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Course Overview
• Fundamental idea and simple examples
• Motivation for subdivision
• Historic review on existing techniques

– Curves, surfaces
– Comparison

• Subdivision splines
• Current work on subdivision solids
• On-going research topics and possible future 

research directions (if time permits)
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Chaikin’s Algorithm 
• A set of control points to define a polygon

• Subdivision process (more control vertices)
• Rules (corner chopping)

• Properties:
– quadratic B-spline curve, C1 continuous, tangent to each edge 

at its mid-point

• A set of control points to define a polygon

• Subdivision process (more control vertices)
• Rules (corner chopping)

• Properties:
– quadratic B-spline curve, C1 continuous, tangent to each edge 

at its mid-point
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Chaikin’s Algorithm
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B-spline via Subdivision
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Quadratic Spline



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Cubic Spline
• Subdivision rules

• C2 cubic B-spline curve
• Corner-chopping
• No interpolation

• Subdivision rules

• C2 cubic B-spline curve
• Corner-chopping
• No interpolation
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Cubic Spline
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Curve Interpolation
• Control points
• Rules: 

• At each stage, we keep all the OLD points and insert 
NEW points “in between” the OLD ones

• Interpolation!
• The behaviors and properties of the limit curve depend 

on the parameter w
• Generalize to SIX-point interpolatory scheme!

• Control points
• Rules: 

• At each stage, we keep all the OLD points and insert 
NEW points “in between” the OLD ones

• Interpolation!
• The behaviors and properties of the limit curve depend 

on the parameter w
• Generalize to SIX-point interpolatory scheme!
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Curve Interpolation
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Basic Idea of Subdivision
• Start from an initial “control polygon” or “control 

polyhedron” and subdivide
• Apply procedural rules (take weighted averages) 

to geometrically round off objects (recursive 
refinement)

• A smooth curve (surface) is generated in the limit 
of this recursive subdivision process

• Limit object may approximate (lie near) or 
interpolate (pass through) the control structure

• Can represent shapes of arbitrary topology

• Start from an initial “control polygon” or “control 
polyhedron” and subdivide

• Apply procedural rules (take weighted averages) 
to geometrically round off objects (recursive 
refinement)

• A smooth curve (surface) is generated in the limit 
of this recursive subdivision process

• Limit object may approximate (lie near) or 
interpolate (pass through) the control structure

• Can represent shapes of arbitrary topology
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Subdivision Curve 
• Chaikin’s algorithm is “corner cutting”
• Subdivision started as a rendering technique, 

NOT as a powerful modeling tool as we are 
perceiving at present!

• From polygon to smooth curve
• Simple rules --- affine combination
• Generalization

– Other rules for curve generation
– From polyhedron to smooth surface

• Chaikin’s algorithm is “corner cutting”
• Subdivision started as a rendering technique, 

NOT as a powerful modeling tool as we are 
perceiving at present!

• From polygon to smooth curve
• Simple rules --- affine combination
• Generalization

– Other rules for curve generation
– From polyhedron to smooth surface
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Subdivision Surface
• From polyhedron to smooth surface

 (1) a polyhedral network of vertices, edges, and 
faces

 (2) apply a set of refinement rules on the current 
control mesh 

 (3) a new polyhedron with more and smaller 
faces/edges and more vertices than the original 
one

 (4) recursive procedure for (2)-(3)
 (5) smooth surface in the limit

• From polyhedron to smooth surface
 (1) a polyhedral network of vertices, edges, and 

faces
 (2) apply a set of refinement rules on the current 

control mesh 
 (3) a new polyhedron with more and smaller 

faces/edges and more vertices than the original 
one

 (4) recursive procedure for (2)-(3)
 (5) smooth surface in the limit
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Catmull-Clark Subdivision
• NEW face points --- the average of all OLD points defining the 

face
• New edge points --- the average of the following four points: (i) 

two OLD vertices defining the edge + (ii) two NEW face points of
the faces adjacent to the edge

• New Vertex points --- from the average:

F: the average of the NEW face points of all faces adjacent to the OLD vertex 
point

E: the average of the midpoints of all edges incident on the OLD vertex
V: OLD vertex point
n: the number of the edges incident on the vertex

• NEW face points --- the average of all OLD points defining the 
face

• New edge points --- the average of the following four points: (i) 
two OLD vertices defining the edge + (ii) two NEW face points of
the faces adjacent to the edge

• New Vertex points --- from the average:

F: the average of the NEW face points of all faces adjacent to the OLD vertex 
point

E: the average of the midpoints of all edges incident on the OLD vertex
V: OLD vertex point
n: the number of the edges incident on the vertex

n
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Catmull-Clark Surface
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Catmull-Clark Rules
• NEW edge

– (NEW face point, NEW edge point)
– (NEW vertex point, NEW edge point)

• NEW face
– Enclosed by NEW edges

• NEW edge
– (NEW face point, NEW edge point)
– (NEW vertex point, NEW edge point)

• NEW face
– Enclosed by NEW edges
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Catmull-Clark Subdivision
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Catmull-Clark Subdivision
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Catmull-Clark Properties
• Rectangular meshes lead to B-spline surface
• Non-rectangular meshes lead to (1) a set of B-

spline patches, (2) extraordinary points
• A finite number of extraordinary points
• Curvature-continuous except at extraordinary 

points
• Tangent-plane-continuity at extraordinary points
• No global parametric domains!
• Geometric objects of arbitrary topology

• Rectangular meshes lead to B-spline surface
• Non-rectangular meshes lead to (1) a set of B-

spline patches, (2) extraordinary points
• A finite number of extraordinary points
• Curvature-continuous except at extraordinary 

points
• Tangent-plane-continuity at extraordinary points
• No global parametric domains!
• Geometric objects of arbitrary topology
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Parametric Splines
• Parametric curve functions

• Parametric surface functions

• Piece-wise polynomial blending

• Parametric curve functions

• Parametric surface functions

• Piece-wise polynomial blending
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Relevant Primitives
• Splines

– High-level control
– Compact analytical representations
– Difficult to maintain and manage inter-patch smoothness constraints
– Expensive trimming needed to model features
– Slow rendering for large models

• Polygonal meshes 
– Very general
– Can describe very fine detail accurately
– Direct hardware implementation
– Heavy, massive representation
– A simplification algorithm is always needed

• Splines
– High-level control
– Compact analytical representations
– Difficult to maintain and manage inter-patch smoothness constraints
– Expensive trimming needed to model features
– Slow rendering for large models

• Polygonal meshes 
– Very general
– Can describe very fine detail accurately
– Direct hardware implementation
– Heavy, massive representation
– A simplification algorithm is always needed
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Concise Summary
• Subdivision advantages:

– Arbitrary topology
– Hierarchical structure, level of detail control, scalability
– Unified representation for splines and meshes, uniformity
– Numerical quality
– Code simplicity

• Disadvantages:
– Difficult for analysis of properties like smoothness and 

continuity

• Subdivision advantages:
– Arbitrary topology
– Hierarchical structure, level of detail control, scalability
– Unified representation for splines and meshes, uniformity
– Numerical quality
– Code simplicity

• Disadvantages:
– Difficult for analysis of properties like smoothness and 

continuity
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Background
• How NEW vertices are constructed DIFFERS 

tremendously!
• A large variety of subdivision rules

– Sabin & Doo approach
– Butterfly scheme
– Loop scheme

• Classification of subdivision schemes
– Stationary schemes
– Uniform/semi-uniform, non-uniform schemes

• Analysis of stationary schemes
– Subdivision matrix, formula for limit position and normal

• How NEW vertices are constructed DIFFERS 
tremendously!

• A large variety of subdivision rules
– Sabin & Doo approach
– Butterfly scheme
– Loop scheme

• Classification of subdivision schemes
– Stationary schemes
– Uniform/semi-uniform, non-uniform schemes

• Analysis of stationary schemes
– Subdivision matrix, formula for limit position and normal
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Prior Work on Subdivision
• Curves

Chaikin ’74; Dyn et al. ’86, ’87, ’88
• Surfaces

Catmull and Clark ’78;   Doo and Sabin ’78;
Loop ’87; Dyn ’90; Kobbelt ’96;  Lounsbery ’94;
Welch and Witkin ’92;  Zorin ’96; DeRose ’98;
Sederberg et al ‘98;  Stam ’98;   Levin ’99

• Solids
MacCracken and Joy ’96 (but, for free-form

deformation!)
and many more!

• Curves
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• Surfaces
Catmull and Clark ’78;   Doo and Sabin ’78;
Loop ’87; Dyn ’90; Kobbelt ’96;  Lounsbery ’94;
Welch and Witkin ’92;  Zorin ’96; DeRose ’98;
Sederberg et al ‘98;  Stam ’98;   Levin ’99

• Solids
MacCracken and Joy ’96 (but, for free-form

deformation!)
and many more!
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Historical Perspectives
Phase I: fundamental ideas, create smooth curves from 

arbitrary mesh
• de Rham, 1947
• Chaikin, 1974

Phase II: generalize spline surfaces to arbitrary topology
• Catmull and Clark, 1978
• Doo and Sabin, 1978
Phase III: extensive applications in animation and 

entertainment industry
• Pixar Studio, “Geri’s Game”,1998
Phase IV: serious scientific tools in CAGD, CAD, and CIM

Phase I: fundamental ideas, create smooth curves from 
arbitrary mesh

• de Rham, 1947
• Chaikin, 1974

Phase II: generalize spline surfaces to arbitrary topology
• Catmull and Clark, 1978
• Doo and Sabin, 1978
Phase III: extensive applications in animation and 

entertainment industry
• Pixar Studio, “Geri’s Game”,1998
Phase IV: serious scientific tools in CAGD, CAD, and CIM
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Extraordinary Vertices
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Mid-edge Scheme
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Mid-edge Scheme

(a) (b)

(d)(c)
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Mid-edge Scheme
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Classification of Subdivision 
Schemes

Subdivision schemes

Stationary schemes Non-stationary schemes

Semi-uniform schemes

Uniform schemes Non-uniform schemes
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Classification
• Stationary schemes

– Same rules at all levels

• Non-stationary schemes
– Different rules at different levels

• Stationary schemes
– Same rules at all levels

• Non-stationary schemes
– Different rules at different levels
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Stationary Subdivision
• Uniform schemes --- fixed rules everywhere on 

the mesh
• Semi-uniform schemes --- rules depend on the 

local connectivity
• Non-uniform schemes --- rules depend on both 

the connectivity and the geometry

• Uniform schemes --- fixed rules everywhere on 
the mesh

• Semi-uniform schemes --- rules depend on the 
local connectivity

• Non-uniform schemes --- rules depend on both 
the connectivity and the geometry
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Sabin & Doo Algorithm
• Subdivision rules: 

• New faces after subdivision
– V-face, E-face, F-face

• Properties
– The limit surface is C1
– Interpolate the centroids of all faces at every subdivision
– Generalize biquadratic B-splines

• Subdivision rules: 

• New faces after subdivision
– V-face, E-face, F-face

• Properties
– The limit surface is C1
– Interpolate the centroids of all faces at every subdivision
– Generalize biquadratic B-splines
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Sabin & Doo Scheme
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Sabin & Doo Scheme
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Sabin & Doo Scheme
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Loop Scheme
• Box splines

– A projection of 6D box onto 2D
– A quartic polynomial basis function
– Triangular domain

• Non-tensor-product splines
• Loop scheme results from a generalization of 

box splines to arbitrary topology

• Box splines
– A projection of 6D box onto 2D
– A quartic polynomial basis function
– Triangular domain

• Non-tensor-product splines
• Loop scheme results from a generalization of 

box splines to arbitrary topology
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Box Spline Overview
• Based on 2D Box Spline

– Defined by projection of 
hypercube (in 6D) into 2D.

– Satisfies many properties that 
B-spline has.

• Recursive definition
• Partition of unity
• Truncated power

– Natural splitting of a cube into 
sub-cubes provides the 
subdivision rule.

• Based on 2D Box Spline
– Defined by projection of 

hypercube (in 6D) into 2D.
– Satisfies many properties that 

B-spline has.
• Recursive definition
• Partition of unity
• Truncated power

– Natural splitting of a cube into 
sub-cubes provides the 
subdivision rule.

p2

p1

p3

p fibre π−1(w)π

N1,1,1

box B(p, p1, p2, p3)

w

x
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Basis Functions for Loop’s Scheme
• Basis Function - Evaluation• Basis Function - Evaluation

Assign unit weight to center,
zero otherwise, over Z2 lattice

Successive
Subdivision

The Limit à N2,2,2 Basis
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Loop’s Scheme Properties
• Basis Function – Properties
1. Support à 2 neighbors

from the center
2. C4 continuity within the

support
3. Piecewise polynomial
4. N2,2,2(• - j), j ∈ Z2 form

a partition of unity
i.e. S N(x - j) = 1

• Basis Function – Properties
1. Support à 2 neighbors

from the center
2. C4 continuity within the

support
3. Piecewise polynomial
4. N2,2,2(• - j), j ∈ Z2 form

a partition of unity
i.e. S N(x - j) = 1
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Loop’s Scheme Rules
• The Rules• The Rules
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Loop Scheme Rules

B

B B

B B

1/8

3/8

1/8

3/8

B = 3/8k, for n>3
B = 3/16, for n>3

1-nB
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Loop Scheme Example
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Butterfly Subdivision

-w

-w

2w

0.5

0.5 -w

2w

-w
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Butterfly Scheme
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Modified Butterfly Scheme
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Modified Butterfly Scheme
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Modified Butterfly Scheme

0.125+2w0.125+2w

-0.0625-w
w

-0.0625-w

-0.0625-w
w

-0.0625-w

0.5-w

0.5-w
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Modified Butterfly Scheme
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Modified Butterfly Scheme

Initial mesh One refinement step Two refinement steps
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Modified Butterfly Example
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Uniform/Semi-uniform Schemes
• Catmull-Clark scheme

– Catmull and Clark, CAD 1978

• Doo-Sabin scheme
– Doo and Sabin, CAD 1978

• Loop scheme
– Loop, Master’s Thesis, 1987

• Butterfly scheme
– Dyn, Gregory and Levin, ACM TOG 1990.

• Mid-edge scheme
– Habib and Warren, SIAM on Geometrrc Design 1995

• Kobbelt scheme
– Kobbelt, Eurographics 1996

• Catmull-Clark scheme
– Catmull and Clark, CAD 1978

• Doo-Sabin scheme
– Doo and Sabin, CAD 1978

• Loop scheme
– Loop, Master’s Thesis, 1987

• Butterfly scheme
– Dyn, Gregory and Levin, ACM TOG 1990.

• Mid-edge scheme
– Habib and Warren, SIAM on Geometrrc Design 1995

• Kobbelt scheme
– Kobbelt, Eurographics 1996
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Classification
• By Mesh type:

– Triangular (Loop, Butterfly)

– Quadrilateral   (Catmull-Clark, Doo-Sabin, Mid-edge, Kobbelt)

• By Limit surface:
– Approximating   (Catmull-Clark, Loop, Doo-Sabin, Mid-edge)
– Interpolating (Butterfly, Kobbelt)

• By Refinement rule:
– Vertex insertion  (Catmull-Clark, Loop, Butterfly, Kobbelt)
– Corner cutting    (Doo-Sabin, Mid-edge)

• By Mesh type:
– Triangular (Loop, Butterfly)

– Quadrilateral   (Catmull-Clark, Doo-Sabin, Mid-edge, Kobbelt)

• By Limit surface:
– Approximating   (Catmull-Clark, Loop, Doo-Sabin, Mid-edge)
– Interpolating (Butterfly, Kobbelt)

• By Refinement rule:
– Vertex insertion  (Catmull-Clark, Loop, Butterfly, Kobbelt)
– Corner cutting    (Doo-Sabin, Mid-edge)
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Summary

Vertex insertion Corner cutting

Approximating    Interpolating

Catmull-Clark Kobbelt

Loop Butterfly

Doo-Sabin

Mid-edge



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Mesh Refinement Type

Vertex insertion Corner cutting
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Face vs. Vertex Refinement
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Continuity 
SchemesSchemes Continuity at                

Regular Vertex
Continuity at                
Regular Vertex

Continuity at 
Extraordinary Point
Continuity at 
Extraordinary Point

Catmull-ClarkCatmull-Clark C2C2 C1C1

Doo-SabinDoo-Sabin C1C1 C1C1

LoopLoop C2C2 C1C1

Butterfly Butterfly C1C1 C1 
except k=3 or k>7

C1 
except k=3 or k>7

Modified ButterflyModified Butterfly C1C1 C1C1

Mid-edgeMid-edge C1C1 C1C1
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Summary
Schemes Mesh Type Refinement 

Rule
Approximation 
/Interpolation

Catmull-Clark Quadrilateral Vertex Insertion Approximation

Doo-Sabin Quadrilateral Corner Cutting Approximation

Loop Triangular Vertex Insertion Approximation

Butterfly Triangular Vertex Insertion Interpolation

Mid-edge Quadrilateral Corner Cutting Approximation

Kobbelt Quadrilateral Vertex Insertion Interpolation
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Analysis Tool
• Analysis of stationary schemes
• Subdivision matrix
• Analysis of properties (convergence, continuity, 

smoothness)
Doo and Sabin 78, Ball and Storry 86, Reif 95, Zorin 97

• Exact formula for the limit position and normal
Halstead et al. Siggraph 93

• Explicit evaluation of surfaces at arbitrary points 
of the domain
Jos Stam  Siggraph 98, Qin et al. TVCG 98
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smoothness)
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Halstead et al. Siggraph 93

• Explicit evaluation of surfaces at arbitrary points 
of the domain
Jos Stam  Siggraph 98, Qin et al. TVCG 98
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Subdivision Matrix
jj pSp ⋅=+1 jj pSp ⋅=+1
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Limit Position
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Eigenvalue Analysis 
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Normal
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Modeling Sharp Features

Corner

Crease 

Dart
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Non-uniform Subdivision 
Schemes
• Piecewise smooth subdivision schemes

– Hoppe et al. Siggraph 94

• Hybrid scheme
– et al. Siggraph 98

• NURSS scheme 
– Sederburg et al. Siggraph 98

• Combined scheme 
– Levin Siggraph 99

• Edge and vertex insertion scheme
– Habib et al. CAGD 99

• Piecewise smooth subdivision schemes
– Hoppe et al. Siggraph 94

• Hybrid scheme
– et al. Siggraph 98

• NURSS scheme 
– Sederburg et al. Siggraph 98

• Combined scheme 
– Levin Siggraph 99

• Edge and vertex insertion scheme
– Habib et al. CAGD 99
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Hybrid Subdivision Scheme

(a)

(c) (d)

(b)

DeRose et al. 
Siggraph 98
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Prior Algorithms & Techniques
• Hierarchical editing

– Forsey 88, Lounsbery 94, Zorin 97, Pulli 97

• Boundary interpolation and manipulation
– Nasri 87, Halstead 93, Levin 99

• Fair surface design
– Halstead 93, Taubin 95, Koebblt 96, Warren 97

• Surface reconstruction
– Hoppe et al. 94

• Physics-based modeling approach
– Qin and Mandal 98

• Hierarchical editing
– Forsey 88, Lounsbery 94, Zorin 97, Pulli 97

• Boundary interpolation and manipulation
– Nasri 87, Halstead 93, Levin 99

• Fair surface design
– Halstead 93, Taubin 95, Koebblt 96, Warren 97

• Surface reconstruction
– Hoppe et al. 94

• Physics-based modeling approach
– Qin and Mandal 98
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Hierarchical Editing

Zorin et al. Siggraph 97
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Fair Surface Design

Halstead et al. Siggraph 93
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Boundary Control

Levin, Siggraph 99
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Surface Reconstruction

Hoppe et al. Siggraph 94
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Piecewise Smooth Subdivision

(a)

(d)(c)

(b)

Hoppe et al. Siggraph 94
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“Geri’s Game”

DeRose et al. Siggraph 98
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Our Objectives
• One key goal is to promote subdivision 

representation and techniques to become the 
next-generation industry standard!

• I will re-visit this aspect later! 

• One key goal is to promote subdivision 
representation and techniques to become the 
next-generation industry standard!

• I will re-visit this aspect later! 
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Course Overview
• Fundamental idea and simple examples
• Motivation 
• Historic review on existing techniques

– Curves, surfaces
– Comparison

• Subdivision splines
• Current work on subdivision solids
• On-going research topics and possible future research 

directions (if time permits)

• Fundamental idea and simple examples
• Motivation 
• Historic review on existing techniques

– Curves, surfaces
– Comparison

• Subdivision splines
• Current work on subdivision solids
• On-going research topics and possible future research 

directions (if time permits)
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Subdivision Splines
• We treat subdivision as a novel method to produce spline-like models in the 

limit
• Key components for spline models

– Control points, basis functions over their parametric domain, 
parameterization, piecewise decomposition

• Parameterization is done naturally via subdivision
• The initial control mesh serves as the parametric domain
• Basis functions are available for regular settings as well as irregular settings
• Control points for one patch are in the vicinity of its parametric domain from its 

initial control vertices
• Subdivision-based spline formulation is fundamental for physics-based 

geometric modeling and design, finite element analysis, simulation, and the 
entire CAD/CAM processes

• We treat subdivision as a novel method to produce spline-like models in the 
limit

• Key components for spline models
– Control points, basis functions over their parametric domain, 

parameterization, piecewise decomposition
• Parameterization is done naturally via subdivision
• The initial control mesh serves as the parametric domain
• Basis functions are available for regular settings as well as irregular settings
• Control points for one patch are in the vicinity of its parametric domain from its 

initial control vertices
• Subdivision-based spline formulation is fundamental for physics-based 

geometric modeling and design, finite element analysis, simulation, and the 
entire CAD/CAM processes
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Chaikin Curve Example
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Interpolation Curve Example
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Parameterization
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Butterfly Surface Example
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Control Vertices for Butterfly 
Surface
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Control Vertices for Surface 
Patches
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Butterfly Patches
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Butterfly Basis Function
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Catmull-Clark Surface 
Example   
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Catmull-Clark Patches 
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Catmull-Clark Basis Function
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Spline Decomposition

n
n

n
n

n

n
n n

n n
n

n
nnn

s s
s s

s

n n n n
n
n

n n
n

n
n

n n
n
n

s



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Single Type of Patch 
Decomposition 

n
n

n
n

n

n
n n

n n
n

n
nnn

s s
s s

s

e e e e
e

e e
e

e
e

e e
e
ee e

e e
ee



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Domain 
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Control Vertices for Catmull-
Clark Surface
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Control Vertices for Catmull-
Clark Surface 
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Interactive Sculpting
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More Examples
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Data Structures
• Subdivision solids

– Radial-edge data structure (Weiler `86)
– Similar to winged-edge data structure
– Stores adjacency information to accelerate queries 

of and changes to topology of subdivision solids

• Physical representation
– Sparse matrices, vectors, arrays, etc.

• Subdivision solids
– Radial-edge data structure (Weiler `86)
– Similar to winged-edge data structure
– Stores adjacency information to accelerate queries 

of and changes to topology of subdivision solids

• Physical representation
– Sparse matrices, vectors, arrays, etc.
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Sculpting Tools
carvingcarving extrusionextrusion detail editingdetail editing

joiningjoining sharp featuressharp features deformationdeformation
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Sculpting Tools
inflationinflation curve-based designcurve-based design

material mappingmaterial mapping physical windowphysical window

deflationdeflation

material probingmaterial probing
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Sculpting Tools
pushingpushing curve-based joincurve-based join

curve-based cuttingcurve-based cutting multi-face extrusionmulti-face extrusion

sweepingsweeping

feature deformationfeature deformation
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Trimmed Solids for Data Fitting
original datasetoriginal dataset initial latticeinitial lattice

trimmed oncetrimmed once deformed geometrydeformed geometrytrimmed twicetrimmed twice
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Volume Editing and Visualization

compressive
forces

compressive
forces

displacement 
mapping

displacement 
mapping

original lattice

original volume

deformed lattice

deformed volume
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Sculpted CAD Models
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Scenes and Sculptures
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Course Overview
• Fundamental idea and simple examples
• Motivation for subdivision
• Historic review on existing techniques

– Curves, surfaces
– Comparison

• Subdivision splines
• Current work on subdivision solids
• On-going research topics and possible future research 

directions (if time permits)

• Fundamental idea and simple examples
• Motivation for subdivision
• Historic review on existing techniques

– Curves, surfaces
– Comparison

• Subdivision splines
• Current work on subdivision solids
• On-going research topics and possible future research 

directions (if time permits)
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Subdivision for CAD/CAM
• Extensive applications in graphics and animation for 

entertainment industry during the past two decades
• Powerful modeling candidate for natural shapes and 

organic objects
• Key features 

– Complex geometry, arbitrary topology
• However, less popular for CAD-based, manufacturable

models 
• Current standards in CAD/CAM

– NURBS, algebraic CSG

• Extensive applications in graphics and animation for 
entertainment industry during the past two decades

• Powerful modeling candidate for natural shapes and 
organic objects

• Key features 
– Complex geometry, arbitrary topology

• However, less popular for CAD-based, manufacturable
models 

• Current standards in CAD/CAM
– NURBS, algebraic CSG



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Current Research Overview
• Chaikin’s pioneering work in 1974
• Historic perspective: subdivision as a display tool for 

parallel rendering
• At present, subdivision is primarily considered as a 

powerful modeling tool
• The unification of modeling and rendering
• Research progresses during the past three decades

– Subdivision splines for curves
– Surface generalization
– Solid subdivision

• Chaikin’s pioneering work in 1974
• Historic perspective: subdivision as a display tool for 

parallel rendering
• At present, subdivision is primarily considered as a 

powerful modeling tool
• The unification of modeling and rendering
• Research progresses during the past three decades

– Subdivision splines for curves
– Surface generalization
– Solid subdivision
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Motivation for Future Research
• Ever-increasing, high expectations of

– Improved product quality
– Reduced product prices
– Accelerated performance

• Challenges
– New design theory and methodology
– Advanced simulation methods
– Efficient analysis tools
– More powerful human-computer interaction

• Strategy in CAGD, FEM, CIMS
• Subdivision-based representation, modeling, design, analysis, and 

manufacturing techniques for the next generation CAD/CAM system

• Ever-increasing, high expectations of
– Improved product quality
– Reduced product prices
– Accelerated performance

• Challenges
– New design theory and methodology
– Advanced simulation methods
– Efficient analysis tools
– More powerful human-computer interaction

• Strategy in CAGD, FEM, CIMS
• Subdivision-based representation, modeling, design, analysis, and 

manufacturing techniques for the next generation CAD/CAM system
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NURBS: State of the Art
• Industry-standard in engineering design

– Many many properties, a unified representation for free-form splines and 
algebraic shapes, nevertheless…… 

• Limited (rectangular) parameterization
• Complicated geometry and arbitrary topology via trimming and 

patching
• Continuity across trimmed boundaries is far from trivial
• Surface-surface intersection must be performed, however, it is 

time-consuming and prone to error
• Non-linear constraints to enforce smoothness requirements
• Dynamic modeling for time-evolving scenarios is very difficult
• Extensive human intervention for patching

• Industry-standard in engineering design
– Many many properties, a unified representation for free-form splines and 

algebraic shapes, nevertheless…… 

• Limited (rectangular) parameterization
• Complicated geometry and arbitrary topology via trimming and 

patching
• Continuity across trimmed boundaries is far from trivial
• Surface-surface intersection must be performed, however, it is 

time-consuming and prone to error
• Non-linear constraints to enforce smoothness requirements
• Dynamic modeling for time-evolving scenarios is very difficult
• Extensive human intervention for patching



Geometric Design and Computing ST�NY BR��K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Subdivision Advantages
• Generalization of B-splines and NURBS
• No trimming and patching operations
• Continuity is guaranteed
• Arbitrary, irregular structure of control vertices
• Non-rectangular, local parameterization
• Feature definition via non-stationary subdivision
• Local subdivision and refinement
• Unify splines and polygonal models
• Integrate rendering and modeling tasks in a hierarchical 

fashion
• Polygonal approximation for fast display

• Generalization of B-splines and NURBS
• No trimming and patching operations
• Continuity is guaranteed
• Arbitrary, irregular structure of control vertices
• Non-rectangular, local parameterization
• Feature definition via non-stationary subdivision
• Local subdivision and refinement
• Unify splines and polygonal models
• Integrate rendering and modeling tasks in a hierarchical 

fashion
• Polygonal approximation for fast display
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More Advantages
• Unified principle for curves, surfaces, solids, and non-

manifold objects
• No need for additional blending/rounding/filleting 

operations for solid modeling
• Hierarchical structure
• Wavelet-based multi-resolution analysis and synthesis
• Hardware implementation and acceleration based on 

addition and shift operations because of simplicity
• Amenable to parallel algorithms
• Numerical stable
• Diversity of subdivision schemes

• Unified principle for curves, surfaces, solids, and non-
manifold objects

• No need for additional blending/rounding/filleting 
operations for solid modeling

• Hierarchical structure
• Wavelet-based multi-resolution analysis and synthesis
• Hardware implementation and acceleration based on 

addition and shift operations because of simplicity
• Amenable to parallel algorithms
• Numerical stable
• Diversity of subdivision schemes
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Technical Challenges
• No global parameterization
• Limit shape only has theoretical significance
• Polygonal approximation in practice
• No standard for data exchange to/from 

NURBS
• Lack of theory/algorithm/technology in general
• A lot of potential yet to be realized

• No global parameterization
• Limit shape only has theoretical significance
• Polygonal approximation in practice
• No standard for data exchange to/from 

NURBS
• Lack of theory/algorithm/technology in general
• A lot of potential yet to be realized
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Modeling Difficulty
• A large number of irregular control vertices 

organized to form arbitrary lattices
• Various subdivision rules
• Shape manipulation, editing, and deformation 

are not easy
• Fairness criteria and functional requirements
• Both quantitative and qualitative constraints

• A large number of irregular control vertices 
organized to form arbitrary lattices

• Various subdivision rules
• Shape manipulation, editing, and deformation 

are not easy
• Fairness criteria and functional requirements
• Both quantitative and qualitative constraints
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Why Bother?
• NURBS-based algorithms and systems are no 

longer applicable
• Recursive subdivision procedure
• Both geometric and topological information
• Bridge the large gap between potential and 

reality

• NURBS-based algorithms and systems are no 
longer applicable

• Recursive subdivision procedure
• Both geometric and topological information
• Bridge the large gap between potential and 

reality
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On-going and Future Research 
Efforts
• Subdivision splines as a underlying 

representation
• Rigorous geometric theory
• Novel modeling and design techniques
• Efficient simulation and analysis toolkits
• Computer-integrated environment

• Subdivision splines as a underlying 
representation

• Rigorous geometric theory
• Novel modeling and design techniques
• Efficient simulation and analysis toolkits
• Computer-integrated environment
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Fundamental Theory & Properties
• Paramount significant --- vital to algorithms, modeling 

techniques, and system integration
• Closed-form analytical formulation and properties of 

subdivision basis functions
• Analysis of parametric and geometric continuity
• Best numerical approximation scheme(s) for 

subdivision
• Robust error analysis
• Convergence performance
• Mathematical solutions to approximate standard shapes 

and commonly-used features

• Paramount significant --- vital to algorithms, modeling 
techniques, and system integration

• Closed-form analytical formulation and properties of 
subdivision basis functions

• Analysis of parametric and geometric continuity
• Best numerical approximation scheme(s) for 

subdivision
• Robust error analysis
• Convergence performance
• Mathematical solutions to approximate standard shapes 

and commonly-used features
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Theory
• In general, subdivision theory is under-explored
• Theory and properties lead to better algorithms 

and software routines
• Main foci: algebraic, geometric, differential, 

and integral properties
• Subdivision as a set of patches --- a linear 

combination of basis functions 
• We shall look at basis functions

• In general, subdivision theory is under-explored
• Theory and properties lead to better algorithms 

and software routines
• Main foci: algebraic, geometric, differential, 

and integral properties
• Subdivision as a set of patches --- a linear 

combination of basis functions 
• We shall look at basis functions )(xB i
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Properties
• One basis function is also a subdivision 

splines, consider 

• The key is to have a better understanding of 
basis functions

• In comparison with NURBS basis functions
– partition of unity
– positivity
– local control
– continuity

• One basis function is also a subdivision 
splines, consider 

• The key is to have a better understanding of 
basis functions

• In comparison with NURBS basis functions
– partition of unity
– positivity
– local control
– continuity
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Properties
• Convergence
• Parametric and geometric continuity

– Necessary and sufficient conditions for Ck and Gk 
continuity

– Special treatment at “extraordinary points”
• Rapid and accurate evaluation of position, tangent, 

normal, curvature, and other differential quantities 
across the entire parametric domain

• Vital to geometric design, shape quality analysis, 
quadrature computation, finite element assembly, 
dynamic interaction, etc.

• Convergence
• Parametric and geometric continuity

– Necessary and sufficient conditions for Ck and Gk 
continuity

– Special treatment at “extraordinary points”
• Rapid and accurate evaluation of position, tangent, 

normal, curvature, and other differential quantities 
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quadrature computation, finite element assembly, 
dynamic interaction, etc.
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Specific Topics
• Better algorithms for Catmull-Clark and Loop 

subdivision schemes
• Generalization to other schemes (e.g., Butterfly 

scheme)
• Higher-order continuity for newer, more 

complicated subdivision schemes

• Better algorithms for Catmull-Clark and Loop 
subdivision schemes

• Generalization to other schemes (e.g., Butterfly 
scheme)

• Higher-order continuity for newer, more 
complicated subdivision schemes
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Computational Techniques
• Geometric and solid modeling toolkits

– Interpolation, approximation, Boolean operations, boundary 
evaluation

• Formulation of rational subdivision through the use of 
weights and knots (subdivision rules)

• Optimized numerical algorithms for physics-based 
procedures
– Finite-element assembly, sparse matrix calculation, the 

integration of FEM equations
• Complexity analysis of these algorithms
• Fundamental numerical characteristics

– Stability, robustness, accuracy

• Geometric and solid modeling toolkits
– Interpolation, approximation, Boolean operations, boundary 

evaluation
• Formulation of rational subdivision through the use of 

weights and knots (subdivision rules)
• Optimized numerical algorithms for physics-based 
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integration of FEM equations
• Complexity analysis of these algorithms
• Fundamental numerical characteristics

– Stability, robustness, accuracy
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Subdivision for Special Shapes
• Conic sections and quadratic surfaces
• Generalized cylinders
• Surfaces of revolution
• Swept surfaces, offset surfaces
• Developable surfaces
• B-reps of algebraic CSG models
• Feature representation and toolkits for feature 

definition, recognition, and modification
• High-level interfaces
• Practical significance

• Conic sections and quadratic surfaces
• Generalized cylinders
• Surfaces of revolution
• Swept surfaces, offset surfaces
• Developable surfaces
• B-reps of algebraic CSG models
• Feature representation and toolkits for feature 

definition, recognition, and modification
• High-level interfaces
• Practical significance
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Geometric Algorithms
• In comparison with NURBS

– Efficient and accurate evaluation of basis functions
– Local and global differential properties
– continuity
– Strong convex hull
– Variation diminishing
– Blossom (polar forms)
– Affine invariance
– Shape preserving, shape predicability, shape classification
– Linear precision
– Knot insertion, degree-elevation
– Unified formulation for both free-form parametric splines and commonly-

used analytic shapes, and more
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Typical Algorithmic Topics
• General criteria: numerically stable, efficient, and 

accurate
• Evaluation for position and derivatives (up to order n) at 

arbitrary location/region across the manifold
• The computation of both local and global differential 

quantities (e.g., curvature, area, etc.)
• The interpolation and/or approximation of a set of 

regular data points, scattered data points, normal 
quantities, or boundary curves

• Shape-preserving interpolation / approximation
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More Topics
• The formulation and subdivision rules of subdivision splines that 

can either interpolation or approximate a curve network (analogous 
to Coon’s patches)

• The principle of cross-sectional design
• Shape approximation or matching through the procedure of knot 

insertion, know removal, degree-elevation, degree-reduction, etc.
• Commonly-used solid modeling techniques such as surface-surface 

intersection, offset computation, Boolean operations, and boundary 
evaluation

• Constraint-based optimization of various objective functions for 
surface fairing and smoothing
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Local Subdivision
• Global subdivision introduces more control vertices than 

what users can handle in practice
• Real-time simulation will be sacrificed
• Localized operation is more desirable
• Local, adaptive subdivision is non-trivial
• The fundamental requirement

– Limit surface should be geometrically the same
– Maintain geometric correctness
– Ensure dynamic smoothness
– Conservation law in physics

• How can we devise local subdivision rules?
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Design Technology
• Automatic evolution and determination of 

topological modification
• A library of modeling, design, simulation, and 

analysis toolkits
• System integration 

– Theoretical results
– Algorithmic advances
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Technology Transfer
• Expedite the systematic evaluation of both 

utilities and human factors
• Verify the applicability of design and 

simulation toolkits
• Validate the practicality of novel 

engineering environments
• Commercialization
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Systems
• Prototype software environment
• Interface with commercial environments
• Real-world experiments and examples
• Real-world applications
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Engineering Environment
• Flexible, efficient tools and facilities
• The rapid integration with commercial design systems
• Data exchange capabilities between S-splines and 

NURBS are lacking
• Efficient data structure
• Software package on heterogeneous platforms
• Architecture and functionality of commercial software 

system
• A set of algorithms for efficient and accurate data 

exchange 
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Engineering Environment
• Additional module of data exchange to 

interface with all the NURBS-based 
routines

• Rigorous tolerance analysis to ensure 
transformation accuracy

• Technical issues for the new industry 
standard through corporate collaboration
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Impact
• Augment (rather than supersede) well established 

NURBS-based design technologies
• Generalize the newly-developed theory and 

methodology of physics-based modeling (e.g., D-
NURBS) in industrial practice

• Contribute both to the geometric modeling and finite 
element analysis communities

• Promise to bridge the large gaps among interactive 
modeling, geometric design, finite element analysis, 
manufacturing

• Relevant to the entire processes of CAD/CAM/CAE
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Impact
• Serve as a solid foundation for future theories and 

techniques which can eventually unify all aspects of 
modeling, design, and manufacturing

• Appeal to a spectrum of users
• Advance the state of knowledge in a wide range of fields 

including spline theory, computatioal geometry, finite 
element analysis, and interactive graphics

• The ultimate goal is virtual engineering environments
• Large-scale, complex shapes and their real-time, multi-

modal interactions through the integrated, physics-based 
design
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