for the rasterization task?

• Wireframe geometry and display is NOT enough

• We must have drawing routines to support the

solid-shaded appearance

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Algorithms

• We start from a simple triangle T: (x1,y1),

(x2,y2), and (x3,y3)

• The task is to find all pixels inside T

• Naïve algorithm (the worst algorithm)

– For each pixel p do

– If p is inside T, then draw-point(p) end if

– End for

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Slight Improvement

• We start from a simple triangle T: (x1,y1),

(x2,y2), and (x3,y3)

• We compute its bounding box B first

– For each pixel p that is inside B do

– If p is inside T, then draw-point(p) end if

– End for

• Essentially, the scan conversion MUST solve

this problem, given a T and a pixel (or point in

general), can we determine: p is a part of T

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Casting (Ray Firing)

• We start from a simple triangle T: (x1,y1),

(x2,y2), and (x3,y3) and a point

– (1) draw a ray from p outward along any direction

– (2) count the number of intersections of this ray with

triangular boundaries for T

– (3) If ODD, then p is inside T, otherwise, p is not a

part of T

• Is this method correct?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Scan Conversion

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• What happens if the ray pass through a vertex of a

simple triangle T: (x1,y1), (x2,y2), and (x3,y3)

• How do you actually count the number of

intersections with a triangular boundary?

• How do you actually compute the intersection?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Mathematically speaking: f(x,y)=0; g(x,y)=0,

simple solve them for possible solutions

• In reality (computer graphics), we don’t really do

the above way!

• Why?

• How do we handle this in computer graphics?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• First, consider a boundary of a polygon, we do

NOT use its explicit representation at all. Instead,

we use f(x,y)=ax+by+c=0;

• Second, consider a ray geometry, once again, we

do NOT use its explicit representation at all.

Instead we are using its parametric representation:

ray(p, v) = p + v*t, where t is a spatial parameter,

ray(p, v) works for (x,y) simultaneously!

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Parametric equation

• Vector expression

• The parameter is between 0 and 1 to describe a line

segment, the ray can be expressed in the same way

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Combine the two equations together (one is the

implicit equation, another one is the parametric

equation), f(ray(p,v))=0, where t is the ONLY

parameter (to be solved)

• What is the geometric meaning of t?

• We are going to have more mathematically

rigorous process on the parametric representation

and its power and potential later in this course!

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1),

v2=(x2,y2), and v3=(x3,y3) and a point

• Consider the edge (v1v2) and formulate the implicit

expression for this line

• Pick a sign so that the evaluation of v3 is negative!

• This defines a half-plane

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and

v3=(x3,y3) and a point

• Repeat the similar process for two other edges (v1v2) and (v2v3)

• It is equivalent to say, a pixel (point) is a part of a triangle if this

point belongs to three half-planes simultaneously

• What about Concave polygon?

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Convex

Not Convex

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Convex

• A polygon is convex if…

– A line segment connecting any two points on the

polygon is contained in the polygon.

– If you can wrap a rubber band around the polygon

and touch all of the sides, the polygon is convex

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Concave Polygon

• We now consider a concave polygon T: (x1,y1),

(x2,y2), (x3,y3), …… (xn, yn)

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan-Converting a Polygon

• General approach: any ideas?

• One idea: flood fill

– Draw polygon edges

– Pick a point (x,y) inside and flood fill with DFS
flood_fill(x,y) {

if (read_pixel(x,y)==white) {

write_pixel(x,y,black);

flood_fill(x-1,y);

flood_fill(x+1,y);

flood_fill(x,y-1);

flood_fill(x,y+1);

} }

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweeping Lines

• Our observation – spatial coherence

• Idea

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweep-line Algorithm

• Algorithm

• Question:

• Answer: please recall our line-drawing algorithm!

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Classification

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We must speed up the edge intersection detection

• Data structure for efficient implementation

– A sorted edge table

– The active edge list

– From bottom to the top

• Practical polygon scan conversion – based on polygon

triangulation

• Extremely easy to handle for convex polygons

• Triangles are often particularly nice to work with because

they are always planar and simple
CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Special Cases

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan-Line Approach
• More efficient way: use a scan-line rasterization

algorithm

• For each y value, compute x

intersections, fill according

to winding rule

• How to compute intersection

points?

• How to handle shading?

• Some hardware can handle

multiple scanlines in parallel

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Singularities (Special Cases)
• If a vertex lies on a scanline,

does that count as 0, 1, or 2

crossings?

• How to handle singularities?

• One approach: don’t allow.

Perturb vertex coordinates

• OpenGL’s approach: place pixel

centers half way between

integers (e.g., 3.5, 7.5), so

scanlines never hit vertices

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Test

• Most common way to tell if a point is in a

polygon: the winding test.

– Define “winding number” w for a point: signed

number of revolutions around the point when

traversing boundary of polygon once

– When is a point “inside” the polygon?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterizing Polygons (Scan Conversion)

• Polygons may be or may not be simple, convex,

or even flat. How to render them?

• The most critical thing is to perform inside-

outside testing: how to tell if a point is in a

polygon?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

OpenGL and Concave Polygons

• OpenGL guarantees correct rendering only for simple,

convex, planar polygons

• OpenGL tessellates concave polygons

• Tessellation depends on winding rule you tell OpenGL

to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Rules

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry

Transformations Lighting Projection Clipping

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rendering Pipeline

• Geometric processing: normalization, clipping,

hidden surface removal, lighting, projection (front

end)

• Rasterization or scan conversion, including texture

mapping (back-end)

• Fragment processing and display

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

From Models to Rasterization

Software-based processing / modifications

3D Model
Rendering

primitives

meshing

decimation

animation

collision detection

…

Application Geometry Rasterization

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometric Transformations
• Five coordinate systems of interest:

– Object coordinates

– Eye (world) coordinates [after modeling transform,

viewer at the origin]

– Clip coordinates [after projection]

– Normalized device coordinates [after ÷w]

– Window (screen) coordinates [scale to screensize]

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Transformations

Model Coordinates World Coordinates

Model Transformation

Translation, Rotation,

Scaling, etc.

View Transformation

Viewing Coordinates

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Projection

Virtual Device CoordinatesViewing Coordinates
Normalization

Perspective/

Parallel

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Computer Graphics: Geometric Clipping

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

How Do We Define a Window?

• Window

• Viewport

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Clipping

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Clipping

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Device Coordinates

My Window

Unit Cube

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Clipping

• Points

• Lines

• Polygons

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Clipping

• How to define a window:

• Point clipping is trivial

• However, pay attention to (1) the homogeneous

coordinates; (2) equations of lines

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Line Clipping

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Line-Segment Clipping Operations

• Clipping may happen in multiple places in the

pipeline (e.g., early trivial accept/reject)

• After projection, have lines in plane, with

rectangle to clip against

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Line Clipping
• Line clipping operations should comprise the following

cases
– Totally plotted

– Partially plotted

– NOT plotted at all

• Far from being trivial – even though neither of two vertices

is within the window, certain part of the line segment may

be still within the window!

• There are many different techniques for line clipping in 2D

• Two fundamental issues: (1) line equations; (2) intersection

computation

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

The Fundamental Operation

• In geometric clipping, the most fundamental

operation is how to compute line-line

intersection: (1) whether two lines are

intersecting or NOT; (2) if they Do intersect, can

you please find such intersection point(s)?

• Equations for a line: (1) explicit representation;

(2) implicit representation; or (2) parametric

representation?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping a Line Segment Against xmin

• Given a line segment from (x1,y1) to (x2,y2),

Compute m=(y2-y1)/(x2-x1)

• Line equation: y = mx + h (explicit representation)

• h = y1 – m x1 (y intercept)

• Plug in xmin to get y

• Check if y is between y1 and y2.

• This might take a lot of floating-point operations.

How to minimize the number of such operations?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Cohen-Sutherland Clipping

• For both end-points of a line segment compute a

4-bit outcode (tbrl1, tbrl2) depending on whether

the current coordinates are outside the clip-

rectangle side

• Some situations can be handled easily

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Cohen-Sutherland Conditions

• Cases.

– 1. If tbrl1=tbrl2=0, simply accept!

– 2. If one is zero, one nonzero, compute an intercept. If

necessary compute another intercept. Then accept.

– 3. If tbrl1 & tbrl2  0. If both outcodes are nonzero and

the bitwise AND is nonzero, two endpoints lie on same

outside side. Simply reject!

– 3. If tbrl1 & rbrl2 = 0. If both outcodes are nonzero and

the bitwise AND is zero, may or may not have to draw the

line. Intersect with one of the window sides and check the

result.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Cohen-Sutherland Results
(Performance)

• In many cases, a few integer comparisons and

Boolean operations suffice for simple reject or

simple accept.

• This algorithm works best when there are many

line segments, and most are clipped away

• But note that the y=mx+h form of equation for a

line doesn’t work for vertical lines (this is

actually the limitation of explicit representation

of a line)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Parametric Line Representation

• In computer graphics, a parametric
representation is almost always used.

• Parametric representation of a line: p(t) = (1-t) p1

+ t p2

– Same form for horizontal and vertical lines

– Parameter values from 0 to 1 are on the segment

– Values < 0 off in one direction; >1 off in the other
direction

– Vector operations, can be generalized to higher
dimensional geometry or general data representation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Liang-Barsky Clipping

• If line is horizontal or vertical, handle easily

• Else, compute four intersection parameters with

four rectangle sides

• What if 0<a1<a2<a3<a4<1?

• What if 0<a1<a3<a2<a4<1?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Computing Intersection Parameters

• Line-line intersection computation can be very
costly

• Hold off on computing parameters as long as
possibly (lazy computation); many lines can be
rejected early

• Could compute a=(ymax-y1)/(y2-y1)

• Can rewrite a (y2-y1) = (ymax-y1)

• Perform work in integer operations by
comparing a (y2-y1) instead of a

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Polygon Clipping (Naïve
Generalization)
• Clipping a polygon can result in

lots of pieces

• Replacing one polygon with many
may be a problem in the rendering
pipeline

• Could treat result as one polygon:
but this kind of polygon can cause
other difficulties

• Some systems allow only convex
polygons, which don’t have such
problems (OpenGL has tessellate
function in glu library)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Sutherland-Hodgeman
Polygon Clipping

• Could clip each edge of polygon individually

• A more pipelined approach: clip polygon against

each side of rectangle in turn (window boundary)

• Treat clipper as “black box” pipeline stage

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clip against Each Boundary

• First clip against ymax

• x3 = x1 + (ymax – y1) (x2 – x1)/(y2 – y1)

• y3 = ymax

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping Pipeline

• Clip each boundary in turn

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

(Parallel) Clipping in Hardware
• Construct the pipeline stages in hardware so you can

perform four clipping stages at once

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping Complicated Objects

• Suppose you have many complicated objects,

such as models of parts of a person with

thousands of polygons each

• When and how to clip for maximum efficiency?

• How to clip text? Curves?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping Other Primitives
• It may help to clip more complex shape early in the

pipeline

• This may be simpler and

less accurate

• One approach: bounding

boxes (sometimes called

trivial accept-reject)

• This is so useful that

modeling systems often

store bounding box

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping Curves, Text
• Some shapes are so

complex that they

are difficult to clip

analytically

• Can approximate with line segments

• Can allow the clipping to occur in the frame buffer

(pixels outside the screen rectangle aren’t drawn)

• Called “scissoring”

• How does performance compare with others?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping in 3D (Generalizations)

• Cohen-Sutherland regions

• Clip before perspective

division

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometric Processing
• Front-end processing steps (3D floating point; may be

done on the CPU)

– Evaluators (converting curved surfaces to polygons)

– Normalization (modeling transformation, convert to world coordinates)

– Projection (convert to screen coordinates)

– Hidden-surface removal (object space)

– Computing texture coordinates

– Computing vertex normals

– Lighting (assign vertex colors)

– Clipping

– Perspective division

– Backface culling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterization
• Back-end processing works on 2D objects in

screen coordinates

• Processing includes
– Scan conversion of primitives including shading

– Texture mapping

– Fog

– Scissors test

– Alpha test

– Stencil test

– Depth-buffer test

– Other fragment operations: blending, dithering, logical operations

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Display

• RAM DAC converts frame buffer to video signal

• Other considerations:

– Color correction

– Antialiasing

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Aliasing

• How to render the line

with reduced aliasing?

• What to do when polygons

share a pixel?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Anti-Aliasing

• Simplest approach: area-based weighting

• Fastest approach: averaging nearby pixels

• Most common approach: supersampling

(patterned or with jitter)

• Best approach: weighting based on distance of

pixel from center of line; Gaussian fall-off

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Temporal Aliasing

• Need motion blur for motion that doesn’t flicker

at slow frame rates

• Common approach: temporal supersampling

– render images at several times within frame time

interval

– average results

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan-line Algorithm
• Work one scan line at a time

• Compute intersections of faces along scanlines

• Keep track of all “open segments” and draw the closest

• More on HSR later

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Hidden Surface Removal

• Object-space vs. Image-space

• The main image-space algorithm: z-buffer

• Drawbacks

– Aliasing

– Rendering invisible objects

• How would object-space hidden surface removal

work?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Depth Sorting
• The painter’s algorithm:

draw from back to front

• Depth-sort hidden surface removal:

– sort display list by z-coordinate from back to front

– render/display

• Drawbacks

– it takes some time (especially with bubble sort!)

– it doesn’t work

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Depth-Sort Difficulties
• Polygons with overlapping

projections

• Cyclic overlap

• Interpenetrating polygons

• What to do?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Display Considerations

• Color systems

• Color quantization

• Gamma correction

• Dithering and Halftoning

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Color Systems

• RGB

• YIQ

• CMYK

• HSV, HLS

• Chromaticity

• Color gamut

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Chromaticity
• Tristimulus values: R, G,

B values that we know of

• Color researchers often
prefer chromaticity
coordinates:
– t1 = T1 / (T1 + T2 + T3)

– t2 = T2 / (T1 + T2 + T3)

– t3 = T3 / (T1 + T2 + T3)

• Thus, t1+t2+t3 = 1.0.

• Use t1 and t2; t3 can be
computed as 1-t1-t2

• Chromaticity diagram uses this
approach for theoretical XYZ color
system, where Y is luminance

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Common Color Models

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Additive and Subtractive Color

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

HLS

• Hue: “direction” of color:

red, green, purple, etc.

• Saturation: intensity.

E.g. red vs. pink

• Lightness: how bright

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Dithering

• Dithering (patterns of b/w or colored dots) used

for computer screens

• OpenGL can dither

• But, patterns can be visible and bothersome.

A better approach?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Floyd-Steinberg Error Diffusion
Dither

• Spread out “error term”

– 7/16 right

– 3/16 below left

– 5/16 below

– 1/16 below right

• Note that you can

also do this for color

images (dither a color

image onto a fixed

256-color palette)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Halftoning
• How do you render a colored image when colors can

only be on or off (e.g. inks, for print)?

• Halftoning: dots

of varying sizes

• [But what if only

fixed-sized pixels

are available?]

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Color Quantization

• Color quantization: modifying a full-color image

to render with a 256-color palette

• For a fixed palette (e.g. web-safe colors), can use

closest available color, possibly with error-

diffusion dither

• Algorithm for selecting an adaptive palette?

– E.g. Heckbert Median-cut algorithm

• Make a 3-D color histogram

• Recursively cut the color cube in half at a median

• Use average color from each resulting box

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Implementation Strategies
• Major approaches:

– Object-oriented approach (pipeline renderers like OpenGL)

• For each primitive, convert to pixels

• Hidden-surface removal happens at the end

– Image-oriented approach (e.g. ray tracing)

• For each pixel, figure out what color to make it

• Hidden-surface removal happens early

• Considerations on object-oriented approach

– Memory requirements were a serious problem with the object-oriented
approach until recently

– Object-oriented approach has a hard time with interactions between objects

– The simple, repetitive processing allows hardware speed: e.g. a 4x4 matrix
multiply in one instruction

– Memory bandwidth not a problem on a single chip

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Hardware Implementations

• Pipeline architecture for speed

(but what about latency?)

• Originally, whole pipeline on CPU

• Later, back-end on graphics card

• Now, whole pipeline on graphics card

• What’s next?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Future Architectures?
• 10+ years ago, fastest performance of 1M polygons per

second cost millions

– Performance limited by memory bandwidth

– Main component of price was lots of memory chips

– Now a single graphics chip is faster (memory bandwidth on a chip is

much greater)

• Fastest performance today achieved with several parallel

commodity graphics chips (Playstation farm?)

– Plan A: send 1/n of the objects to each of the n pipelines; merge

resulting images (with something like z-buffer algorithm)

– Plan B: divide the image into n regions with a pipeline for each region;

send needed objects to each pipeline

