CSE528 Computer Graphics: Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http://www.cs.stonybrook.edu/~qin

Rasterization

Per-pixel operations: ray-casting/ray-tracing
Scan conversion of lines:

- naive version
- Bresenham algorithm (integer-only)

Screen $=$ matrix

Scan conversion of polygons
Aliasing / antialiasing

Texturing

Line Drawing (Rasterization)

- Convert continuous line to a set of discretized points
- Rasterization

Drawing of Line Geometry

- Why line drawing - the line is the most fundamental drawing primitive with many uses
- Charts, engineering drawings, illustrations, 2D pencil-based animation, curve approximation
- Some desirable properties for any line drawing algorithm
- A line should be straight; endpoint interpolation; uniform density for all lines; efficient
- Our current goall - efficient and correct line drawing algorithm
- Draw-line $\left(x_{0}, y_{0}, x_{11}, y_{11}\right)$)

Algorithm Assumption

- Point samples on 2D integer lattice
- Bi-level display: on or off
- Line endpoints are all integer coordinates
- All line slopes are: $|\mathrm{k}|<=1$
- Lines are ONE pixel thick

Line Geometry

- Explicit representation
- $\mathrm{y}=\mathrm{mx}+\mathrm{b}$,
- The geometric meanings of these parameters: mslope of the line; b - where it intercept y-axis (where $\mathrm{x}=0$)
- More derivations to simplify the equation

$$
\begin{aligned}
& -\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0 \\
& -\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0 \\
& -\mathrm{m}=(\mathrm{dy}) /(\mathrm{dx})
\end{aligned}
$$

Simple Algorithm

- Draw-line(x0, y0, x1, y1)

1. Let $\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0$
2. Let $\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0$
3. For $\mathrm{x}=\mathrm{x} 0$ to x 1
4. $y=$ rounding-operation $(y 0+(x-x 0)(d y / d x)$
5. draw-point(x, y)
6. End for
-Why does the above procedure work?

- Explicit definition of the line geometry

$$
-y=(d y / d x)(x-x 0)+y 0
$$

Rendering Line Geometry (Rasterization)

- One of the fundamental tasks in computer graphics is 2D line drawing: How to render a line segment from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$?
-Where do we start?
- Use the equation $\mathrm{y}=\mathrm{mx}+\mathrm{h}$ (explicit)
- What about horizontal vs. vertical lines?

Further Improvement

- A more efficient algorithm

1. $\mathrm{x}=\mathrm{x} 0 ; \mathrm{y}=\mathrm{y} 0$
2. draw-point(x, y)
3. For x from $\mathrm{x} 0+1$ to x 1
4. $y=y+(d y / d x)$
5. End for

- Note that, $m=(d y / d x)$, and m is a float or double

DDA Algorithm

- So a digital differential analyzer (DDA) for ($\mathrm{x}=\mathrm{x}_{1} ; \mathrm{x}<=\mathrm{x}_{2} ; \mathrm{x}++$)

$$
y+=m ;
$$

draw_pixel(x, y, color)

- Handle slopes $0 \ll \mathrm{~m}<=1$; handle others symmetrically
- Does this need floating point operations?

Further Improvement

- We are now seeking an integer-ONLY algorithm to handle all line geometry
- The above procedures will fail
- We must explore new schemes (beyond the line geometry we have already know till now)

Midpoint Algorithm

- Implicit expression for the line geometry

$$
-f(x, y)=(x-x 0) *(d y)-(y-y 0) *(d x)
$$

- What does this formulation provide us (compared with the previous derivations)?
- Fundamental ideas - spatial partitioning based on the signs!
- If $f(x, y)=0$, then (x, y) is on the line
- If $f(x, y)>0$, then (x, y) is below the line
- If $f(x, y)<0$, then (x, y) is above the line

Motivation

- Line geometry $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ (explicit representation), not good enough for this task!
- Consider $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$ (implicit representation) instead
- Clear geometry meaning and spatial relationship between a point and a line (on the line, below the line, above the line)
- A generic expression $f(x, y)=a x+b y+c=0$
-Where does it come from?

Implicit Representation

$f(x, y)<0$

 $f(x, y)=0$
Line Geometry (AGAIN)

- $f(x, y)=(x-x 1) d y-(y-y 1) d x$
- $d y=y 2-y 1$
- $d x=x 2-x 1$
- Please DO understand the geometric meanings of these symbols

Midpoint Motivation

Midpoint Motivation

- We are actually considering $\mathrm{d}=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5)$
- There are three different cases
- If $\mathrm{d}<0$, line is below the (current) midpoint, then choose E
- If $\mathrm{d}>0$, lie is above the midpoint, choose NE
- If $\mathrm{d}=0$, line is passing through the midpoint, either E or NE

Midpoint Algorithm

- If E is chosen, then the NEW E would be $(\mathrm{x}+2$, $\mathrm{y})$, the NEW NE would be $(\mathrm{x}+2, \mathrm{y}+1)$; the NEW MIDPOINT is $(x+2, y+0.5)$
- If NE is chosen, then the NEW E would be $(x+2, y+1)$, the new NE would be $(x+2, y+2)$; the NEW MIIDPOINT is $(x+2, y+0.5)$
- Back to the line geometry derivation...

Recursive Algorithm

- Midpoint algorithm is a recursive algorithm!
- For recursive algorithm, we MUST consider the subsequent steps (by traversing all cases respectively)!
- If E is chosen, then the NEW E is $(\mathrm{xp}+2, \mathrm{yp})$, the NEW NE is ($\mathrm{xp}+2, \mathrm{yp}+1$), the NEW midpoint is

$$
\begin{aligned}
& (x p+2, y p+0.5) \\
& - \text { d_new }=\mathrm{f}(\mathrm{xp}+2, \mathrm{yp}+0.5) \\
& -\mathrm{d} _ \text {old }=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5) \\
& -\mathrm{d} _ \text {new }=\text { d_old }+(\mathrm{dy})
\end{aligned}
$$

Recursive Algorithm

- If NE is chosen, the NEW E is ($x p+2, y p+1$), the NEW NE is $(\mathrm{xp}+2, \mathrm{yp}+2)$, the NEW midpoint is $(x p+2, y+1.5)$
$-\mathrm{d} _$new $=\mathrm{f}(\mathrm{xp}+2, \mathrm{yp}+1.5)$
-d _old $=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5)$
$-\mathrm{d} _$new $=\mathrm{d} _$old $+(\mathrm{dy}-\mathrm{dx})$
- This process MUST repeat recursively, stepping along x from x 0 to x 1

Midpoint Initialization

Initialization

- How about the initialization process
- At the beginning,

$$
\begin{aligned}
& -x p=x 0 \\
& -y p=y 0 \\
& \left.-d _ \text {old }=f(x 0+1, y 0+0.5)\right)=(d y)-(d x) *(1 / 2)
\end{aligned}
$$

Midpoint Algorithm

- draw-line(x0, y0, x1, y1)
- Int x0, y0, x1, y1
- \{int dx, dy, inc_E, inc_NE, x, y,
- reald
$-\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0$
$-d y=y 1-y 0$
$-\mathrm{d}=(\mathrm{dy}))-(\mathrm{dx}))^{*}(1 / 2)$
- inc_E $=$ dy
- inc_NE $=d y-d x$
$-\mathrm{y}=\mathrm{y} 0$
- for x fromx0 to x1
- if $d \geqslant 0$, then $d=d+$ inc_NE, $y+1$, else $d=d+$ inc_ E
- end for
$-\quad\}$

Midpoint Algorithm

- d is NOT an integer, however, ONLY the sign MATTERS!
- We prefer an integer-ONLY algorithm!!!
$-\mathrm{g}(\mathrm{x}, \mathrm{y})=2 \mathrm{f}(\mathrm{x}, \mathrm{y})$
- d becomes 2d
- then $\mathrm{d}=2(\mathrm{dy})-(\mathrm{dx})$

Integer-only Algorithm

- Midpoint algorithm is an integer-only algorithm
- The complete c-code implementation is available from the textbook and/or internet!
- The fundamental assumption is that, the line slope is positive, but controllable (its value is no more than 1)
- What about other cases?
- Possible generalizations to cover all cases?

Bresenham's Algorithm

- The DDA algorithm requires a floating point add and round for each pixel: Can we eliminate?
- Note that at each step we will go E or NE. How to decide which one (from two possible points)?

Bresenham's Algorithm

- Also called the midpoint algorithm
- The key idea: consider $\mathrm{d}=\mathrm{f}(\mathrm{x}+1, \mathrm{y}+0.5)$ and only pay attention to its sign!!!
- Midpoint algorithm is a recursive algorithm
- For recursive algorithm, we MUST consider the subsequent step!

Bresenham Decision Variable

- Bresenham algorithm uses decision variable $\mathrm{d}=\mathrm{a}-\mathrm{b}$, where a and b are distances to NE and E pixels
- If $\mathrm{d}>=0$, go NE ; if $d<0$, go E
- Let $\mathrm{d}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)(\mathrm{a}-\mathrm{b})=\mathrm{d}_{\mathrm{x}}(\mathrm{a}-\mathrm{b})$ [only sign matters]
- Substitute for a and busing line equation to get integer math (but lots of it)

- $\left.\left.d=(a-b) d_{x}=(2 j+3)\right) d_{x x}-(2 i+3)\right) d_{y}-2\left(y_{1} d_{x}-x_{1} d_{y}\right)$
- But note that $\mathrm{d}_{k+1}=\mathrm{d}_{k}+2 \mathrm{~d}_{y}$ (E) or $2\left(\mathrm{~d}_{\mathrm{y}}-\mathrm{d}_{x}\right)(\mathbb{N E})$

Bresenham's Algorithm

- Set up loop computing d at $\mathrm{x}_{1}, \mathrm{y}_{1}$

$$
\begin{aligned}
& \text { for }\left(x=x_{1} ; x<=x_{2} ;\right) \\
& \\
& \quad x++; \\
& d+=2 d y ; \\
& \text { iff }(d>=0)\{ \\
& y++; \\
& d-=2 d x ;\}
\end{aligned}
$$

drawpoint $(X, Y y)$;

- Pure integer math, and not much of it
- So easy that it's built into one graphics instruction (for several points in parallel)

Possible Extensions

- The idea is generalizable to other geometric primitives
- Algorithms for circle-drawing
- Algorithms for ellipses, conic section drawing
- Once again, the book (or the internet) has all the c-code programs for such tasks
- Generations to polynomial curves?

Modifying the Previous Algorithm

- Make it an integer-ONLY algorithm
- Our earlier assumptions
- slopes: $0<=(\mathrm{dy}) /(\mathrm{dx})<=1$
- line endpoints are all integer coordinates
- How about other cases

Handling All Other Cases

- Generalizations
- negative slope
- slope larger than 1
- If the slope is larger than 1 , we use symmetry to switch x and y (you are NOT displaying (x, y), , you should display $(\mathrm{y}, \mathrm{x}))$)!
- In negative slope, we should use x and ($-y$)

Extensions to Handle Curves

- Generalizations to handle all cases for line drawing
- Algorithms for circle-drawing
- Algorithms for ellipses, conic section drawing
- Algorithms for cubic curve drawing
- Algorithms to handle any type of curves?

Circles

- Implicit expression of a circle $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$

$$
f(x, y)=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}
$$

- Remember the key idea is that, ONLY the sign matters!
- If $f(x, y)=0$, then (x, y) is on the circle
- Iff $f(x, y)>0$, then (x, y) is outside the circle
- If $f(x, y)<0$, then (x, y) is inside the circle
- Equations for ellipses?
- The key message: the slope is controllable!!!

Scan Conversion

- At this point in the pipeline, we have only polygons and line segments. Render!
- To render, convert to pixels ("fragments") with integer screen coordinates (ix, iy), depth, and color
- Send fragments into fragment-processing pipeline

Graphics Rendering Pipeline

- Geometric processing: normalization, clipping, hidden surface removal, lighting, projection (front end)
- Rasterization or scan conversion, including texture mapping (back end)
- Eragment processing and display

Geometric Processing

- Front-end processing steps (3D floating point; may be done on the CPU)
- Evaluators (converting curved surfaces to polygons)
- Normalization (modeling transformation, convert to world coordinates)
- Projection (convert to screen coordinates)
- Hidden-surface removal (object space)
- Computing texture coordinates
- Computing vertex normals
- Lighting (assign vertex colors))
- Clipping
- Perspective division
- Backface culling

Rasterization

- Back-end processing works on 2D objects in screen coordinates
- Processing includes
- Scan conversion of primitives including shading
- Texture mapping
- Fog
- Scissors test
- Alpha test
- Stencil test
- Depth-buffer test
- Other fragment operations: blending, dithering, logical operations

Scan Conversion

- The earlier task allows us to draw line segments, polylines, curves, is it sufficient for 2D graphics?
- What are still missing for the rasterization task?
- Wireframe geometry and display is NOT enough
- We must have drawing routines to support the solid-shaded appearance

Scan Conversion

Simple Algorithms

- We start from a simple triangle $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1)$, (x2,y2), and (x3,y3)
- The task is to find all pixels inside T
- Naïve algorithm (the worst algorithm)
- For each pixel p do
- If p is inside T, then draw-point(p) end if
- End for

Slight Improvement

- We start from a simple triangle $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1)$, ($\mathrm{x} 2, \mathrm{y} 2$) , and ($\mathrm{x} 3, \mathrm{y} 3$)
- We compute its bounding box B first
- For each pixel p that is inside B do
- If p is inside T, then draw-point(p) end if
- End for
- Essentially, the scan conversion MUST solve this problem, given a T and a pixel (or point in general), can we determine: p is a part of T

Ray Casting (Ray Firing)

- We start from a simple triangle $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1)$, ($\mathrm{x} 2, \mathrm{y} 2$), and ($\mathrm{x} 3, \mathrm{y} 3$) and a point
- (1) draw a ray from p outward along any direction
- (2) count the number of intersections of this ray with triangular boundaries for T
- (3) If ODD, then p is inside T, otherwise, p is not a part of T
- Is this method correct?

Polygon Scan Conversion

Scan Conversion

- What happens if the ray pass through a vertex of a simple triangle $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1),(\mathrm{x} 2, \mathrm{y} 2)$, and $(\mathrm{x} 3, \mathrm{y} 3)$
- How do you actually count the number of intersections with a triangular boundary?
- How do you actually compute the intersection?

Computing Intersections

- Mathematically speaking: $f(x, y)=0 ; g(x, y)=0$, simple solve them for possible solutions
- In reality (computer graphics), we don't really do the above way!
- Why?
- How do we handle this in computer graphics?

Computing Intersections

- First, consider a boundary of a polygon, we do NOT use its explicit representation at all. Instead, we use $f(x, y)=a x+b y+c=0$;
- Second, consider a ray geometry, once again, we do NOT use its explicit representation at all. Instead we are using its parametric representation: $\operatorname{ray}(\mathrm{p}, \mathrm{v})=\mathrm{p}+\mathrm{v}^{*} \mathrm{t}$, where t is a spatial parameter, ray(p, v) works for (x, y) simultaneously!

Computing Intersections

- Parametric equation

$$
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right)
\end{aligned}
$$

- Vector expression

$$
\begin{aligned}
& \mathbf{p}(t)=\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
& \mathbf{p}(t)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

- The parameter is between 0 and 1 to describe a line segment, the ray can be expressed in the same way

Computing Intersections

- Combine the two equations together (one is the implicit equation, another one is the parametric equation), $f(\operatorname{ray}(\mathrm{p}, \mathrm{v}))=0$, where t is the ONLY parameter (to be solved)
- What is the geometric meaning of t ?
- We are going to have more mathematically rigorous process on the parametric representation and its power and potential later in this course!

Scan Conversion

- We start from a simple triangle $\mathrm{T}: \mathrm{v} 1=(\mathrm{x} 1, \mathrm{y} 1)$, $\mathrm{v} 2=(\mathrm{x} 2, \mathrm{y} 2)$, and $\mathrm{v} 3=(\mathrm{x} 3, \mathrm{y} 3)$ and a point
- Consider the edge (v1v2) and formulate the implicit expression for this line

$$
l_{1,2}(x, y)=a_{1,2} x+b_{1,2} y+c_{1,2}
$$

- Pick a sign so that the evaluation of v3 is negative!
- This defines a half-plane

$$
h_{1,2}=\left\{(x, y): l_{1,2}(x, y)<=0\right\}
$$

Scan Conversion

- We start from a simple triangle $T: ~ v 1=(x 1, y 1)$, v2=(x2,y2), and v3 $=(\mathrm{x} 3, \mathrm{y} 3)$ and a point
- Repeat the similar process for two other edges (v1v2) and (v2v3)

$$
T=h_{1,2} \cap h_{1,3} \cap h_{2,3}
$$

- It is equivalent to say, a pixel (point) is a part of a triangle if this point belongs to three half-planes simultaneously

$$
l_{1,2}\left(p_{x}, p_{y}\right)<=0
$$

- What about Concave polygon?

$$
\begin{aligned}
& l_{1,3}\left(p_{x}, p_{y}\right)<=0 \\
& l_{2,3}\left(p_{x}, p_{y}\right)<=0
\end{aligned}
$$

Convex

Not Convex

Convex

- A polygon is convex if...
- A line segment connecting any two points on the polygon is contained in the polygon.
- If you can wrap a rubber band around the polygon and touch all of the sides, the polygon is convex

Concave Polygon

- We now consider a concave polygon $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1)$, $(x 2, y 2),(x 3, y 3), \ldots \ldots(x n, y n)$

Scan-Converting a Polygon

- General approach: any ideas?
- One idea: flood fill
- Draw polygon edges
- Pick a point (x, y) inside and flood fill with DFS

flood_fill (x, y) \{

$$
\begin{aligned}
& \text { if }(\text { read_pixel }(x, y))=\text { white }) \text { \{ } \\
& \text { write_pixel }(x, y, y l a c k) \text {; } \\
& \text { flood_fill }(x-1, y) \text {; } \\
& \text { flood_fill }(x+1, y) \text {; } \\
& \text { flood_fill }(x, y-1) \text {; } \\
& \text { flood_fill }(x, y+1) \text {; }
\end{aligned}
$$

Sweeping Lines

- Our observation - spatial coherence If $p \in T$, then neighboring pixels are probably in the triangle, too (Coherence)
- Idea
(1) sweep from top to bottom
(2) maintain intersections of T and sweep-line "span"
(3) paint pixels in the span

Sweep-line Algorithm

- Algorithm

Initialize x_{l} and x_{r}

For each scan line covered by T do Paint pixels $\left(x_{l}, y\right), \ldots, \ldots,\left(x_{r}, y\right)$ on the current span
Incrementally update x_{l} and x_{r} End for

- Question: how do we update x_{l} and x_{r} ?
- Answer: please recall our line-drawing algorithm!

Polygon Classification

[^0]
Scan Conversion

More efficient algorithm

For each scanline
Identify all intersections $x_{0}, x_{1}, \ldots, x_{k-1}$
Sort intersections from left to right
Fill pixels between consecutive pairs of intersection

$$
\left(x_{2 i}, y\right),\left(x_{2 i+1}, y\right)
$$

We must deal with "special cases" !

- horizontal lines
- intersecting a vertex (double intersection)
- unwanted intersection

Scan Conversion

- We must speed up the edge intersection detection
- Data structure for efficient implementation
- A sorted edge table
- The active edge list
- From bottom to the top
- Practical polygon scan conversion - based on polygon triangulation
- Extremely easy to handle for convex polygons
- Triangles are often particularly nice to work with because they are always planar and simple

Special Cases

Scan-Line Approach

- More efficient way: use a scan-line rasterization algorithm
- For each y value, compute x intersections, fill according to winding rule
- How to compute intersection points?

- How to handle shading?
- Some hardware can handle multiple-scanlines in parallel

Singularities (Special Cases)

- If a vertex lies on a scanline, does that count as 0,1 , or 2 crossings?
- How to handle singularities?
- One approach: don't allow. Perturb vertex coordinates
- OpenGL's approach: place pixel centers half way between integers (e.g., 3.5, 7.5), so scanlines never hit vertices

Winding Test

- Most common way to tell if a point is in a polygon: the winding test.
- Define "winding number" w for a point: signed number of revolutions around the point when traversing boundary of polygon once
- When is a point "inside" the polygon?

[^1]

Rasterizing Polygons (Scan Conversion)

- Polygons may be or may not be simple, convex, or even flat. How to render them?
- The most critical thing is to perform insideoutside testing: how to tell if a point is in a polygon?

OpenGL and Concave Polygons

- OpenGL guarantees correct rendering only for simple, convex, planar polygons
- OpenGL tessellates concave polygons
- Tessellation depends on winding rule you tell OpenGL to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO

Geometry

Transformations \longrightarrow Lighting \longrightarrow Projection \longrightarrow Clipping

Rendering Pipeline

- Geometric processing: normalization, clipping, hidden surface removal, lighting, projection (front end)
- Rasterization or scan conversion, including texture mapping (back-end)
- Fragment processing and display

From Models to Rasterization

Application \longrightarrow Geometry \longrightarrow Rasterization

3D Model

Software-based processing / modifications

Geometric Transformations

- Five coordinate systems of interest:
- Object coordinates
- Eye (world) coordinates [after modeling transform, viewer at the origin]
- Clip coordinates [after projection]
- Normalized device coordinates [after \div w]
- Window (screen) coordinates [scale to screensize]

Geometry: Transformations

Model Transformation
Model Coordinates

Geometry: Projection

Computer Graphics: Geometric Clipping

How Do We Define a Window?

- Window
- Viewport

2D Clipping

Geometry: Clipping

Geometry: Device Coordinates

2D Clipping

- Points
- Lines
- Polygons

Point clipping

2D Clipping

- How to define a window:
- Point clipping is trivial
y_{b}
y_{t}
- However, pay attention to (1) the homogeneous coordinates; (2) equations of lines

Line Clipping

Line clipping

Line-Segment Clipping Operations

- Clipping may happen in multiple places in the pipeline (e.g., early trivial accept/reject)
- After projection, have lines in plane, with rectangle to clip against

Line Clipping

- Line clipping operations should comprise the following cases
- Totally plotted
- Partially plotted
- NOT plotted at all
- Far from being trivial - even though neither of two vertices is within the window, certain part of the line segment may be still within the window!
- There are many different techniques for line clipping in 2D
- Two fundamental issues: (1) line equations; (2) intersection computation

The Fundamental Operation

- In geometric clipping, the most fundamental operation is how to compute line-line intersection: (1) whether two lines are intersecting or NOT; (2) if they Do intersect, can you please find such intersection point(s)?
- Equations for a line: (1) explicit representation; (2) implicit representation; or (2) parametric representation?

Clipping a Line Segment Against $\mathrm{X}_{\text {min }}$

- Given a line segment from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, Compute $\mathrm{m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
- Line equation: $y=m x+h$ (explicit representation)
- $\mathrm{h}=\mathrm{y}_{1}-\mathrm{m}_{1}$ (y intercept)
- Plug in $x_{\min }$ to get y
- Check if y is between y_{1} and y_{2}.
- This might take a lot of floating-point operations. How to minimize the number of such operations?

Cohen-Sutherland Clipping

- For both end-points of a line segment compute a 4-bit outcode (tbrl_{1}, tbrl $_{2}$) depending on whether the current coordinates are outside the cliprectangle side
- Some situations can be handled easily

1001	1000	1010
0001	0000	0010
0101	0100	0110
x	$x_{\min } x=x_{\max }$	

Cohen-Sutherland Conditions

- Cases.
- 1. If $\mathrm{tbrl}_{1}=\mathrm{tbrl}_{2}=0$, simply accept!
-2 . If one is zero, one nonzero, compute an intercept. If necessary compute another intercept. Then accept.
-3 . If $\mathrm{tbrl}_{1} \& \mathrm{tbrl}_{2} \neq 0$. If both outcodes are nonzero and the bitwise AND is nonzero, two endpoints lie on same outside side. Simply reject!
-3 . If $\mathrm{tbrl}_{1} \& \mathrm{rbrl}_{2}=0$. If both outcodes are nonzero and the bitwise AND is zero, may or may not have to draw the line. Intersect with one of the window sides and check the result:

Cohen-Sutherland Results (Performance)

- In many cases, a few integer comparisons and Boolean operations suffice for simple reject or simple accept.
- This algorithm works best when there are many line segments, and most are clipped away
- But note that the $y=m x+h$ form of equation for a line doesn't work for vertical lines (this is actually the limitation of explicit representation of a line)

Parametric Line Representation

- In computer graphics, a parametric representation is almost always used.
- Parametric representation of a line: $p(t)=(1-t) p_{1}$ $+\mathrm{t} \mathrm{p}_{2}$
- Same form for horizontal and vertical lines
- Parameter values from 0 to 1 are on the segment
- Values < 0 off in one direction; >1 off in the other direction
- Vector operations, can be generalized to higher dimensional geometry or general data representation

Liang-Barsky Clipping

- If line is horizontal or vertical, handle easily
- Else, compute four intersection parameters with four rectangle sides
- What if $0<a_{1}<a_{2}<a_{3}<a_{4}<1$?
- What if $0<a_{1}<a_{3}<a_{2}<a_{4}<1$?

(a)

(b)

T NY BROOK
TE UNVERSTTY OF NEW YORK

Computing Intersection Parameters

- Line-line intersection computation can be very costly
- Hold off on computing parameters as long as possibly (lazy computation); many lines can be rejected early
- Could compute $a=\left(y_{\max }-y_{1}\right) /\left(y_{2}-y_{1}\right)$
- Can rewrite a $\left(y_{2}-y_{1}\right)=\left(y_{\max }-y_{1}\right)$
- Perform work in integer operations by comparing a $\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$ instead of a

Polygon Clipping (Naïve Generalization)

- Clipping a polygon can result in lots of pieces
- Replacing one polygon with many may be a problem in the rendering pipeline
- Could treat result as one polygon: but this kind of polygon can cause other difficulties
- Some systems allow only convex polygons, which don't have such problems (OpenGL has tessellate function in glu library)

Sutherland-Hodgeman Polygon Clipping

- Could clip each edge of polygon individually
- A more pipelined approach: clip polygon against each side of rectangle in turn (window boundary)
- Treat clipper as "black box" pipeline stage

(a)
(b)

Clip against Each Boundary

- First clip against $y_{\max }$
- $\mathrm{x}_{3}=\mathrm{x}_{1}+\left(\mathrm{y}_{\max }-\mathrm{y}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) /\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
- $\mathrm{y}_{3}=\mathrm{y}_{\max }$

Clipping Pipeline

- Clip each boundary in turn

(a)

(Parallel) Clipping in Hardware

- Construct the pipeline stages in hardware so you can perform four clipping stages at once

Clipping Complicated Objects

- Suppose you have many complicated objects, such as models of parts of a person with thousands of polygons each
-When and how to clip for maximum efficiency?
- How to clip text? Curves?

Clipping Other Primitives

- It may help to clip more complex shape early in the pipeline
- This may be simpler and less accurate
- One approach: bounding boxes (sometimes called trivial accept-reject)
- This is so useful that modeling systems often store bounding box

Clipping Curves, Text

- Some shapes are so complex that they are difficult to clip analytically

(a)

(b)
- Can approximate with line segments
- Can allow the clipping to occur in the frame buffer (pixels outside the screen rectangle aren't drawn)
- Called "scissoring"
- How does performance compare with others?

Clipping in 3D (Generalizations)

- Cohen-Sutherland regions

Geometric Processing

- Front-end processing steps (3D floating point; may be done on the CPU)
- Evaluators (converting curved surfaces to polygons)
- Normalization (modeling transformation, convert to world coordinates)
- Projection (convert to screen coordinates)
- Hidden-surface removal (object space)
- Computing texture coordinates
- Computing vertex normals
- Lighting (assign vertex colors)
- Clipping
- Perspective division
- Backface culling

Rasterization

- Back-end processing works on 2D objects in screen coordinates
- Processing includes
- Scan conversion of primitives including shading
- Texture mapping
- Fog
- Scissors test
- Alpha test
- Stencil test
- Depth-buffer test
- Other fragment operations: blending, dithering, logical operations

Display

- RAM DAC converts frame buffer to video signal
- Other considerations:
- Color correction
- Antialiasing

Aliasing

- How to render the line with reduced aliasing?
- What to do when polygons share a pixel?

Anti-Aliasing

- Simplest approach: area-based weighting
- Fastest approach: averaging nearby pixels
- Most common approach: supersampling (patterned or with jitter)
- Best approach: weighting based on distance of pixel from center of line; Gaussian fall-off

(a)

(b)

(d)

Temporal Aliasing

- Need motion blur for motion that doesn't flicker at slow frame rates
- Common approach: temporal supersampling
- render images at several times within frame time interval
- average results

Scan-line Algorithm

- Work one scan line at a time
- Compute intersections of faces along scanlines
- Keep track of all "open segments" and draw the closest
- More on HSR later

Hidden Surface Removal

- Object-space vs. Image-space
- The main image-space algorithm: z-buffer
- Drawbacks
- Aliasing
- Rendering invisible objects
- How would object-space hidden surface removal work?

Depth Sorting

- The painter's algorithm: draw from back to front

- Depth-sort hidden surface removal:
- sort display list by z-coordinate from back to front - render/display
- Drawbacks
- it takes some time (especially with bubble sort!)
- it doesn't work

Depth-Sort Difficulties

- Polygons with overlapping projections
- Cyclic overlap
- Interpenetrating polygons
-What to do?

Display Considerations

- Color systems
- Color quantization
- Gamma correction
- Dithering and Halftoning

Color Systems

- RGB
- YIQ
- CMYK
- HSV, HLS
- Chromaticity
- Color gamut

Chromaticity

- Tristimulus values: R, G, B values that we know of
- Color researchers often prefer chromaticity coordinates:

$-\mathrm{t} 1=\mathrm{T} 1 /(\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3)$
$-\mathrm{t} 2=\mathrm{T} 2 /(\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3)$
$-\mathrm{t} 3=\mathrm{T} 3 /(\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3)$
- Thus, $\mathrm{t} 1+\mathrm{t} 2+\mathrm{t} 3=1.0$.
- Use t1 and t2; t3 can be computed as 1-t1-t2
- Chromaticity diagram uses this approach for theoretical XYZ color system, where Y is luminance

Additive and Subtractive Color

HLS

- Hue: "direction" of color: red, green, purple, etc.
- Saturation: intensity.
E.g. red vs. pink
- Lightness: how bright

(a)

Dithering

- Dithering (patterns of b / w or colored dots) used for computer screens
- OpenGL can dither
- But, patterns can be visible and bothersome. A better approach?

Floyd-Steinberg Error Diffusion Dither

- Spread out "error term"
- 7/16 right
- 3/16 below left
- 5/16 below
- $1 / 16$ below right
- Note that you can also do this for color images (dither a color image onto a fïxed 256-color palette)

Halftoning

- How do you render a colored image when colors can only be on or off (e.g. inks, for print)?
- Halftoning: dots of varying sizes
- [But what if only fixed-sized pixels are available?]

Color Quantization

- Color quantization: modifying a full-color image to render with a 256-color palette
- For a fixed palette (e.g. web-safé colors), can use closest available color, possibly with errordiffusion dither
- Algorithm for selecting an adaptive palette?
- E.g. Heckbert Median-cut algorithm
- Make a 3-D color histogram
- Recursively cut the color cube in half at a median
- Use average color from each resulting box

Implementation Strategies

- Major approaches:
- Object-oriented approach (pipeline renderers like OpenGL)
- For each primitive, convert to pixels
- Hidden-surface removal happens at the end
- Image-oriented approach (e.g. ray tracing)
- For each pixel, figure out what color to make it
- Hidden-surface removal happens early
- Considerations on object-oriented approach
- Memory requirements were a serious problem with the object-oriented approach until recently
- Object-oriented approach has a hard time with interactions between objects
- The simple, repetitive processing allows hardware speed: e.g. a 4×4 matrix multiply in one instruction
- Memory bandwidth not a problem on a single chip

Hardware Implementations

- Pipeline architecture for speed
(but what about latency?)
- Originally, whole pipeline on CPU
- Later, back-end on graphics card
- Now, whole pipeline on graphics card
-What's next?

Future Architectures?

- 10+ years ago, fastest performance of 1 M polygons per second cost millions
- Performance limited by memory bandwidth
- Main component of price was lots of memory chips
- Now a single graphics chip is faster (memory bandwidth on a chip is much greater)
- Fastest performance today achieved with several parallel commodity graphics chips (Playstation farm?)
- Plan A: send $1 / n$ of the objects to each of the n pipelines; merge resulting images (with something like z-buffer algorithm)
- Plan B: divide the image into n regions with a pipeline for each region; send needed objects to each pipeline

[^0]: STONY BROOK
 STATE UNIVERSITY OF NEW YORK

[^1]: Center for Visual Comp

