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What is Scientific Visualization?

• Transformation of data or information into pictures (visual 
outputs)

• Note this does not necessarily imply the use of computers
• Classical visualization used hand-drawn figures and illustrations 

(2D means for visualization)
• Modern visualization is primarily 3D (digital images for 3D 

visualization)
• In both cases, the ultimate goal is to understand important insights 

about the data through visual means
• We really don’t care how we get the picture in visualization –

what picture we get is most important
• The technical ways to arrive at visual outputs are mainly 

depending on computer graphics techniques
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Why is Visualization Useful & Important?

• Which is more helpful: A or B?

16 million 3D points:

5, 34, 22, 56, 114, …

A B
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Visualization Terminology

• Different sub-fields of visualization
• Scientific visualization

– discipline of computer science
– visualization of scientific and engineering data-sets

• Scientific visualization touches on a number of areas:
– data representations
– data processing algorithms
– visual representations
– user interfaces
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Visualization Terminology

• Data visualization – includes data from other sources, 
such as financial, marketing, business

• Sometimes involves statistical analysis and other 
analysis techniques not employed in scientific 
visualization

• Can you think of an example of financial information we 
might want to visualize?

• So we might say that scientific visualization is a type or 
subset of data visualization

• We will be studying scientific visualization primarily, 
but look at more general data visualization occasionally
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Visualization Terminology

• Information visualization – abstract data sources, like 
WWW pages and databases

• No natural mapping to spatial domain (2D, 3D or n-D)
• How/what would we visualize in Amazon.com’s book 

database?

• Visual analysis of 
customer call center 
performance at British 
Telecommunications:
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Motivations of Visualization

• Make sense of huge data-sets
– NYSE makes hundreds of millions of transactions per 

day
– RHIC at BNL produces terabytes (240) of data with 

each experiment
• Uncover insights hidden in the data
• Extract important features and meaningful knowledge of 

the data to assist in the decision-making process
• But why use visual means?
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Motivations of Visualization

• Reduce time and save money
• Digital prototyping

– Design model in virtual reality (VR)
– Test model in VR
– Refine and re-test

• Flight simulation
– Why?

• Virtual training
– Why?
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Examples of Visualization

• Medical imaging
• X-ray Computed Tomography (CT)

– pronounced as both “cat” or “see-tee”
• Magnetic Resonance Imaging (MRI)

– uses very powerful magnetic fields
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Examples of Visualization

• CT and MRI produce 
slice planes

• Cross-sections of the 
patient

• Slices are combined to 
produce a volumetric 
representation

• But CT and MRI 
machines just output 
numbers – where do the 
gray values come from?
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Examples of Visualization

• A volumetric data-set is a 3D regular grid, or 3D raster, 
of numbers that we map to a gray scale or gray level

• An 8-bit volume could represent 256 values [0,255]
• Human visual system naturally groups like-colored 

points, or voxels, into regions
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Volume Visualization Examples
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Examples of Visualization

• Terrain visualization
• What are some

applications?
• Satellite imaging
• x, y, elevation
• Terrain texture

(photographs)
• Cloud cover
• What are some others?
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Examples of Visualization

• Scientific simulations
• Visualize the results of

very sophisticated super-
computer simulations

• Computational fluid
dynamics example:

• What quantities are
being visualized?

• Why bother?
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Examples of Visualization

• Virtual archaeology
• How is a mummy examined?  A fossilized dinosaur egg?
• What’s wrong with those methods?
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Examples of Visualization

• Map of artificial sky 
brightness over Europe. 
This is an effective tool 
for measuring “light 
pollution:” brightness of 
lights on ground affect 
ability to see starlight. 
Black: many stars visible. 
Red: few stars visible.
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Image Processing, Computer Graphics & 
Visualization

• Image processing
– study and analysis of 2D pictures or images

• Computer graphics
– process of creating images with a computer

• Visualization
– process of exploring, transforming and viewing data 

as images
• What’s in common?
• How do these three fields overlap?
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Image Processing, Computer Graphics & 
Visualization

• Computer graphics outputs an image
• Visualization may employ graphics to generate images
• Visualization may employ image processing to study 

images
• Visualization

– usually works with 3D or n-D data, for n >= 3
– employs data transformation to enhance meaning of 

the data
– is usually interactive and required human intervention
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The Visualization Process

1. Data acquisition
2. Data transformation
3. Data mapping (e.g., to shapes & color)
4. Display (via computer graphics)
• Steps 2-4 are repeated as necessary to generate multiple 

visualizations
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An Alternate Visualization Pipeline

data
sensors, 

scanners, 
cameras

super-
computers

geometric 
model 

(structures)

image

(signal)

film 
recorder

display 
device

sampling/

scanning

image 
processing

computation/

simulation

computer 
graphics
computer 

vision

polygonization
discretization
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Other Important Issues

• Accuracy
– Safety, time, money, efficiency

• Ethics
– What are some ethical concerns in visualization? 

(consider medical visualization)
• Psychological

– Human visual/perception system
– What makes an effective visualization?
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Current Trends in Visualization

• Scanning technologies (esp. MRI, CT) continue to 
improve

• New applications (virtual medical exam) for an aging 
population

• Multidimensional data (vector fields)
• Information visualization is very hot
• Homeland security generating new applications (threat 

planning in NYC)
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Summary & Questions

• Visualization overview
• Important visualization terminology
• Applications of visualization
• Connection with other fields
• What’s the difference between computer graphics and 

visualization?
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Traditional Visualization: Historical 
Perspectives
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Traditional Visualization

• What are the origins of visualization? 
• What are some of the troubles inherent in trying to 

visualize data? 
• What makes a visual representation of some data 

faithful, helpful, accurate, etc?
• Surprisingly, we can learn a lot about 3D computer-

driven visualization by looking at early attempts at 
effective 2D hand-drawn visualizations
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Graphical Display
• Fundamental question: why bother with visualization?  

What do we gain?  Why aren’t words and numbers 
enough?

• Graphics (i.e., pictures) can be more precise and 
revealing than numerical display
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Surprise Hidden in the Data
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Dr. John Snow’s Cholera Map of London 
(1854)

• Dot indicates 
Cholera death

• X indicates water 
pump (circled)

• What does this 
visualization tell 
us?
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Graphical Display – Large Datasets
• Can capture a large amount 

of information in a very 
small space 

• Total cancer deaths, 1950-
1969 (top: white women; 
bottom: white men)
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Graphical Display – Large Datasets

• The local situation

• Hopefully things have improved!

women men
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Graphical Display – Large Datasets

• Important questions:
– Where are the highest 

death rates?
– Lowest rates?
– Rate for men vs. 

women
– Any anomalies?
– What to do with the 

knowledge?
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Graphical Display – Large Datasets

• Do you see any possible 
problems with visualizing 
the data in this manner? 
(hint: consider land area)

• Focus is incorrectly 
drawn to land area rather 
than number of people 
actually living in county

• A large county may have 
only a few people living 
in it
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Traditional Visualization 
(“Information Graphics”)

• The fundamental goal of visualization is to reveal the 
substance of the data – i.e., what we can learn from the 
raw data and what we should do with our knowledge

• Our concern is with the data and not so much the 
techniques, algorithms or methodologies used to draw 
the image

• We also have to make reasonable assumptions that the 
data itself is not corrupt or skewed in some manner

• Visualization has moved from using hand-drawn 
illustration to Computer-Generated Imagery (CGI)
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Graphical Display – Large Datasets

• Galaxy map
• Each dot represents

a collection of
galaxies

• 1.3 million total
• 1024x2022 grid
• Can you see any

structure in the data?
• What might these

observations tell us?
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Time-Series Display
• Paris-Lyon train schedule from 1880s
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Compare with this way…

• What are the advantages and 
disadvantages of each method?

• What do we learn about train routes 
from each?

• What does each visualization tell us 
that the other doesn’t or can’t?

• Consider issues like these in 
developing your own visualization 
algorithms and systems
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Visualization in Narrative Form

temperature

split army to protect 
rear and flank
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Computer Graphics vs. Scientific 
Visualization
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What is Computer Graphics?

• Process of generating images using computers
• This is called rendering (computer graphics was 

traditionally considered as a rendering method)
• A rendering algorithm converts a geometric model into a 

picture
• This process is called scan conversion or

rasterization
• How does visualization fit in here?
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Computer Graphics

• Computer graphics consists of :
1. Modeling (representations)
2. Rendering (display)
3. Interaction (user interfaces)
4. Animation (combination of 1-3)

• Usually “computer 
graphics” refers
to rendering
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Lights, Cameras and Objects

• How are we able to see things in the real world?
• What’s the process that occurs?
• I’ll get you started:

1. Open eyes
2. Photons from light source strike object
3. Bounce off object and enter eye
4. Brain interprets image you see
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Lights, Cameras and Objects

• Rays of light emitted by light source
• Some light strikes object we are viewing

– Some light absorbed
– Rest is reflected
– Some reflected light

enters our eyes

Copyright © 2008 Hong Qin 42



Lights, Cameras and Objects

• How do we simulate light transport in a computer?
• Several ways
• Ray-tracing is one
• Start at eye and trace rays the scene
• If ray strikes object, bounces, hits light source → we see 

something at that pixel
• Most computer applications don’t use it.  Why?  
• With many objects very computationally expensive
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Surface Ray-Tracing
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Rendering Processes:
Image-Order and Object-Order

• Ray-tracing is an image-order process: operates on per-
pixel basis

• Determine for each ray which objects and light sources 
ray intersects

• Stop when all pixels processed
• Once all rays are processed, final image is complete
• Object-order rendering algorithm determines for each 

object in scene how that object affects final image
• Stop when all objects processed
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Rendering Processes:
Image-Order and Object-Order

• Image-order approach: start at upper left corner of 
picture and draw a dot of appropriate color

• Repeat for all pixels in a left-to-right, top-to-bottom 
manner

• Object-order approach: paint the sky, ground, trees, barn, 
etc. back-to-front order, or front-to-back

• Image-order: very strict order in which we place pigment
• Object-order: we jump around from one part of the 

regions to another
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Rendering Processes:
Image-Order and Object-Order

• Advantages and disadvantages of each
• Ray-tracing can produce very realistic looking images, 

but is very computationally expensive
• Object-order algorithms

more popular because
hardware implementations
of them exist

• Not as realistic as ray-
tracing
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Surface Rendering

• We have considered interaction between light rays and 
object boundaries

• This is called surface rendering and is part of surface 
graphics

• Computations take place on boundaries of objects 
• Surface graphics employs surface rendering to generate 

images of surface’ mathematical and geometric 
representations
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Surface Graphics

• Surface representations are good for objects that have 
homogeneous material distributions and/or are not 
translucent or transparent

• Such representations are good when only object 
boundaries are important

• Examples: furniture, mechanical objects, plant life
• Applications: video games, virtual reality, computer-

aided design
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Surface Graphics – Pros and Cons

• Good: explicit distinction between inside and outside 
makes rendering calculations easy and efficient

• Good: hardware implementations are inexpensive
• Good: can use tricks like texture mapping to improve 

realism
• Bad: an approximation of reality 
• Bad: does not let us peer into 

and through objects
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Surface Graphics

• Can you think of objects or phenomena for which this 
approach to rendering will fail?

• When is a surface representation not good enough?
• Would a surface representation 

suffice to represent the internal 
structure of the human body?
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Volume Graphics

• Surface graphics doesn’t work so well for clouds, fog, 
gas, water, smoke and other amorphous phenomena

• “amorphous” = “without shape”
• Surface graphics won’t help us if we want to explore 

objects with very complex internal structures
• Volume graphics provides a solution to these 

shortcomings of surface graphics
• Volume graphics includes volume representations and 

volume rendering algorithms to display such 
representations
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Volumetric Representations

• A volumetric data-set is a 3D regular grid, or 3D raster, 
of numbers that we map to a gray scale or gray level

• Where else have you heard the term raster?
• An 8-bit volume could represent 256 values [0, 255]
• Typically volumes are at least

2003 in size, usually larger
• How much storage is

needed for an 8-bit,
2563 volume?

Copyright © 2008 Hong Qin 53



Volume Graphics

• Volumetric objects have interiors that are important
to the rendering process (what does that mean?)

• Interior affects final image
• Imagine that our rays now don’t merely bounce off 

objects, but now can
penetrate and pass through

• This is known as volumetric
ray-casting and works in
a similar manner to surface
ray-tracing
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Volumetric Ray-Tracing
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Volume Rendering

• In volume rendering, imaginary rays are passed through 
a 3D object that has been discretized (e.g., via CT or 
MRI)

• As these viewing rays travel 
through the data, they take 
into account of the intensity
or density of each datum, and 
each ray keeps an accumulated 
value
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Volume Rendering

• As the rays leave the data, they comprise a sheet of 
accumulated values

• These values represent the volumetric data projected
onto a two-dimensional image
(the screen)

• Special mapping functions
convert the grayscale values
from the CT/MRI into color
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Volume Rendering

• Semi-transparent rendering
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Volume Graphics

• Good: maintains a representation that is close to the 
underlying fully-3D object (but discrete) 

• Good: can achieve a level of realism (and “hyper-
realism”) that is unmatched by surface graphics

• Good: allows easy and natural exploration of volumetric 
datasets

• Bad: extremely computationally expensive!
• Bad: hardware acceleration is very costly 

($3000+ vs $200+ for surface rendering)
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Surface Graphics vs. Volume Graphics

• Suppose we wish to animate a cartoon character on the 
screen

• Should we use surface rendering or volume rendering?
• Suppose we want to visualize the inside of a person’s 

body?
• Now what should approach we use?  Why?
• Could we use the other approach as well?  How?
• We could visualize body as collection of surfaces
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Human Visual System and
Color Theory
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Human Visual System and Color Theory

• Today: human visual system
• Human eye
• Color models
• Color perception
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Human Visual System

• How do we perceive the 
visible world?

1. Light enters eye and 
strikes lens

2. Muscles expand and 
contract to focus light on 
retina
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Human Visual System

3. Retina senses light and 
contains cone cells and 
rod cells

4. Retinal nerve fibers 
connect to optic nerve, 
which carries signals to 
brain, where they are 
interpreted as an image
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Rods

• Spread all over retina
• 75-150 million
• Low resolution
• Don’t detect color
• Very sensitive to low 

light
• This is called scotopic

vision
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Cones

• Dense array of cells at  
retina center

• 6-7 million total
• High-resolution, detect 

color
• This is called photopic

vision
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Color

• Visible spectrum 
wavelengths 400-700 nm

• A given color has some 
distribution of these 
wavelengths

• Intensity of each 
wavelength determines 
contribution to color
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Color Receptors

• Tristimulus theory: “Red” cones (~60%), “green” cones 
(~30%) and “blue” cones (~10%)

• Mixing process takes place inside brain 
• Graph of visible

spectrum each type of
cone is sensitive to:
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Human Eye Color Perception

• Human eye differentiates about 300 hues and 100-150 
luminance variations. What does that mean?

• If red, green and blue cones are 60%, 30% and 10%, 
which colors can we perceive best?

• What does this mean for visualization?
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Human Eye Color Response

• Human eye responds to certain colors faster than others
• Color ranking (from best to worst): 

yellow > white > red > green > blue
• What colors should be used to highlight important 

features?
• Let’s test your color response
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Human Eye Color Perception

• We are sensitive to small color differences
• Good at making side-by-side comparisons
• Not as good at identifying colors in isolation
• Hard: “Is that red, or orange-red, or red-orange, or 

maroon or…?”
• Easier: “Color A is redder than color B”
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Information Coding with Color

• Color good for classification – separation of data into 
classes

• In practice, only about six categories can be 
distinguished using color alone
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Information Coding with Color

• A suggested order for adding color to visualizations
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Information Coding with Color –
Helpful Tips

• Color coding
– large areas: low saturation
– small areas: high saturation
– maintain luminance contrast
– break iso-luminances with borders (?)
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Color Response and Perception Summary

• Use bright colors to highlight important features
• Yellows, oranges, reds will be picked up first by the eye
• Make effective use of light/dark contrast:
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Color Response and Perception Summary

• Also make effective use of color contrast to highlight 
important and interesting characteristics of data

• The human eye is very good at making side-by-side 
comparisons
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Computer Representation of Color

• Each screen pixel is combination of R, G and B light
• Three color components determine perceived color
• RGB color model
• R, G, and B in range [0.0, 1.0]
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RGB Color Arithmetic

• R + G = ?
• B + G = ?
• R + Y = ?

• R + C = ?
• G + M = ?
• B + Y = ?
• B + W = ?
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RGB Color Model

• Good: simple, easy hardware implementation
• Is it intuitive?
• How would you make a washed-out green?
• How would you make a bright blue?
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HSV Color Model

• RGB: good for hardware, bad for human use
• Hard to change saturation and brightness 
• HSV color model – more intuitive
• H = hue
• S = saturation
• V = value (brightness)
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HSV Color Model

• The hue is the color 
• Specified as angle around the HSV (hex) cone
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HSV Color Model

• Saturation measures vividness of color
• Distance from central axis
• Value measures brightness
• S, V in range [0.0, 1.0]
• H in range [0o, 360o]
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HSV Color Model

• HSV very intuitive
• e.g., to brighten a color, increase V
• e.g., to wash it out (make grayer), decrease S
• How do we change H?
• Change angle
• Sequence of colors around cone:

R → Y → G → C → B → M → R

Copyright © 2008 Hong Qin 84



HSV Examples

• Which component of HSV are we increasing in the left 
image?  Right image?
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RGB vs. HSV

• Can use HSV in software, 
but convert to RGB for 
display 

• Easy to convert between 
RGB and HSV

• Code on Web

Color RGB HSV
Black 0,0,0 *°,*,0
White 1,1,1 *°,0,1
Red 1,0,0 0°,1,1
Green 0,1,0 120°,1,1
Blue 0,0,1 240°,1,1
Yellow 1,1,0 60°,1,1
Cyan 0,1,1 180°,1,1
Magenta 1,0,1 300°,1,1
Sky Blue .5, .5, 1 240°,.5,1
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Modeling Methods and Techniques for 
Illumination and Shading
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Illumination and Shading

• Illumination and shading are two complementary aspects 
in Computer Graphics that add realism to rendered 
scenes

• Illumination refers to use of lights in virtual world
• Shading refers to effects that lights have on 3D objects in 

the scene
• Many kinds of illumination models and shading models

in 3D computer graphics and visualization
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Illumination

• Without lights a 3D scene is totally black
• Seek to simulate effects of light 
• Simplest type of light is point light source
• Light is infinitely far away
• Light rays are parallel
• Is this a good approximation of a light bulb?  Flash light?  

The sun?
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Shading Model

• A shading model checks lighting conditions and figures 
out what surface should look like based on lighting 
conditions and surface parameters:
– Amount of light reflected (and which color(s))
– Amount of light absorbed 
– Amount of light transmitted (passed through)

• Shading model tells us how much incoming light that 
strikes a surface is 1. reflected to the eye, 2. absorbed by 
the object, and 3. transmitted through the object
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Total Light Decomposition

reflected

point light
source

absorbedtransmitted

object
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Shading Model

• Typically in Computer Graphics, we are concerned with 
the reflected light – light which bounces off object and 
enters eye

• Other effects like refraction and translucency require 
more sophisticated shading models
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Local vs. Infinite Light Sources

Local Infinite

• Rays from a local light source emanate in different 
directions

• Rays from the infinite light source travel in the same 
direction
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Surface Properties – Ambient Lighting

• Rays of light strike objects or actors in the scene
• Illumination model determines how light and surface 

properties interact to generate a color image
• Ambient lighting is simplest illumination model
• It accounts for indirect light
• Models general level of brightness in the scene
• Accounts for light effects that are difficult to compute 

(secondary reflections, etc.)
• Constant for all surfaces and view directions (?)
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Surface Properties – Ambient Lighting

• Imagine yourself in room 
with curtains drawn 

• Some sunlight will still get in, 
but it will have bounced off many 
objects before entering room

• When an object reflects this kind of 
light, we call it ambient reflection Ambient-lit sphere
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Surface Properties – Ambient Lighting

• Ambient reflection can be expressed by this equation:

• Rc is color of reflected light 
• Lc is color of light source
• Oc is color of object
• Shine white light on red sphere vs. shine red light on 

white sphere?
• Not the best notation really…
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Surface Properties – Diffuse Lighting

• Ambient lighting is a crude approximation of secondary 
reflections

• Diffuse lighting takes us one step closer to reality
• Direction of rays taken into consideration
• Unlike ambient reflection, diffuse reflection is dependent 

on location of light source relative to the object
• This is a type of direct lighting
• Models dullness, roughness of a surface
• Also called Lambertian reflection
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Surface Properties – Diffuse Lighting

Diffuse lighting Ambient & diffuse

• Note difference between diffuse alone and diffuse with 
ambient lighting

• Suppose we moved light to around back of sphere –
remind us: why would the sphere get darker?
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Surface Properties – Diffuse Lighting
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Surface Properties – Diffuse Lighting

• Rc is color of reflected light
• Lc is color of light source
• Oc is color of object
• On is object’s normal vector – direction surface is 

pointing at that position
• Ln is light vector – direction of the light ray
• What’s the relationship between Ln and the type of light 

source (local or infinite)?
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Surface Properties – Diffuse Lighting

• We assume that On and Ln are unit vectors (length = 1)
• We can normalize a vector by dividing each component 

by vector’s length:
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Surface Properties – Diffuse Lighting

• Dot product between -1 and +1
– What does it mean when it is > 0?
– What does it mean when it is < 0?
– What does it mean when it is = 0?

• Given this knowledge, can we avoid computing the 
diffuse lighting equation entirely in some situations?
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Surface Properties – Diffuse Lighting

• Key points for diffuse lighting:
– position of light w.r.t. object is important
– models a rough surface
– does not model shiny objects
– contribution of a light source to the diffuse shading of 

an object computed with a dot product
• Compare: ambient vs. diffuse:

Copyright © 2008 Hong Qin 103



Surface Properties – Diffuse Lighting

• Ambient vs. diffuse
• Ambient reflection of an object independent of light 

position, unlike diffuse lighting
• In this sense, does an ambient light source have a 

position?
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Surface Properties – Specular Lighting

• Models reflections on shiny surfaces (polished metal, 
chrome, plastics, etc.)

• Specular reflection is view-dependent –specular highlight
changes as camera’s position changes

• Diffuse reflection is view-independent – reflection model 
is a function of light source direction and surface 
direction (normal)

• Specular reflection is a function of the light source 
direction, the surface direction, and the view direction
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Surface Properties – Specular Lighting

• Need angle light source makes with surface, and angle 
viewing ray makes with surface

• Example: chrome on your car shines in different ways 
depending on where you stand when looking at it
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Surface Properties – Specular Lighting

Specular & diffuse & ambient Specular & diffuse

Specular & ambient Specular only
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Surface Properties – Specular Lighting
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Surface Properties – Specular Lighting

• S is the direction of specular reflection
• The angle S makes with On is the same angle –Ln makes 

with On: θ
• Cn is the viewing direction
• Osp is the specular power and indicates how shiny the 

object is
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Surface Properties – Specular Lighting

• Specular power indicates how quickly the specular 
reflection diminishes as direction of specular reflection 
deviates from view direction

• Specular power controls the size of specular highlight
• Inverse relationship:
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Surface Properties – Specular Lighting

• Top row: specular intensity = 0.5 (Oc, essentially)
• Bottom row: specular intensity = 1.0
• Left to right: specular power = 5, 10, 20, 40
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Surface Properties – Total Illumination

• Ambient, diffuse and specular reflection are usually 
combined into a single equation:

• Oai, Odi and Osi control the amounts of ambient, diffuse 
and specular lighting, with values in [0.0, 1.0] 
(these three values are called reflection coefficients)

• Oac, Odc and Osc indicate the colors to be used with each 
type of lighting (specular color, Osc, is usually white)
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Surface Properties – Total Illumination

• What if Osp = 0?
• What if Osp = infinity?
• What if some vectors are not normalized?
• How would we disable ambient reflection?
• What if some dot product is negative? What does this 

indicate? How should it be handled by the illumination 
equation?
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Other Shading and Illumination Effects

• Area lights
• Shadows
• Refraction
• Reflection
• Caustics
• Color bleeding
• Radiosity
• How do we generate these 

effects?

Copyright © 2008 Hong Qin 114



Global Illumination

• These effects require global illumination, which is 
capable of generating all those photorealistic images you 
see in movies and special effects

• Most require the use of ray-tracing and radiosity, an 
O(n2) illumination technique

• Want to try it yourself?  Go to www.povray.org and try 
out the free POV-Ray ray-tracing program
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Shadows

• Hard and soft shadows
• Hard shadows: caused by very distant 

light sources, like the sun
• Soft shadows: caused by close light 

sources, usually area light sources, like 
light bulbs

• Several techniques 
for generating 
shadows
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Key Elements of Cameras and 
Geometric Coordinate Systems
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Cameras

• We have light sources that illuminate 3D objects (or 
actors) in our virtual scene

• Rays of light interact with surface properties and 
generate colors according to the illumination model

• But how do we view the scene, select the position and 
orientation of the viewpoint?

• This is where the virtual camera comes in
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Camera Attributes
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Camera Attributes

• Position – given in (x,y,z) coordinates
• Up-vector – orients the camera, given in (x,y,z)
• Direction of projection – points the camera in some 

(x,y,z) direction; also called viewing direction
• Why is the up-vector needed if we have a direction of 

projection?
• Why is the direction of projection needed if we have an 

up-vector?
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Camera Attributes

• Front and back clipping planes – determine which 
objects might be visible 

• Planes perpendicular to viewing direction
• Specified as distances along viewing direction
• Also called near and far clipping planes
• Objects on near side of front clipping plane and on far 

side of back clipping plane are invisible
• Objects between the clipping planes may occlude each 

other and may be fully visible, partially visible, or 
invisible
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Camera Manipulation

• Nuisance to manipulate the camera by changing all those 
parameters

• Usually its easier to specify camera movements with 
respect to the camera’s focal point, the position in space 
at which the camera is pointing

• Consider taking a portrait:
– Move around the person
– Move forward and backward w.r.t. to person
– Move camera up and down
– Rotate camera while standing still

Copyright © 2008 Hong Qin 122



Camera Manipulation
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Camera Manipulation

• Changing azimuth = rotating camera’s position around 
its view vector w.r.t. focal point

• Changing elevation = rotating camera’s position around 
cross-product of view direction and up-vector

• Cross-product of two
vectors provides vector 
in dir. perpendicular to 
two original vectors

• Changing roll = rotate camera’s up-vector about the 
viewing direction (twisting the camera)
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Camera Manipulation

• Changing yaw = rotating focal point about the up-vector
• Changing pitch = rotating focal point about cross product 

of view vector and up vector
• Dollying – moves camera position along view vector 

(dollying in and out)
• Once camera attributes are set, objects are projected

from 3D onto the 2D image plane
• Camera attributes determine which rays of light (that 

bounced off objects) will enter the camera and contribute 
to the rendered image
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Coordinate Systems

• You might be familiar with different types of coordinate 
systems:
– Cartesian
– Polar
– Spherical
– Cylindrical

• Computer graphics and visualization applications use 
several distinct coordinate systems: model, world, view
and display

• Usually they use Cartesian coordinates
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Coordinate Systems

• Two kinds of Cartesian coordinate systems: right-handed 
and left-handed

• Use whichever coordinate system seems most natural in 
the given context

x

y
z

left-handed system

y

x

z right-handed system

Copyright © 2008 Hong Qin 127



Model Coordinate System

• Coordinate system used to define an object or actor
• Coordinate system will be a natural choice

– Example: A football might be described using a 
cylindrical coordinate system

– What coordinate system might we use for a planet?
• System choice of person who created the object
• Units are application-dependent: inches, meters, cubits, 

etc.
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World Coordinate System

• 3D space in which our actors are positioned
• Each actor’s model coordinate system has some position 

and orientation inside the world space
• Many model coordinate systems, only one world 

coordinate system
• Each actor rotates, scales and translates itself into the 

world coordinate system
• Lights and cameras are specified with respect to the 

world coordinate system
• Does a camera have its own coordinate system?
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World Coordinate System

• Example: 
– Specify each of our bodies with a cylindrical 

coordinate system with the head as the origin
– We position ourselves in the room (the world 

coordinate system) by giving the position of our heads 
w.r.t. the origin of the room (perhaps some corner)
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View Coordinate System

• Represents what is visible to the camera
• Given by (x,y,z) values
• x, y in [-1, 1]
• z is some depth > 0
• x, y give location of some object in the image plane
• z give distance of object from camera
• A matrix is used to convert from world coordinates into 

view coordinates (i.e., projection!)
• Perspective effect can be accommodated by this matrix
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Display Coordinate System

• x, y are pixel values on screen
• z is still the depth
• What are restrictions on x and y?
• Window size helps determine valid range for x, y
• Display can be divided into multiple viewports, each of 

which has its own coordinate system
• Must select which viewport is used for rendering
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Coordinate Systems

1. Model coordinates are  transformed into
2. World coordinates, which are transformed into
3. View coordinates, which are transformed into
4. Display coordinates, which correspond to pixel 

positions on the screen

• Transformations from one coordinate system to another 
take place via coordinate transformations, which we’ll 
look at now
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Coordinate Transformations

• Coordinate transformations allow us to translate, scale
and rotate our models in our virtual scene

• In Computer Graphics and Visualization, objects are 
often represented as meshes consisting of polygons, 
edges and vertices

• Two vertices define an edge
• Three or more edges define

a polygon
• To transform an object, we 

apply the transformations to 
the vertices of the mesh

Copyright © 2008 Hong Qin 135



Object Representations

• List of vertices: v1, v2, …, vn, each given as (xi, yi, zi)
• List of edges: (v1, v3), (v4, v7), …, (vi, vj),…
• List of faces: (e1, e3, e4), (e2, e5, e8), …OR
• List of faces: (v1, v3, v5), (v6, v7, v9), …
• When a vertex’s position is changed due to 

transformation, all edges and polygons that include the 
vertex are consequently changed

• If we apply the same transformations to all vertices, the 
entire polygonal mesh moves as a unit, which is what we 
want
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Coordinate Transformations

• Rather than represent 3D points using three coordinates 
(x,y,z), we will use four: (x,y,z,w)

• This approach is called homogeneous coordinates
• Transformations will be represented by (4 x 4) matrices
• Why not (3 x 3)?
• Because some transformations – including translation –

cannot be represented by (3 x 3) matrices
• Most of the time w = 1, but there are special 

transformations for which w ≠ 1
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Coordinate Transformations: Translation

• Suppose we wish to translate the point (x,y,z) by the 
vector (tx, ty, tz)

• This translation transformation can be described by the 
translation matrix:
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Coordinate Transformations: Translation

• The new position is given by post-multiplying our point 
by the translation matrix:

• The new position of our point is (x’, y’, z’)
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Coordinate Transformations: Translation

• We can see that the matrix-vector multiplication is 
equivalent to the following formulas:
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Coordinate Transformations: Scaling

• We can scale a mesh by applying the scaling 
transformation to each of its vertices:
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Coordinate Transformations: Scaling

• When sx = sy = sz, we call it uniform scaling
• Otherwise, we have non-uniform scaling

• Suppose someone said to you
that it makes no sense to 
apply scaling to vertices

• After all, how do you scale a 3D
point, which has no width, height
or depth?
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Coordinate Transformations: Rotation

• We can rotate a vertex about one of the major axes by 
some angle θ using one of the rotation matrices:
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Coordinate Transformations

• Transformations can be composed by right-multiplying
transformation matrices

• Example: a sequence (S Rz T Ry) would indicate:
1. A rotation about the Y axis, followed by
2. A translation, followed by
3. A rotation about the Z axis, followed by
4. A scaling

• So beware and remember: matrix multiplication is 
associative but it isn’t commutative
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Coordinate Transformations

• The above transformations can be applied to objects in 
the scene – these are referred to as the modeling 
transformations

• The camera (viewpoint) can also be transformed by the 
viewing transformation

• What transformation(s) might not make sense to apply to 
the viewpoint?

• Projection transformation is applied after modeling 
transformations to project the 3D actors onto the screen

• We won’t study projection transformations in this course
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Actor Geometry: Modeling

• In computer graphics, modeling refers to geometric 
representations of 3D objects

• Often these objects are manually constructed
• We looked at one type: polygonal meshes
• Many, many other representations exist
• Can you remember some? (consider some of the 

applications of visualization)
• In visualization, modeling means something slightly 

different
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Actor Geometry: Modeling

• In visualization, models are computed by some 
visualization algorithm

• Note the semantic distinction:
– Computer graphics: object X is represented as a 

collection of triangles
– Visualization: object X represents the surface of 

patient Y’s skull and it just happens to be made of 
triangles

• The model (triangles) is simple, but complex 
visualization algorithms were used to obtain that model
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Actor Geometry: 
Actor Location and Orientation

• The modeling transformations 
we looked at earlier allow us to 
change the location and 
orientation of objects

• It’s often useful to associate 
(i.e., store) an orientation 
vector (Ox, Oy, Oz) for each 
actor

• This vector implicitly defines 
the three rotation matrices
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Actor Geometry: 
Actor Location and Orientation

• Rotations take place around 
the origin of the actor

• They are applied as a camera 
azimuth, elevation and roll, in 
that order – remember, order 
counts!

• VTK uses this orientation 
vector-based approach since it 
is very natural to manipulate 
objects in this fashion
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Camera Attributes

• Projection – method of projection determines how 3D 
objects are drawn on the image plane, or screen

• Orthographic projection – all rays of light are parallel to 
the projection vector

• 3D points are projected onto the screen along the same 
direction

• The perceived size of an object is not a function of its 
distance from the camera
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Camera Attributes

• Perspective projection – all light rays travel through a 
central point, such as the viewpoint

• Objects appear smaller as their distances increase from 
the viewpoint, and vice versa

• This is what happens in real life
• Simulating perspective projection requires a view angle
• View angle and clipping planes define a view frustum, a 

truncated pyramid; one type of viewing volume
• In orthographic projection, we have a rectangular view 

volume instead because the light rays are __________
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Graphics Hardware and Display 
Devices
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Graphics Hardware

• Many graphics algorithms can be implemented 
efficiently and inexpensively in hardware

• Permits interactive graphics applications, including 
certain domains of visualization

• Topics today:
– Raster devices
– Video controllers & raster-scan display processors
– Important rasterization and rendering algorithms
– Pixels and images

Copyright © 2008 Hong Qin 153



Raster Devices

• Computer monitors (CRT, LCD, etc.), TVs
• These are raster devices because they display images on 

a raster, which is a regular n-D grid
• Each point on the grid is 

called a pixel, which stands
for _______________

• Raster dimension given in 
pixels: 25 x 10 in the example

• In a monochrome display, each pixel is black or white
• In a color display, each pixel has an RGB triple
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Raster Devices

• Also called raster-scan displays or systems
• Pixels are drawn in a strict order, called raster-scan 

order
• Cathode ray

tube (CRT)
shown here

• Monochrome
display
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Color Display Technology – CRT

• Cathode ray tube - used in TVs and computer monitors 
(the large, clunky type)

• A color CRT has three
electron guns: one for 
red, one for green, 
and one for blue

• The beams scan 
screen in horizontal 
scanlines

• Metal mask steers beams

Copyright © 2008 Hong Qin 156



Color Display Technology – CRT
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• Each screen pixel consists of a phosphor triple: one 
glowing red, one green, and one blue

• A phosphor is a circular spot of phosphorescent material 
that glows when electrons
strike it

• Red phosphors glow red
• RGB triad together form

a single pixel on screen



Color Display Technology – CRT
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• Glowing phosphor triples blend together to form color 
encoded in RGB triple

• Amount of energy that electron guns deliver to each 
phosphor depends on 
RGB value of image 
pixel displayed there

• RGB values between
0 and 1 are mapped to
voltages for the guns



Color Display Technology – CRT

• True or false: A color image in a CRT is generated by 
blending the three colored beams of light that are fired 
from the back of the monitor and blended on the front 
surface of the screen.
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Color Display Technology – CRT

• The phosphors glow only for about 10-60 microseconds
• Image refreshed 30-60 times per second
• This rate is called the refresh rate and is given in Hz
• So if we redraw the image once every 1/60th of a second, 

but the image lasts only a few millionths of a second, 
what about the gap?

• 1/60th second is approximately 16667 microseconds
• (16667 - 10) microseconds = “long” delay between 

refreshes
• So why is there no visible flicker?
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Raster Devices: Display Resolution

• The raster is not 100% perfect –points of light 
corresponding to pixels can overlap slightly

• Same is true of raster printing technologies, like laser 
and injket printers

• Pixels are more like circles than squares in reality
• Raster devices also limited by resolution

– Computer monitors 1600 x 1200 and higher
– Laser printers 300 dpi, 600 dpi, 1200 dpi and higher
– TV resolution? HDTV?
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Raster Devices: Color Depth

• Horizontal lines of pixels are called scanlines
• TV: 640   HDTV: 720 or 1080
• Monochrome monitor has 1 bits per pixel (bpp)
• Grayscale has 8 bpp (usually)
• Color monitors most often have 24 bpp: 8 bits each for 

red, green and blue color channels
• How many different levels of gray can we represent with 

8 bits per pixel?
• How many different colors can 24-bit color represent?
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Image Resolution

res = 3002 pixels res = 1502 pixels res = 752 pixels res =372 pixels

• Image resolution very important in visualization
• Why?
• When might we want to use a low resolution image?
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How Many Bits Do We Need?

• Number of bits per pixel often called bit depth
• How many bits should

we use in practice?
# 1: 8-bit original image
# 2: lower 4 bits dropped
# 3: (image #1 - image #2)
# 4: image #3 enhanced

1 2

3 4
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Bit Depth

• Suppose we want to display 256 gray levels, but we have 
only 1-bit color.

• What colors can we display?
• How do we accommodate grayscale images?
• How do we accommodate color images?
• Suppose we want to display 16.7 million colors on our 

color monitor, but we have only 8-bit color.  What can 
we do?
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Dithering

• Dithering is a way to use a mixture of colors to trick eye 
into seeing colors that cannot be actually represented by 
display device

• We can approximate gray by using a combination of 
black and white:

• The relative densities 
of black and white
determine the “gray”
value

• Also called halftoning (vb. to halftone)
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Interfacing to the Hardware

• A lot goes on “under the hood” in the graphics and 
display hardware

• Graphics hardware: converts geometry into pixels
• Display hardware: displays pixels
• Simplified hierarchy
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Interfacing to the Hardware

• From perspective of visualization, mechanics of image 
display aren’t too important

• We are more interested in what software can deliver
• Not even really interested in computer graphics!
• We just want to visualize!
• Why we use VTK and similar programming libraries
• We can treat everything under VTK as some nebulous 

“black box” that converts our 3D shapes into pixels
• Our building blocks are called graphics primitives
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Graphics Primitives
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Graphics Primitives

• Vertex: position, normal, color – how many values total?
• Polygon: series of connected vertices
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Graphics Primitives

• Normal vectors: why for vertices?
• If our polygonal object came from curved surface, vertex 

normals will not be same as polygonal normals
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Rasterization

• We looked at raster devices and some different kinds of 
geometric objects we might wish to draw on the screen

• Process of converting geometry into pixels is called 
rasterization or scan-conversion

• Each triangle in our model is transformed (rotated, etc.) 
and projected by the transformation and projection 
matrices

• Next we clip each triangle to the image plane
• Each triangle is entirely inside, entirely outside, partially 

visible w.r.t the image plane
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Rasterization

• We will take an object-order approach
• Question: In contrast, ray-tracing is what-order?
• We process each triangle one by one
• After we transform and clip it, we rasterize it – we figure 

how what pixels on screen we need to update to draw the 
triangle on screen
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Rasterization

• We will process the triangle in scan-line order: left-to-
right starting at top left corner, moving right and down
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Rasterization

• We sort the vertices by their y values and find the vertex 
with the maximal y value; call this vertex v0
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Rasterization

• This sorting allows us to identify the other two vertices, 
v1 and v2
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Rasterization

• Using the slopes of the edges we can compute each row 
of pixels to process, called a span of pixels
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Rasterization

• Across each polygon we interpolate various data values 
di for each pixel

• Example: RGB to assign colors to vertices
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Rasterization

• But where do we get the RGB values?
• A few classes ago we looked at shading and illumination
• Now we will see how the theory is put into practice
• We will look at three ways of implementing the 

illumination equations:
– Flat surface rendering
– Gouraud surface rendering
– Phong surface rendering

Copyright © 2008 Hong Qin 179



Flat Surface Rendering

• Illumination equations applied to one normal vector of 
the polygon

• Result: all pixels for polygon have the same color
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Gouraud Surface Rendering

• Illumination equations calculated at all vertices of 
polygon using vertex normals

• Edges and interior of polygon colored by interpolating
or smoothly blending the colors computed at vertices

• Result: color varies across the polygon
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Phong Surface Rendering

• Normals are first interpolated across edges
• Then interpolated across the polygon interiors
• Illumination equations are computed for each pixel
• Result: color varies across the polygon, plus we can 

generate specular highlights
• What do you think of the efficiency of Phong shading?
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Phong Surface Rendering

• Phong rendering just too expensive to use in real-time
• Software ray tracers use it, where speed is already slow
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Hidden Surface Removal

• We looked earlier at ray-casting
• We trace rays from the camera, through the images and 

into the scene
• We see whatever objects the rays strike
• Usually we don’t use ray-casting and instead use the 

object-order approach we’ve been talking
• A complex scene could contain thousands or even 

millions of triangles that will overlap
• How do we know in which order to draw the triangles?
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Hidden Surface Removal:
Painter’s Algorithm

• One solution is called the painter’s algorithm
• Sort the triangles
• Back-to-front or front-to-back?
• One major problem:

Can cut into smaller
triangles, but the way we
cut the triangles is view-
dependent

What does that mean?
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Hidden Surface Removal:
Z-Buffer Algorithm

• An easier and very efficient solution is the z-buffer 
algorithm

• We store a 2D array the same dimensions as the image
• Before we draw a pixel for a triangle, we compare its z 

value to what is stored in the z-buffer
• If the new pixel would be in front of the z-buffer’s 

algorithm, we replace the current pixel with the new one
• Otherwise, we do not change the pixel
• How should we initialize the z-buffer?
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Visualization Toolkits: Overview
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VisualizationToolKits

• VTK is a C++ class library for developing visualization 
applications

• www.vtk.org Manual 4.2 Class Hierarchy
• Every non-trivial VTK program must contain the 

following seven elements:
1. vtkRenderWindow – the window on screen
2. vtkRenderer – C++ object for drawing shapes
3. vtkLight – light to illuminate scene
4. vtkCamera – camera (next class)
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VTK

5. vtkActor – an object in the scene
6. vtkProperty – set of properties for an actor (color, 

specular power, diffuse reflection coefficient, etc.)
7. vtkMapper – defines what is actually drawn on the 

screen for an actor
• If no light is specified, a default one is created
• Same goes for the camera
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Compiling Cone.cxx

• Download the VTK Cone Example
• Open the VTK Setup Guide on the home page
• Most of these steps have been performed for you
• Now open the source code and compile it
• May have to change some settings in Visual Studio 

.NET…
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Cone.cxx

• vtkConeSource *cone – represents a mathematical cone, 
and nothing more

• vtkPolyDataMapper *coneMapper – represents the cone 
as a set of triangles that the computer will render

• vtkActor *coneActor – the cone as VTK will deal with 
it; this actor can be moved around, its appearance 
changed, etc.

• vtkRenderer *ren1 – this C++ object will actually draw 
the cone
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Cone.cxx

• vtkRenderWindow *renWin – this is the window in 
which the renderer will draw the cone

• We can have multiple vtkRenderer’s for a single 
vtkRenderWindow

• A viewport is given that tells the vtkRenderer at what 
position inside the vtkRenderWindow it should render its 
actors
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Events and Observers

• Open the file Cone2.cxx
• This program features a “callback function”
• This is a function that is invoked when a given event

occurs
• In Cone2.cxx, the “event” is the drawing of the window
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Transformations

• Translation
• Rotation
• Scaling
• We will study these next class
• Translation just means you slide an object from one 

place to another
• Rotation can take place around X axis, Y axis, Z axis or 

an arbitrary axis
• Scaling means we increase/decrease the object’s size
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Assemblies

• vtkAssembly lets us group shapes logically
• Example: robot arm: shoulder joint, upper arm, elbow, 

lower arm, wrist joint, hand
• If we rotate the arm at the shoulder, we expect all parts 

of the arm to rotate together
• If we bend the elbow, the lower arm, wrist and hand will 

rotate together with respect to the elbow

Copyright © 2008 Hong Qin 195



Programs for You to Try

• expCos.cxx – Stavros
• Mace.cxx – Kostadin
• Model.cxx – Raymond
• Cone4.cxx – Rohit
• Cone5.cxx  – Naval
• Follow the directions in the VTK Setup Guide, get your 

program to compile, zip it all up (delete release and 
debug folders first!), and it will count for credit

• I will post your zipfile on the Blackboard home page

Copyright © 2008 Hong Qin 196



Data Visualization Pipeline in VTK

Copyright © 2008 Hong Qin 197



The Visualization Pipeline

• Visualization: transformation of data into graphical form
• Object-Oriented-based approach: data are the objects, 

transformations are the methods
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Data Visualization Example

• A quadric is a special function with maximum degree 2:

• A solid sphere is an example of a quadric with a3, a4, a5, 
a6, a6, a7 and a8 all equal to zero

• If those values aren’t zero, we get some pretty strange 
shapes

• Imagine squishing a solid rubber ball (i.e., not a hollow 
ball, like a tennis ball)
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Data Visualization Example

• Usually we evaluate the equation of a sphere for a 
particular radius, r:

• Suppose we evaluate it for different values of r?
• We get a solid sphere
• Now imagine we evaluate it for any value of x, y, z and r
• We get what’s called a field function
• You plug in some values for x, y, z, r and get some 

number. That number is “located” at position (x, y, z)
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Data Visualization Example

• If we plug in x, y, z, r for any quadric, we can get some 
very strange-looking field functions. Here’s an example:
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Visualization Pipeline

• Depicts data flow through a visualization system

• Source processes produce output (i.e., data)
• Sink processes consume data: no output
• Filter processes consume data and produce output
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Visualization Pipeline

• This figure depicts a particular visualization pipeline
• Data objects operated upon by process objects, as 

indicated by arrow directions (depicting the flow through 
the pipeline)
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Data Objects

• Data objects represent information
• Also provide methods to create, access, delete this info
• Do not support modification of the data
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Process Objects

• Operate on input data to generate output data
• Derives new data from inputs, or transforms input into 

new form
• Source objects interface to external data sources or 

generate data from local parameters
• Former kind are called reader objects
• Latter kind are called procedural objects
• Filter objects take one ore more input objects and 

generate one or more output objects
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Process Objects

• Mapper objects are sinks, and terminate the 
visualization pipeline flow

• Writer objects are mapper objects that write data to disk
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VTK’s Visualization Pipeline

• Strongly typed
• Demand-driven execution

– Update() and Execute() methods
– Update() called when rendering requested
– Update() called recursively up network, until source 

object hit
– Execute() method run if input has changed
– Recursion unwinds as Execute() methods invoked in 

objects
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VTK’s Visualization Pipeline

• Filters connect like thus:
filter2 SetInput(filter1 GetOutput());

• Multiple output filter example: 
vtkExtractVectorComponents. Go to www.vtk.org

• Used to extract x, y and z components of a vector
• Map each component to a different geometric object of 

some kind
• Useful for vector visualization applications
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ColorSph.cxx

• Login to Blackboard and experiment with ColorSph.zip
• Note the visualization network on the left size:

source 

filter 

sink 
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StrSph.cxx

• Try this one next
• Play with the LUT: look-up table
• LUT is a kind of transfer function

source 

filter 

sink 

filter 
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LoopShrk.cxx

• The incredible disappearing sphere
• The feedback loop causes the shrinking filter to be 

applied each time the scene is rendered
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The Object Model

1. Traditional OO approach: combine data and methods 
(processes)

2. Other option: separate data representations and 
processes

3. VTK: mostly like #2, with some small aspects of #1
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The Functional Model: Example
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The Visualization Model

• Omits the  graphical representations from the functional 
model
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Pipeline Topology

• Sources, filter and mappers are typed objects
• Input and output have types that must be respected
• Example: sphere source object may generate polygons or 

some other representation as output
• VTK is strictly-typed
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Multiplicity

• Multiplicity refers to the number of inputs and outputs 
of a process object
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Loops

• Most visualization networks are acyclic, but feedback is 
sometimes a useful option to have

• Output of a process object affects the input of a process 
object “upstream”
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Executing the Pipeline

• Execution refers the act of causing each process object 
to operate

• Pipeline re-executed as input data changed
• Ideally, a process will object will execute only its 

particular input is changed
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Execution Control

• Demand-driven execution vs. event-driven execution
• With demand-driven execution, we generate output upon 

request and execute only that portion of the pipeline 
affecting the output

• With event-driven execution, every change to a process 
object or its input causes a re-execution of the pipeline

• We should execute a process object only when its inputs 
have changed

• How do we know when this happens?
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Explicit Execution

• With an explicit execution approach, a special executive 
object monitors the process objects’ parameters and 
inputs

• Orders re-execution of pipeline when necessary
• Can be demand-driven or event-driven
• Demand-driven: executive keeps track of changes and 

executes pipeline on request
• Event-driven: executive is notified when a changes 

occurs, who then re-executes the network

Copyright © 2008 Hong Qin 220



Implicit Execution

• With an implicit execution approach, a process object 
executes itself only if its input or parameters change

• When object’s output is requested, that object requests 
input from its input objects

• Repeats recursively up the pipeline to the sources
• Source objects check their parameters and external 

inputs, and re-execute if necessary (update pass)
• Recursion unwinds as downstream processes re-execute 

as necessary (execution pass)
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Implicit Execution

• Implicit execution requires demand-driven control
• Execution occurs when output is requested
• Simple approach
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Explicit vs. Implicit Execution
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Conditional Execution

• Execution performed only if a condition is met
• Example: map data through different color lookup tables 

depending on the range of the data
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Memory and Computation Tradeoff

• Visualization of non-trivial data is computationally 
expensive both in time and memory

• Static vs. dynamic memory allocation – what’s the 
difference?

• In a visualization network, a static memory model
maintains all the intermediate results in memory

• In a dynamic memory model, intermediate results are 
discarded as soon as they are no longer needed

• Static: less computation required later on
• Dynamic: more computation required later on
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Static and Dynamic Memory Models

• Use static when data size is small, vis. network traversed 
infrequently

• Use dynamic when data size is large, vis. network 
traversed frequently
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Reference Counting

• Reference counting: each memory cell maintains a 
count of the number of other memory cells that point to 
it

Copyright © 2008 Hong Qin 227



Reference Counting

• Object freed once its reference count becomes zero
• This is how garbage collection works in languages like 

Java
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Programming Models

• Visualization Models: application software vs. 
programming libraries

• Example: fluid flow visualization system vs. library 
written in C++

• Third option: visual tool lets you build the network using 
a graphical interface, like IBM Data Explorer

• This is called a visual programming model
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Example IBM DX Visualization Network

Copyright © 2008 Hong Qin 230



Programming Models

• Scene graph model
• A scene graph a tree-structure that represents objects in 

an order defined by the tree
• Not a visualization network! Rather, control rendering 

process
• Nodes contain 3D shapes and transformations
• Can work in conjunction with visualization networks
• Vis. network defines 3D shapes, scene graph draws and 

transforms them
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Simple Scene Graph
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How VTK Fits In

• VTK borrows ideas from the above approaches
• It has aspects of visual programming systems as well as 

programming libraries
• Idea: be general enough to support many visualization 

applications, but not so general to require extremely 
extensive coding
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Example of VTK’s Implicit Execution 
Framework with Multiple I/O Filters
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VTK’s Visualization Pipeline

• Conditional execution implemented using C++ control 
structures (if statements, while loops, for loops, etc.)

• Computation/memory tradeoff can be controlled; by 
default, intermediate results saved to reduce computation
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Basic Data Representation
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Data Representations

• Many ways to represent data
• Points (e.g., 3D raster, point cloud)
• Lines
• Vectors
• These are all discrete data representations
• Data can be regular or irregular
• Regular = relationship exists between data points
• Compare: 3D raster vs. point cloud
• Data also has dimension: 1, 2, 3, …, n, …
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Dataset = Structure + Attributes
• Structure = topology and geometry
• Topology refers to characteristics unchanged by 

transformations (holes, handles, branches)
• Geometry refers to (x,y,z) positions of data points

• In VTK, cells define topology, points define geometry
• See Figures 5-2 and 5-3 for examples of cell types
• Linear cell types and non-linear cell types
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• Cell topology defined by connectivity of vertices
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Cell Example: Hexahedron

• Vertices listed in special order define topology
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Non-Linear Cell Decomposition

• Non-linear cells must be linearized for visualization
• Break non-linear cells into linear cells
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Non-Linear Cell Decomposition
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Attribute Data

• Data values (attributes) usually assigned to vertices, as 
opposed to edges or faces

• Why?
• Interpolation concept easy to apply across edges and 

faces
• Common attributes include:

– Temperature, density, velocity, pressure, heat flux, 
chemical concentration, others

• Scalars, vectors, tensors
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Attribute Data

• Scalar data is data that is single-valued at all locations in 
a data-set

• Examples: temperature, stock price, elevation
• Vector data is data with magnitude and direction
• Examples: position, velocity, acceleration
• Normals (direction vectors) are vectors of magnitude 1
• Texture coordinates map a point from Cartesian space 

into a 1-D, 2-D or 3-D texture space
• Textures let us add color, transparency and other details 

to geometric shapes
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Attribute Data

• Tensors are mathematical generalizations of vectors and 
scalars

• Usually written as matrices
• Tensor visualization is extremely difficult
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Types of Data-sets

• Regular vs. irregular structure – refers to topology of 
data-set

• Data-sets with regular topology, we do not need to store 
connectivity information

• Points themselves can be regular or irregular
• If irregular, we need to store the positions
• Unstructured data must be explicitly represented
• High computational and storage costs usually
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Polygonal Data

• Vertices, edges, polygons, polylines, triangle strips, etc.
• Triangle strips can represent n triangles using only n+2 

points, vs. 3n points normally required
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Image Data

• Collection of points and cells on a regular, rectangular 
grid

• Also called a “raster”
• (Book uses word “lattice” – avoid!)
• 2D grid image
• 3D grid volume
• i-j-k coordinate system parallel to global x-y-z coordinate 

system
• Simple representation, but “curse of dimensionality”
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Rectilinear Grid

• Regular grid, but spacing along axes can vary
• Need to store 3 extra arrays of length nx, ny, nz –

dimensions of the grid
• Each array stores spacing, basically
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Structured Grid

• Regular topology, irregular geometry
• Curvilinear grids most common type
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Unstructured Points

• No topology, irregular geometry
• Also called point clouds
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Unstructured Grid

• Irregular topology and geometry
• Any combination of cells permitted
• Encountered in relatively few applications
• e.g., computational geometry
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VTK Data Representations

• vtkFloat Array
• vtkImageData
• vtkRectilinearGrid
• vtkStructuredGrid
• vtkPolyData

– vtkCellArray
• vtkUnstructuredGrid
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VTK Data Representations
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VTK Cell  Types
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Example: Cube.cxx
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Example: Vol.cxx
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Example: SGrid.cxx
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Example: RGrid.cxx
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Example: UGrid.cxx
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Fundamental Visualization 
Algorithms
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Visualization Algorithms

• “Algorithms that transform data are the heart of 
visualization”

• Algorithms classified according to structure and type of 
data

• Geometric transformations change geometry but not 
topology

• Examples: translation, rotation, scaling
• Topological transformations change topology but not 

geometry
• Example: convert from regular to irregular grid
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Visualization Algorithms

• Attribute transformations convert or create attributes 
in data

• Example: convert vector to scalar
• Combined transformations change data structure and 

attributes
• Algorithms that change data type include scalar 

algorithms, vector algorithms,  tensor algorithms, and 
modeling algorithms

• Volume visualization and vector visualization have 
their own special algorithms
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Scalar Algorithms

• Color mapping – map scalar data to colors
• Why scalars?
• How would you map a vector to a color?
• Color lookup table (LUT) – attributes inside particular 

range are mapped to color

Copyright © 2008 Hong Qin 267



Transfer Functions

• More general form of lookup table
• Can map data to color as well as transparency
• Usually expressed as actual functions
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Transfer Functions
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Transfer Functions

• Difficult to design
• Semi-automatic systems exist: transfer function design 

galleries
• Idea: generate random transfer functions, user selects 

ones he likes, system mutates them using a genetic 
algorithm to create new ones
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Transfer Function Design Galleries
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Transfer Functions

• The assignment of color and transparency to density is 
also called classification
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Transfer Functions
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Contouring

• Isocontour and isosurface extraction can reveal 
structure of data (e.g., isobars on weather maps)

• Separate data into regions
• Isocontours: connected line segments
• Isosurfaces: triangular meshes
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Contouring

• Isolines cross cell boundaries
• Use interpolation to compute crossing point
• Marching squares algorithm processes each 

quadrilateral cell independently
• Each vertex may be inside or outside (or on) contour
• How many cases must we consider?
• Ambiguous cases
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Marching Squares Cases
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Marching Squares Ambiguous Case
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Marching Cubes

• Marching cubes algorithm extracts isosurfaces from 3D 
rasters

• Very famous algorithm
• How many cases of hexahedral cells must we consider?
• Each of 8 vertices may be inside or outside
• 28 = 256
• Lots of symmetry really only 15 cases to consider
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Marching Cubes Cases
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Marching Cubes Ambiguous Cases
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Marching Cubes Complementary Cases
Used to Avoid Holes
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Marching Triangles & Tetrahedra

• Can extend marching squares to marching triangles, and 
marching cubes to marching tetrahedra

• Divide squares into triangles, cubes into tetrahedra 
(how?) and then run different algorithms

• Tradeoff for both algorithms: simplicity vs. memory 
usage
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Contouring Examples
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Scalar Generation

• Vectors and other n-D quantities can be turned into 
scalars

• Example: taking magnitude of vector
• Example: Hawaii terrain visualization created by 

projecting vector onto vertical
• Normalize vectors to give maximum magnitude of 1.0
• Steepest slope mapped to brightest color
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Scalar Generation
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Vector Field Visualization

• Streamlines
– Integration through vector field

• Stream ribbons
– Connect two streamlines

• Streamtubes
– Connect three or more streamlines 

• Stream surfaces
– Sweep line segment through vector field
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Streamlines Example

Color indicates temperature of air flowing through engine
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Streamribbons Example
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Streamtubes Example
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Streamesurfaces Example
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Advanced Computer Graphics and 
Volume Rendering
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Transparency and Alpha Values

• Why is transparency useful?
• Peer into and through objects
• Volume visualization
• α = opacity
• α = 1 opaque
• Modern graphics hardware supports alpha blending
• Need to composite transparent actors
• Does order matter?
• Yes
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Alpha Compositing
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Alpha Compositing

• s represents surface of actor
• b represents what is behind actor’s surface
• Suppose As = 0?  As = 1?
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Alpha Compositing Example

• Use α = 0.5 for all 3 polygons
and work through the
calculations
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Compositing Order Matters!

• Recall the z buffer algorithm, which is used for…?
• Will not necessarily composite polygons in right order
• Usually must use software to order actors by their 

increasing distance from camera
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Texture Mapping

• Idea: add detail to image without requiring modeling 
detail

• Map picture called a texture map onto object
• Texture coordinates tell you where on object to put 

picture
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Texture Mapping

• 2D texture mapped onto 3D geometry
• Each 3D vertex assigned 2D texture coordinates, usually 

written (u,v)
• Texture is an RGBA image made of texels, texture 

elements
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Texture Mapping in Visualization

• Animated texture maps
• Flow visualization
• Colors cycle in a loop to show direction of flow
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Volume Rendering

• Image-order and object-order volume rendering
• Ray-casting vs. splatting
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Ray Casting

• Idea: send viewing ray into volume and examine data 
encountered to compute pixel’s color
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Ray Casting

• Each ray has a different profile we can draw as a 2D 
curve

• Essentially we will numerically integrate (?) the curve
• Material density, illumination parameters, other 

attributes affect this integration
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Ray Profile 
Example

• 8-bit density volume
• Range: 0…255
• x-axis: distance from 

view plane
• y-axis: density
• image 3: distance to 

first voxel with 30+ 
density value

• image 4: alpha 
compositing



Maximum Intensity Projection

• MIP simple yet effective technique
• Depth perception lost, though
• Can do colored MIP also
• Which blood vessel is in

front of the others?
• No compositing, so 

colors don’t blend
together
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Ray Traversal

• We take small steps along the ray
• Don’t always land on a voxel
• Need to estimate density somehow (?)
• Interpolation!
• Nearest neighbor interpolation: just find closest voxel 

and use its density
• Trilinear interpolation: take some weighted sum of 8 

nearest voxels’ densities
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Interpolation Techniques
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Ray Traversal

• Usually we traverse the ray at uniform intervals

• Parametric form: (x, y, z) = (x0, y0, z0) + (a, b, c) t
• (x0, y0, z0) is the origin of the ray
• (a, b, c) is the normalized ray direction vector
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Ray Traversal Pseudocode

• t1 and t2 are distances where ray enters and leaves 
volume, respectively
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Step Size Affects Image Quality
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Step Size

• Small step size = higher quality, slow speed
• Large step size = converse
• Large step size causes the banding effect
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Voxel-based Ray Traversal

• Jump from one voxel to another instead of along a 
continuous ray

• Related to concept of connectedness
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Voxel-based Ray Traversal
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Object-Order Volume Rendering

• Back-to-front or front-to-back processing of voxels
• Requires a triply nested loop
• for z = … { 

for y = … { 
for x = … {
… 
}

} 
}

• Select plane most parallel to image plane
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Splatting

• Fuzzy sphere (called the kernel) placed around each 
voxel

• Kernel projected onto viewing plane, producing a 
footprint

• Repeat for all voxels
• Kernel size affects image

quality
• Footprint discretized

to a resolution appropriate
for image resolution

Copyright © 2008 Hong Qin 314



Implementing Splatting

• Software-only vs. hardware-assisted
• Footprint table – slices generic kernel into image-aligned 

slabs
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Texture Mapping-based 
Volume Rendering

• In 2D: project and composite axis-aligned slices onto 
image plane

• In 3D:  cut volume into slices that are parallel to the 
image plane (“image-aligned slices”)

• Use interpolation and compositing in both cases

using 3D 
texture 
mapping 
hardware

using 2D 
texture 
mapping 
hardware
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2D Texture-Mapped 
Volume Rendering Example
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Shear-Warp Volume Rendering

• Hybrid technique – aspects of object-order and image-
order rendering

• Idea: convert a rotation of the camera into a shearing of 
the volume
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Shear-Warp Volume Rendering

• Need to use bilinear interpolation to resample the slices
• Front-to-back ray traversal
• Essentially a very efficient form of ray-casting
• Downside?  Extra interpolations introduce error and hurt 

image quality
• Requires 3 copies of the volumes so we can shear 

volume along direction most parallel to image plane
• Shear in xy-plane, xz-plane or yz-plane
• Need to be able to process raster in any order
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Volume Classification

• Assignment of density ranges to categories
• Represented by transfer functions
• “Material percentage” transfer functions:
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Volume Classification

• Usually we classify a volume using red, green, blue and 
opacity transfer functions

• Two possibilities to apply classification during ray 
traversal:
1. Interpolate voxel densities and then compute color
2. Assign colors to voxels and then interpolate colors

• Option 1 tends to make nicer looking images
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Volume Classification

• We can also compute the gradient of the density field 
and use that to modulate the color

• Gradient is a vector that tells you how the material is 
changing at a position

• Vector of first partial derivatives in x, y and z:
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Volume Classification

• If the vector g is long, that means the material is 
changing quickly

• Example: boundary between bone and flesh
• Implies presence of a surface
• Modulate color based on

gradient magnitude to ignore
regions of homogeneous
material distributions

• Small magnitude = little or
no change of material
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Uses of the Gradient Vector

• We can treat the gradient as a normal vector and evaluate 
the lighting equation to shade and illuminate volumes
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Volumetric Shading

• Can reveal surfaces inside 
the data

• Compare:
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Volumetric Shading: How?

• Gradient allows us assigns a 
direction vector to each voxel

• This (normalized) vector is used 
just like the normal vector in 
surface graphics

• It will modulate the color we 
assign to samples and thereby 
allow us to create 3D effects

• Look at the skull on the right
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Volumetric Shading

• But how do we incorporate color, opacity and shading 
information?

• First we interpolate the density at a given sample 
position

• Interpolate gradient at same position
• Then assign color and opacity to each sample, and shade 

using interpolated gradient
• When we shoot the rays through the volume, we have to 

composite all these samples together
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Gradient Interpolation

• At start of processing, 
compute gradient at each 
voxel

• During ray traversal, 
estimate gradient with 
trilinear interpolation

• Like densities (and unlike 
colors), gradients are 
intrinsic attributes of 
models
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More Volumetric Shading Examples
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Gradient Modulation

• With gradient modulation
in we modulate opacity/color 
of a voxel by gradient

• We multiply opacity and 
color by some function of 
gradient magnitude (or given 
by a transfer function, #5)

• Regions of high gradient 
magnitude increase opacity; 
regions of low gradient 
magnitude decrease opacity

• Explain this image
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Volumetric Global Illumination

• Global illumination refers to reflections, shadows and 
other effects that cannot be computed locally
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Regions of Interest

• An ROI is simple a portion of the data-set of particular 
importance

• Use cropping planes
to reveal interior

• Simple idea, but very,
very useful

• Eliminates set of 
voxels from 
consideration
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Image Processing Primer
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Image Processing

• Operations performed over images (2D or 3D)
• Purpose:

– enhance certain features
– de-emphasize other features

• Implemented as filters or transformations:
– some operate on the entire set of pixels at once (global 

operations)
– examples: brightness and contrast enhancement
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Image Processing

• Some operate only on a subset of pixels (local operations 
in a pixel neighborhood)

• Examples: edge detection, contouring, image sharpening, 
blurring, “noise” reduction
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Intensity Transformations

• Modify distribution of gray levels in an image
• Example: reduce number of grayscale levels used to 

represent images
• Reasons: memory, display/printing limitations, cost
• Reduce number of bpp (bits per pixel) (e.g., 24 8 bits)
• Usually intensity transformations used for image 

enhancement
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Intensity Transformations

• An intensity transformation most easily expressed as 
function T(p) over domain of possible pixel intensities

• New pixel intensity given as height of function
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Intensity Transformation Examples

• What would happen to the image in each case?

• What does the right-bottom image look like?

? ?
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Contrast Enhancement

• Often one is given an image with 
poor contrast

• Image seems washed out and 
features are hard to see

• Need to enhance the contrast 
somehow

?
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Contrast Enhancement

• One technique for fixing such 
images is process called contrast 
stretching

• Basic idea: perform an intensity 
transformation to cause darker 
shades to become darker, and 
lighter shades to become lighter
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Contrast Enhancement

• Piecewise linear functions are typically used to specify 
contrast stretching instead of continuous ones 

• Give greater user control

?
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Thresholding

• Another way of manipulating 
contrast is called thresholding

• What’s going to happen?

?
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Image Transformations

• Another example of thresholding using a linear ramp

• Why were some of the graylevels preserved?
• Compare with cat image

?
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Histograms

• An important concept in image processing (and 
probability & statistics) is the histogram

• Suppose we can display 256 discrete gray level 
intensities, ranging from 0 to 255 (8-bit image)

• To generate a histogram of the image, we would first 
count the number of pixels having each intensity:
– p0: n0 = n(p0)
– pi: ni = n(pi)
– etc.
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Histograms

• Then we can plot the counts in a graph to view 
distribution of intensities across image

• Q: Given an array 
histogram[], AND 
array of pixels with 
associated intensities 
(pixels[i].intensity), 
how would you 
build the histogram?

• A: histogram[pixels[i].intensity]++ in a for loop over 
pixels[]
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Example Histograms

Copyright © 2008 Hong Qin 347



Histogram Equalization

• One automated (i.e., algorithmic) technique for 
improving contrast is histogram equalization

• Basic idea: increase range of intensities displayed in an 
image by “stretching” the histogram 

• Range of displayed intensities becomes more uniform

Copyright © 2008 Hong Qin 348



Histogram Equalization

• The discrete histogram equalization equation is

• pmax is maximum possible intensity (not necessarily 
maximum intensity that happens to appear in the image)

• We accumulate a running total
• This accumulation explains

shape of function, which 
resembles a cumulative 
distribution function

max0
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k

j total
new ∑

=
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Histogram Equalization Example
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Histogram Equalization Examples
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Histogram Equalization Example
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Can This Work for Color Images?

• How do we apply histogram equalization to color image?
• Convert RGB HSV, then equalize histogram of V

• Could we equalize the H or S channels?
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Histograms Summary

• Histograms are a useful tool for studying images
• We can manipulate images to improve contrast

– contrast stretching and thresholding
– histogram equalization

• These are all global processes 
• Suppose we localize computations and use only local 

information when processing an image?
• This brings us discrete convolution or filtering
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Discrete Convolution (Filtering)

• Examples of image processing based on local 
information include smoothing and edge enhancement

• We use discrete convolution for these operations
– place a square matrix of weights called a mask over 

each pixel
– mask takes a weighted sum of neighboring pixels 

according to weights in mask
– the resulting intensity is the new output pixel
– when done for all pixels, a new image is produced of 

same resolution as original
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Discrete Convolution (Filtering)

• Very important note: do not replace computed values 
into the original image, but write to an output image

• You need a second memory buffer (array) for this
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Image Smoothing

• A smoothing mask 
averages local pixel 
neighborhood

• Each pixel’s value is 
replaced by its local 
average in the output 
image

• Can be used to remove 
noise, like speckling
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Image Smoothing

• Larger masks smooth more and cut more noise
• Always make sure that sum of all mask elements equals 

1.0
• What would happen if the sum weren’t 1.0?
• Image brightness would increase or decrease
• Smoothing the image blurs it –

larger masks blur more
• Jagged edges are 

replaced by blur

Copyright © 2008 Hong Qin 358



Image Smoothing

• Smoothing is often used in graphical applications
• Why diagonal lines (and fonts) on a screen look smooth, 

even though they are comprised of a sequence of pixels
• This kind of blurring is a special application of image 

smoothing known as anti-aliasing
• Eye is tricked into seeing a “continuous” line segment
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Image Smoothing Example

• Results of smoothing top-
left image with masks of 
size 3, 5, 9, 15, and 25

• Notice how some of 
circles completely 
disappear

• Also notice how 
smoothing lessens or even 
eliminates noise in 
rectangles
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Image Sharpening

• This operation enhances 
the edges, rather than 
blurring the image

• Edge enhancement
• It has little effect in 

smoothly varying areas 
that have no edges

• Why do this?
• Extract boundaries of 

regions, perhaps
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Image Sharpening

• An edge in image indicates 
that there is a high local first 
derivative or gradient at the 
given pixels

• Sharpening masks therefore 
implement some sort of 
differentiation

• Usually we are only interested 
in gradient magnitude
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Image Sharpening Mask Example:
The Sobel Mask

• The Sobel filter comes 
in a pair of masks

• Each mask computes an 
image for x-derivative (dx), 
other for y-derivative (dy)

• Note that the dy-masks do some 
smoothing in x-direction (dx-mask smoothes in y)

• This decreases sensitivity to noise in one direction
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Image Sharpening Mask Example:
The Sobel Mask

• But increases the sensitivity 
in the other direction, which 
is exactly what we want

• Pixel values below zero will 
occur at edges with negative 
gradients

• But this is OK because we are actually only interested in 
the magnitude, not the sign…why only the magnitude?

• High magnitude (positive or negative) indicates an edge!
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Sobel Mask

( )
dydxnew

dydxnew

imgimgimg

imgimgimg

+=

+= 2
1

22

• We use the Sobel mask by
applying the two masks
separately, thereby 
generating two images, 
imgdx and imgdy

• Their pixels are combined
by

( )2
1

22
dxdxnew imgimgimg +=
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Sobel Mask

• Since this formula is very 
computationally 
expensive, typically the 
following approximation 
is used instead:

• Again, gradient magnitude 
is what we want, not 
direction

( )
dydxnew

dydxnew

imgimgimg

imgimgimg

+=

+= 2
1

22

dydxnew imgimgimg +=
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Median Filter

• The median filter is example of an order-statistics filter
• Employs local statistical information about pixels to 

produce output pixel
• Note that we don’t use a

fixed mask for all pixels
• With a median filter, 

look at local neighbor-
hood and take median 
value 

• Naturally, this requires some kind of sorting algorithm

Copyright © 2008 Hong Qin 367



Median Filter

• Median filters are effective for removing impulse noise,
also called salt-and-pepper noise

• Suppose we took the mean instead of the median? 
• That’s just image

smoothing!
• Since median filters 

perform less blurring 
than smoothing masks, 
they end to preserve 
features like lines and edges
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Image Enhancement via Image 
Masking/Subtraction

• Say we want to visualize blood vessels in brain
• First, we take an image of brain (e.g., MRI)

– this will be called the mask
• Then we inject a contrast agent and take another image
• Then we subtract first 

image from second
• The resulting image 

shows changes 
introduced by contrast 
agent
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Image Subtraction Example
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• X-ray angiography to enhance perfused vessels

• Perfuse = to force 
fluid through something

_ =

perfused non-perfused
(mask)

contrast-
enhanced



Subsampling

• Sometimes we need to 
change image resolution

• Subsampling used to 
decrease resolution

• Supersampling used to 
increase resolution

• How can we improve 
image quality in both 
cases?

• Interpolation
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Quantization

• Very common technique in all of 
computer science

• Basic idea: represent broad range 
of values using a much smaller set

• In image processing: reduce 
number of graylevels (bits) 
represented

• For normal vectors: store only a 
subset of the infinite number of 
possibilities (unit sphere)
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Color Transformations

• Image transformations not limited to intensity trans. 
• We can also transform the H and S channels
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Volume Rendering Hardware
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Volume Rendering Hardware

• We have looked at several volume visualization 
algorithms

• Today: how to implement ray-casting in hardware
• Transformations, viewing, projection, interpolation, 

classification, shading, compositing
• Desirable: rendering large-ish volumes (~2563) in real-

time
• Limit pre-processing time and permit interactive changes 

to classification and shading parameters
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VolumePro Rendering Hardware

• VolumePro 500 – MERL/USB
• PCI hardware extension card
• Hybrid of shear-warp and ray-casting 
• 2563 volumes at 30 fps
• Parallel projection 
• Projection via ray-casting
• Gradient estimation, classification, 

Phong illumination
• Cropping and cutting planes to

visualize portions of volumes
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VolumePro 1000
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VolumePro Rendering Hardware

• Users can change classification and 
shading parameters at run-time

• Not scalable, fits entirely on a single 
chip

• Four parallel rendering pipelines
• Pipelines share information to reduce 

memory bandwidth requirements
• Supports only 8-bit and 12-bit 

volumes (CT & MRI often use 12)
• MERL TeraRecon Corp
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VolumePro Rendering Algorithm

• Ray-casting of isotropic 
and anisotropic rectilinear 
volumes 

• Shear-warp factorization 
of viewing matrix = step 
through volume along a 
major axis

• Scaling and shearing (L) 
transform anisotropic 
volume into isotropic
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VolumePro Rendering Algorithm

• Permutation matrix P
makes axis most parallel 
to viewing direction the z
axis

• Shear matrix S projects 
volume onto base plane 
via ray-casting

• Rays cast from base plane 
into the volume, rather 
than from image plane
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VolumePro Rendering Algorithm

• Guarantees one-to-one 
mapping from sample 
points to voxels

• Base plane transformed to 
image plane by warp 
matrix
W = M • L-1 • P-1 • S-1

• Bilinear interpolation 
done in external 3D 
graphics hardware 
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VolumePro Ray-Casting Pipeline

• By design, each voxel 
read only once from 
memory

• Pipelined architecture 
means voxels processed 
as quickly as they can be 
read from memory

• Major phases: 
interpolation, gradient 
estimation, classification 
and shading, compositing
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Interpolating Voxel Values

• Interpolation unit 
converts each beam of 
voxels in a scanline into a 
stream of samples

• Voxel Slice FIFO and 
Voxel Beam FIFO locally 
store voxels to maintain 
neighborhood of 
“current” voxel

• Trilinear interpolation 
requires weights

• Weight Generator 
calculates weights

• All rays are parallel 
weights identical for all 
samples in a single slice
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Gradient Estimation

• Gradient Estimation unit 
uses central differences to 
estimate gradients

• We have x and y
neighbors, but what about 
z?

• We maintain previous and 
next slices into two FIFO 
buffers

• Gradient estimation unit 
lags a little behind the 
interpolation unit
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Gradient Magnitude

None Illumination

• Can multiply opacity or 
specular illumination (!) 
by gradient magnitude to 
create certain effects

• Gradient magnitude 
modulation of the 
specular illumination will 
highlight curved regions 
and attenuate flat regions

Opacity
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Assigning Color and Opacity

• Post-shaded pipeline (we 
already did interpolation)

• Look-up tables can be 
changed at run-time 
easily

• LUTs make classification 
very rapid

• Transfer functions given 
in are converted by 
hardware driver in OS to 
LUT format
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Sample Illumination

• Phong illumination
• User provides kd and ks

• Diffuse and specular 
coefficients

• Reflectance maps convert 
gradient vector to 
illumination value
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Reflectance Map

• Reflectance maps constructed by taking a subset of all 
possible gradient directions, and for each direction and 
given viewpoint, compute the illumination

• Changed when light source(s) changed
• Directional lights but no positional lights
• How does the type of light affect shading?
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Accumulating Color Values Along Rays

• Compositing happens in 
front-to-back order

• FIFOs store intermediate 
results and wait for the 
next sample to arrive in 
the stream

• When ray passes out of 
volume, pixel finished

• When all rays are 
finished, warp base plane 
to image plane

• Warping done by texture-
mapping base plane onto a 
quadrilateral

• 3D graphics hardware 
rasterizes quadrilateral
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Example Visualizations

MIP Illumination, gradient 
magnitude modulation of 

opacity

No illumination
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Advanced Features of VolumePro: 
Supersampling

• Sample data at a higher frequency than voxel spacing
• VolumePro does it only along z direction, 

i.e., along rays cast into the volume
• Minor changes to architecture
• A supersampling factor of k reduces 

frame rate by a factor of 1/k
• Compare top and bottom images
• Top = no supersampling
• Bottom = 3x supersampling
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Advanced Features of VolumePro: 
Supervolumes and Subvolumes

• Hardware PCI card can handle volumes of up to 
dimension 256 in its 128 MB on-board memory

• To render large volumes, partition volume into smaller 
blocks, render each, and combine resulting images in 
software

• Software driver partitions volumes
• Gradient estimation, trilinear interpolation
• Memory blocks swapped to and from main memory 

across PCI bus
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Advanced Features of VolumePro: 
Cropping and Cut Planes

• Hide portions of data using parallel planes
• Why do this?
• See cross-sections, interior of volume 
• Cropping along volume planes only
• Why restrict it to only parallel planes?
• Union,

intersection,
difference
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Advanced Features of VolumePro: 
Hardware Cursor

• Hardware features a built-in 3D 
cursor

• Generated by hardware, controlled in 
software

• Allows interrogation of volume 
• How might we implement this cursor 

in hardware?
• Compositing unit generates extra 

voxels for cursor and composites 
them with volume 
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Clipping Planes

• VolumePro supports a single clipping 
“plane” with arbitrary thickness 

• Samples visible if between two planes
• What problem might be caused by cutting 

data along an arbitrary plane?
• Aliasing! So how could we 

make “smooth cuts”?
• Create a smooth transition 

region between boundary of 
inside and outside
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vg500 Chip Architecture: Parallel Pipelines

• Chip implementing 
rendering is the vg500

• 3.2 million transistors, 125 
Mhz clock frequency

• To render 2563 voxels 30 
times per second, hardware 
processes over 500 million 
voxels per second

• Four parallel pipelines
• 125 million voxels/sec  per 

pipeline
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vg500 Chip Architecture: Voxel Memory 
Organization

• Voxels are stored in a 
very intricate, skewed
fashion to permit parallel 
reads and avoid bus 
contention

• Done to prevent delays 
for any viewpoint the user 
chooses

• View-independent 
memory layout
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VolumePro PCI Card

• First version released in 1999
• 66 MHz PCI bus interface
• Can connect multiple cards together via high-speed 

network for parallel rendering
• Separate volume across boards
• Or, can integrated 

multiple vg500 chips on 
a single, multi-processing 
board
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VLI – The Volume Library Interface

• VLI is C++ class that 
provide access to vg500 
chip

• Works with 3D graphics 
library, like OpenGL

• Contains software hooks 
for all major functionality 
of hardware
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VolumePro 1000
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Vector Field Visualization
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Vector Field Visualization

• We have looked primarily at scalar field visualization
• Iso-surface extraction, volume rendering algorithms
• These algorithms do not extend to vector-valued 

quantities, which may have 2, 3 or more values per voxel
• What would it mean to volume-render a field of velocity 

vectors?
• How would we perform classification, shading, 

compositing, and the other stages of the pipeline?
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Vector Field Visualization

• Computational fluid dynamics (CFD) has been the 
classical application driving R&D in vector visualization

• Why?  Many components at a given (x,y,z) position: 
velocity, temperature, pressure, rotation, etc.

• Many vector field visualization techniques, some quite 
clever

• Remember goal of visualization: understand important 
aspects and features of complex data-sets
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Data Contraction

• Reduce vector-valued functions to scalar ones
• Vector magnitude
• Scalar product with a given direction vector 
• Advantage: very simple technique and uses existing 

volume visualization
• Disadvantage: very simple technique that discards too 

much information
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Streamlines, Pathlines, Streaklines

• Particle advection (line 
integration)

• Streamline – path always 
tangent to flow field

• Streamlines best used for 
stationary flows, flows that 
do not change as a function 
of time

• Color-coded
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Streamlines, Pathlines

• Pathline – similar to streamline; trajectory that results if 
single particle is released and traced over time

• If flow is stationary (time invariant), pathline coincides 
exactly with the streamline at a given starting position
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Particle Systems

• Particles are injected into 
the flow field, which may 
be time-varying 
(turbulent)

• Enter, travel, leave
• Animated particles show 

direction and magnitude 
of velocity
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Ribbons and Tubes

• Multiple particle advections per segment in the 
discretized line integration

• Connect two of them together to generate a ribbon, more 
to make a tube
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Hedgehogs

• Draw the vectors themselves
• Advantages: simple
• Disadvantages: many!
• Clutter
• Direction ambiguity 
• Spatial ambiguity (start/end 

locations of arrow)
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Streamlines + Hedgehogs

• Can you identify the physical phenomenon being 
visualized here?
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Stream Surfaces

• Calculate multiple stream lines
• Discretize
• Connect points to form triangles
• Diverging and converging flow causes problems
• Divergence: add extra vertices
• Convergence: merge vertices
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Stream Surfaces
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Streamballs

• Basic idea is to create a continuous function f(x,y,z).
• Take isocontours of this function.
• Use meta-balls (not meatballs) to generate this function
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Streamballs
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Flow Volumes

• Imagine standing outside with a smoking flare in hand
• Smoke trail guided by wind field
• This is the basic idea of flow volumes
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Flow Volumes

• Seed polygon (square) is used as smoke generator
• Constrained such that center is perpendicular to flow
• Square can be subdivided into a finer mesh
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Flow Volumes

• Fast rendering on commodity hardware
• Can color the smoke to indicate other quantities
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Flow Volumes

• Currently defined for regular, rectilinear, curvilinear, 
multigrid and unsteady meshes
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Flow Volumes – Unsteady Flows

• Can work for unsteady flows for all mesh types 
(curvilinear, rectilinear, irregular, etc.)

• Complex twisting must be handled carefully
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Textured Splats

• Basic idea: map reconstruction footprint from splatting 
to a 2D textured square

• Splat textures oriented in projected direction of flow
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Textured Splats

• Movies 18h, 18i
Wind direction 
and magnitude

Soil conductivity

Copyright © 2008 Hong Qin 421


	Fundamentals of Scientific Visualization and Computer Graphics Techniques
	What is Scientific Visualization?
	Why is Visualization Useful & Important?
	Visualization Terminology
	Visualization Terminology
	Visualization Terminology
	Motivations of Visualization
	Motivations of Visualization
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Volume Visualization Examples
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Image Processing, Computer Graphics & Visualization
	Image Processing, Computer Graphics & Visualization
	The Visualization Process
	An Alternate Visualization Pipeline
	Other Important Issues
	Current Trends in Visualization
	Summary & Questions
	Traditional Visualization: Historical Perspectives
	Traditional Visualization
	Graphical Display
	Surprise Hidden in the Data
	Dr. John Snow’s Cholera Map of London (1854)
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Traditional Visualization (“Information Graphics”)
	Graphical Display – Large Datasets
	Time-Series Display
	Compare with this way…
	Visualization in Narrative Form
	Computer Graphics vs. Scientific Visualization
	What is Computer Graphics?
	Computer Graphics
	Lights, Cameras and Objects
	Lights, Cameras and Objects
	Lights, Cameras and Objects
	Surface Ray-Tracing
	Rendering Processes:Image-Order and Object-Order
	Rendering Processes:Image-Order and Object-Order
	Rendering Processes:Image-Order and Object-Order
	Surface Rendering
	Surface Graphics
	Surface Graphics – Pros and Cons
	Surface Graphics
	Volume Graphics
	Volumetric Representations
	Volume Graphics
	Volumetric Ray-Tracing
	Volume Rendering
	Volume Rendering
	Volume Rendering
	Volume Graphics
	Surface Graphics vs. Volume Graphics
	Human Visual System andColor Theory
	Human Visual System and Color Theory
	Human Visual System
	Human Visual System
	Rods
	Cones
	Color
	Color Receptors
	Human Eye Color Perception
	Human Eye Color Response
	Human Eye Color Perception
	Information Coding with Color
	Information Coding with Color
	Information Coding with Color – Helpful Tips
	Color Response and Perception Summary
	Color Response and Perception Summary
	Computer Representation of Color
	RGB Color Arithmetic
	RGB Color Model
	HSV Color Model
	HSV Color Model
	HSV Color Model
	HSV Color Model
	HSV Examples
	RGB vs. HSV
	Modeling Methods and Techniques for Illumination and Shading
	Illumination and Shading
	Illumination
	Shading Model
	Total Light Decomposition
	Shading Model
	Local vs. Infinite Light Sources
	Surface Properties – Ambient Lighting
	Surface Properties – Ambient Lighting
	Surface Properties – Ambient Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Total Illumination
	Surface Properties – Total Illumination
	Other Shading and Illumination Effects
	Global Illumination
	Shadows
	Key Elements of Cameras and Geometric Coordinate Systems
	Cameras
	Camera Attributes
	Camera Attributes
	Camera Attributes
	Camera Manipulation
	Camera Manipulation
	Camera Manipulation
	Camera Manipulation
	Coordinate Systems
	Coordinate Systems
	Model Coordinate System
	World Coordinate System
	World Coordinate System
	View Coordinate System
	Display Coordinate System
	Coordinate Systems
	Coordinate Systems
	Coordinate Transformations
	Object Representations
	Coordinate Transformations
	Coordinate Transformations: Translation
	Coordinate Transformations: Translation
	Coordinate Transformations: Translation
	Coordinate Transformations: Scaling
	Coordinate Transformations: Scaling
	Coordinate Transformations: Rotation
	Coordinate Transformations
	Coordinate Transformations
	Actor Geometry: Modeling
	Actor Geometry: Modeling
	Actor Geometry: Actor Location and Orientation
	Actor Geometry: Actor Location and Orientation
	Camera Attributes
	Camera Attributes
	Graphics Hardware and Display Devices
	Graphics Hardware
	Raster Devices
	Raster Devices
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Raster Devices: Display Resolution
	Raster Devices: Color Depth
	Image Resolution
	How Many Bits Do We Need?
	Bit Depth
	Dithering
	Interfacing to the Hardware
	Interfacing to the Hardware
	Graphics Primitives
	Graphics Primitives
	Graphics Primitives
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Flat Surface Rendering
	Gouraud Surface Rendering
	Phong Surface Rendering
	Phong Surface Rendering
	Hidden Surface Removal
	Hidden Surface Removal:Painter’s Algorithm
	Hidden Surface Removal:Z-Buffer Algorithm
	Visualization Toolkits: Overview
	VisualizationToolKits
	VTK
	Compiling Cone.cxx
	Cone.cxx
	Cone.cxx
	Events and Observers
	Transformations
	Assemblies
	Programs for You to Try
	Data Visualization Pipeline in VTK
	The Visualization Pipeline
	Data Visualization Example
	Data Visualization Example
	Data Visualization Example
	Visualization Pipeline
	Visualization Pipeline
	Data Objects
	Process Objects
	Process Objects
	VTK’s Visualization Pipeline
	VTK’s Visualization Pipeline
	ColorSph.cxx
	StrSph.cxx
	LoopShrk.cxx
	The Object Model
	The Functional Model: Example
	The Visualization Model
	Pipeline Topology
	Multiplicity
	Loops
	Executing the Pipeline
	Execution Control
	Explicit Execution
	Implicit Execution
	Implicit Execution
	Explicit vs. Implicit Execution
	Conditional Execution
	Memory and Computation Tradeoff
	Static and Dynamic Memory Models
	Reference Counting
	Reference Counting
	Programming Models
	Example IBM DX Visualization Network
	Programming Models
	Simple Scene Graph
	How VTK Fits In
	Example of VTK’s Implicit Execution Framework with Multiple I/O Filters
	VTK’s Visualization Pipeline
	Basic Data Representation
	Data Representations
	Dataset = Structure + Attributes
	
	Cell Example: Hexahedron
	Non-Linear Cell Decomposition
	Non-Linear Cell Decomposition
	Attribute Data
	Attribute Data
	Attribute Data
	Types of Data-sets
	Polygonal Data
	Image Data
	Rectilinear Grid
	Structured Grid
	Unstructured Points
	Unstructured Grid
	VTK Data Representations
	VTK Data Representations
	VTK Cell  Types
	Example: Cube.cxx
	Example: Vol.cxx
	Example: SGrid.cxx
	Example: RGrid.cxx
	Example: UGrid.cxx
	Fundamental Visualization Algorithms
	Visualization Algorithms
	Visualization Algorithms
	Scalar Algorithms
	Transfer Functions
	Transfer Functions
	Transfer Functions
	Transfer Function Design Galleries
	Transfer Functions
	Transfer Functions
	Contouring
	Contouring
	Marching Squares Cases
	Marching Squares Ambiguous Case
	Marching Cubes
	Marching Cubes Cases
	Marching Cubes Ambiguous Cases
	Marching Cubes Complementary CasesUsed to Avoid Holes
	Marching Triangles & Tetrahedra
	Contouring Examples
	Scalar Generation
	Scalar Generation
	Vector Field Visualization
	Streamlines Example
	Streamribbons Example
	Streamtubes Example
	Streamesurfaces Example
	Advanced Computer Graphics and Volume Rendering
	Transparency and Alpha Values
	Alpha Compositing
	Alpha Compositing
	Alpha Compositing Example
	Compositing Order Matters!
	Texture Mapping
	Texture Mapping
	Texture Mapping in Visualization
	Volume Rendering
	Ray Casting
	Ray Casting
	Ray Profile Example
	Maximum Intensity Projection
	Ray Traversal
	Interpolation Techniques
	Ray Traversal
	Ray Traversal Pseudocode
	Step Size Affects Image Quality
	Step Size
	Voxel-based Ray Traversal
	Voxel-based Ray Traversal
	Object-Order Volume Rendering
	Splatting
	Implementing Splatting
	Texture Mapping-based Volume Rendering
	2D Texture-Mapped Volume Rendering Example
	Shear-Warp Volume Rendering
	Shear-Warp Volume Rendering
	Volume Classification
	Volume Classification
	Volume Classification
	Volume Classification
	Uses of the Gradient Vector
	Volumetric Shading
	Volumetric Shading: How?
	Volumetric Shading
	Gradient Interpolation
	More Volumetric Shading Examples
	Gradient Modulation
	Volumetric Global Illumination
	Regions of Interest
	Image Processing Primer
	Image Processing
	Image Processing
	Intensity Transformations
	Intensity Transformations
	Intensity Transformation Examples
	Contrast Enhancement
	Contrast Enhancement
	Contrast Enhancement
	Thresholding
	Image Transformations
	Histograms
	Histograms
	Example Histograms
	Example Histograms
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization Example
	Histogram Equalization Examples
	Histogram Equalization Example
	Can This Work for Color Images?
	Histograms Summary
	Discrete Convolution (Filtering)
	Discrete Convolution (Filtering)
	Image Smoothing
	Image Smoothing
	Image Smoothing
	Image Smoothing Example
	Image Sharpening
	Image Sharpening
	Image Sharpening Mask Example: The Sobel Mask
	Image Sharpening Mask Example: The Sobel Mask
	Sobel Mask
	Sobel Mask
	Median Filter
	Median Filter
	Image Enhancement via Image Masking/Subtraction
	Image Subtraction Example
	Subsampling
	Quantization
	Color Transformations
	Volume Rendering Hardware
	Volume Rendering Hardware
	VolumePro Rendering Hardware
	VolumePro 1000
	VolumePro Rendering Hardware
	VolumePro Rendering Algorithm
	VolumePro Rendering Algorithm
	VolumePro Rendering Algorithm
	VolumePro Ray-Casting Pipeline
	Interpolating Voxel Values
	Gradient Estimation
	Gradient Magnitude
	Assigning Color and Opacity
	Sample Illumination
	Reflectance Map
	Accumulating Color Values Along Rays
	Example Visualizations
	Advanced Features of VolumePro: Supersampling
	Advanced Features of VolumePro: Supervolumes and Subvolumes
	Advanced Features of VolumePro: Cropping and Cut Planes
	Advanced Features of VolumePro: Hardware Cursor
	Clipping Planes
	vg500 Chip Architecture: Parallel Pipelines
	vg500 Chip Architecture: Voxel Memory Organization
	VolumePro PCI Card
	VLI – The Volume Library Interface
	VolumePro 1000
	Vector Field Visualization
	Vector Field Visualization
	Vector Field Visualization
	Data Contraction
	Streamlines, Pathlines, Streaklines
	Streamlines, Pathlines
	Particle Systems
	Ribbons and Tubes
	Hedgehogs
	Streamlines + Hedgehogs
	Stream Surfaces
	Stream Surfaces
	Streamballs
	Streamballs
	Flow Volumes
	Flow Volumes
	Flow Volumes
	Flow Volumes
	Flow Volumes – Unsteady Flows
	Textured Splats
	Textured Splats

