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Rasterization
Per-pixel operations: ray-casting/ray-tracing Screen = matrix

Texturing

Aliasing / antialiasing

Scan conversion of  lines: 

naive version

Bresenham algorithm

Scan conversion of  polygons
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Rendering Line Segments 
(Rasterization)

• One of the fundamental tasks in computer 

graphics is 2D line drawing: How to render a 

line segment from (x1, y1) to (x2, y2)?

• Use the equation 

y = mx + h (explicit)

• What about horizontal 

vs. vertical lines?
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DDA Algorithm

• DDA: Digital Differential Analyzer (DDA)

for (x=x1; x<=x2; x++) 

y += m;

draw_pixel(x, y, color)

• Handle slopes 0 <= m <= 1; handle others 

symmetrically

• Does this

need floating

point operations?
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Bresenham’s Algorithm 

• The DDA algorithm requires a floating point add

and round for each pixel: Can we eliminate?

• Note that at each step we will go E or NE.  How 

to decide which?



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Bresenham Decision Variable
• Bresenham algorithm uses decision variable d=a-b, 

where a and b are distances to NE and E pixels

• If d>=0, go NE; 

if d<0, go E

• Let d=(x2-x1)(a-b) = dx(a-b) 

[only sign matters]

• Substitute for a and b using 

line equation to get integer 

math (but lots of it)

• d=(a-b) dx = (2j+3) dx - (2i+3) dy - 2(y1dx-x1dy)

• But note that dk+1=dk + 2dy (E) or 2(dy-dx) (NE)
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Bresenham’s Algorithm

• Set up loop computing d at x1, y1

for (x=x1; x<=x2; )

x++;

d += 2dy;

if (d >= 0) {

y++;

d –= 2dx; }

drawpoint(x,y);

• Pure integer math, and not much of it

• So easy that it’s built into one graphics 

instruction (for several points in parallel)
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Scan Conversion

• At this point in the pipeline, we have only 

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with 

integer screen coordinates (ix, iy), depth, and 

color

• Send fragments into fragment-processing 

pipeline
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Convex

Not Convex
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Convex

• A polygon is convex if…

– A line segment connecting any two points on the 

polygon is contained in the polygon.

– If you can wrap a rubber band around the polygon 

and touch all of the sides, the polygon is convex



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterizing Polygons (Scan Conversion)

• Polygons may be or may not be simple, convex, 

or even flat. How to render them?

• The most critical thing is to perform inside-

outside testing: how to tell if a point is in a 

polygon? 
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Winding Test

• Most common way to tell if a point is in a 

polygon: the winding test.

– Define “winding number” w for a point: signed 

number of revolutions around the point when 

traversing boundary of polygon once

– When is a point “inside” the polygon?
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OpenGL and Concave Polygons

• OpenGL guarantees correct rendering only for simple, 

convex, planar polygons

• OpenGL tessellates concave polygons

• Tessellation depends on winding rule you tell OpenGL 

to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO
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Winding Rules
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Scan-Converting a Polygon

• General approach: any ideas?

• One idea: flood fill

– Draw polygon edges

– Pick a point (x,y) inside and flood fill with DFS

flood_fill(x,y) {

if (read_pixel(x,y)==white) {

write_pixel(x,y,black);

flood_fill(x-1,y);

flood_fill(x+1,y);

flood_fill(x,y-1);

flood_fill(x,y+1);

} }
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Scan-Line Approach

• More efficient way: use a scan-line rasterization 

algorithm

• For each y value, compute x

intersections, fill according 

to winding rule

• How to compute intersection

points?

• How to handle shading?

• Some hardware can handle 

multiple scanlines in parallel
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Singularities (Special Cases)

• If a vertex lies on a scanline,

does that count as 0, 1, or 2 

crossings?

• How to handle singularities?

• One approach: don’t allow. 

Perturb vertex coordinates

• OpenGL’s approach: place pixel

centers half way between 

integers (e.g., 3.5, 7.5), so

scanlines never hit vertices
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Rendering Pipeline

• Geometric processing: normalization, clipping, 

hidden surface removal, lighting, projection (front 

end)

• Rasterization or scan conversion, including 

texture mapping (back-end)

• Fragment processing and display
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From Models to Rasterization

Software-based processing / modifications

3D Model
Rendering 

primitives

meshing

decimation

animation

collision detection

…

Application Geometry Rasterization
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Geometric Transformations
• Five coordinate systems of interest:

– Object coordinates

– Eye (world) coordinates [after modeling transform, 

viewer at the origin]

– Clip coordinates [after projection]

– Normalized device coordinates [after ÷w]

– Window (screen) coordinates [scale to screensize]
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Geometry: Transformations

Model Coordinates World Coordinates

Model Transformation

Translation, Rotation, 

Scaling, etc.

View Transformation

Viewing Coordinates



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Geometry: Projection

Virtual Device CoordinatesViewing Coordinates
Normalization

Perspective/

Parallel
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Geometry

Transformations Lighting Projection Clipping
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Computer Graphics: Geometric Clipping
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How Do We Define a Window?

• Window

• Viewport
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Geometry: Clipping
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Geometry: Device Coordinates

My Window

Unit Cube
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The Fundamental Operation

• In geometric clipping, the most fundamental 

operation is how to compute line-line 

intersection: (1) whether two lines are 

intersecting or NOT; (2) if they Do intersect, can 

you please find such intersection point(s)?

• Equations for a line: (1) explicit representation; 

(2) implicit representation; or (2) parametric 

representation?
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Line-Segment Clipping Operations

• Clipping may happen in multiple places in the 

pipeline (e.g., early trivial accept/reject)

• After projection, have lines in plane, with 

rectangle to clip against
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Clipping a Line Segment Against xmin

• Given a line segment from (x1,y1) to (x2,y2), 

Compute m=(y2-y1)/(x2-x1)

• Line equation: y = mx + h (explicit representation)

• h = y1 – m x1 (y intercept)

• Plug in xmin to get y

• Check if y is between y1 and y2.

• This might take a lot of floating-point operations. 

How to minimize the number of such operations?
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Cohen-Sutherland Clipping

• For both end-points of a line segment compute a 

4-bit outcode (tbrl1, tbrl2) depending on whether 

the current coordinates are outside the clip-

rectangle side

• Some situations can be handled easily
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Cohen-Sutherland Conditions

• Cases.

– 1. If tbrl1=tbrl2=0, simply accept!

– 2. If one is zero, one nonzero, compute an intercept. 

If necessary compute another intercept. Then accept.

– 3. If tbrl1 & tbrl2  0.  If both outcodes are nonzero 

and the bitwise AND is nonzero, two endpoints lie on 

same outside side. Simply reject!

– 3. If tbrl1 & rbrl2 = 0.  If both outcodes are nonzero 

and the bitwise AND is zero, may or may not have to 

draw the line. Intersect with one of the window sides 

and check the result.
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Cohen-Sutherland Results 
(Performance)

• In many cases, a few integer comparisons and 

Boolean operations suffice for simple reject or 

simple accept.

• This algorithm works best when there are many 

line segments, and most are clipped away

• But note that the y=mx+h form of equation for a 

line doesn’t work for vertical lines (this is 

actually the limitation of explicit representation 

of a line)
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Parametric Line Representation

• In computer graphics, a parametric 
representation is almost always used.

• Parametric representation of a line: p(t) = (1-t) p1

+ t p2 

– Same form for horizontal and vertical lines

– Parameter values from 0 to 1 are on the segment

– Values < 0 off in one direction; >1 off in the other 
direction

– Vector operations, can be generalized to higher 
dimensional geometry or general data representation
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Liang-Barsky Clipping

• If line is horizontal or vertical, handle easily

• Else, compute four intersection parameters with 

four rectangle sides

• What if 0<a1<a2<a3<a4<1?

• What if 0<a1<a3<a2<a4<1?
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Computing Intersection Parameters

• Line-line intersection computation can be very 
costly

• Hold off on computing parameters as long as 
possibly (lazy computation); many lines can be 
rejected early

• Could compute a=(ymax-y1)/(y2-y1)

• Can rewrite a (y2-y1) = (ymax-y1)

• Perform work in integer operations by 
comparing a (y2-y1) instead of a
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Polygon Clipping (Naïve 
Generalization)
• Clipping a polygon can result in 

lots of pieces

• Replacing one polygon with many 
may be a problem in the rendering 
pipeline

• Could treat result as one polygon: 
but this kind of polygon can cause 
other difficulties

• Some systems allow only convex 
polygons, which don’t have such 
problems (OpenGL has tessellate 
function in glu library)



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Sutherland-Hodgeman 
Polygon Clipping

• Could clip each edge of polygon individually

• A more pipelined approach: clip polygon against 

each side of rectangle in turn (window boundary)

• Treat clipper as “black box” pipeline stage
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Clip against Each Boundary

• First clip against ymax

• x3 = x1 + (ymax – y1) (x2 – x1)/(y2 – y1)

• y3 = ymax
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Clipping Pipeline 

• Clip each boundary in turn
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(Parallel) Clipping in Hardware
• Construct the pipeline stages in hardware so you can 

perform four clipping stages at once
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Clipping Complicated Objects

• Suppose you have many complicated objects, 

such as models of parts of a person with 

thousands of polygons each

• When and how to clip for maximum efficiency?

• How to clip text? Curves?
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Clipping Other Primitives

• It may help to clip more complex shape early in 

the pipeline

• This may be simpler and 

less accurate

• One approach: bounding 

boxes (sometimes called 

trivial accept-reject)

• This is so useful that 

modeling systems often 

store bounding box
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Clipping Curves, Text

• Some shapes are so

complex that they 

are difficult to clip 

analytically

• Can approximate with line segments

• Can allow the clipping to occur in the frame 

buffer (pixels outside the screen rectangle aren’t 

drawn)

• Called “scissoring” 

• How does performance compare with others?
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Clipping in 3D (Generalizations) 

• Cohen-Sutherland regions

• Clip before perspective

division
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Geometric Processing
• Front-end processing steps (3D floating point; may be 

done on the CPU)
– Evaluators (converting curved surfaces to polygons)

– Normalization (modeling transformation, convert to world coordinates)

– Projection (convert to screen coordinates)

– Hidden-surface removal (object space)

– Computing texture coordinates

– Computing vertex normals

– Lighting (assign vertex colors)

– Clipping

– Perspective division

– Backface culling
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Rasterization
• Back-end processing works on 2D objects in 

screen coordinates

• Processing includes
– Scan conversion of primitives including shading

– Texture mapping

– Fog

– Scissors test

– Alpha test

– Stencil test

– Depth-buffer test

– Other fragment operations: blending, dithering, logical 
operations
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Display

• RAM DAC converts frame buffer to video signal

• Other considerations:

– Color correction

– Antialiasing
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Aliasing

• How to render the line

with reduced aliasing?

• What to do when polygons

share a pixel?
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Anti-Aliasing

• Simplest approach: area-based weighting

• Fastest approach: averaging nearby pixels

• Most common approach: supersampling 

(patterned or with jitter)

• Best approach: weighting based on distance of 

pixel from center of line; Gaussian fall-off
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Temporal Aliasing

• Need motion blur for motion that doesn’t flicker 

at slow frame rates

• Common approach: temporal supersampling

– render images at several times within frame time 

interval

– average results
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Scan-line Algorithm
• Work one scan line at a time

• Compute intersections of faces along scanlines

• Keep track of all “open segments” and draw the closest

• More on HSR later
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Hidden Surface Removal

• Object-space vs. Image-space

• The main image-space algorithm: z-buffer

• Drawbacks

– Aliasing

– Rendering invisible objects

• How would object-space hidden surface removal

work?
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Depth Sorting
• The painter’s algorithm:

draw from back to front

• Depth-sort hidden surface removal:

– sort display list by z-coordinate from back to front

– render/display

• Drawbacks

– it takes some time (especially with bubble sort!)

– it doesn’t work
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Depth-Sort Difficulties
• Polygons with overlapping 

projections

• Cyclic overlap

• Interpenetrating polygons

• What to do?
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Color Systems

• RGB

• YIQ

• CMYK

• HSV, HLS

• Chromaticity

• Color gamut
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Chromaticity
• Tristimulus values: R, G, 

B values that we know of

• Color researchers often 
prefer chromaticity 
coordinates: 

– t1 = T1 / (T1 + T2 + T3) 

– t2 = T2 / (T1 + T2 + T3)

– t3 = T3 / (T1 + T2 + T3)

• Thus, t1+t2+t3 = 1.0.

• Use t1 and t2; t3 can be 
computed as 1-t1-t2

• Chromaticity diagram uses 
this approach for theoretical 
XYZ color system, where Y 
is luminance



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Common Color Models
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Additive and Subtractive Color
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Display Considerations

• Color systems

• Color quantization

• Gamma correction

• Dithering and Halftoning
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HLS

• Hue: “direction” of color: 

red, green, purple, etc.

• Saturation: intensity. 

E.g. red vs. pink

• Lightness: how bright
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Dithering

• Dithering (patterns of b/w or colored dots) used 

for computer screens 

• OpenGL can dither

• But, patterns can be visible and bothersome. 

A better approach?
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Floyd-Steinberg Error Diffusion 
Dither

• Spread out “error term”

– 7/16 right

– 3/16 below left

– 5/16 below

– 1/16 below right

• Note that you can 

also do this for color

images (dither a color 

image onto a fixed 

256-color palette)
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Halftoning
• How do you render a colored image when colors can 

only be on or off (e.g. inks, for print)?

• Halftoning: dots 

of varying sizes

• [But what if only

fixed-sized pixels

are available?]
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Color Quantization

• Color quantization: modifying a full-color image 

to render with a 256-color palette

• For a fixed palette (e.g. web-safe colors), can use 

closest available color, possibly with error-

diffusion dither

• Algorithm for selecting an adaptive palette?

– E.g. Heckbert Median-Cut algorithm

• Make a 3-D color histogram

• Recursively cut the color cube in half at a median

• Use average color from each resulting box
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Implementation Strategies
• Major approaches:

– Object-oriented approach (pipeline renderers like OpenGL)

• For each primitive, convert to pixels 

• Hidden-surface removal happens at the end

– Image-oriented approach (e.g. ray tracing)

• For each pixel, figure out what color to make it

• Hidden-surface removal happens early

• Considerations on object-oriented approach

– Memory requirements were a serious problem with the object-oriented 
approach until recently

– Object-oriented approach has a hard time with interactions between 
objects

– The simple, repetitive processing allows hardware speed: e.g. a 4x4 matrix 
multiply in one instruction

– Memory bandwidth not a problem on a single chip
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Hardware Implementations

• Pipeline architecture for speed 

(but what about latency?)

• Originally, whole pipeline on CPU

• Later, back-end on graphics card

• Now, whole pipeline on graphics card

• What’s next?
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Future Architectures?
• 10+ years ago, fastest performance of 1M polygons per 

second cost millions

– Performance limited by memory bandwidth

– Main component of price was lots of memory chips

– Now a single graphics chip is faster (memory bandwidth on a 

chip is much greater)

• Fastest performance today achieved with several 

parallel commodity graphics chips (Playstation farm?)

– Plan A: send 1/n of the objects to each of the n pipelines; 

merge resulting images (with something like z-buffer alg)

– Plan B: divide the image into n regions with a pipeline for 

each region; send needed objects to each pipeline


