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Rasterization
Per-pixel operations: ray-casting/ray-tracing Screen = matrix

Texturing

Aliasing / antialiasing

Scan conversion of  lines: 

• naive version

• Bresenham algorithm (integer-only)

Scan conversion of  polygons
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Line Drawing (Rasterization)

CSE528 Lectures

• Convert continuous line to a set of discretized 

points

• Rasterization
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Drawing of Line Geometry
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Algorithm Assumption

• Point samples on 2D integer lattice

• Bi-level display: on or off

• Line endpoints are all integer coordinates

• All line slopes are: |k| <=1

• Lines are ONE pixel thick

CSE528 Lectures
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Line Geometry

• Explicit representation

• y = mx + b, 

• The geometric meanings of these parameters: m –

slope of the line; b – where it intercept y-axis 

(where x = 0)

• More derivations to simplify the equation

– dy = y1 – y0

– dx = x1 – x0

– m = (dy) / (dx)
CSE528 Lectures
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Simple Algorithm

• Draw-line(x0, y0, x1, y1)
1. Let dy = y1 – y0

2. Let dx = x1 – x0

3. For x = x0 to x1

4. y = rounding-operation(y0 + (x – x0) (dy / dx)

5. draw-point(x,y)

6. End for

• Why does the above procedure work?

• Explicit definition of the line geometry

– y = (dy / dx) (x – x0) + y0 
CSE528 Lectures
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Rendering Line Geometry 
(Rasterization)

• One of the fundamental tasks in computer 

graphics is 2D line drawing: How to render a 

line segment from (x1, y1) to (x2, y2)?

• Where do we start?

• Use the equation 

y = mx + h (explicit)

• What about horizontal 

vs. vertical lines?
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Further Improvement

• A more efficient algorithm

1. x = x0; y = y0

2. draw-point(x,y)

3. For x from x0 + 1 to x1

4. y = y + (dy / dx) 

5. End for

• Note that, m = (dy / dx), and m is a float or 

double

CSE528 Lectures
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DDA Algorithm

• So a digital differential analyzer (DDA)

for (x=x1; x<=x2; x++) 

y += m;

draw_pixel(x, y, color)

• Handle slopes 0 <= m <= 1; handle others 

symmetrically

• Does this

need floating

point operations?
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Further Improvement

• We are now seeking an integer-ONLY algorithm 

to handle all line geometry

• The above procedures will fail

• We must explore new schemes (beyond the line 

geometry we have already know till now)

CSE528 Lectures
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Midpoint Algorithm

• Implicit expression for the line geometry

– f(x,y) = (x – x0)*(dy) – (y – y0)*(dx)

• What does this formulation provide us (compared 

with the previous derivations)?

• Fundamental ideas – spatial partitioning based on 

the signs!

– If f(x,y) =0, then (x,y) is on the line 

– If f(x,y) >0, then (x,y) is below the line

– If f(x,y) <0, then (x,y) is above the line

CSE528 Lectures
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Motivation

• Line geometry y=mx+b (explicit representation), 

not good enough for this task!

• Consider f(x,y)=0 (implicit representation) 

instead

• Clear geometry meaning and spatial relationship 

between a point and a line (on the line, below the 

line, above the line)

• A generic expression f(x,y)=ax+by+c=0

• Where does it come from?
CSE528 Lectures
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Implicit Representation
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f(x,y)<0

f(x,y)=0f(x,y)=0

f(x,y)>0
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Line Geometry (AGAIN)

• f(x,y)=(x-x1)dy – (y-y1)dx

• dy=y2-y1

• dx=x2-x1

• Please DO understand the geometric meanings 

of these symbols

CSE528 Lectures
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Midpoint Motivation

• We are actually considering d = f(xp + 1, yp +0.5)

• There are three different cases

– If d < 0, line is below the (current) midpoint, then 

choose E

– If d >0, lie is above the midpoint, choose NE

– If d =0, line is passing through the midpoint, either E 

or NE

CSE528 Lectures
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Midpoint Algorithm

• If E is chosen, then the NEW E would be (x+2, 

y), the NEW NE would be (x+2, y+1); the NEW 

MIDPOINT is (x+2,y+0.5)

• If NE is chosen, then the NEW E would be 

(x+2,y+1), the new NE would be (x+2,y+2); the 

NEW MIDPOINT is (x+2,y+0.5)

• Back to the line geometry derivation…

CSE528 Lectures
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Recursive Algorithm

• Midpoint algorithm is a recursive algorithm!

• For recursive algorithm, we MUST consider the 

subsequent steps (by traversing all cases 

respectively)!

• If E is chosen, then the NEW E is (xp + 2, yp), the 

NEW NE is (xp + 2, yp +1), the NEW midpoint is 

(xp + 2, yp + 0.5)

– d_new = f (xp + 2, yp + 0.5)

– d_old = f (xp + 1, yp +0.5)

– d_new = d_old + (dy)

CSE528 Lectures
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Recursive Algorithm

• If NE is chosen, the NEW E is (xp +2, yp +1), the 

NEW NE is (xp + 2, yp + 2), the NEW midpoint 

is (xp + 2, y + 1.5)
– d_new = f(xp + 2, yp + 1.5)

– d_old = f(xp +1, yp + 0.5)

– d_new = d_old + (dy – dx)

• This process MUST repeat recursively, stepping 

along x from x0 to x1

CSE528 Lectures
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Midpoint Initialization
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Initialization

• How about the initialization process

• At the beginning, 

– xp = x0

– yp = y0

– d_old = f(x0 +1, y0 +0.5) = (dy) – (dx) * (1/2)

CSE528 Lectures
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Midpoint Algorithm

• draw-line(x0, y0, x1, y1)
– Int x0, y0, x1, y1

– { int dx, dy, inc_E, inc_NE, x, y, 

– real d 

– dx = x1 – x0

– dy = y1 – y0

– d = (dy) – (dx) * (1/2)

– inc_E = dy

– inc_NE = dy – dx

– y = y0

– for x from x0 to x1

– if d>0, then d = d + inc_NE, y + 1, else d = d + inc_E

– end for

– }

CSE528 Lectures
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Midpoint Algorithm

• d is NOT an integer, however, ONLY the sign 

MATTERS!

• We prefer an integer-ONLY algorithm!!!

– g(x,y) = 2 f(x,y)

– d becomes 2d

– then d = 2(dy) – (dx)

CSE528 Lectures
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Integer-only Algorithm

• Midpoint algorithm is an integer-only algorithm

• The complete c-code implementation is available 

from the textbook and/or internet!

• The fundamental assumption is that, the line slope 

is positive, but controllable (its value is no more 

than 1)

• What about other cases? 

• Possible generalizations to cover all cases?

CSE528 Lectures
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Bresenham’s Algorithm 

• The DDA algorithm requires a floating point add

and round for each pixel: Can we eliminate?

• Note that at each step we will go E or NE.  How 

to decide which one (from two possible points)?
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Bresenham’s Algorithm

• Also called the midpoint algorithm

• The key idea: consider d=f(x+1,y+0.5) and only 

pay attention to its sign!!!

• Midpoint algorithm is a recursive algorithm

• For recursive algorithm, we MUST consider the 

subsequent step!

CSE528 Lectures
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Bresenham Decision Variable
• Bresenham algorithm uses decision variable d=a-b, where a 

and b are distances to NE and E pixels

• If d>=0, go NE; 

if d<0, go E

• Let d=(x2-x1)(a-b) = dx(a-b) 

[only sign matters]

• Substitute for a and b using 

line equation to get integer 

math (but lots of it)

• d=(a-b) dx = (2j+3) dx - (2i+3) dy - 2(y1dx-x1dy)

• But note that dk+1=dk + 2dy (E) or 2(dy-dx) (NE)
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Bresenham’s Algorithm

• Set up loop computing d at x1, y1
for (x=x1; x<=x2; )

x++;

d += 2dy;

if (d >= 0) {

y++;

d –= 2dx; }

drawpoint(x,y);

• Pure integer math, and not much of it

• So easy that it’s built into one graphics instruction (for 

several points in parallel)
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Possible Extensions

• The idea is generalizable to other geometric 

primitives

• Algorithms for circle-drawing

• Algorithms for ellipses, conic section drawing

• Once again, the book (or the internet) has all the 

c-code programs for such tasks

• Generations to polynomial curves?

CSE528 Lectures
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Modifying the Previous Algorithm

• Make it an integer-ONLY algorithm

• Our earlier assumptions

– slopes: 0 <= (dy) / (dx) <=1

– line endpoints are all integer coordinates

• How about other cases

CSE528 Lectures
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Handling All Other Cases

• Generalizations

– negative slope

– slope larger than 1

• If the slope is larger than 1, we use symmetry to 

switch x and y (you are NOT displaying (x,y), 

you should display (y,x))!

• In negative slope, we should use x and (-y)

CSE528 Lectures
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Extensions to Handle Curves

• Generalizations to handle all cases for line 

drawing

• Algorithms for circle-drawing

• Algorithms for ellipses, conic section drawing

• Algorithms for cubic curve drawing

• Algorithms to handle any type of curves?

CSE528 Lectures
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Circles

• Implicit expression of a circle f(x,y)=0

• Remember the key idea is that, ONLY the sign 

matters!
– If f(x,y)=0, then (x,y) is on the circle

– If f(x,y)>0, then (x,y) is outside the circle

– If f(x,y)<0, then (x,y) is inside the circle

• Equations for ellipses?

• The key message: the slope is controllable!!! 

CSE528 Lectures
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Scan Conversion

• At this point in the pipeline, we have only 

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with 

integer screen coordinates (ix, iy), depth, and 

color

• Send fragments into fragment-processing pipeline
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Graphics Rendering Pipeline

• Geometric processing: normalization, clipping, 

hidden surface removal, lighting, projection (front 

end)

• Rasterization or scan conversion, including 

texture mapping (back end)

• Fragment processing and display
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Geometric Processing
• Front-end processing steps (3D floating point; may be 

done on the CPU)
– Evaluators (converting curved surfaces to polygons)

– Normalization (modeling transformation, convert to world coordinates)

– Projection (convert to screen coordinates)

– Hidden-surface removal (object space)

– Computing texture coordinates

– Computing vertex normals

– Lighting (assign vertex colors)

– Clipping

– Perspective division

– Backface culling
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Rasterization
• Back-end processing works on 2D objects in 

screen coordinates

• Processing includes
– Scan conversion of primitives including shading

– Texture mapping

– Fog

– Scissors test

– Alpha test

– Stencil test

– Depth-buffer test

– Other fragment operations: blending, dithering, logical operations
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Scan Conversion

• The earlier task allows us to draw line segments, 

polylines, curves, is it sufficient for 2D graphics?

• What are still missing for the rasterization task?

• Wireframe geometry and display is NOT enough

• We must have drawing routines to support the 

solid-shaded appearance

CSE528 Lectures
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Scan Conversion
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Simple Algorithms

• We start from a simple triangle T: (x1,y1), 

(x2,y2), and (x3,y3)

• The task is to find all pixels inside T

• Naïve algorithm (the worst algorithm)

– For each pixel p do 

– If p is inside T, then draw-point(p) end if

– End for

CSE528 Lectures
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Slight Improvement

• We start from a simple triangle T: (x1,y1), 

(x2,y2), and (x3,y3)

• We compute its bounding box B first

– For each pixel p that is inside B do 

– If p is inside T, then draw-point(p) end if

– End for

• Essentially, the scan conversion MUST solve 

this problem, given a T and a pixel (or point in 

general), can we determine: p is a part of T

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Casting (Ray Firing)

• We start from a simple triangle T: (x1,y1), 

(x2,y2), and (x3,y3) and a point

– (1) draw a ray from p outward along any direction

– (2) count the number of intersections of this ray with 

triangular boundaries for T

– (3) If ODD, then p is inside T, otherwise, p is not a 

part of T

• Is this method correct?

CSE528 Lectures
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Polygon Scan Conversion
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Scan Conversion

• What happens if the ray pass through a vertex of a 

simple triangle T: (x1,y1), (x2,y2), and (x3,y3)

• How do you actually count the number of 

intersections with a triangular boundary?

• How do you actually compute the intersection?

CSE528 Lectures
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Computing Intersections

• Mathematically speaking: f(x,y)=0; g(x,y)=0, 

simple solve them for possible solutions

• In reality (computer graphics), we don’t really do 

the above way!

• Why?

• How do we handle this in computer graphics?

CSE528 Lectures
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Computing Intersections

• First, consider a boundary of a polygon, we do 

NOT use its explicit representation at all. Instead, 

we use f(x,y)=ax+by+c=0; 

• Second, consider a ray geometry, once again, we 

do NOT use its explicit representation at all. 

Instead we are using its parametric representation: 

ray(p, v) = p + v*t, where t is a spatial parameter, 

ray(p, v) works for (x,y) simultaneously!

CSE528 Lectures
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Computing Intersections

• Parametric equation

• Vector expression

• The parameter is between 0 and 1 to describe a line 

segment, the ray can be expressed in the same way 

CSE528 Lectures
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Computing Intersections

• Combine the two equations together (one is the 

implicit equation, another one is the parametric 

equation), f(ray(p,v))=0, where t is the ONLY 

parameter (to be solved)

• What is the geometric meaning of t?

• We are going to have more mathematically 

rigorous process on the parametric representation 

and its power and potential later in this course!

CSE528 Lectures
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Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3) and a point

• Consider the edge (v1v2) and formulate the implicit 

expression for this line

• Pick a sign so that the evaluation of v3 is negative!

• This defines a half-plane

CSE528 Lectures
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Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and 

v3=(x3,y3) and a point

• Repeat the similar process for two other edges (v1v2) and (v2v3)

• It is equivalent to say, a pixel (point) is a part of a triangle if this 

point belongs to three half-planes simultaneously

• What about Concave polygon?

CSE528 Lectures
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Convex

Not Convex
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Convex

• A polygon is convex if…

– A line segment connecting any two points on the 

polygon is contained in the polygon.

– If you can wrap a rubber band around the polygon 

and touch all of the sides, the polygon is convex
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Concave Polygon

• We now consider a concave polygon T: (x1,y1), 

(x2,y2), (x3,y3), …… (xn, yn)

CSE328 Lectures
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Scan-Converting a Polygon

• General approach: any ideas?

• One idea: flood fill

– Draw polygon edges

– Pick a point (x,y) inside and flood fill with DFS
flood_fill(x,y) {

if (read_pixel(x,y)==white) {

write_pixel(x,y,black);

flood_fill(x-1,y);

flood_fill(x+1,y);

flood_fill(x,y-1);

flood_fill(x,y+1);

} }
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Sweeping Lines

• Our observation – spatial coherence

• Idea

CSE528 Lectures
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Sweep-line Algorithm

• Algorithm

• Question:

• Answer: please recall our line-drawing algorithm! 

CSE528 Lectures
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Polygon Classification
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Scan Conversion

CSE328 Lectures
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Scan Conversion
• We must speed up the edge intersection detection

• Data structure for efficient implementation

– A sorted edge table

– The active edge list

– From bottom to the top

• Practical polygon scan conversion – based on polygon 

triangulation

• Extremely easy to handle for convex polygons

• Triangles are often particularly nice to work with because 

they are always planar and simple
CSE528 Lectures
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Special Cases
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Scan-Line Approach
• More efficient way: use a scan-line rasterization 

algorithm

• For each y value, compute x

intersections, fill according 

to winding rule

• How to compute intersection

points?

• How to handle shading?

• Some hardware can handle 

multiple scanlines in parallel
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Singularities (Special Cases)
• If a vertex lies on a scanline,

does that count as 0, 1, or 2 

crossings?

• How to handle singularities?

• One approach: don’t allow. 

Perturb vertex coordinates

• OpenGL’s approach: place pixel

centers half way between 

integers (e.g., 3.5, 7.5), so

scanlines never hit vertices
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Winding Test

• Most common way to tell if a point is in a 

polygon: the winding test.

– Define “winding number” w for a point: signed 

number of revolutions around the point when 

traversing boundary of polygon once

– When is a point “inside” the polygon?
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Rasterizing Polygons (Scan Conversion)

• Polygons may be or may not be simple, convex, 

or even flat. How to render them?

• The most critical thing is to perform inside-

outside testing: how to tell if a point is in a 

polygon? 
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OpenGL and Concave Polygons

• OpenGL guarantees correct rendering only for simple, 

convex, planar polygons

• OpenGL tessellates concave polygons

• Tessellation depends on winding rule you tell OpenGL 

to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Rules
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Geometry

Transformations Lighting Projection Clipping



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rendering Pipeline

• Geometric processing: normalization, clipping, 

hidden surface removal, lighting, projection (front 

end)

• Rasterization or scan conversion, including texture 

mapping (back-end)

• Fragment processing and display
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From Models to Rasterization

Software-based processing / modifications

3D Model
Rendering 

primitives

meshing

decimation

animation

collision detection

…

Application Geometry Rasterization
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Geometric Transformations
• Five coordinate systems of interest:

– Object coordinates

– Eye (world) coordinates [after modeling transform, 

viewer at the origin]

– Clip coordinates [after projection]

– Normalized device coordinates [after ÷w]

– Window (screen) coordinates [scale to screensize]
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Geometry: Transformations

Model Coordinates World Coordinates

Model Transformation

Translation, Rotation, 

Scaling, etc.

View Transformation

Viewing Coordinates
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Geometry: Projection

Virtual Device CoordinatesViewing Coordinates
Normalization

Perspective/

Parallel
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Computer Graphics: Geometric Clipping
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How Do We Define a Window?

• Window

• Viewport



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

2D Clipping

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Clipping
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Geometry: Device Coordinates

My Window

Unit Cube
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• Points

• Lines

• Polygons

CSE328 Lectures
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• How to define a window:

• Point clipping is trivial

• However, pay attention to (1) the homogeneous 

coordinates; (2) equations of lines
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Line-Segment Clipping Operations

• Clipping may happen in multiple places in the 

pipeline (e.g., early trivial accept/reject)

• After projection, have lines in plane, with 

rectangle to clip against
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• Line clipping operations should comprise the following 

cases
– Totally plotted

– Partially plotted

– NOT plotted at all

• Far from being trivial – even though neither of two vertices 

is within the window, certain part of the line segment may 

be still within the window!

• There are many different techniques for line clipping in 2D

• Two fundamental issues: (1) line equations; (2) intersection 

computation

CSE528 Lectures
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The Fundamental Operation

• In geometric clipping, the most fundamental 

operation is how to compute line-line 

intersection: (1) whether two lines are 

intersecting or NOT; (2) if they Do intersect, can 

you please find such intersection point(s)?

• Equations for a line: (1) explicit representation; 

(2) implicit representation; or (2) parametric 

representation?
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Clipping a Line Segment Against xmin

• Given a line segment from (x1,y1) to (x2,y2), 

Compute m=(y2-y1)/(x2-x1)

• Line equation: y = mx + h (explicit representation)

• h = y1 – m x1 (y intercept)

• Plug in xmin to get y

• Check if y is between y1 and y2.

• This might take a lot of floating-point operations. 

How to minimize the number of such operations?
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Cohen-Sutherland Clipping

• For both end-points of a line segment compute a 

4-bit outcode (tbrl1, tbrl2) depending on whether 

the current coordinates are outside the clip-

rectangle side

• Some situations can be handled easily
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Cohen-Sutherland Conditions

• Cases.

– 1. If tbrl1=tbrl2=0, simply accept!

– 2. If one is zero, one nonzero, compute an intercept. If 

necessary compute another intercept. Then accept.

– 3. If tbrl1 & tbrl2  0.  If both outcodes are nonzero and 

the bitwise AND is nonzero, two endpoints lie on same 

outside side. Simply reject!

– 3. If tbrl1 & rbrl2 = 0.  If both outcodes are nonzero and 

the bitwise AND is zero, may or may not have to draw the 

line. Intersect with one of the window sides and check the 

result.



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Cohen-Sutherland Results 
(Performance)

• In many cases, a few integer comparisons and 

Boolean operations suffice for simple reject or 

simple accept.

• This algorithm works best when there are many 

line segments, and most are clipped away

• But note that the y=mx+h form of equation for a 

line doesn’t work for vertical lines (this is 

actually the limitation of explicit representation 

of a line)
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Parametric Line Representation

• In computer graphics, a parametric 
representation is almost always used.

• Parametric representation of a line: p(t) = (1-t) p1

+ t p2 

– Same form for horizontal and vertical lines

– Parameter values from 0 to 1 are on the segment

– Values < 0 off in one direction; >1 off in the other 
direction

– Vector operations, can be generalized to higher 
dimensional geometry or general data representation
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Liang-Barsky Clipping

• If line is horizontal or vertical, handle easily

• Else, compute four intersection parameters with 

four rectangle sides

• What if 0<a1<a2<a3<a4<1?

• What if 0<a1<a3<a2<a4<1?
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Computing Intersection Parameters

• Line-line intersection computation can be very 
costly

• Hold off on computing parameters as long as 
possibly (lazy computation); many lines can be 
rejected early

• Could compute a=(ymax-y1)/(y2-y1)

• Can rewrite a (y2-y1) = (ymax-y1)

• Perform work in integer operations by 
comparing a (y2-y1) instead of a
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Polygon Clipping (Naïve 
Generalization)
• Clipping a polygon can result in 

lots of pieces

• Replacing one polygon with many 
may be a problem in the rendering 
pipeline

• Could treat result as one polygon: 
but this kind of polygon can cause 
other difficulties

• Some systems allow only convex 
polygons, which don’t have such 
problems (OpenGL has tessellate 
function in glu library)
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Sutherland-Hodgeman 
Polygon Clipping

• Could clip each edge of polygon individually

• A more pipelined approach: clip polygon against 

each side of rectangle in turn (window boundary)

• Treat clipper as “black box” pipeline stage
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Clip against Each Boundary

• First clip against ymax

• x3 = x1 + (ymax – y1) (x2 – x1)/(y2 – y1)

• y3 = ymax
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Clipping Pipeline 

• Clip each boundary in turn
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(Parallel) Clipping in Hardware
• Construct the pipeline stages in hardware so you can 

perform four clipping stages at once
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Clipping Complicated Objects

• Suppose you have many complicated objects, 

such as models of parts of a person with 

thousands of polygons each

• When and how to clip for maximum efficiency?

• How to clip text? Curves?
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Clipping Other Primitives
• It may help to clip more complex shape early in the 

pipeline

• This may be simpler and 

less accurate

• One approach: bounding 

boxes (sometimes called 

trivial accept-reject)

• This is so useful that 

modeling systems often 

store bounding box
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Clipping Curves, Text
• Some shapes are so

complex that they 

are difficult to clip 

analytically

• Can approximate with line segments

• Can allow the clipping to occur in the frame buffer 

(pixels outside the screen rectangle aren’t drawn)

• Called “scissoring” 

• How does performance compare with others?



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Clipping in 3D (Generalizations) 

• Cohen-Sutherland regions

• Clip before perspective

division
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Geometric Processing
• Front-end processing steps (3D floating point; may be 

done on the CPU)

– Evaluators (converting curved surfaces to polygons)

– Normalization (modeling transformation, convert to world coordinates)

– Projection (convert to screen coordinates)

– Hidden-surface removal (object space)

– Computing texture coordinates

– Computing vertex normals

– Lighting (assign vertex colors)

– Clipping

– Perspective division

– Backface culling
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Rasterization
• Back-end processing works on 2D objects in 

screen coordinates

• Processing includes
– Scan conversion of primitives including shading

– Texture mapping

– Fog

– Scissors test

– Alpha test

– Stencil test

– Depth-buffer test

– Other fragment operations: blending, dithering, logical operations
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Display

• RAM DAC converts frame buffer to video signal

• Other considerations:

– Color correction

– Antialiasing
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Aliasing

• How to render the line

with reduced aliasing?

• What to do when polygons

share a pixel?
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Anti-Aliasing

• Simplest approach: area-based weighting

• Fastest approach: averaging nearby pixels

• Most common approach: supersampling 

(patterned or with jitter)

• Best approach: weighting based on distance of 

pixel from center of line; Gaussian fall-off
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Temporal Aliasing

• Need motion blur for motion that doesn’t flicker 

at slow frame rates

• Common approach: temporal supersampling

– render images at several times within frame time 

interval

– average results
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Scan-line Algorithm
• Work one scan line at a time

• Compute intersections of faces along scanlines

• Keep track of all “open segments” and draw the closest

• More on HSR later
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Hidden Surface Removal

• Object-space vs. Image-space

• The main image-space algorithm: z-buffer

• Drawbacks

– Aliasing

– Rendering invisible objects

• How would object-space hidden surface removal

work?
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Depth Sorting
• The painter’s algorithm:

draw from back to front

• Depth-sort hidden surface removal:

– sort display list by z-coordinate from back to front

– render/display

• Drawbacks

– it takes some time (especially with bubble sort!)

– it doesn’t work
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Depth-Sort Difficulties
• Polygons with overlapping 

projections

• Cyclic overlap

• Interpenetrating polygons

• What to do?
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Display Considerations

• Color systems

• Color quantization

• Gamma correction

• Dithering and Halftoning
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Color Systems

• RGB

• YIQ

• CMYK

• HSV, HLS

• Chromaticity

• Color gamut
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Chromaticity
• Tristimulus values: R, G, 

B values that we know of

• Color researchers often 
prefer chromaticity 
coordinates: 
– t1 = T1 / (T1 + T2 + T3) 

– t2 = T2 / (T1 + T2 + T3)

– t3 = T3 / (T1 + T2 + T3)

• Thus, t1+t2+t3 = 1.0.

• Use t1 and t2; t3 can be 
computed as 1-t1-t2

• Chromaticity diagram uses this 
approach for theoretical XYZ color 
system, where Y is luminance



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Common Color Models
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Additive and Subtractive Color
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HLS

• Hue: “direction” of color: 

red, green, purple, etc.

• Saturation: intensity. 

E.g. red vs. pink

• Lightness: how bright
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Dithering

• Dithering (patterns of b/w or colored dots) used 

for computer screens 

• OpenGL can dither

• But, patterns can be visible and bothersome. 

A better approach?
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Floyd-Steinberg Error Diffusion 
Dither

• Spread out “error term”

– 7/16 right

– 3/16 below left

– 5/16 below

– 1/16 below right

• Note that you can 

also do this for color

images (dither a color 

image onto a fixed 

256-color palette)
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Halftoning
• How do you render a colored image when colors can 

only be on or off (e.g. inks, for print)?

• Halftoning: dots 

of varying sizes

• [But what if only

fixed-sized pixels

are available?]
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Color Quantization

• Color quantization: modifying a full-color image 

to render with a 256-color palette

• For a fixed palette (e.g. web-safe colors), can use 

closest available color, possibly with error-

diffusion dither

• Algorithm for selecting an adaptive palette?

– E.g. Heckbert Median-cut algorithm

• Make a 3-D color histogram

• Recursively cut the color cube in half at a median

• Use average color from each resulting box
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Implementation Strategies
• Major approaches:

– Object-oriented approach (pipeline renderers like OpenGL)

• For each primitive, convert to pixels 

• Hidden-surface removal happens at the end

– Image-oriented approach (e.g. ray tracing)

• For each pixel, figure out what color to make it

• Hidden-surface removal happens early

• Considerations on object-oriented approach

– Memory requirements were a serious problem with the object-oriented 
approach until recently

– Object-oriented approach has a hard time with interactions between objects

– The simple, repetitive processing allows hardware speed: e.g. a 4x4 matrix 
multiply in one instruction

– Memory bandwidth not a problem on a single chip
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Hardware Implementations

• Pipeline architecture for speed 

(but what about latency?)

• Originally, whole pipeline on CPU

• Later, back-end on graphics card

• Now, whole pipeline on graphics card

• What’s next?
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Future Architectures?
• 10+ years ago, fastest performance of 1M polygons per 

second cost millions

– Performance limited by memory bandwidth

– Main component of price was lots of memory chips

– Now a single graphics chip is faster (memory bandwidth on a chip is 

much greater)

• Fastest performance today achieved with several parallel 

commodity graphics chips (Playstation farm?)

– Plan A: send 1/n of the objects to each of the n pipelines; merge 

resulting images (with something like z-buffer algorithm)

– Plan B: divide the image into n regions with a pipeline for each region; 

send needed objects to each pipeline


