Data Modeling and Analysis Techniques: Interpolation and Approximation

Hong Qin
Rm. 151, NEW CS Building
Department of Computer Science
Stony Brook University (State University of New York)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu or qin@cs.stonybrook.edu http://www.cs.stonybrook.edu// qin

Data Interpolation

-Why interpolation?

- We acquire discrete observations/measurements for continuous systems, and we would like to convert discrete measurements to continuous representations
- We definitely need the ability to interpolate values "in-between" discrete points

Data Interpolation

- One simple example
- Our goal is to find the value of a function between known values
- Let us consider the two pairs of values (x, y) :

$$
(0.0,1.0) \text {, and (1.0, 2.0) }
$$

What is y at $x=0.5$? That is, what's $(0.5, y)$?

Linear Interpolation

- Given two points, $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$:

Fit a straight line between the points

$$
\begin{aligned}
& y(x)=a x+b \\
& a=\left(y_{2}-y_{1}\right) /\left(\left(x_{2}-x_{1}\right), \quad b=\left(y_{1} x_{2}-y_{2}, x_{1}\right)\right) /\left(x_{2}-x_{1}\right),
\end{aligned}
$$

Use this equation to find y values for any

$$
x_{1}<x<x_{2}
$$

Another Example

- What about four points ?
- $(0,2),(1,0.3975),(2,-0.1126),(3,-0.0986)$

Another Example

$$
\text { Data points are: }(0,2),(1,0.3975),(2,-0.1126),(3,-0.0986) .
$$

Fitting a cubic polynomial through the four points gives:

$y_{p}(x)=2.0-2.3380 x+0.8302 x^{2}-0.0947 x^{3}$

Polynomial Fit to Example

Polynomial Fit

Polynomial Interpolants

- Now given $\mathrm{n}(\mathrm{n}=4)$ data points $\left(x_{i}, y_{i}\right), i=1,4$
- Find the interpolating function that goes through these points, will need a cubic polynomial

$$
y_{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

- If there are $n+1$ data points, the function will become (with $\mathrm{n}+1$ unknown variables)

$$
y_{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{N} x^{N}
$$

Polynomial Interpolant

- The polynomial must pass through the four points, resulting in the following constraints
$\left(\begin{array}{cccc}1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\ 1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\ 1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\ 1 & x_{4} & x_{4}^{2} & x_{4}^{3}\end{array}\right)\left(\begin{array}{c}a_{o} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)$
$\mathbf{P a}=\mathbf{y}$
$a=p^{-1} y$

Ordinary Least-Squares

Least Squares Interpolant

- For n points, we only have a fitting polynomial of order $\mathrm{m}(\mathrm{m}<(\mathrm{n}-1))$, we want the least squares fitting polynomial is similar to the exact fit form: $\mathbf{y}_{\mathbf{p}}(\mathbf{x})=\mathbf{p} \mathbf{a}$
- Now p is becoming a n * m matrix. We have fewer unknowns than data points, the interpolant can not go through all the points exactly, we need to measure the total error

Outline

- Linear regression
- Geometry of least-squares
- Discussion of the Gauss-Markov theorem

Ordinary Least-Squares

One-dimensional Regression

b

One-dimensional Regression

- Problem: the line does NOT go through all the data points exactly, so only approximation

One-dimensional Regression

- Find the line that minimizes the sum of error squared:

Matrix Notation

Using the following notations

$$
\boldsymbol{a}=\left[\begin{array}{c}
a_{1} \\
: \\
a_{n}
\end{array}\right] \quad \text { and } \quad \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
: \\
b_{n}
\end{array}\right]
$$

we can rewrite the error function using linear algebra as:

$$
\begin{aligned}
e(x) & =\sum_{i}\left(b_{i}-a_{i} x\right)^{2} \\
& =(\boldsymbol{b}-x \mathbf{a})^{T}(\boldsymbol{b}-x \mathbf{a}) \\
e(x) & =\|\boldsymbol{b}-x \boldsymbol{a}\|^{2}
\end{aligned}
$$

Multidimensional Linear Regression

Using a model with m parameters

Multidimensional Linear Regression

Using a model with m parameters

Multidimensional Linear Regression

Using a model with m parameters

$$
b=a_{1} x_{1}+\ldots+a_{m} x_{m}=\sum_{j} a_{j} x_{j}
$$

and n measurements

$$
\begin{aligned}
e(\boldsymbol{x}) & =\sum_{i=1}^{n}\left(b_{i}-\sum_{j=1}^{m} a_{i, j} x_{j}\right)^{2} \\
& =\left\|\boldsymbol{b}-\left[\sum_{j=1}^{m} a_{i, j} x_{j}\right]\right\|^{2} \\
e(\boldsymbol{x}) & =\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2}
\end{aligned}
$$

Matrix Notation

$b-A x$

$$
\boldsymbol{b}-\boldsymbol{A} \boldsymbol{X}=\left[\begin{array}{c}
b_{1} \\
: \\
b_{n}
\end{array}\right]-\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, m} \\
\vdots & & : \\
a_{n, 1} & \cdots & a_{n, m}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
: \\
x_{m}
\end{array}\right]
$$

Matrix Notation

$$
\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}
b_{1} \\
: \\
b_{n}
\end{array}\right]-\left[\begin{array}{ccc}
a_{1,1} & . . & a_{1, m} \\
: & & : \\
a_{n, 1} & . . & a_{n, m}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
: \\
x_{m}
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
b_{1}-\left(a_{1,1} x_{1}+\ldots+a_{1, m} x_{m}\right) \\
\vdots \\
b_{n}-\left(a_{n, 1} x_{1}+\ldots+a_{n, m} x_{m}\right)
\end{array}\right]
$$

$b-A x$

parameter 1

$$
\boldsymbol{b}-\boldsymbol{A} \boldsymbol{X}=\left[\begin{array}{c}
b_{1} \\
: \\
b_{n}
\end{array}\right]-\left[\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, m} \\
\vdots & & \vdots \\
a_{n, 1} & \ldots & a_{n, m}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { measurement } n
$$

$$
=\left[\begin{array}{c}
b_{1}-\left(a_{1,1} x_{1}+\ldots+a_{1, m} x_{m}\right) \\
\vdots \\
b_{n}-\left(a_{n, 1} x_{1}+\ldots+a_{n, m} x_{m}\right)
\end{array}\right]
$$

Geometric Interpretation

Geometric Interpretation

- \boldsymbol{b} is a vector in R^{n}

Geometric interpretation

- \boldsymbol{b} is a vector in R^{n}
- The columns of \boldsymbol{A} define a vector space $\operatorname{range}(\boldsymbol{A})$

Geometric Interpretation

- \boldsymbol{b} is a vector in R^{n}
- The columns of \boldsymbol{A} define a vector space range(\boldsymbol{A})
- Ax is an arbitrary vector in range(\boldsymbol{A})

Geometric Interpretation

- \boldsymbol{b} is a vector in R^{n}
- The columns of \boldsymbol{A} define a vector space range(\boldsymbol{A})
- Ax is an arbitrary vector in range(\boldsymbol{A})

Geometric Interpretation

- $\boldsymbol{A} \hat{\boldsymbol{x}}$ is the orthogonal projection of \boldsymbol{b} onto range(\boldsymbol{A})

$$
\Leftrightarrow \boldsymbol{A}^{T}(\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}})=\boldsymbol{O} \Leftrightarrow \boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

The Normal Equation

$\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

The Normal Equation: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

- Existence: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$ has allways a sollution

The Normal Equation: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

- Existenoe: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$
has aliways a solutiom
- Uniqueness: the solution is unique if the columns of A are linearly indlependlent

The Normal Equation: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

- Existence: $\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$ has allways a solutiom
- Unicqueness : the solution is unique if the columns of \boldsymbol{A} are linearily independent

Under-constrained Problem

Under-constrained Problem

Under-constrained Problem

Under-constrained Problem

- Poorly selected data
- One or more of the parameters are redundant

Under-constrained Problem

- Poorly selected data
- One or more of the parameters are redundant

Add constraints

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b} \text { with } \min _{\boldsymbol{x}}\|\boldsymbol{x}\|
$$

Minimizing $e(\boldsymbol{x})$

Minimizing $e(\boldsymbol{x})$

$\boldsymbol{x}_{\text {min }}$ minimizes $e(\boldsymbol{x})$ if

Minimizing $e(\boldsymbol{x})$
 $e(x)$ is flat at x

$\boldsymbol{X}_{\text {min }}$ minimizes $e(\boldsymbol{X})$ if

Minimizing $e(\boldsymbol{x})$

$e(x)$ is flat at $x_{\min }$
$\nabla e\left(\boldsymbol{X}_{\min }\right)=\mathbf{0}$

$\boldsymbol{X}_{\text {min }}$ minimizes $e(\boldsymbol{x})$ if

Minimizing $e(\boldsymbol{x})$

$e(x)$ is flat at x min

$\nabla e\left(\boldsymbol{X}_{\text {min }}\right)=\mathbf{0}$

$\boldsymbol{x}_{\text {min }}$ minimizes $e(\boldsymbol{x})$ if

x) does not go down around

$e(\boldsymbol{X})$

Minimizing $e(\boldsymbol{x})$

$e(x)$ is flat at $x_{\min }$

$\nabla e\left(\boldsymbol{x}_{\min }\right)=\mathbf{0}$

$\boldsymbol{x}_{\text {min }}$ minimizes $e(\boldsymbol{X})$ if

does not go down

 around x
$H_{e}\left(\boldsymbol{x}_{\text {min }}\right)$ is positive
 semi-definite

Positive Semi-definite

\boldsymbol{A} is positive semi-definite

\Leftrightarrow $\boldsymbol{x}^{T} \boldsymbol{A x} \geq \mathbf{0}$, for all \boldsymbol{x}

In 1-D

In 2-D

Minimizing $e(\boldsymbol{x})$

Minimizing
 $e(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2}$

$e(\boldsymbol{X})=\frac{1}{2} \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{H}_{e}(\hat{\boldsymbol{\chi}}) \boldsymbol{X}$

Minimizing
 $e(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2}$

$\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

$\hat{\boldsymbol{x}}$ minimizes $e(\boldsymbol{X})$ if

$2 \boldsymbol{A}^{T} \boldsymbol{A}$ is positive semi-definite

Minimizing
 $$
e(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2}
$$

$\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

$\hat{\boldsymbol{X}}$ minimizes $e(\boldsymbol{X})$ if

$2 \boldsymbol{A}^{T} \boldsymbol{A}$ is positive semi-definite

Minimizing
 $e(\boldsymbol{X})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|^{2}$

$\boldsymbol{A}^{T} \boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b}$

The Normal Equation

$\hat{\boldsymbol{x}}$ minimizes $e(\boldsymbol{X})$ if

$2 \boldsymbol{A}^{T} \boldsymbol{A}$ is positive semi-definite

Question

You should be able to prove that the equation above leads to the following expression for the best fit straight line:

$$
y_{p}(x)=m x+b
$$

How good is the least-squares criteria?

- Optimality: the Gauss-Markov theorem

How good is the least-squares criteria?

- Optimality: the Gauss-Markov theorem

Let $\left\{b_{i}\right\}$ and $\left\{x_{j}\right\}$ be two sets of random variables and define:

$$
e_{i}=O_{i}-a_{i, 1} x_{1}-\ldots a_{i, m} X_{m}
$$

How good is the least-squares criteria?

- Optimality: the Gauss-Markov theorem

Let $\left\{b_{i}\right\}$ and $\left\{x_{j}\right\}$ be two sets of random variables and define:

If

$$
e_{i}=b_{i}-a_{i, 1} x_{1}-\ldots-a_{i, m} x_{m}
$$

A1: $\left\{a_{i, j}\right\}$ are not random variables,
A2: $E\left(e_{i}\right)=0$, for all i,
$\mathrm{A} 3: \operatorname{var}\left(e_{i}\right)=\sigma$, for all i,
A4: $\operatorname{cov}\left(e_{i}, e_{j}\right)=0$, for all i and j,

How good is the least-squares criteria?

- Optimality: the Gauss-Markov theorem

Let $\left\{b_{i}\right\}$ and $\left\{x_{j}\right\}$ be two sets of random variables and define:

$$
e_{i}=b_{i}-a_{i, 1} x_{1}-\ldots-a_{i, m} x_{m}
$$

If
A1: $\left\{a_{i, j}\right\}$ are not random variables,
A2: $E\left(e_{i}\right)=0$, for all i,
A3: $\operatorname{var}\left(e_{i}\right)=\sigma$, for all i,
A4: $\operatorname{cov}\left(e_{i}, e_{j}\right)=0$, for all i and j,
Then $\hat{\boldsymbol{x}}=\arg \min _{x} \sum e_{i}^{2}$ is the

Least Squares Interpolant

- We arrive at a system of equations through function minimization

$$
2 \mathbf{p}^{T} \mathbf{p} \mathbf{a}-2 \mathbf{p}^{T} \mathbf{y}=0 \quad \mathbf{a}=\left(\mathbf{p}^{T} \mathbf{p}\right)^{-1} \mathbf{p}^{T} \mathbf{y}^{T}
$$

- We can introduce a pseudo-inverse

- For four points with a cubic polynomial

$$
\mathbf{p}=\left(\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\
1 & x_{4} & x_{4}^{4} & x_{4}^{3}
\end{array}\right)
$$

Cubic Least Squares Example

Least Squares Interpolant

Piecewise Interpolation

- Piecewise polynomials: a collection of polynomials to fit all the data points
- Different choices: linear, quadratic, cubic
- Non-polynomials: radial basis functions (RBFs)

Radial Basis Functions

Developed to interpolate 2-D data: think bathymetry.
Given depths: $\mathbf{x}_{i}, i=1, N$, interpolate to a rectangular grid.

RBF

a) Thin-plate (2-d)

$$
\phi(r)=r^{2} \log r
$$

$r=\left|\mathbf{x}-\mathbf{x}_{j}\right|$

Department of Computer Science Center for Visual Computing

c) Gaussian

$$
\phi(r)=e^{r^{2} \sigma^{2}}
$$

b) Thin-plate (3-d)

$$
\phi(r)=r^{3}
$$

d) Compactly Supported $\phi(r)=(1-r)_{+}^{4}(4 r+1)$

Radial Basis Functions

- Data points:

$\mathbf{x}_{i}, i=1, N$

- For each position, there is an associated value:

$$
u_{i}, i=1, N
$$

- Radial basis function (located at each point):

$$
g_{j}(\mathbf{x}) \equiv g\left(\left|\mathbf{x}-\mathbf{x}_{j}\right|\right), j=1, N
$$

Radial Basis Function for Data Fitting

- To find the unknown coefficients, we force the interpolant to go through all the data points:

$$
\begin{aligned}
& \sum_{j=1}^{N} \alpha_{j} g_{j}\left(\mathbf{x}_{i}\right)=u_{i}, \quad i=1, N \\
& \mathbf{x}_{i} \equiv\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|
\end{aligned}
$$

- We have n equations for the n unknown coefficients

Multiquadric RBF

MQ:
RMQ:

$g_{j}(\mathbf{x})=\sqrt{c_{j}^{2}+r^{2}}$

$$
g_{j}(\mathbf{x})=\frac{1}{\sqrt{c_{j}^{2}+r^{2}}}
$$

$$
r=\left|\mathbf{x}-\mathbf{x}_{j}\right|
$$

Hardy, 1971; Kansa, 1990

$11(\mathrm{x}, \mathrm{y})$ pairs: $(0.2,3.00),(0.38,2.10),(1.07,-1.86),(1.29,-2.71),(1.84,-2.29),(2.31,0.39)$, (3.12, 2.91), $(3.46,1.73),(4.12,-2.11),(4.32,-2.79),(4.84,-2.25) \quad$ SAME AS BEFORE

RBF Errors

RBF Errors

$\log _{10}$ [sqrt (mean squared errors)] versus c: Reciprocal Multiquadric

Consistency (Property)

- Consistency is the ability of an interpolating function to reproduce a polynomial of a given order, the simplest consistency is constant consistency (reproduce unity) $\quad \mathbf{x}_{i} \equiv\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|$

If $\boldsymbol{g}_{j}(0)=1$, then a constraint results:

Note: Not all RBFs have $\boldsymbol{g}_{j}(0)=1$

RBFs and PDEs

- Solve a boundary value problem: $\nabla^{2} \phi(x, y)=0$ $\left.\phi(x, y)\right|_{\text {on the boundary }}=f(x, y)$
- We make use of RBFs as a possible solution

$$
\phi_{h}(\mathbf{x})=\sum_{j=1, N} \alpha_{j} g_{j}(\mathbf{x})
$$

RBFs and PDEs

- The governing equation and boundary conditions

$$
\phi_{h}(\mathbf{x})=\sum_{j=1, N} \alpha_{j} g_{j}(\mathbf{x})
$$

$$
\sum_{j=1}^{N} \alpha_{j} \nabla^{2} g_{j}\left(x_{i}\right)=0 \text { for all the interior points }
$$

$$
\sum_{j=1}^{N} \alpha_{j} g_{j}\left(x_{i}\right)=f_{i} \text { for the boundary points }
$$

These are N equations for the N unknown constants, α_{j}

RBFs and PDEs

- One common problem with many RBFs is that the n *n matrix is dense, one easy-fix is to use a RBF with compact support (matrix becomes sparse)

$$
\begin{aligned}
& \text { 1D: }\left\{\begin{array}{l}
(1-r / h)^{3}(3 r / h+1) \text { for }|r|<h \\
0, \text { otherwise }
\end{array}\right. \\
& \text { 3D: }\left\{\begin{array}{l}
(1-r / h)^{4}(4 r / h+1) \text { for }|r|<h \\
0, \text { otherwise }
\end{array}\right. \\
& (1-r / h)_{+}^{4}(4 r / h+1)
\end{aligned}
$$

RBFs with small 'footprints' (Wendland, 2005)

Advantages: matrix is sparse, but still $n * n$

Wendland 1-D RBF with Compact Support

Moving Least Squares Interpolant

$u_{p}(\mathbf{x})=\sum_{j}^{N} a_{j}(\mathbf{x}) p_{j}(\mathbf{x}) \equiv \mathbf{p}^{T}(\mathbf{x}) \mathbf{a}(\mathbf{x})$ $p^{T}(\mathbf{x})$
are monomials in x for 1D $\left(1, x, x^{2}, x^{3}\right)$
x, y in 2 D , e.g. $\left(1, x, y, x^{2}, x y, \mathrm{y}^{2} \ldots.\right)$
Note a_{j} are functions of \boldsymbol{x}

Moving Least Squares Interpolant

$$
E(\mathbf{x})=\sum_{i=1}^{N} W\left(\mathbf{x}-\mathbf{x}_{i}\right)\left(\mathbf{p}^{T}\left(\mathbf{x}_{i}\right) \mathbf{a}(\mathbf{x})-u_{i}\right)^{2}
$$

We define a weighted mean-squared error
where $W\left(\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{i}}\right)$ is a weighting function that decays with increasing $\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{i}}$.

Same as previous least squares approach, except for $W\left(\boldsymbol{x}-\boldsymbol{x}_{i}\right)$

Weighting Function

$$
W(q)=\frac{2}{3 h} \begin{cases}1-\frac{3}{2} q^{2}+\frac{3}{4} q^{3}, & \text { for } q \leq 1 \\ \frac{1}{4}(2-q)^{3}, & \text { for } 1 \leq q \leq 2 \\ 0, & \text { for } q>2\end{cases}
$$

$q=x / h$

Moving Least Squares Interpolant

Minimizing the weighted squared errors for the coefficients:

$$
\frac{\partial E}{\partial \mathbf{a}}=\mathbf{A}(\mathbf{x}) \mathbf{a}(\mathbf{x})-\mathbf{B}(\mathbf{x}) \mathbf{u}=0
$$

$$
\text { where } \mathbf{u}^{T}=\left(u_{1}, u_{2}, \ldots u_{n}\right) \quad \mathbf{A}=\mathbf{P}^{T} \mathbf{W}(\mathbf{x}) \mathbf{P} \quad \mathbf{B}=\mathbf{P}^{T} \mathbf{W}(\mathbf{x})
$$

$$
\left[\begin{array}{llll}
p_{1}\left(\mathbf{x}_{1}\right) & p_{2}\left(\mathbf{x}_{1}\right) & \ldots & p_{m}\left(\mathbf{x}_{1}\right)
\end{array}\right.
$$

$$
\mathbf{P}=\begin{array}{llll}
p_{1}\left(\mathbf{x}_{2}\right) & p_{2}\left(\mathbf{x}_{2}\right) & \ldots & p_{m}\left(\mathbf{x}_{2}\right)
\end{array}
$$

$$
\left.\begin{array}{llll}
p_{1}\left(\mathbf{x}_{n}\right) & p_{2}\left(\mathbf{x}_{n}\right) & \ldots & p_{m}\left(\mathbf{x}_{n}\right)
\end{array}\right]
$$

$\mathbf{W}(\mathbf{x})=\left[\begin{array}{cccc}W\left(\mathbf{x}-\mathbf{x}_{1}\right) & 0 & \ldots & 0 \\ 0 & W\left(\mathbf{x}-\mathbf{x}_{2}\right) & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & \ldots & W\left(\mathbf{x}-\mathbf{x}_{n}\right)\end{array}\right]$

Moving Least Squares Interpolant

$$
\mathrm{a}(\mathrm{x})=\mathrm{A}^{-1}(\mathrm{x}) \mathrm{B}(\mathrm{x}) \mathrm{u}
$$

The final locally valid interpolant is:

$$
u_{p}(\mathbf{x})=\sum_{j}^{N} a_{j}(\mathbf{x}) p_{j}(\mathbf{x}) \equiv \mathbf{p}^{T}(\mathbf{x}) \mathbf{a}(\mathbf{x})
$$

MLS Fit to (Same) Irregular Data

Varying h Values

Conclusion

There are a variety of interpolation techniques for irregularly spaced data:

- Polynomial fits
- Best fiit polynomials
- Piecewise polynomials
- Radial basis functions
- Moving least squares

