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Shape Deformation
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Deformation Applications
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| Detail-preserving Shape Editing
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Basic Definition

« Deformation: A transformation/mapping of the
positions of every particle in the original object to
those In the deformed body

» Each particle represented by a point p iIs moved by
(°):
p—>¢(p. )

where p represents the original position and ¢(p, t)
represents the position at time t
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| Deforming Objects

* Changing an object’s shape
— Usually refers to non-simulated algorithms
— Usually relies on user guidance

o Easiest when the number of faces and vertices of
a shape Is preserved, and the shape topology Is
not changed either

— Define the movements of vertices
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Deformation

» Modify Geometry

-------------
.

e Space Transformation

A
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| Defining Vertex Functions

o |f vertex 1 Is displaced by (X, y, z) units

— Displace each neighbor, |, of I by
* (x,y,2) *1(1,))

e f(1,]) 1s typically a function of distance
— Euclidean distance
— Number of edges from I to |
— Distance along surface (i.e., geodesics)

Department of Computer Science ST NYBR® K
i i STATE UNIVERSIT

ITY OF NEW YORK



Warping




Vertex Displacement Function

* 11s the (shortest) number of
edges between 1 and |

* nIs the max number of edges
affected

e (k=0) = linear; (k<0) = rigid;
(k>0) = elastic

Warping effects by using
power functions

For attenuating warping
effects
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Editing Tool

 Direct manipulation
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Moving Vertices

| Time consuming to define the trajectory through
space of all vertices

Destination Mesh —-— Original Mesh
» |nstead, control a few seed vertices which In turn

affect nearby vertices
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2D Grid Deformation

* 1974 film “Hunger”
e Draw object on grid
» Deform grid points

 Use bilinear interpolation to re-compute vertex

positions on deformed grid
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2D Grid-based Deformation

local x

global x
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2D Grid-based Deformation

Py = (1—w)Pyy + uPyy
PUF:{-.I_F}FUDTVPU'I

P

b f P
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2D Grid-based Deformation
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local x

global x

Figure 3.57 Initial 2D coordinate grid

Pu0 = (1 —u)- P00+ u- P10
Pul = (1—u)- POl + u- P11
Puv = (1=v)- Pu0 + v+ Pul
- (1=2)-(1=2)-PO0O+(1—w)-v- POl +u-(1—0v)  PlO+u-v P11

P01

P00

Figure 3.58 Bilinear interpolation
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Polyline Deformation (Skeleton)

« Draw a piecewise linear line (polyline) passing through

the geometry

 For each vertex compute
— Closest polyline segment
— Distance to segment
— Relative distance along this segment

» Deform polyline and re-compute vertex positions
e The earlier version of skeleton-based deformation
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Bulging & Bending

~Lf

Bulging

Py

Bending
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Hierarchice
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Nmrking at a coarser level

Working at a finer level




FFDs — as tools to design shapes

Undeformed object Deformed object
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Object Modification/Deformation

» Modify the vertices directly
— Vertex warping

e OR

» Modify the space the vertices lie In
— 2D grid-based deformation
— Skeletal bending
— Global transformations
— Free-form deformations
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Global Deformations

 Alan Barr, SIGGRAPH ’84

o A 3x3 transformation matrix affects all vertices

_ P’=M(P) .dot. P
* M(P) can taper, twist, bend...
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] Global Transformations
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Global Transformations
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Global Transformations
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W Global Transformations
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Figure 3.65 Global bend operation
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Compound global deformations Examples from Barr [2)

NY BR K
SRR Rl Figure 3.66 Examples of global deformations

NIVERSITY OF NEW YORK
Center for Visual Computing




Nonlinear Global Deformation
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Nonlinear Global Deformation
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Good for modeling (garr 87]
Animation is harder
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Space Warping

« Deformation the object by deforming the space it
IS residing In

e Two main technigues:

» Nonlinear deformation

» Free Form Deformation (FFD)
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Nonlinear Global Deformation

 ODbjects are defined in a local object space
» Deform this space by using a combination of:
o Non uniform scaling

 Tapering
 Twisting
» Bending
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What is “Free-Form”?

« Parametric surfaces are free-form surfaces

* The flexibility in this technique of deformation allows us
deform the model in a free-form manner
v Any surface patches
v" Global or local deformation
v Continuity in local deformation
v Volume preservation
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Free-Form Deformations

» Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

i
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Free-Form Deformations

» Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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Free-Form Deformations

» Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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Free-Form Deformations

» Embed object in uniform grid

 Represent each point In space as a weighted
combination of grid vertices

» Assume x; are equally spaced and use Bernstein
basis functions
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| 2D Example
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| 2D Example
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| 2D Example
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| 2D Example
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| 2D Example

2(1-u)*(L-v)v i

2(1—u)u(l—v)? u®(l—v)?

(1-u)*(1-v)°
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| 2D Example
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| Applying the Deformation




| Applying the Deformation




| Applying the Deformation




] FFD Contributions

« Smooth deformations of arbitrary shapes
» Local control of deformation
 Performing deformation Is fast

» Widely used

— Game/movie Industry
— Part of nearly every 3D modeling package
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| Challenges in Deformation

 Large meshes — millions of polygons

» Need efficient techniques for computing and
specifying the deformation

3 B K ¥_ T e £,
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Deformation Handles

 Low-resolution auxiliary shape controls
deformation of high-resolution model
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Free-Form Deformation (FFD)

* Sederberg, SIGGRAPH ’86
 Place geometric object inside Iocal coordmate

 Build local
coordinate
representation

» Deform local coordinate space and thus deform
geometry
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Free-Form Deformation (FFD)

 Basic idea: deform space by deforming a lattice
around an object

» The deformation is defined by moving the
control points of the lattice

« Imagine it as If the object were enclosed by

rubber

 The key 1s how to define
— LLocal coordinate system
— The mapping
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] Free-Form Deformation

 Similar to 2-D grid deformation
» Define 3-D lattice surrounding geometry

» Move grid points of lattice and deform geometry
accordingly

 Local coordinate system is initially defined by
three (perhaps non orthogonal) vectors
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Trilinear Interpolation

» LetS, T, and U (with origin P, define local
coordinate axes of bounding box that encloses
geometry

» A vertex, P’s, coordinates are:

(Tx U) -(P- Py &/

Py

Figure 3.67 Initial local coordinate system for FEDs
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w Volumetric Control Points

« EachofS, T, and U axes are
subdivided by control points

» A lattice of control points Is
constructed
 Bezier interpolation of move control points
vertex positions
P=P+s-S+t-T+u-U
Pi =F lsydy +K-U
I m n

P(s,t,u) = i[:)(l— 3)'s' o[zml(r?](l—t)mjtj -[i(ﬂj(l— u)" " u PijkD
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Free-Form Deformation (FFD)

Q(u,v,w) = Zpijk B(u)B(v)B(w)

ijk

ST NYBR® K
TATE UNIVERSIT

ITY OF NEW YORK



The FFD Process - Example

Point in a cell is repositioned within the corresponding
cell in the deformed lattice, in the same relative
position within the cell.
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Smoothness of Deformation

» Constraining Bezier control points controls
smoothness
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Smooth the Deformed Surface

Can be done by properly set the lattice position and
(I, m, n) dimension

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Free-Form Deformations

e Continuities

Colinear control points

Common boundary plane
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Volume Preservation

» Must ensure that the jacobian of the deformation

IS 1 everéwhere

Departmen
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FFD: Examples
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FFD: Examples
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FFD: Examples
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| Advantages

« Smooth deformation of arbitrary shapes

 Local control of deformations

» Computing the deformation
IS easy

» Deformations are very fast
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| Disadvantages

 Must use cubical cells for deformation

» Restricted to uniform grid

» Deformation warps space... not surface

— Does not take into account geometry/topology of
surface

» May need many FFID’s to achieve a simple
deformation
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FFD Example
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FFD Example
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Free-Form Deformation

» Widely used deformation technigue

 Fast, easy to compute

« Some control over volume
preservation/smoothness

o Uniform grids are restrictive
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FFD as a Animation Tool
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w Use FFDs to Animate

 Build control point lattice
that 1s smaller than
geometry

» Move lattice through
geometry so It affects
different regions In
sequence

» Animate mouse under the
rug, or subdermals (alien
under. your skin), etc.

Figure 3.74 Deformation by translating the deformation tool relative to an obiject
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w Use FFDs to Animate

 Build FFD lattice that Is
larger than geometry

 Translate geometry
within lattice so new
deformations affect it
with each move

» Change shape of object
to move along a path

Object traversing the logical FFD coordinate space
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FFD Animation

reference deformed morphed
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FFD Animation

rererence
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| Animating the FFD

 Create Interface for efficient manipulation of
lattice control points over time

— Connect lattices to rigid limbs of human skeleton
— Physically simulate control points
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Application: Skin, Muscle, and Bone
W Animation

Exo-muscular system
Skeleton -> changes FFD -> changes skin

Surface distorted after joint articulation



Figure 3.76 Using an FFD to animate a figure’s head

Surface distorted after joint articulacion
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'FFD for Human Animation:
Skinning
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ree-Form Deformation
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Non-Tensor-Product Grid Structure
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W Arbitrary Grid Structure (Star-Shape)

Department of Computer Science ST NYBR® K
© i STATE UNIVERSITY OF NEW YORK




| Volume defined by Arbitrary Lattices

 The volumetric regions of space results from
Catmull-Clark subdivision method.
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Modified Refinement Rules

 Green: boundary edges
» Red: sharp edges
 Yellow: corner vertices




Arbitrary Topology

 Previous method can only handle a
parallelepiped lattice

« A new method allows lattices of arbitrary
topology




| Arbitrary Topology FFDs

» The concept of FFDs was later extended to allow an
arbitrary topology control volume to be used
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Results
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Results

 Deform a monster’s arm
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| Deformation Summary

 Direct manipulation
 Space deformation
» Deformation (cage-based)
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