
Fundamentals of Scientific
Visualization and Computer Graphics

Techniques

Copyright © 2008 Hong Qin 1

What is Scientific Visualization?

• Transformation of data or information into pictures (visual
outputs)

• Note this does not necessarily imply the use of computers
• Classical visualization used hand-drawn figures and illustrations

(2D means for visualization)
• Modern visualization is primarily 3D (digital images for 3D

visualization)
• In both cases, the ultimate goal is to understand important insights

about the data through visual means
• We really don’t care how we get the picture in visualization –

what picture we get is most important
• The technical ways to arrive at visual outputs are mainly

depending on computer graphics techniques

Copyright © 2008 Hong Qin 2

Why is Visualization Useful & Important?

• Which is more helpful: A or B?

16 million 3D points:

5, 34, 22, 56, 114, …

A B
Copyright © 2008 Hong Qin 3

Visualization Terminology

• Different sub-fields of visualization
• Scientific visualization

– discipline of computer science
– visualization of scientific and engineering data-sets

• Scientific visualization touches on a number of areas:
– data representations
– data processing algorithms
– visual representations
– user interfaces

Copyright © 2008 Hong Qin 4

Visualization Terminology

• Data visualization – includes data from other sources,
such as financial, marketing, business

• Sometimes involves statistical analysis and other
analysis techniques not employed in scientific
visualization

• Can you think of an example of financial information we
might want to visualize?

• So we might say that scientific visualization is a type or
subset of data visualization

• We will be studying scientific visualization primarily,
but look at more general data visualization occasionally

Copyright © 2008 Hong Qin 5

Visualization Terminology

• Information visualization – abstract data sources, like
WWW pages and databases

• No natural mapping to spatial domain (2D, 3D or n-D)
• How/what would we visualize in Amazon.com’s book

database?

• Visual analysis of
customer call center
performance at British
Telecommunications:

Copyright © 2008 Hong Qin 6

Motivations of Visualization

• Make sense of huge data-sets
– NYSE makes hundreds of millions of transactions per

day
– RHIC at BNL produces terabytes (240) of data with

each experiment
• Uncover insights hidden in the data
• Extract important features and meaningful knowledge of

the data to assist in the decision-making process
• But why use visual means?

Copyright © 2008 Hong Qin 7

Motivations of Visualization

• Reduce time and save money
• Digital prototyping

– Design model in virtual reality (VR)
– Test model in VR
– Refine and re-test

• Flight simulation
– Why?

• Virtual training
– Why?

Copyright © 2008 Hong Qin 8

Examples of Visualization

• Medical imaging
• X-ray Computed Tomography (CT)

– pronounced as both “cat” or “see-tee”
• Magnetic Resonance Imaging (MRI)

– uses very powerful magnetic fields

Copyright © 2008 Hong Qin 9

Examples of Visualization

• CT and MRI produce
slice planes

• Cross-sections of the
patient

• Slices are combined to
produce a volumetric
representation

• But CT and MRI
machines just output
numbers – where do the
gray values come from?

Copyright © 2008 Hong Qin 10

Examples of Visualization

• A volumetric data-set is a 3D regular grid, or 3D raster,
of numbers that we map to a gray scale or gray level

• An 8-bit volume could represent 256 values [0,255]
• Human visual system naturally groups like-colored

points, or voxels, into regions

Copyright © 2008 Hong Qin 11

Volume Visualization Examples

Copyright © 2008 Hong Qin 12

Examples of Visualization

• Terrain visualization
• What are some

applications?
• Satellite imaging
• x, y, elevation
• Terrain texture

(photographs)
• Cloud cover
• What are some others?

Copyright © 2008 Hong Qin 13

Examples of Visualization

• Scientific simulations
• Visualize the results of

very sophisticated super-
computer simulations

• Computational fluid
dynamics example:

• What quantities are
being visualized?

• Why bother?

Copyright © 2008 Hong Qin 14

Examples of Visualization

• Virtual archaeology
• How is a mummy examined? A fossilized dinosaur egg?
• What’s wrong with those methods?

Copyright © 2008 Hong Qin 15

Examples of Visualization

• Map of artificial sky
brightness over Europe.
This is an effective tool
for measuring “light
pollution:” brightness of
lights on ground affect
ability to see starlight.
Black: many stars visible.
Red: few stars visible.

Copyright © 2008 Hong Qin 16

Image Processing, Computer Graphics &
Visualization

• Image processing
– study and analysis of 2D pictures or images

• Computer graphics
– process of creating images with a computer

• Visualization
– process of exploring, transforming and viewing data

as images
• What’s in common?
• How do these three fields overlap?

Copyright © 2008 Hong Qin 17

Image Processing, Computer Graphics &
Visualization

• Computer graphics outputs an image
• Visualization may employ graphics to generate images
• Visualization may employ image processing to study

images
• Visualization

– usually works with 3D or n-D data, for n >= 3
– employs data transformation to enhance meaning of

the data
– is usually interactive and required human intervention

Copyright © 2008 Hong Qin 18

The Visualization Process

1. Data acquisition
2. Data transformation
3. Data mapping (e.g., to shapes & color)
4. Display (via computer graphics)
• Steps 2-4 are repeated as necessary to generate multiple

visualizations

Copyright © 2008 Hong Qin 19

An Alternate Visualization Pipeline

data
sensors,

scanners,
cameras

super-
computers

geometric
model

(structures)

image

(signal)

film
recorder

display
device

sampling/

scanning

image
processing

computation/

simulation

computer
graphics
computer

vision

polygonization
discretization

Copyright © 2008 Hong Qin 20

Other Important Issues

• Accuracy
– Safety, time, money, efficiency

• Ethics
– What are some ethical concerns in visualization?

(consider medical visualization)
• Psychological

– Human visual/perception system
– What makes an effective visualization?

Copyright © 2008 Hong Qin 21

Current Trends in Visualization

• Scanning technologies (esp. MRI, CT) continue to
improve

• New applications (virtual medical exam) for an aging
population

• Multidimensional data (vector fields)
• Information visualization is very hot
• Homeland security generating new applications (threat

planning in NYC)

Copyright © 2008 Hong Qin 22

Summary & Questions

• Visualization overview
• Important visualization terminology
• Applications of visualization
• Connection with other fields
• What’s the difference between computer graphics and

visualization?

Copyright © 2008 Hong Qin 23

Traditional Visualization: Historical
Perspectives

Copyright © 2008 Hong Qin 24

Traditional Visualization

• What are the origins of visualization?
• What are some of the troubles inherent in trying to

visualize data?
• What makes a visual representation of some data

faithful, helpful, accurate, etc?
• Surprisingly, we can learn a lot about 3D computer-

driven visualization by looking at early attempts at
effective 2D hand-drawn visualizations

Copyright © 2008 Hong Qin 25

Graphical Display
• Fundamental question: why bother with visualization?

What do we gain? Why aren’t words and numbers
enough?

• Graphics (i.e., pictures) can be more precise and
revealing than numerical display

Copyright © 2008 Hong Qin 26

Surprise Hidden in the Data

Copyright © 2008 Hong Qin 27

Dr. John Snow’s Cholera Map of London
(1854)

• Dot indicates
Cholera death

• X indicates water
pump (circled)

• What does this
visualization tell
us?

Copyright © 2008 Hong Qin 28

Graphical Display – Large Datasets
• Can capture a large amount

of information in a very
small space

• Total cancer deaths, 1950-
1969 (top: white women;
bottom: white men)

Copyright © 2008 Hong Qin 29

Graphical Display – Large Datasets

• The local situation

• Hopefully things have improved!

women men

Copyright © 2008 Hong Qin 30

Graphical Display – Large Datasets

• Important questions:
– Where are the highest

death rates?
– Lowest rates?
– Rate for men vs.

women
– Any anomalies?
– What to do with the

knowledge?

Copyright © 2008 Hong Qin 31

Graphical Display – Large Datasets

• Do you see any possible
problems with visualizing
the data in this manner?
(hint: consider land area)

• Focus is incorrectly
drawn to land area rather
than number of people
actually living in county

• A large county may have
only a few people living
in it

Copyright © 2008 Hong Qin 32

Traditional Visualization
(“Information Graphics”)

• The fundamental goal of visualization is to reveal the
substance of the data – i.e., what we can learn from the
raw data and what we should do with our knowledge

• Our concern is with the data and not so much the
techniques, algorithms or methodologies used to draw
the image

• We also have to make reasonable assumptions that the
data itself is not corrupt or skewed in some manner

• Visualization has moved from using hand-drawn
illustration to Computer-Generated Imagery (CGI)

Copyright © 2008 Hong Qin 33

Graphical Display – Large Datasets

• Galaxy map
• Each dot represents

a collection of
galaxies

• 1.3 million total
• 1024x2022 grid
• Can you see any

structure in the data?
• What might these

observations tell us?

Copyright © 2008 Hong Qin 34

Time-Series Display
• Paris-Lyon train schedule from 1880s

Copyright © 2008 Hong Qin 35

Compare with this way…

• What are the advantages and
disadvantages of each method?

• What do we learn about train routes
from each?

• What does each visualization tell us
that the other doesn’t or can’t?

• Consider issues like these in
developing your own visualization
algorithms and systems

Copyright © 2008 Hong Qin 36

Visualization in Narrative Form

temperature

split army to protect
rear and flank

Copyright © 2008 Hong Qin 37

Computer Graphics vs. Scientific
Visualization

Copyright © 2008 Hong Qin 38

What is Computer Graphics?

• Process of generating images using computers
• This is called rendering (computer graphics was

traditionally considered as a rendering method)
• A rendering algorithm converts a geometric model into a

picture
• This process is called scan conversion or

rasterization
• How does visualization fit in here?

Copyright © 2008 Hong Qin 39

Computer Graphics

• Computer graphics consists of :
1. Modeling (representations)
2. Rendering (display)
3. Interaction (user interfaces)
4. Animation (combination of 1-3)

• Usually “computer
graphics” refers
to rendering

Copyright © 2008 Hong Qin 40

Lights, Cameras and Objects

• How are we able to see things in the real world?
• What’s the process that occurs?
• I’ll get you started:

1. Open eyes
2. Photons from light source strike object
3. Bounce off object and enter eye
4. Brain interprets image you see

Copyright © 2008 Hong Qin 41

Lights, Cameras and Objects

• Rays of light emitted by light source
• Some light strikes object we are viewing

– Some light absorbed
– Rest is reflected
– Some reflected light

enters our eyes

Copyright © 2008 Hong Qin 42

Lights, Cameras and Objects

• How do we simulate light transport in a computer?
• Several ways
• Ray-tracing is one
• Start at eye and trace rays the scene
• If ray strikes object, bounces, hits light source → we see

something at that pixel
• Most computer applications don’t use it. Why?
• With many objects very computationally expensive

Copyright © 2008 Hong Qin 43

Surface Ray-Tracing

Copyright © 2008 Hong Qin 44

Rendering Processes:
Image-Order and Object-Order

• Ray-tracing is an image-order process: operates on per-
pixel basis

• Determine for each ray which objects and light sources
ray intersects

• Stop when all pixels processed
• Once all rays are processed, final image is complete
• Object-order rendering algorithm determines for each

object in scene how that object affects final image
• Stop when all objects processed

Copyright © 2008 Hong Qin 45

Rendering Processes:
Image-Order and Object-Order

• Image-order approach: start at upper left corner of
picture and draw a dot of appropriate color

• Repeat for all pixels in a left-to-right, top-to-bottom
manner

• Object-order approach: paint the sky, ground, trees, barn,
etc. back-to-front order, or front-to-back

• Image-order: very strict order in which we place pigment
• Object-order: we jump around from one part of the

regions to another

Copyright © 2008 Hong Qin 46

Rendering Processes:
Image-Order and Object-Order

• Advantages and disadvantages of each
• Ray-tracing can produce very realistic looking images,

but is very computationally expensive
• Object-order algorithms

more popular because
hardware implementations
of them exist

• Not as realistic as ray-
tracing

Copyright © 2008 Hong Qin 47

Surface Rendering

• We have considered interaction between light rays and
object boundaries

• This is called surface rendering and is part of surface
graphics

• Computations take place on boundaries of objects
• Surface graphics employs surface rendering to generate

images of surface’ mathematical and geometric
representations

Copyright © 2008 Hong Qin 48

Surface Graphics

• Surface representations are good for objects that have
homogeneous material distributions and/or are not
translucent or transparent

• Such representations are good when only object
boundaries are important

• Examples: furniture, mechanical objects, plant life
• Applications: video games, virtual reality, computer-

aided design

Copyright © 2008 Hong Qin 49

Surface Graphics – Pros and Cons

• Good: explicit distinction between inside and outside
makes rendering calculations easy and efficient

• Good: hardware implementations are inexpensive
• Good: can use tricks like texture mapping to improve

realism
• Bad: an approximation of reality
• Bad: does not let us peer into

and through objects

Copyright © 2008 Hong Qin 50

Surface Graphics

• Can you think of objects or phenomena for which this
approach to rendering will fail?

• When is a surface representation not good enough?
• Would a surface representation

suffice to represent the internal
structure of the human body?

Copyright © 2008 Hong Qin 51

Volume Graphics

• Surface graphics doesn’t work so well for clouds, fog,
gas, water, smoke and other amorphous phenomena

• “amorphous” = “without shape”
• Surface graphics won’t help us if we want to explore

objects with very complex internal structures
• Volume graphics provides a solution to these

shortcomings of surface graphics
• Volume graphics includes volume representations and

volume rendering algorithms to display such
representations

Copyright © 2008 Hong Qin 52

Volumetric Representations

• A volumetric data-set is a 3D regular grid, or 3D raster,
of numbers that we map to a gray scale or gray level

• Where else have you heard the term raster?
• An 8-bit volume could represent 256 values [0, 255]
• Typically volumes are at least

2003 in size, usually larger
• How much storage is

needed for an 8-bit,
2563 volume?

Copyright © 2008 Hong Qin 53

Volume Graphics

• Volumetric objects have interiors that are important
to the rendering process (what does that mean?)

• Interior affects final image
• Imagine that our rays now don’t merely bounce off

objects, but now can
penetrate and pass through

• This is known as volumetric
ray-casting and works in
a similar manner to surface
ray-tracing

Copyright © 2008 Hong Qin 54

Volumetric Ray-Tracing

Copyright © 2008 Hong Qin 55

Volume Rendering

• In volume rendering, imaginary rays are passed through
a 3D object that has been discretized (e.g., via CT or
MRI)

• As these viewing rays travel
through the data, they take
into account of the intensity
or density of each datum, and
each ray keeps an accumulated
value

Copyright © 2008 Hong Qin 56

Volume Rendering

• As the rays leave the data, they comprise a sheet of
accumulated values

• These values represent the volumetric data projected
onto a two-dimensional image
(the screen)

• Special mapping functions
convert the grayscale values
from the CT/MRI into color

Copyright © 2008 Hong Qin 57

Volume Rendering

• Semi-transparent rendering

Copyright © 2008 Hong Qin 58

Volume Graphics

• Good: maintains a representation that is close to the
underlying fully-3D object (but discrete)

• Good: can achieve a level of realism (and “hyper-
realism”) that is unmatched by surface graphics

• Good: allows easy and natural exploration of volumetric
datasets

• Bad: extremely computationally expensive!
• Bad: hardware acceleration is very costly

($3000+ vs $200+ for surface rendering)

Copyright © 2008 Hong Qin 59

Surface Graphics vs. Volume Graphics

• Suppose we wish to animate a cartoon character on the
screen

• Should we use surface rendering or volume rendering?
• Suppose we want to visualize the inside of a person’s

body?
• Now what should approach we use? Why?
• Could we use the other approach as well? How?
• We could visualize body as collection of surfaces

Copyright © 2008 Hong Qin 60

Human Visual System and
Color Theory

Copyright © 2008 Hong Qin 61

Human Visual System and Color Theory

• Today: human visual system
• Human eye
• Color models
• Color perception

Copyright © 2008 Hong Qin 62

Human Visual System

• How do we perceive the
visible world?

1. Light enters eye and
strikes lens

2. Muscles expand and
contract to focus light on
retina

Copyright © 2008 Hong Qin 63

Human Visual System

3. Retina senses light and
contains cone cells and
rod cells

4. Retinal nerve fibers
connect to optic nerve,
which carries signals to
brain, where they are
interpreted as an image

Copyright © 2008 Hong Qin 64

Rods

• Spread all over retina
• 75-150 million
• Low resolution
• Don’t detect color
• Very sensitive to low

light
• This is called scotopic

vision

Copyright © 2008 Hong Qin 65

Cones

• Dense array of cells at
retina center

• 6-7 million total
• High-resolution, detect

color
• This is called photopic

vision

Copyright © 2008 Hong Qin 66

Color

• Visible spectrum
wavelengths 400-700 nm

• A given color has some
distribution of these
wavelengths

• Intensity of each
wavelength determines
contribution to color

Copyright © 2008 Hong Qin 67

Color Receptors

• Tristimulus theory: “Red” cones (~60%), “green” cones
(~30%) and “blue” cones (~10%)

• Mixing process takes place inside brain
• Graph of visible

spectrum each type of
cone is sensitive to:

Copyright © 2008 Hong Qin 68

Human Eye Color Perception

• Human eye differentiates about 300 hues and 100-150
luminance variations. What does that mean?

• If red, green and blue cones are 60%, 30% and 10%,
which colors can we perceive best?

• What does this mean for visualization?

Copyright © 2008 Hong Qin 69

Human Eye Color Response

• Human eye responds to certain colors faster than others
• Color ranking (from best to worst):

yellow > white > red > green > blue
• What colors should be used to highlight important

features?
• Let’s test your color response

Copyright © 2008 Hong Qin 70

Copyright © 2008 Hong Qin 71

Human Eye Color Perception

• We are sensitive to small color differences
• Good at making side-by-side comparisons
• Not as good at identifying colors in isolation
• Hard: “Is that red, or orange-red, or red-orange, or

maroon or…?”
• Easier: “Color A is redder than color B”

Copyright © 2008 Hong Qin 72

Information Coding with Color

• Color good for classification – separation of data into
classes

• In practice, only about six categories can be
distinguished using color alone

Copyright © 2008 Hong Qin 73

Information Coding with Color

• A suggested order for adding color to visualizations

Copyright © 2008 Hong Qin 74

Information Coding with Color –
Helpful Tips

• Color coding
– large areas: low saturation
– small areas: high saturation
– maintain luminance contrast
– break iso-luminances with borders (?)

Copyright © 2008 Hong Qin 75

Color Response and Perception Summary

• Use bright colors to highlight important features
• Yellows, oranges, reds will be picked up first by the eye
• Make effective use of light/dark contrast:

Copyright © 2008 Hong Qin 76

Color Response and Perception Summary

• Also make effective use of color contrast to highlight
important and interesting characteristics of data

• The human eye is very good at making side-by-side
comparisons

Copyright © 2008 Hong Qin 77

Computer Representation of Color

• Each screen pixel is combination of R, G and B light
• Three color components determine perceived color
• RGB color model
• R, G, and B in range [0.0, 1.0]

Copyright © 2008 Hong Qin 78

RGB Color Arithmetic

• R + G = ?
• B + G = ?
• R + Y = ?

• R + C = ?
• G + M = ?
• B + Y = ?
• B + W = ?

Copyright © 2008 Hong Qin 79

RGB Color Model

• Good: simple, easy hardware implementation
• Is it intuitive?
• How would you make a washed-out green?
• How would you make a bright blue?

Copyright © 2008 Hong Qin 80

HSV Color Model

• RGB: good for hardware, bad for human use
• Hard to change saturation and brightness
• HSV color model – more intuitive
• H = hue
• S = saturation
• V = value (brightness)

Copyright © 2008 Hong Qin 81

HSV Color Model

• The hue is the color
• Specified as angle around the HSV (hex) cone

Copyright © 2008 Hong Qin 82

HSV Color Model

• Saturation measures vividness of color
• Distance from central axis
• Value measures brightness
• S, V in range [0.0, 1.0]
• H in range [0o, 360o]

Copyright © 2008 Hong Qin 83

HSV Color Model

• HSV very intuitive
• e.g., to brighten a color, increase V
• e.g., to wash it out (make grayer), decrease S
• How do we change H?
• Change angle
• Sequence of colors around cone:

R → Y → G → C → B → M → R

Copyright © 2008 Hong Qin 84

HSV Examples

• Which component of HSV are we increasing in the left
image? Right image?

Copyright © 2008 Hong Qin 85

RGB vs. HSV

• Can use HSV in software,
but convert to RGB for
display

• Easy to convert between
RGB and HSV

• Code on Web

Color RGB HSV
Black 0,0,0 *°,*,0
White 1,1,1 *°,0,1
Red 1,0,0 0°,1,1
Green 0,1,0 120°,1,1
Blue 0,0,1 240°,1,1
Yellow 1,1,0 60°,1,1
Cyan 0,1,1 180°,1,1
Magenta 1,0,1 300°,1,1
Sky Blue .5, .5, 1 240°,.5,1

Copyright © 2008 Hong Qin 86

Modeling Methods and Techniques for
Illumination and Shading

Copyright © 2008 Hong Qin 87

Illumination and Shading

• Illumination and shading are two complementary aspects
in Computer Graphics that add realism to rendered
scenes

• Illumination refers to use of lights in virtual world
• Shading refers to effects that lights have on 3D objects in

the scene
• Many kinds of illumination models and shading models

in 3D computer graphics and visualization

Copyright © 2008 Hong Qin 88

Illumination

• Without lights a 3D scene is totally black
• Seek to simulate effects of light
• Simplest type of light is point light source
• Light is infinitely far away
• Light rays are parallel
• Is this a good approximation of a light bulb? Flash light?

The sun?

Copyright © 2008 Hong Qin 89

Shading Model

• A shading model checks lighting conditions and figures
out what surface should look like based on lighting
conditions and surface parameters:
– Amount of light reflected (and which color(s))
– Amount of light absorbed
– Amount of light transmitted (passed through)

• Shading model tells us how much incoming light that
strikes a surface is 1. reflected to the eye, 2. absorbed by
the object, and 3. transmitted through the object

Copyright © 2008 Hong Qin 90

Total Light Decomposition

reflected

point light
source

absorbedtransmitted

object

Copyright © 2008 Hong Qin 91

Shading Model

• Typically in Computer Graphics, we are concerned with
the reflected light – light which bounces off object and
enters eye

• Other effects like refraction and translucency require
more sophisticated shading models

Copyright © 2008 Hong Qin 92

Local vs. Infinite Light Sources

Local Infinite

• Rays from a local light source emanate in different
directions

• Rays from the infinite light source travel in the same
direction

Copyright © 2008 Hong Qin 93

Surface Properties – Ambient Lighting

• Rays of light strike objects or actors in the scene
• Illumination model determines how light and surface

properties interact to generate a color image
• Ambient lighting is simplest illumination model
• It accounts for indirect light
• Models general level of brightness in the scene
• Accounts for light effects that are difficult to compute

(secondary reflections, etc.)
• Constant for all surfaces and view directions (?)

Copyright © 2008 Hong Qin 94

Surface Properties – Ambient Lighting

• Imagine yourself in room
with curtains drawn

• Some sunlight will still get in,
but it will have bounced off many
objects before entering room

• When an object reflects this kind of
light, we call it ambient reflection Ambient-lit sphere

Copyright © 2008 Hong Qin 95

Surface Properties – Ambient Lighting

• Ambient reflection can be expressed by this equation:

• Rc is color of reflected light
• Lc is color of light source
• Oc is color of object
• Shine white light on red sphere vs. shine red light on

white sphere?
• Not the best notation really…

Copyright © 2008 Hong Qin 96

Surface Properties – Diffuse Lighting

• Ambient lighting is a crude approximation of secondary
reflections

• Diffuse lighting takes us one step closer to reality
• Direction of rays taken into consideration
• Unlike ambient reflection, diffuse reflection is dependent

on location of light source relative to the object
• This is a type of direct lighting
• Models dullness, roughness of a surface
• Also called Lambertian reflection

Copyright © 2008 Hong Qin 97

Surface Properties – Diffuse Lighting

Diffuse lighting Ambient & diffuse

• Note difference between diffuse alone and diffuse with
ambient lighting

• Suppose we moved light to around back of sphere –
remind us: why would the sphere get darker?

Copyright © 2008 Hong Qin 98

Surface Properties – Diffuse Lighting

Copyright © 2008 Hong Qin 99

Surface Properties – Diffuse Lighting

• Rc is color of reflected light
• Lc is color of light source
• Oc is color of object
• On is object’s normal vector – direction surface is

pointing at that position
• Ln is light vector – direction of the light ray
• What’s the relationship between Ln and the type of light

source (local or infinite)?

Copyright © 2008 Hong Qin 100

Surface Properties – Diffuse Lighting

• We assume that On and Ln are unit vectors (length = 1)
• We can normalize a vector by dividing each component

by vector’s length:

Copyright © 2008 Hong Qin 101

Surface Properties – Diffuse Lighting

• Dot product between -1 and +1
– What does it mean when it is > 0?
– What does it mean when it is < 0?
– What does it mean when it is = 0?

• Given this knowledge, can we avoid computing the
diffuse lighting equation entirely in some situations?

Copyright © 2008 Hong Qin 102

Surface Properties – Diffuse Lighting

• Key points for diffuse lighting:
– position of light w.r.t. object is important
– models a rough surface
– does not model shiny objects
– contribution of a light source to the diffuse shading of

an object computed with a dot product
• Compare: ambient vs. diffuse:

Copyright © 2008 Hong Qin 103

Surface Properties – Diffuse Lighting

• Ambient vs. diffuse
• Ambient reflection of an object independent of light

position, unlike diffuse lighting
• In this sense, does an ambient light source have a

position?

Copyright © 2008 Hong Qin 104

Surface Properties – Specular Lighting

• Models reflections on shiny surfaces (polished metal,
chrome, plastics, etc.)

• Specular reflection is view-dependent –specular highlight
changes as camera’s position changes

• Diffuse reflection is view-independent – reflection model
is a function of light source direction and surface
direction (normal)

• Specular reflection is a function of the light source
direction, the surface direction, and the view direction

Copyright © 2008 Hong Qin 105

Surface Properties – Specular Lighting

• Need angle light source makes with surface, and angle
viewing ray makes with surface

• Example: chrome on your car shines in different ways
depending on where you stand when looking at it

Copyright © 2008 Hong Qin 106

Surface Properties – Specular Lighting

Specular & diffuse & ambient Specular & diffuse

Specular & ambient Specular only
Copyright © 2008 Hong Qin 107

Surface Properties – Specular Lighting

Copyright © 2008 Hong Qin 108

Surface Properties – Specular Lighting

• S is the direction of specular reflection
• The angle S makes with On is the same angle –Ln makes

with On: θ
• Cn is the viewing direction
• Osp is the specular power and indicates how shiny the

object is

Copyright © 2008 Hong Qin 109

Surface Properties – Specular Lighting

• Specular power indicates how quickly the specular
reflection diminishes as direction of specular reflection
deviates from view direction

• Specular power controls the size of specular highlight
• Inverse relationship:

Copyright © 2008 Hong Qin 110

Surface Properties – Specular Lighting

• Top row: specular intensity = 0.5 (Oc, essentially)
• Bottom row: specular intensity = 1.0
• Left to right: specular power = 5, 10, 20, 40

Copyright © 2008 Hong Qin 111

Surface Properties – Total Illumination

• Ambient, diffuse and specular reflection are usually
combined into a single equation:

• Oai, Odi and Osi control the amounts of ambient, diffuse
and specular lighting, with values in [0.0, 1.0]
(these three values are called reflection coefficients)

• Oac, Odc and Osc indicate the colors to be used with each
type of lighting (specular color, Osc, is usually white)

Copyright © 2008 Hong Qin 112

Surface Properties – Total Illumination

• What if Osp = 0?
• What if Osp = infinity?
• What if some vectors are not normalized?
• How would we disable ambient reflection?
• What if some dot product is negative? What does this

indicate? How should it be handled by the illumination
equation?

Copyright © 2008 Hong Qin 113

Other Shading and Illumination Effects

• Area lights
• Shadows
• Refraction
• Reflection
• Caustics
• Color bleeding
• Radiosity
• How do we generate these

effects?

Copyright © 2008 Hong Qin 114

Global Illumination

• These effects require global illumination, which is
capable of generating all those photorealistic images you
see in movies and special effects

• Most require the use of ray-tracing and radiosity, an
O(n2) illumination technique

• Want to try it yourself? Go to www.povray.org and try
out the free POV-Ray ray-tracing program

Copyright © 2008 Hong Qin 115

http://www.povray.org/

Shadows

• Hard and soft shadows
• Hard shadows: caused by very distant

light sources, like the sun
• Soft shadows: caused by close light

sources, usually area light sources, like
light bulbs

• Several techniques
for generating
shadows

Copyright © 2008 Hong Qin 116

Key Elements of Cameras and
Geometric Coordinate Systems

Copyright © 2008 Hong Qin 117

Cameras

• We have light sources that illuminate 3D objects (or
actors) in our virtual scene

• Rays of light interact with surface properties and
generate colors according to the illumination model

• But how do we view the scene, select the position and
orientation of the viewpoint?

• This is where the virtual camera comes in

Copyright © 2008 Hong Qin 118

Camera Attributes

Copyright © 2008 Hong Qin 119

Camera Attributes

• Position – given in (x,y,z) coordinates
• Up-vector – orients the camera, given in (x,y,z)
• Direction of projection – points the camera in some

(x,y,z) direction; also called viewing direction
• Why is the up-vector needed if we have a direction of

projection?
• Why is the direction of projection needed if we have an

up-vector?

Copyright © 2008 Hong Qin 120

Camera Attributes

• Front and back clipping planes – determine which
objects might be visible

• Planes perpendicular to viewing direction
• Specified as distances along viewing direction
• Also called near and far clipping planes
• Objects on near side of front clipping plane and on far

side of back clipping plane are invisible
• Objects between the clipping planes may occlude each

other and may be fully visible, partially visible, or
invisible

Copyright © 2008 Hong Qin 121

Camera Manipulation

• Nuisance to manipulate the camera by changing all those
parameters

• Usually its easier to specify camera movements with
respect to the camera’s focal point, the position in space
at which the camera is pointing

• Consider taking a portrait:
– Move around the person
– Move forward and backward w.r.t. to person
– Move camera up and down
– Rotate camera while standing still

Copyright © 2008 Hong Qin 122

Camera Manipulation

Copyright © 2008 Hong Qin 123

Camera Manipulation

• Changing azimuth = rotating camera’s position around
its view vector w.r.t. focal point

• Changing elevation = rotating camera’s position around
cross-product of view direction and up-vector

• Cross-product of two
vectors provides vector
in dir. perpendicular to
two original vectors

• Changing roll = rotate camera’s up-vector about the
viewing direction (twisting the camera)

Copyright © 2008 Hong Qin 124

Camera Manipulation

• Changing yaw = rotating focal point about the up-vector
• Changing pitch = rotating focal point about cross product

of view vector and up vector
• Dollying – moves camera position along view vector

(dollying in and out)
• Once camera attributes are set, objects are projected

from 3D onto the 2D image plane
• Camera attributes determine which rays of light (that

bounced off objects) will enter the camera and contribute
to the rendered image

Copyright © 2008 Hong Qin 125

Coordinate Systems

• You might be familiar with different types of coordinate
systems:
– Cartesian
– Polar
– Spherical
– Cylindrical

• Computer graphics and visualization applications use
several distinct coordinate systems: model, world, view
and display

• Usually they use Cartesian coordinates

Copyright © 2008 Hong Qin 126

Coordinate Systems

• Two kinds of Cartesian coordinate systems: right-handed
and left-handed

• Use whichever coordinate system seems most natural in
the given context

x

y
z

left-handed system

y

x

z right-handed system

Copyright © 2008 Hong Qin 127

Model Coordinate System

• Coordinate system used to define an object or actor
• Coordinate system will be a natural choice

– Example: A football might be described using a
cylindrical coordinate system

– What coordinate system might we use for a planet?
• System choice of person who created the object
• Units are application-dependent: inches, meters, cubits,

etc.

Copyright © 2008 Hong Qin 128

World Coordinate System

• 3D space in which our actors are positioned
• Each actor’s model coordinate system has some position

and orientation inside the world space
• Many model coordinate systems, only one world

coordinate system
• Each actor rotates, scales and translates itself into the

world coordinate system
• Lights and cameras are specified with respect to the

world coordinate system
• Does a camera have its own coordinate system?

Copyright © 2008 Hong Qin 129

World Coordinate System

• Example:
– Specify each of our bodies with a cylindrical

coordinate system with the head as the origin
– We position ourselves in the room (the world

coordinate system) by giving the position of our heads
w.r.t. the origin of the room (perhaps some corner)

Copyright © 2008 Hong Qin 130

View Coordinate System

• Represents what is visible to the camera
• Given by (x,y,z) values
• x, y in [-1, 1]
• z is some depth > 0
• x, y give location of some object in the image plane
• z give distance of object from camera
• A matrix is used to convert from world coordinates into

view coordinates (i.e., projection!)
• Perspective effect can be accommodated by this matrix

Copyright © 2008 Hong Qin 131

Display Coordinate System

• x, y are pixel values on screen
• z is still the depth
• What are restrictions on x and y?
• Window size helps determine valid range for x, y
• Display can be divided into multiple viewports, each of

which has its own coordinate system
• Must select which viewport is used for rendering

Copyright © 2008 Hong Qin 132

Copyright © 2008 Hong Qin 133

Coordinate
Systems

Coordinate Systems

1. Model coordinates are transformed into
2. World coordinates, which are transformed into
3. View coordinates, which are transformed into
4. Display coordinates, which correspond to pixel

positions on the screen

• Transformations from one coordinate system to another
take place via coordinate transformations, which we’ll
look at now

Copyright © 2008 Hong Qin 134

Coordinate Transformations

• Coordinate transformations allow us to translate, scale
and rotate our models in our virtual scene

• In Computer Graphics and Visualization, objects are
often represented as meshes consisting of polygons,
edges and vertices

• Two vertices define an edge
• Three or more edges define

a polygon
• To transform an object, we

apply the transformations to
the vertices of the mesh

Copyright © 2008 Hong Qin 135

Object Representations

• List of vertices: v1, v2, …, vn, each given as (xi, yi, zi)
• List of edges: (v1, v3), (v4, v7), …, (vi, vj),…
• List of faces: (e1, e3, e4), (e2, e5, e8), …OR
• List of faces: (v1, v3, v5), (v6, v7, v9), …
• When a vertex’s position is changed due to

transformation, all edges and polygons that include the
vertex are consequently changed

• If we apply the same transformations to all vertices, the
entire polygonal mesh moves as a unit, which is what we
want

Copyright © 2008 Hong Qin 136

Coordinate Transformations

• Rather than represent 3D points using three coordinates
(x,y,z), we will use four: (x,y,z,w)

• This approach is called homogeneous coordinates
• Transformations will be represented by (4 x 4) matrices
• Why not (3 x 3)?
• Because some transformations – including translation –

cannot be represented by (3 x 3) matrices
• Most of the time w = 1, but there are special

transformations for which w ≠ 1

Copyright © 2008 Hong Qin 137

Coordinate Transformations: Translation

• Suppose we wish to translate the point (x,y,z) by the
vector (tx, ty, tz)

• This translation transformation can be described by the
translation matrix:

Copyright © 2008 Hong Qin 138

Coordinate Transformations: Translation

• The new position is given by post-multiplying our point
by the translation matrix:

• The new position of our point is (x’, y’, z’)

Copyright © 2008 Hong Qin 139

Coordinate Transformations: Translation

• We can see that the matrix-vector multiplication is
equivalent to the following formulas:

Copyright © 2008 Hong Qin 140

Coordinate Transformations: Scaling

• We can scale a mesh by applying the scaling
transformation to each of its vertices:

Copyright © 2008 Hong Qin 141

Coordinate Transformations: Scaling

• When sx = sy = sz, we call it uniform scaling
• Otherwise, we have non-uniform scaling

• Suppose someone said to you
that it makes no sense to
apply scaling to vertices

• After all, how do you scale a 3D
point, which has no width, height
or depth?

Copyright © 2008 Hong Qin 142

Coordinate Transformations: Rotation

• We can rotate a vertex about one of the major axes by
some angle θ using one of the rotation matrices:

Copyright © 2008 Hong Qin 143

Coordinate Transformations

• Transformations can be composed by right-multiplying
transformation matrices

• Example: a sequence (S Rz T Ry) would indicate:
1. A rotation about the Y axis, followed by
2. A translation, followed by
3. A rotation about the Z axis, followed by
4. A scaling

• So beware and remember: matrix multiplication is
associative but it isn’t commutative

Copyright © 2008 Hong Qin 144

Coordinate Transformations

• The above transformations can be applied to objects in
the scene – these are referred to as the modeling
transformations

• The camera (viewpoint) can also be transformed by the
viewing transformation

• What transformation(s) might not make sense to apply to
the viewpoint?

• Projection transformation is applied after modeling
transformations to project the 3D actors onto the screen

• We won’t study projection transformations in this course

Copyright © 2008 Hong Qin 145

Actor Geometry: Modeling

• In computer graphics, modeling refers to geometric
representations of 3D objects

• Often these objects are manually constructed
• We looked at one type: polygonal meshes
• Many, many other representations exist
• Can you remember some? (consider some of the

applications of visualization)
• In visualization, modeling means something slightly

different

Copyright © 2008 Hong Qin 146

Actor Geometry: Modeling

• In visualization, models are computed by some
visualization algorithm

• Note the semantic distinction:
– Computer graphics: object X is represented as a

collection of triangles
– Visualization: object X represents the surface of

patient Y’s skull and it just happens to be made of
triangles

• The model (triangles) is simple, but complex
visualization algorithms were used to obtain that model

Copyright © 2008 Hong Qin 147

Actor Geometry:
Actor Location and Orientation

• The modeling transformations
we looked at earlier allow us to
change the location and
orientation of objects

• It’s often useful to associate
(i.e., store) an orientation
vector (Ox, Oy, Oz) for each
actor

• This vector implicitly defines
the three rotation matrices

Copyright © 2008 Hong Qin 148

Actor Geometry:
Actor Location and Orientation

• Rotations take place around
the origin of the actor

• They are applied as a camera
azimuth, elevation and roll, in
that order – remember, order
counts!

• VTK uses this orientation
vector-based approach since it
is very natural to manipulate
objects in this fashion

Copyright © 2008 Hong Qin 149

Camera Attributes

• Projection – method of projection determines how 3D
objects are drawn on the image plane, or screen

• Orthographic projection – all rays of light are parallel to
the projection vector

• 3D points are projected onto the screen along the same
direction

• The perceived size of an object is not a function of its
distance from the camera

Copyright © 2008 Hong Qin 150

Camera Attributes

• Perspective projection – all light rays travel through a
central point, such as the viewpoint

• Objects appear smaller as their distances increase from
the viewpoint, and vice versa

• This is what happens in real life
• Simulating perspective projection requires a view angle
• View angle and clipping planes define a view frustum, a

truncated pyramid; one type of viewing volume
• In orthographic projection, we have a rectangular view

volume instead because the light rays are __________

Copyright © 2008 Hong Qin 151

Graphics Hardware and Display
Devices

Copyright © 2008 Hong Qin 152

Graphics Hardware

• Many graphics algorithms can be implemented
efficiently and inexpensively in hardware

• Permits interactive graphics applications, including
certain domains of visualization

• Topics today:
– Raster devices
– Video controllers & raster-scan display processors
– Important rasterization and rendering algorithms
– Pixels and images

Copyright © 2008 Hong Qin 153

Raster Devices

• Computer monitors (CRT, LCD, etc.), TVs
• These are raster devices because they display images on

a raster, which is a regular n-D grid
• Each point on the grid is

called a pixel, which stands
for _______________

• Raster dimension given in
pixels: 25 x 10 in the example

• In a monochrome display, each pixel is black or white
• In a color display, each pixel has an RGB triple

Copyright © 2008 Hong Qin 154

Raster Devices

• Also called raster-scan displays or systems
• Pixels are drawn in a strict order, called raster-scan

order
• Cathode ray

tube (CRT)
shown here

• Monochrome
display

Copyright © 2008 Hong Qin 155

Color Display Technology – CRT

• Cathode ray tube - used in TVs and computer monitors
(the large, clunky type)

• A color CRT has three
electron guns: one for
red, one for green,
and one for blue

• The beams scan
screen in horizontal
scanlines

• Metal mask steers beams

Copyright © 2008 Hong Qin 156

Color Display Technology – CRT

Copyright © 2008 Hong Qin 157

• Each screen pixel consists of a phosphor triple: one
glowing red, one green, and one blue

• A phosphor is a circular spot of phosphorescent material
that glows when electrons
strike it

• Red phosphors glow red
• RGB triad together form

a single pixel on screen

Color Display Technology – CRT

Copyright © 2008 Hong Qin 158

• Glowing phosphor triples blend together to form color
encoded in RGB triple

• Amount of energy that electron guns deliver to each
phosphor depends on
RGB value of image
pixel displayed there

• RGB values between
0 and 1 are mapped to
voltages for the guns

Color Display Technology – CRT

• True or false: A color image in a CRT is generated by
blending the three colored beams of light that are fired
from the back of the monitor and blended on the front
surface of the screen.

Copyright © 2008 Hong Qin 159

Color Display Technology – CRT

• The phosphors glow only for about 10-60 microseconds
• Image refreshed 30-60 times per second
• This rate is called the refresh rate and is given in Hz
• So if we redraw the image once every 1/60th of a second,

but the image lasts only a few millionths of a second,
what about the gap?

• 1/60th second is approximately 16667 microseconds
• (16667 - 10) microseconds = “long” delay between

refreshes
• So why is there no visible flicker?

Copyright © 2008 Hong Qin 160

Raster Devices: Display Resolution

• The raster is not 100% perfect –points of light
corresponding to pixels can overlap slightly

• Same is true of raster printing technologies, like laser
and injket printers

• Pixels are more like circles than squares in reality
• Raster devices also limited by resolution

– Computer monitors 1600 x 1200 and higher
– Laser printers 300 dpi, 600 dpi, 1200 dpi and higher
– TV resolution? HDTV?

Copyright © 2008 Hong Qin 161

Raster Devices: Color Depth

• Horizontal lines of pixels are called scanlines
• TV: 640 HDTV: 720 or 1080
• Monochrome monitor has 1 bits per pixel (bpp)
• Grayscale has 8 bpp (usually)
• Color monitors most often have 24 bpp: 8 bits each for

red, green and blue color channels
• How many different levels of gray can we represent with

8 bits per pixel?
• How many different colors can 24-bit color represent?

Copyright © 2008 Hong Qin 162

Image Resolution

res = 3002 pixels res = 1502 pixels res = 752 pixels res =372 pixels

• Image resolution very important in visualization
• Why?
• When might we want to use a low resolution image?

Copyright © 2008 Hong Qin 163

How Many Bits Do We Need?

• Number of bits per pixel often called bit depth
• How many bits should

we use in practice?
1: 8-bit original image
2: lower 4 bits dropped
3: (image #1 - image #2)
4: image #3 enhanced

1 2

3 4

Copyright © 2008 Hong Qin 164

Bit Depth

• Suppose we want to display 256 gray levels, but we have
only 1-bit color.

• What colors can we display?
• How do we accommodate grayscale images?
• How do we accommodate color images?
• Suppose we want to display 16.7 million colors on our

color monitor, but we have only 8-bit color. What can
we do?

Copyright © 2008 Hong Qin 165

Dithering

• Dithering is a way to use a mixture of colors to trick eye
into seeing colors that cannot be actually represented by
display device

• We can approximate gray by using a combination of
black and white:

• The relative densities
of black and white
determine the “gray”
value

• Also called halftoning (vb. to halftone)

Copyright © 2008 Hong Qin 166

Interfacing to the Hardware

• A lot goes on “under the hood” in the graphics and
display hardware

• Graphics hardware: converts geometry into pixels
• Display hardware: displays pixels
• Simplified hierarchy

Copyright © 2008 Hong Qin 167

Interfacing to the Hardware

• From perspective of visualization, mechanics of image
display aren’t too important

• We are more interested in what software can deliver
• Not even really interested in computer graphics!
• We just want to visualize!
• Why we use VTK and similar programming libraries
• We can treat everything under VTK as some nebulous

“black box” that converts our 3D shapes into pixels
• Our building blocks are called graphics primitives

Copyright © 2008 Hong Qin 168

Graphics Primitives

Copyright © 2008 Hong Qin 169

Graphics Primitives

• Vertex: position, normal, color – how many values total?
• Polygon: series of connected vertices

Copyright © 2008 Hong Qin 170

Graphics Primitives

• Normal vectors: why for vertices?
• If our polygonal object came from curved surface, vertex

normals will not be same as polygonal normals

Copyright © 2008 Hong Qin 171

Rasterization

• We looked at raster devices and some different kinds of
geometric objects we might wish to draw on the screen

• Process of converting geometry into pixels is called
rasterization or scan-conversion

• Each triangle in our model is transformed (rotated, etc.)
and projected by the transformation and projection
matrices

• Next we clip each triangle to the image plane
• Each triangle is entirely inside, entirely outside, partially

visible w.r.t the image plane

Copyright © 2008 Hong Qin 172

Rasterization

• We will take an object-order approach
• Question: In contrast, ray-tracing is what-order?
• We process each triangle one by one
• After we transform and clip it, we rasterize it – we figure

how what pixels on screen we need to update to draw the
triangle on screen

Copyright © 2008 Hong Qin 173

Rasterization

• We will process the triangle in scan-line order: left-to-
right starting at top left corner, moving right and down

Copyright © 2008 Hong Qin 174

Rasterization

• We sort the vertices by their y values and find the vertex
with the maximal y value; call this vertex v0

Copyright © 2008 Hong Qin 175

Rasterization

• This sorting allows us to identify the other two vertices,
v1 and v2

Copyright © 2008 Hong Qin 176

Rasterization

• Using the slopes of the edges we can compute each row
of pixels to process, called a span of pixels

Copyright © 2008 Hong Qin 177

Rasterization

• Across each polygon we interpolate various data values
di for each pixel

• Example: RGB to assign colors to vertices

Copyright © 2008 Hong Qin 178

Rasterization

• But where do we get the RGB values?
• A few classes ago we looked at shading and illumination
• Now we will see how the theory is put into practice
• We will look at three ways of implementing the

illumination equations:
– Flat surface rendering
– Gouraud surface rendering
– Phong surface rendering

Copyright © 2008 Hong Qin 179

Flat Surface Rendering

• Illumination equations applied to one normal vector of
the polygon

• Result: all pixels for polygon have the same color

Copyright © 2008 Hong Qin 180

Gouraud Surface Rendering

• Illumination equations calculated at all vertices of
polygon using vertex normals

• Edges and interior of polygon colored by interpolating
or smoothly blending the colors computed at vertices

• Result: color varies across the polygon

Copyright © 2008 Hong Qin 181

Phong Surface Rendering

• Normals are first interpolated across edges
• Then interpolated across the polygon interiors
• Illumination equations are computed for each pixel
• Result: color varies across the polygon, plus we can

generate specular highlights
• What do you think of the efficiency of Phong shading?

Copyright © 2008 Hong Qin 182

Phong Surface Rendering

• Phong rendering just too expensive to use in real-time
• Software ray tracers use it, where speed is already slow

Copyright © 2008 Hong Qin 183

Hidden Surface Removal

• We looked earlier at ray-casting
• We trace rays from the camera, through the images and

into the scene
• We see whatever objects the rays strike
• Usually we don’t use ray-casting and instead use the

object-order approach we’ve been talking
• A complex scene could contain thousands or even

millions of triangles that will overlap
• How do we know in which order to draw the triangles?

Copyright © 2008 Hong Qin 184

Hidden Surface Removal:
Painter’s Algorithm

• One solution is called the painter’s algorithm
• Sort the triangles
• Back-to-front or front-to-back?
• One major problem:

Can cut into smaller
triangles, but the way we
cut the triangles is view-
dependent

What does that mean?

Copyright © 2008 Hong Qin 185

Hidden Surface Removal:
Z-Buffer Algorithm

• An easier and very efficient solution is the z-buffer
algorithm

• We store a 2D array the same dimensions as the image
• Before we draw a pixel for a triangle, we compare its z

value to what is stored in the z-buffer
• If the new pixel would be in front of the z-buffer’s

algorithm, we replace the current pixel with the new one
• Otherwise, we do not change the pixel
• How should we initialize the z-buffer?

Copyright © 2008 Hong Qin 186

Visualization Toolkits: Overview

Copyright © 2008 Hong Qin 187

VisualizationToolKits

• VTK is a C++ class library for developing visualization
applications

• www.vtk.org Manual 4.2 Class Hierarchy
• Every non-trivial VTK program must contain the

following seven elements:
1. vtkRenderWindow – the window on screen
2. vtkRenderer – C++ object for drawing shapes
3. vtkLight – light to illuminate scene
4. vtkCamera – camera (next class)

Copyright © 2008 Hong Qin 188

http://www.vtk.org/

VTK

5. vtkActor – an object in the scene
6. vtkProperty – set of properties for an actor (color,

specular power, diffuse reflection coefficient, etc.)
7. vtkMapper – defines what is actually drawn on the

screen for an actor
• If no light is specified, a default one is created
• Same goes for the camera

Copyright © 2008 Hong Qin 189

Compiling Cone.cxx

• Download the VTK Cone Example
• Open the VTK Setup Guide on the home page
• Most of these steps have been performed for you
• Now open the source code and compile it
• May have to change some settings in Visual Studio

.NET…

Copyright © 2008 Hong Qin 190

Cone.cxx

• vtkConeSource *cone – represents a mathematical cone,
and nothing more

• vtkPolyDataMapper *coneMapper – represents the cone
as a set of triangles that the computer will render

• vtkActor *coneActor – the cone as VTK will deal with
it; this actor can be moved around, its appearance
changed, etc.

• vtkRenderer *ren1 – this C++ object will actually draw
the cone

Copyright © 2008 Hong Qin 191

Cone.cxx

• vtkRenderWindow *renWin – this is the window in
which the renderer will draw the cone

• We can have multiple vtkRenderer’s for a single
vtkRenderWindow

• A viewport is given that tells the vtkRenderer at what
position inside the vtkRenderWindow it should render its
actors

Copyright © 2008 Hong Qin 192

Events and Observers

• Open the file Cone2.cxx
• This program features a “callback function”
• This is a function that is invoked when a given event

occurs
• In Cone2.cxx, the “event” is the drawing of the window

Copyright © 2008 Hong Qin 193

Transformations

• Translation
• Rotation
• Scaling
• We will study these next class
• Translation just means you slide an object from one

place to another
• Rotation can take place around X axis, Y axis, Z axis or

an arbitrary axis
• Scaling means we increase/decrease the object’s size

Copyright © 2008 Hong Qin 194

Assemblies

• vtkAssembly lets us group shapes logically
• Example: robot arm: shoulder joint, upper arm, elbow,

lower arm, wrist joint, hand
• If we rotate the arm at the shoulder, we expect all parts

of the arm to rotate together
• If we bend the elbow, the lower arm, wrist and hand will

rotate together with respect to the elbow

Copyright © 2008 Hong Qin 195

Programs for You to Try

• expCos.cxx – Stavros
• Mace.cxx – Kostadin
• Model.cxx – Raymond
• Cone4.cxx – Rohit
• Cone5.cxx – Naval
• Follow the directions in the VTK Setup Guide, get your

program to compile, zip it all up (delete release and
debug folders first!), and it will count for credit

• I will post your zipfile on the Blackboard home page

Copyright © 2008 Hong Qin 196

Data Visualization Pipeline in VTK

Copyright © 2008 Hong Qin 197

The Visualization Pipeline

• Visualization: transformation of data into graphical form
• Object-Oriented-based approach: data are the objects,

transformations are the methods

Copyright © 2008 Hong Qin 198

Data Visualization Example

• A quadric is a special function with maximum degree 2:

• A solid sphere is an example of a quadric with a3, a4, a5,
a6, a6, a7 and a8 all equal to zero

• If those values aren’t zero, we get some pretty strange
shapes

• Imagine squishing a solid rubber ball (i.e., not a hollow
ball, like a tennis ball)

Copyright © 2008 Hong Qin 199

Data Visualization Example

• Usually we evaluate the equation of a sphere for a
particular radius, r:

• Suppose we evaluate it for different values of r?
• We get a solid sphere
• Now imagine we evaluate it for any value of x, y, z and r
• We get what’s called a field function
• You plug in some values for x, y, z, r and get some

number. That number is “located” at position (x, y, z)

Copyright © 2008 Hong Qin 200

Data Visualization Example

• If we plug in x, y, z, r for any quadric, we can get some
very strange-looking field functions. Here’s an example:

Copyright © 2008 Hong Qin 201

Visualization Pipeline

• Depicts data flow through a visualization system

• Source processes produce output (i.e., data)
• Sink processes consume data: no output
• Filter processes consume data and produce output

Copyright © 2008 Hong Qin 202

Visualization Pipeline

• This figure depicts a particular visualization pipeline
• Data objects operated upon by process objects, as

indicated by arrow directions (depicting the flow through
the pipeline)

Copyright © 2008 Hong Qin 203

Data Objects

• Data objects represent information
• Also provide methods to create, access, delete this info
• Do not support modification of the data

Copyright © 2008 Hong Qin 204

Process Objects

• Operate on input data to generate output data
• Derives new data from inputs, or transforms input into

new form
• Source objects interface to external data sources or

generate data from local parameters
• Former kind are called reader objects
• Latter kind are called procedural objects
• Filter objects take one ore more input objects and

generate one or more output objects

Copyright © 2008 Hong Qin 205

Process Objects

• Mapper objects are sinks, and terminate the
visualization pipeline flow

• Writer objects are mapper objects that write data to disk

Copyright © 2008 Hong Qin 206

VTK’s Visualization Pipeline

• Strongly typed
• Demand-driven execution

– Update() and Execute() methods
– Update() called when rendering requested
– Update() called recursively up network, until source

object hit
– Execute() method run if input has changed
– Recursion unwinds as Execute() methods invoked in

objects

Copyright © 2008 Hong Qin 207

VTK’s Visualization Pipeline

• Filters connect like thus:
filter2 SetInput(filter1 GetOutput());

• Multiple output filter example:
vtkExtractVectorComponents. Go to www.vtk.org

• Used to extract x, y and z components of a vector
• Map each component to a different geometric object of

some kind
• Useful for vector visualization applications

Copyright © 2008 Hong Qin 208

http://www.vtk.org/

ColorSph.cxx

• Login to Blackboard and experiment with ColorSph.zip
• Note the visualization network on the left size:

source

filter

sink

Copyright © 2008 Hong Qin 209

StrSph.cxx

• Try this one next
• Play with the LUT: look-up table
• LUT is a kind of transfer function

source

filter

sink

filter

Copyright © 2008 Hong Qin 210

LoopShrk.cxx

• The incredible disappearing sphere
• The feedback loop causes the shrinking filter to be

applied each time the scene is rendered

Copyright © 2008 Hong Qin 211

The Object Model

1. Traditional OO approach: combine data and methods
(processes)

2. Other option: separate data representations and
processes

3. VTK: mostly like #2, with some small aspects of #1

Copyright © 2008 Hong Qin 212

The Functional Model: Example

Copyright © 2008 Hong Qin 213

The Visualization Model

• Omits the graphical representations from the functional
model

Copyright © 2008 Hong Qin 214

Pipeline Topology

• Sources, filter and mappers are typed objects
• Input and output have types that must be respected
• Example: sphere source object may generate polygons or

some other representation as output
• VTK is strictly-typed

Copyright © 2008 Hong Qin 215

Multiplicity

• Multiplicity refers to the number of inputs and outputs
of a process object

Copyright © 2008 Hong Qin 216

Loops

• Most visualization networks are acyclic, but feedback is
sometimes a useful option to have

• Output of a process object affects the input of a process
object “upstream”

Copyright © 2008 Hong Qin 217

Executing the Pipeline

• Execution refers the act of causing each process object
to operate

• Pipeline re-executed as input data changed
• Ideally, a process will object will execute only its

particular input is changed

Copyright © 2008 Hong Qin 218

Execution Control

• Demand-driven execution vs. event-driven execution
• With demand-driven execution, we generate output upon

request and execute only that portion of the pipeline
affecting the output

• With event-driven execution, every change to a process
object or its input causes a re-execution of the pipeline

• We should execute a process object only when its inputs
have changed

• How do we know when this happens?

Copyright © 2008 Hong Qin 219

Explicit Execution

• With an explicit execution approach, a special executive
object monitors the process objects’ parameters and
inputs

• Orders re-execution of pipeline when necessary
• Can be demand-driven or event-driven
• Demand-driven: executive keeps track of changes and

executes pipeline on request
• Event-driven: executive is notified when a changes

occurs, who then re-executes the network

Copyright © 2008 Hong Qin 220

Implicit Execution

• With an implicit execution approach, a process object
executes itself only if its input or parameters change

• When object’s output is requested, that object requests
input from its input objects

• Repeats recursively up the pipeline to the sources
• Source objects check their parameters and external

inputs, and re-execute if necessary (update pass)
• Recursion unwinds as downstream processes re-execute

as necessary (execution pass)

Copyright © 2008 Hong Qin 221

Implicit Execution

• Implicit execution requires demand-driven control
• Execution occurs when output is requested
• Simple approach

Copyright © 2008 Hong Qin 222

Explicit vs. Implicit Execution

Copyright © 2008 Hong Qin 223

Conditional Execution

• Execution performed only if a condition is met
• Example: map data through different color lookup tables

depending on the range of the data

Copyright © 2008 Hong Qin 224

Memory and Computation Tradeoff

• Visualization of non-trivial data is computationally
expensive both in time and memory

• Static vs. dynamic memory allocation – what’s the
difference?

• In a visualization network, a static memory model
maintains all the intermediate results in memory

• In a dynamic memory model, intermediate results are
discarded as soon as they are no longer needed

• Static: less computation required later on
• Dynamic: more computation required later on

Copyright © 2008 Hong Qin 225

Static and Dynamic Memory Models

• Use static when data size is small, vis. network traversed
infrequently

• Use dynamic when data size is large, vis. network
traversed frequently

Copyright © 2008 Hong Qin 226

Reference Counting

• Reference counting: each memory cell maintains a
count of the number of other memory cells that point to
it

Copyright © 2008 Hong Qin 227

Reference Counting

• Object freed once its reference count becomes zero
• This is how garbage collection works in languages like

Java

Copyright © 2008 Hong Qin 228

Programming Models

• Visualization Models: application software vs.
programming libraries

• Example: fluid flow visualization system vs. library
written in C++

• Third option: visual tool lets you build the network using
a graphical interface, like IBM Data Explorer

• This is called a visual programming model

Copyright © 2008 Hong Qin 229

Example IBM DX Visualization Network

Copyright © 2008 Hong Qin 230

Programming Models

• Scene graph model
• A scene graph a tree-structure that represents objects in

an order defined by the tree
• Not a visualization network! Rather, control rendering

process
• Nodes contain 3D shapes and transformations
• Can work in conjunction with visualization networks
• Vis. network defines 3D shapes, scene graph draws and

transforms them

Copyright © 2008 Hong Qin 231

Simple Scene Graph

Copyright © 2008 Hong Qin 232

How VTK Fits In

• VTK borrows ideas from the above approaches
• It has aspects of visual programming systems as well as

programming libraries
• Idea: be general enough to support many visualization

applications, but not so general to require extremely
extensive coding

Copyright © 2008 Hong Qin 233

Example of VTK’s Implicit Execution
Framework with Multiple I/O Filters

Copyright © 2008 Hong Qin 234

VTK’s Visualization Pipeline

• Conditional execution implemented using C++ control
structures (if statements, while loops, for loops, etc.)

• Computation/memory tradeoff can be controlled; by
default, intermediate results saved to reduce computation

Copyright © 2008 Hong Qin 235

Basic Data Representation

Copyright © 2008 Hong Qin 236

Data Representations

• Many ways to represent data
• Points (e.g., 3D raster, point cloud)
• Lines
• Vectors
• These are all discrete data representations
• Data can be regular or irregular
• Regular = relationship exists between data points
• Compare: 3D raster vs. point cloud
• Data also has dimension: 1, 2, 3, …, n, …

Copyright © 2008 Hong Qin 237

Dataset = Structure + Attributes
• Structure = topology and geometry
• Topology refers to characteristics unchanged by

transformations (holes, handles, branches)
• Geometry refers to (x,y,z) positions of data points

• In VTK, cells define topology, points define geometry
• See Figures 5-2 and 5-3 for examples of cell types
• Linear cell types and non-linear cell types

Copyright © 2008 Hong Qin 238

• Cell topology defined by connectivity of vertices
Copyright © 2008 Hong Qin 239

Copyright © 2008 Hong Qin 240

Copyright © 2008 Hong Qin 241

Cell Example: Hexahedron

• Vertices listed in special order define topology

Copyright © 2008 Hong Qin 242

Non-Linear Cell Decomposition

• Non-linear cells must be linearized for visualization
• Break non-linear cells into linear cells

Copyright © 2008 Hong Qin 243

Non-Linear Cell Decomposition

Copyright © 2008 Hong Qin 244

Attribute Data

• Data values (attributes) usually assigned to vertices, as
opposed to edges or faces

• Why?
• Interpolation concept easy to apply across edges and

faces
• Common attributes include:

– Temperature, density, velocity, pressure, heat flux,
chemical concentration, others

• Scalars, vectors, tensors

Copyright © 2008 Hong Qin 245

Attribute Data

• Scalar data is data that is single-valued at all locations in
a data-set

• Examples: temperature, stock price, elevation
• Vector data is data with magnitude and direction
• Examples: position, velocity, acceleration
• Normals (direction vectors) are vectors of magnitude 1
• Texture coordinates map a point from Cartesian space

into a 1-D, 2-D or 3-D texture space
• Textures let us add color, transparency and other details

to geometric shapes

Copyright © 2008 Hong Qin 246

Attribute Data

• Tensors are mathematical generalizations of vectors and
scalars

• Usually written as matrices
• Tensor visualization is extremely difficult

Copyright © 2008 Hong Qin 247

Types of Data-sets

• Regular vs. irregular structure – refers to topology of
data-set

• Data-sets with regular topology, we do not need to store
connectivity information

• Points themselves can be regular or irregular
• If irregular, we need to store the positions
• Unstructured data must be explicitly represented
• High computational and storage costs usually

Copyright © 2008 Hong Qin 248

Copyright © 2008 Hong Qin 249

Polygonal Data

• Vertices, edges, polygons, polylines, triangle strips, etc.
• Triangle strips can represent n triangles using only n+2

points, vs. 3n points normally required

Copyright © 2008 Hong Qin 250

Image Data

• Collection of points and cells on a regular, rectangular
grid

• Also called a “raster”
• (Book uses word “lattice” – avoid!)
• 2D grid image
• 3D grid volume
• i-j-k coordinate system parallel to global x-y-z coordinate

system
• Simple representation, but “curse of dimensionality”

Copyright © 2008 Hong Qin 251

Rectilinear Grid

• Regular grid, but spacing along axes can vary
• Need to store 3 extra arrays of length nx, ny, nz –

dimensions of the grid
• Each array stores spacing, basically

Copyright © 2008 Hong Qin 252

Structured Grid

• Regular topology, irregular geometry
• Curvilinear grids most common type

Copyright © 2008 Hong Qin 253

Unstructured Points

• No topology, irregular geometry
• Also called point clouds

Copyright © 2008 Hong Qin 254

Unstructured Grid

• Irregular topology and geometry
• Any combination of cells permitted
• Encountered in relatively few applications
• e.g., computational geometry

Copyright © 2008 Hong Qin 255

VTK Data Representations

• vtkFloat Array
• vtkImageData
• vtkRectilinearGrid
• vtkStructuredGrid
• vtkPolyData

– vtkCellArray
• vtkUnstructuredGrid

Copyright © 2008 Hong Qin 256

VTK Data Representations

Copyright © 2008 Hong Qin 257

VTK Cell Types

Copyright © 2008 Hong Qin 258

Example: Cube.cxx

Copyright © 2008 Hong Qin 259

Example: Vol.cxx

Copyright © 2008 Hong Qin 260

Example: SGrid.cxx

Copyright © 2008 Hong Qin 261

Example: RGrid.cxx

Copyright © 2008 Hong Qin 262

Example: UGrid.cxx

Copyright © 2008 Hong Qin 263

Fundamental Visualization
Algorithms

Copyright © 2008 Hong Qin 264

Visualization Algorithms

• “Algorithms that transform data are the heart of
visualization”

• Algorithms classified according to structure and type of
data

• Geometric transformations change geometry but not
topology

• Examples: translation, rotation, scaling
• Topological transformations change topology but not

geometry
• Example: convert from regular to irregular grid

Copyright © 2008 Hong Qin 265

Visualization Algorithms

• Attribute transformations convert or create attributes
in data

• Example: convert vector to scalar
• Combined transformations change data structure and

attributes
• Algorithms that change data type include scalar

algorithms, vector algorithms, tensor algorithms, and
modeling algorithms

• Volume visualization and vector visualization have
their own special algorithms

Copyright © 2008 Hong Qin 266

Scalar Algorithms

• Color mapping – map scalar data to colors
• Why scalars?
• How would you map a vector to a color?
• Color lookup table (LUT) – attributes inside particular

range are mapped to color

Copyright © 2008 Hong Qin 267

Transfer Functions

• More general form of lookup table
• Can map data to color as well as transparency
• Usually expressed as actual functions

Copyright © 2008 Hong Qin 268

Transfer Functions

Copyright © 2008 Hong Qin 269

Transfer Functions

• Difficult to design
• Semi-automatic systems exist: transfer function design

galleries
• Idea: generate random transfer functions, user selects

ones he likes, system mutates them using a genetic
algorithm to create new ones

Copyright © 2008 Hong Qin 270

Transfer Function Design Galleries

Copyright © 2008 Hong Qin 271

Transfer Functions

• The assignment of color and transparency to density is
also called classification

Copyright © 2008 Hong Qin 272

Transfer Functions

Copyright © 2008 Hong Qin 273

Contouring

• Isocontour and isosurface extraction can reveal
structure of data (e.g., isobars on weather maps)

• Separate data into regions
• Isocontours: connected line segments
• Isosurfaces: triangular meshes

Copyright © 2008 Hong Qin 274

Contouring

• Isolines cross cell boundaries
• Use interpolation to compute crossing point
• Marching squares algorithm processes each

quadrilateral cell independently
• Each vertex may be inside or outside (or on) contour
• How many cases must we consider?
• Ambiguous cases

Copyright © 2008 Hong Qin 275

Marching Squares Cases

Copyright © 2008 Hong Qin 276

Marching Squares Ambiguous Case

Copyright © 2008 Hong Qin 277

Marching Cubes

• Marching cubes algorithm extracts isosurfaces from 3D
rasters

• Very famous algorithm
• How many cases of hexahedral cells must we consider?
• Each of 8 vertices may be inside or outside
• 28 = 256
• Lots of symmetry really only 15 cases to consider

Copyright © 2008 Hong Qin 278

Marching Cubes Cases

Copyright © 2008 Hong Qin 279

Marching Cubes Ambiguous Cases

Copyright © 2008 Hong Qin 280

Marching Cubes Complementary Cases
Used to Avoid Holes

Copyright © 2008 Hong Qin 281

Marching Triangles & Tetrahedra

• Can extend marching squares to marching triangles, and
marching cubes to marching tetrahedra

• Divide squares into triangles, cubes into tetrahedra
(how?) and then run different algorithms

• Tradeoff for both algorithms: simplicity vs. memory
usage

Copyright © 2008 Hong Qin 282

Contouring Examples

Copyright © 2008 Hong Qin 283

Scalar Generation

• Vectors and other n-D quantities can be turned into
scalars

• Example: taking magnitude of vector
• Example: Hawaii terrain visualization created by

projecting vector onto vertical
• Normalize vectors to give maximum magnitude of 1.0
• Steepest slope mapped to brightest color

Copyright © 2008 Hong Qin 284

Scalar Generation

Copyright © 2008 Hong Qin 285

Vector Field Visualization

• Streamlines
– Integration through vector field

• Stream ribbons
– Connect two streamlines

• Streamtubes
– Connect three or more streamlines

• Stream surfaces
– Sweep line segment through vector field

Copyright © 2008 Hong Qin 286

Streamlines Example

Color indicates temperature of air flowing through engine

Copyright © 2008 Hong Qin 287

Streamribbons Example

Copyright © 2008 Hong Qin 288

Streamtubes Example

Copyright © 2008 Hong Qin 289

Streamesurfaces Example

Copyright © 2008 Hong Qin 290

Advanced Computer Graphics and
Volume Rendering

Copyright © 2008 Hong Qin 291

Transparency and Alpha Values

• Why is transparency useful?
• Peer into and through objects
• Volume visualization
• α = opacity
• α = 1 opaque
• Modern graphics hardware supports alpha blending
• Need to composite transparent actors
• Does order matter?
• Yes

Copyright © 2008 Hong Qin 292

Alpha Compositing

Copyright © 2008 Hong Qin 293

Alpha Compositing

• s represents surface of actor
• b represents what is behind actor’s surface
• Suppose As = 0? As = 1?

Copyright © 2008 Hong Qin 294

Alpha Compositing Example

• Use α = 0.5 for all 3 polygons
and work through the
calculations

Copyright © 2008 Hong Qin 295

Compositing Order Matters!

• Recall the z buffer algorithm, which is used for…?
• Will not necessarily composite polygons in right order
• Usually must use software to order actors by their

increasing distance from camera

Copyright © 2008 Hong Qin 296

Texture Mapping

• Idea: add detail to image without requiring modeling
detail

• Map picture called a texture map onto object
• Texture coordinates tell you where on object to put

picture

Copyright © 2008 Hong Qin 297

Texture Mapping

• 2D texture mapped onto 3D geometry
• Each 3D vertex assigned 2D texture coordinates, usually

written (u,v)
• Texture is an RGBA image made of texels, texture

elements

Copyright © 2008 Hong Qin 298

Texture Mapping in Visualization

• Animated texture maps
• Flow visualization
• Colors cycle in a loop to show direction of flow

Copyright © 2008 Hong Qin 299

Volume Rendering

• Image-order and object-order volume rendering
• Ray-casting vs. splatting

Copyright © 2008 Hong Qin 300

Ray Casting

• Idea: send viewing ray into volume and examine data
encountered to compute pixel’s color

Copyright © 2008 Hong Qin 301

Ray Casting

• Each ray has a different profile we can draw as a 2D
curve

• Essentially we will numerically integrate (?) the curve
• Material density, illumination parameters, other

attributes affect this integration

Copyright © 2008 Hong Qin 302

Copyright © 2008 Hong Qin 303

Ray Profile
Example

• 8-bit density volume
• Range: 0…255
• x-axis: distance from

view plane
• y-axis: density
• image 3: distance to

first voxel with 30+
density value

• image 4: alpha
compositing

Maximum Intensity Projection

• MIP simple yet effective technique
• Depth perception lost, though
• Can do colored MIP also
• Which blood vessel is in

front of the others?
• No compositing, so

colors don’t blend
together

Copyright © 2008 Hong Qin 304

Ray Traversal

• We take small steps along the ray
• Don’t always land on a voxel
• Need to estimate density somehow (?)
• Interpolation!
• Nearest neighbor interpolation: just find closest voxel

and use its density
• Trilinear interpolation: take some weighted sum of 8

nearest voxels’ densities

Copyright © 2008 Hong Qin 305

Interpolation Techniques

Copyright © 2008 Hong Qin 306

Ray Traversal

• Usually we traverse the ray at uniform intervals

• Parametric form: (x, y, z) = (x0, y0, z0) + (a, b, c) t
• (x0, y0, z0) is the origin of the ray
• (a, b, c) is the normalized ray direction vector

Copyright © 2008 Hong Qin 307

Ray Traversal Pseudocode

• t1 and t2 are distances where ray enters and leaves
volume, respectively

Copyright © 2008 Hong Qin 308

Step Size Affects Image Quality

Copyright © 2008 Hong Qin 309

Step Size

• Small step size = higher quality, slow speed
• Large step size = converse
• Large step size causes the banding effect

Copyright © 2008 Hong Qin 310

Voxel-based Ray Traversal

• Jump from one voxel to another instead of along a
continuous ray

• Related to concept of connectedness

Copyright © 2008 Hong Qin 311

Voxel-based Ray Traversal

Copyright © 2008 Hong Qin 312

Object-Order Volume Rendering

• Back-to-front or front-to-back processing of voxels
• Requires a triply nested loop
• for z = … {

for y = … {
for x = … {
…
}

}
}

• Select plane most parallel to image plane

Copyright © 2008 Hong Qin 313

Splatting

• Fuzzy sphere (called the kernel) placed around each
voxel

• Kernel projected onto viewing plane, producing a
footprint

• Repeat for all voxels
• Kernel size affects image

quality
• Footprint discretized

to a resolution appropriate
for image resolution

Copyright © 2008 Hong Qin 314

Implementing Splatting

• Software-only vs. hardware-assisted
• Footprint table – slices generic kernel into image-aligned

slabs

Copyright © 2008 Hong Qin 315

Texture Mapping-based
Volume Rendering

• In 2D: project and composite axis-aligned slices onto
image plane

• In 3D: cut volume into slices that are parallel to the
image plane (“image-aligned slices”)

• Use interpolation and compositing in both cases

using 3D
texture
mapping
hardware

using 2D
texture
mapping
hardware

Copyright © 2008 Hong Qin 316

2D Texture-Mapped
Volume Rendering Example

Copyright © 2008 Hong Qin 317

Shear-Warp Volume Rendering

• Hybrid technique – aspects of object-order and image-
order rendering

• Idea: convert a rotation of the camera into a shearing of
the volume

Copyright © 2008 Hong Qin 318

Shear-Warp Volume Rendering

• Need to use bilinear interpolation to resample the slices
• Front-to-back ray traversal
• Essentially a very efficient form of ray-casting
• Downside? Extra interpolations introduce error and hurt

image quality
• Requires 3 copies of the volumes so we can shear

volume along direction most parallel to image plane
• Shear in xy-plane, xz-plane or yz-plane
• Need to be able to process raster in any order

Copyright © 2008 Hong Qin 319

Volume Classification

• Assignment of density ranges to categories
• Represented by transfer functions
• “Material percentage” transfer functions:

Copyright © 2008 Hong Qin 320

Volume Classification

• Usually we classify a volume using red, green, blue and
opacity transfer functions

• Two possibilities to apply classification during ray
traversal:
1. Interpolate voxel densities and then compute color
2. Assign colors to voxels and then interpolate colors

• Option 1 tends to make nicer looking images

Copyright © 2008 Hong Qin 321

Volume Classification

• We can also compute the gradient of the density field
and use that to modulate the color

• Gradient is a vector that tells you how the material is
changing at a position

• Vector of first partial derivatives in x, y and z:

Copyright © 2008 Hong Qin 322

Volume Classification

• If the vector g is long, that means the material is
changing quickly

• Example: boundary between bone and flesh
• Implies presence of a surface
• Modulate color based on

gradient magnitude to ignore
regions of homogeneous
material distributions

• Small magnitude = little or
no change of material

Copyright © 2008 Hong Qin 323

Uses of the Gradient Vector

• We can treat the gradient as a normal vector and evaluate
the lighting equation to shade and illuminate volumes

Copyright © 2008 Hong Qin 324

Volumetric Shading

• Can reveal surfaces inside
the data

• Compare:

Copyright © 2008 Hong Qin 325

Volumetric Shading: How?

• Gradient allows us assigns a
direction vector to each voxel

• This (normalized) vector is used
just like the normal vector in
surface graphics

• It will modulate the color we
assign to samples and thereby
allow us to create 3D effects

• Look at the skull on the right

Copyright © 2008 Hong Qin 326

Volumetric Shading

• But how do we incorporate color, opacity and shading
information?

• First we interpolate the density at a given sample
position

• Interpolate gradient at same position
• Then assign color and opacity to each sample, and shade

using interpolated gradient
• When we shoot the rays through the volume, we have to

composite all these samples together

Copyright © 2008 Hong Qin 327

Gradient Interpolation

• At start of processing,
compute gradient at each
voxel

• During ray traversal,
estimate gradient with
trilinear interpolation

• Like densities (and unlike
colors), gradients are
intrinsic attributes of
models

Copyright © 2008 Hong Qin 328

More Volumetric Shading Examples

Copyright © 2008 Hong Qin 329

Gradient Modulation

• With gradient modulation
in we modulate opacity/color
of a voxel by gradient

• We multiply opacity and
color by some function of
gradient magnitude (or given
by a transfer function, #5)

• Regions of high gradient
magnitude increase opacity;
regions of low gradient
magnitude decrease opacity

• Explain this image

Copyright © 2008 Hong Qin 330

Volumetric Global Illumination

• Global illumination refers to reflections, shadows and
other effects that cannot be computed locally

Copyright © 2008 Hong Qin 331

Regions of Interest

• An ROI is simple a portion of the data-set of particular
importance

• Use cropping planes
to reveal interior

• Simple idea, but very,
very useful

• Eliminates set of
voxels from
consideration

Copyright © 2008 Hong Qin 332

Image Processing Primer

Copyright © 2008 Hong Qin 333

Image Processing

• Operations performed over images (2D or 3D)
• Purpose:

– enhance certain features
– de-emphasize other features

• Implemented as filters or transformations:
– some operate on the entire set of pixels at once (global

operations)
– examples: brightness and contrast enhancement

Copyright © 2008 Hong Qin 334

Image Processing

• Some operate only on a subset of pixels (local operations
in a pixel neighborhood)

• Examples: edge detection, contouring, image sharpening,
blurring, “noise” reduction

Copyright © 2008 Hong Qin 335

Intensity Transformations

• Modify distribution of gray levels in an image
• Example: reduce number of grayscale levels used to

represent images
• Reasons: memory, display/printing limitations, cost
• Reduce number of bpp (bits per pixel) (e.g., 24 8 bits)
• Usually intensity transformations used for image

enhancement

Copyright © 2008 Hong Qin 336

Intensity Transformations

• An intensity transformation most easily expressed as
function T(p) over domain of possible pixel intensities

• New pixel intensity given as height of function

Copyright © 2008 Hong Qin 337

Intensity Transformation Examples

• What would happen to the image in each case?

• What does the right-bottom image look like?

? ?

Copyright © 2008 Hong Qin 338

Contrast Enhancement

• Often one is given an image with
poor contrast

• Image seems washed out and
features are hard to see

• Need to enhance the contrast
somehow

?

Copyright © 2008 Hong Qin 339

Contrast Enhancement

• One technique for fixing such
images is process called contrast
stretching

• Basic idea: perform an intensity
transformation to cause darker
shades to become darker, and
lighter shades to become lighter

Copyright © 2008 Hong Qin 340

Contrast Enhancement

• Piecewise linear functions are typically used to specify
contrast stretching instead of continuous ones

• Give greater user control

?

Copyright © 2008 Hong Qin 341

Thresholding

• Another way of manipulating
contrast is called thresholding

• What’s going to happen?

?

Copyright © 2008 Hong Qin 342

Image Transformations

• Another example of thresholding using a linear ramp

• Why were some of the graylevels preserved?
• Compare with cat image

?

Copyright © 2008 Hong Qin 343

Histograms

• An important concept in image processing (and
probability & statistics) is the histogram

• Suppose we can display 256 discrete gray level
intensities, ranging from 0 to 255 (8-bit image)

• To generate a histogram of the image, we would first
count the number of pixels having each intensity:
– p0: n0 = n(p0)
– pi: ni = n(pi)
– etc.

Copyright © 2008 Hong Qin 344

Histograms

• Then we can plot the counts in a graph to view
distribution of intensities across image

• Q: Given an array
histogram[], AND
array of pixels with
associated intensities
(pixels[i].intensity),
how would you
build the histogram?

• A: histogram[pixels[i].intensity]++ in a for loop over
pixels[]

Copyright © 2008 Hong Qin 345

Copyright © 2008 Hong Qin 346

Example Histograms
?

??

Example Histograms

Copyright © 2008 Hong Qin 347

Histogram Equalization

• One automated (i.e., algorithmic) technique for
improving contrast is histogram equalization

• Basic idea: increase range of intensities displayed in an
image by “stretching” the histogram

• Range of displayed intensities becomes more uniform

Copyright © 2008 Hong Qin 348

Histogram Equalization

• The discrete histogram equalization equation is

• pmax is maximum possible intensity (not necessarily
maximum intensity that happens to appear in the image)

• We accumulate a running total
• This accumulation explains

shape of function, which
resembles a cumulative
distribution function

max0

)()(p
n

jnkp
k

j total
new ∑

=
=

Copyright © 2008 Hong Qin 349

Histogram Equalization Example

Copyright © 2008 Hong Qin 350

Histogram Equalization Examples

Copyright © 2008 Hong Qin 351

Histogram Equalization Example

Copyright © 2008 Hong Qin 352

Can This Work for Color Images?

• How do we apply histogram equalization to color image?
• Convert RGB HSV, then equalize histogram of V

• Could we equalize the H or S channels?

Copyright © 2008 Hong Qin 353

Histograms Summary

• Histograms are a useful tool for studying images
• We can manipulate images to improve contrast

– contrast stretching and thresholding
– histogram equalization

• These are all global processes
• Suppose we localize computations and use only local

information when processing an image?
• This brings us discrete convolution or filtering

Copyright © 2008 Hong Qin 354

Discrete Convolution (Filtering)

• Examples of image processing based on local
information include smoothing and edge enhancement

• We use discrete convolution for these operations
– place a square matrix of weights called a mask over

each pixel
– mask takes a weighted sum of neighboring pixels

according to weights in mask
– the resulting intensity is the new output pixel
– when done for all pixels, a new image is produced of

same resolution as original

Copyright © 2008 Hong Qin 355

Discrete Convolution (Filtering)

• Very important note: do not replace computed values
into the original image, but write to an output image

• You need a second memory buffer (array) for this

∑ ∑
= =

+−+−

+−+−

⋅=

=

⋅=+

=

2

0

2

0
),()1,1(,

,

),()1,1(

, eachfor
0

,eachfor

k l
lk

org
ljki

new
ji

new
ji

lk
org

ljki

wpp

tempp

wptemp

lk
temp

ji

Copyright © 2008 Hong Qin 356

Image Smoothing

• A smoothing mask
averages local pixel
neighborhood

• Each pixel’s value is
replaced by its local
average in the output
image

• Can be used to remove
noise, like speckling

Copyright © 2008 Hong Qin 357

Image Smoothing

• Larger masks smooth more and cut more noise
• Always make sure that sum of all mask elements equals

1.0
• What would happen if the sum weren’t 1.0?
• Image brightness would increase or decrease
• Smoothing the image blurs it –

larger masks blur more
• Jagged edges are

replaced by blur

Copyright © 2008 Hong Qin 358

Image Smoothing

• Smoothing is often used in graphical applications
• Why diagonal lines (and fonts) on a screen look smooth,

even though they are comprised of a sequence of pixels
• This kind of blurring is a special application of image

smoothing known as anti-aliasing
• Eye is tricked into seeing a “continuous” line segment

Copyright © 2008 Hong Qin 359

Image Smoothing Example

• Results of smoothing top-
left image with masks of
size 3, 5, 9, 15, and 25

• Notice how some of
circles completely
disappear

• Also notice how
smoothing lessens or even
eliminates noise in
rectangles

Copyright © 2008 Hong Qin 360

Image Sharpening

• This operation enhances
the edges, rather than
blurring the image

• Edge enhancement
• It has little effect in

smoothly varying areas
that have no edges

• Why do this?
• Extract boundaries of

regions, perhaps

Copyright © 2008 Hong Qin 361

Image Sharpening

• An edge in image indicates
that there is a high local first
derivative or gradient at the
given pixels

• Sharpening masks therefore
implement some sort of
differentiation

• Usually we are only interested
in gradient magnitude

Copyright © 2008 Hong Qin 362

Image Sharpening Mask Example:
The Sobel Mask

• The Sobel filter comes
in a pair of masks

• Each mask computes an
image for x-derivative (dx),
other for y-derivative (dy)

• Note that the dy-masks do some
smoothing in x-direction (dx-mask smoothes in y)

• This decreases sensitivity to noise in one direction

Copyright © 2008 Hong Qin 363

Image Sharpening Mask Example:
The Sobel Mask

• But increases the sensitivity
in the other direction, which
is exactly what we want

• Pixel values below zero will
occur at edges with negative
gradients

• But this is OK because we are actually only interested in
the magnitude, not the sign…why only the magnitude?

• High magnitude (positive or negative) indicates an edge!

Copyright © 2008 Hong Qin 364

Sobel Mask

()
dydxnew

dydxnew

imgimgimg

imgimgimg

+=

+= 2
1

22

• We use the Sobel mask by
applying the two masks
separately, thereby
generating two images,
imgdx and imgdy

• Their pixels are combined
by

()2
1

22
dxdxnew imgimgimg +=

Copyright © 2008 Hong Qin 365

Sobel Mask

• Since this formula is very
computationally
expensive, typically the
following approximation
is used instead:

• Again, gradient magnitude
is what we want, not
direction

()
dydxnew

dydxnew

imgimgimg

imgimgimg

+=

+= 2
1

22

dydxnew imgimgimg +=

Copyright © 2008 Hong Qin 366

Median Filter

• The median filter is example of an order-statistics filter
• Employs local statistical information about pixels to

produce output pixel
• Note that we don’t use a

fixed mask for all pixels
• With a median filter,

look at local neighbor-
hood and take median
value

• Naturally, this requires some kind of sorting algorithm

Copyright © 2008 Hong Qin 367

Median Filter

• Median filters are effective for removing impulse noise,
also called salt-and-pepper noise

• Suppose we took the mean instead of the median?
• That’s just image

smoothing!
• Since median filters

perform less blurring
than smoothing masks,
they end to preserve
features like lines and edges

Copyright © 2008 Hong Qin 368

Image Enhancement via Image
Masking/Subtraction

• Say we want to visualize blood vessels in brain
• First, we take an image of brain (e.g., MRI)

– this will be called the mask
• Then we inject a contrast agent and take another image
• Then we subtract first

image from second
• The resulting image

shows changes
introduced by contrast
agent

Copyright © 2008 Hong Qin 369

Image Subtraction Example

Copyright © 2008 Hong Qin 370

• X-ray angiography to enhance perfused vessels

• Perfuse = to force
fluid through something

_ =

perfused non-perfused
(mask)

contrast-
enhanced

Subsampling

• Sometimes we need to
change image resolution

• Subsampling used to
decrease resolution

• Supersampling used to
increase resolution

• How can we improve
image quality in both
cases?

• Interpolation

Copyright © 2008 Hong Qin 371

Quantization

• Very common technique in all of
computer science

• Basic idea: represent broad range
of values using a much smaller set

• In image processing: reduce
number of graylevels (bits)
represented

• For normal vectors: store only a
subset of the infinite number of
possibilities (unit sphere)

Copyright © 2008 Hong Qin 372

Color Transformations

• Image transformations not limited to intensity trans.
• We can also transform the H and S channels

Copyright © 2008 Hong Qin 373

Volume Rendering Hardware

Copyright © 2008 Hong Qin 374

Volume Rendering Hardware

• We have looked at several volume visualization
algorithms

• Today: how to implement ray-casting in hardware
• Transformations, viewing, projection, interpolation,

classification, shading, compositing
• Desirable: rendering large-ish volumes (~2563) in real-

time
• Limit pre-processing time and permit interactive changes

to classification and shading parameters

Copyright © 2008 Hong Qin 375

VolumePro Rendering Hardware

• VolumePro 500 – MERL/USB
• PCI hardware extension card
• Hybrid of shear-warp and ray-casting
• 2563 volumes at 30 fps
• Parallel projection
• Projection via ray-casting
• Gradient estimation, classification,

Phong illumination
• Cropping and cutting planes to

visualize portions of volumes
Copyright © 2008 Hong Qin 376

VolumePro 1000

Copyright © 2008 Hong Qin 377

VolumePro Rendering Hardware

• Users can change classification and
shading parameters at run-time

• Not scalable, fits entirely on a single
chip

• Four parallel rendering pipelines
• Pipelines share information to reduce

memory bandwidth requirements
• Supports only 8-bit and 12-bit

volumes (CT & MRI often use 12)
• MERL TeraRecon Corp

Copyright © 2008 Hong Qin 378

VolumePro Rendering Algorithm

• Ray-casting of isotropic
and anisotropic rectilinear
volumes

• Shear-warp factorization
of viewing matrix = step
through volume along a
major axis

• Scaling and shearing (L)
transform anisotropic
volume into isotropic

Copyright © 2008 Hong Qin 379

VolumePro Rendering Algorithm

• Permutation matrix P
makes axis most parallel
to viewing direction the z
axis

• Shear matrix S projects
volume onto base plane
via ray-casting

• Rays cast from base plane
into the volume, rather
than from image plane

Copyright © 2008 Hong Qin 380

VolumePro Rendering Algorithm

• Guarantees one-to-one
mapping from sample
points to voxels

• Base plane transformed to
image plane by warp
matrix
W = M • L-1 • P-1 • S-1

• Bilinear interpolation
done in external 3D
graphics hardware

Copyright © 2008 Hong Qin 381

VolumePro Ray-Casting Pipeline

• By design, each voxel
read only once from
memory

• Pipelined architecture
means voxels processed
as quickly as they can be
read from memory

• Major phases:
interpolation, gradient
estimation, classification
and shading, compositing

Copyright © 2008 Hong Qin 382

Interpolating Voxel Values

• Interpolation unit
converts each beam of
voxels in a scanline into a
stream of samples

• Voxel Slice FIFO and
Voxel Beam FIFO locally
store voxels to maintain
neighborhood of
“current” voxel

• Trilinear interpolation
requires weights

• Weight Generator
calculates weights

• All rays are parallel
weights identical for all
samples in a single slice

Copyright © 2008 Hong Qin 383

Gradient Estimation

• Gradient Estimation unit
uses central differences to
estimate gradients

• We have x and y
neighbors, but what about
z?

• We maintain previous and
next slices into two FIFO
buffers

• Gradient estimation unit
lags a little behind the
interpolation unit

Copyright © 2008 Hong Qin 384

Gradient Magnitude

None Illumination

• Can multiply opacity or
specular illumination (!)
by gradient magnitude to
create certain effects

• Gradient magnitude
modulation of the
specular illumination will
highlight curved regions
and attenuate flat regions

Opacity

Copyright © 2008 Hong Qin 385

Opacity &
Illumination

Assigning Color and Opacity

• Post-shaded pipeline (we
already did interpolation)

• Look-up tables can be
changed at run-time
easily

• LUTs make classification
very rapid

• Transfer functions given
in are converted by
hardware driver in OS to
LUT format

Copyright © 2008 Hong Qin 386

Sample Illumination

• Phong illumination
• User provides kd and ks

• Diffuse and specular
coefficients

• Reflectance maps convert
gradient vector to
illumination value

Copyright © 2008 Hong Qin 387

Reflectance Map

• Reflectance maps constructed by taking a subset of all
possible gradient directions, and for each direction and
given viewpoint, compute the illumination

• Changed when light source(s) changed
• Directional lights but no positional lights
• How does the type of light affect shading?

Copyright © 2008 Hong Qin 388

Accumulating Color Values Along Rays

• Compositing happens in
front-to-back order

• FIFOs store intermediate
results and wait for the
next sample to arrive in
the stream

• When ray passes out of
volume, pixel finished

• When all rays are
finished, warp base plane
to image plane

• Warping done by texture-
mapping base plane onto a
quadrilateral

• 3D graphics hardware
rasterizes quadrilateral

Copyright © 2008 Hong Qin 389

Example Visualizations

MIP Illumination, gradient
magnitude modulation of

opacity

No illumination

Copyright © 2008 Hong Qin 390

Advanced Features of VolumePro:
Supersampling

• Sample data at a higher frequency than voxel spacing
• VolumePro does it only along z direction,

i.e., along rays cast into the volume
• Minor changes to architecture
• A supersampling factor of k reduces

frame rate by a factor of 1/k
• Compare top and bottom images
• Top = no supersampling
• Bottom = 3x supersampling

Copyright © 2008 Hong Qin 391

Advanced Features of VolumePro:
Supervolumes and Subvolumes

• Hardware PCI card can handle volumes of up to
dimension 256 in its 128 MB on-board memory

• To render large volumes, partition volume into smaller
blocks, render each, and combine resulting images in
software

• Software driver partitions volumes
• Gradient estimation, trilinear interpolation
• Memory blocks swapped to and from main memory

across PCI bus

Copyright © 2008 Hong Qin 392

Advanced Features of VolumePro:
Cropping and Cut Planes

• Hide portions of data using parallel planes
• Why do this?
• See cross-sections, interior of volume
• Cropping along volume planes only
• Why restrict it to only parallel planes?
• Union,

intersection,
difference

Copyright © 2008 Hong Qin 393

Advanced Features of VolumePro:
Hardware Cursor

• Hardware features a built-in 3D
cursor

• Generated by hardware, controlled in
software

• Allows interrogation of volume
• How might we implement this cursor

in hardware?
• Compositing unit generates extra

voxels for cursor and composites
them with volume

Copyright © 2008 Hong Qin 394

Clipping Planes

• VolumePro supports a single clipping
“plane” with arbitrary thickness

• Samples visible if between two planes
• What problem might be caused by cutting

data along an arbitrary plane?
• Aliasing! So how could we

make “smooth cuts”?
• Create a smooth transition

region between boundary of
inside and outside

Copyright © 2008 Hong Qin 395

vg500 Chip Architecture: Parallel Pipelines

• Chip implementing
rendering is the vg500

• 3.2 million transistors, 125
Mhz clock frequency

• To render 2563 voxels 30
times per second, hardware
processes over 500 million
voxels per second

• Four parallel pipelines
• 125 million voxels/sec per

pipeline
Copyright © 2008 Hong Qin 396

vg500 Chip Architecture: Voxel Memory
Organization

• Voxels are stored in a
very intricate, skewed
fashion to permit parallel
reads and avoid bus
contention

• Done to prevent delays
for any viewpoint the user
chooses

• View-independent
memory layout

Copyright © 2008 Hong Qin 397

VolumePro PCI Card

• First version released in 1999
• 66 MHz PCI bus interface
• Can connect multiple cards together via high-speed

network for parallel rendering
• Separate volume across boards
• Or, can integrated

multiple vg500 chips on
a single, multi-processing
board

Copyright © 2008 Hong Qin 398

VLI – The Volume Library Interface

• VLI is C++ class that
provide access to vg500
chip

• Works with 3D graphics
library, like OpenGL

• Contains software hooks
for all major functionality
of hardware

Copyright © 2008 Hong Qin 399

VolumePro 1000

Copyright © 2008 Hong Qin 400

Vector Field Visualization

Copyright © 2008 Hong Qin 401

Vector Field Visualization

• We have looked primarily at scalar field visualization
• Iso-surface extraction, volume rendering algorithms
• These algorithms do not extend to vector-valued

quantities, which may have 2, 3 or more values per voxel
• What would it mean to volume-render a field of velocity

vectors?
• How would we perform classification, shading,

compositing, and the other stages of the pipeline?

Copyright © 2008 Hong Qin 402

Vector Field Visualization

• Computational fluid dynamics (CFD) has been the
classical application driving R&D in vector visualization

• Why? Many components at a given (x,y,z) position:
velocity, temperature, pressure, rotation, etc.

• Many vector field visualization techniques, some quite
clever

• Remember goal of visualization: understand important
aspects and features of complex data-sets

Copyright © 2008 Hong Qin 403

Data Contraction

• Reduce vector-valued functions to scalar ones
• Vector magnitude
• Scalar product with a given direction vector
• Advantage: very simple technique and uses existing

volume visualization
• Disadvantage: very simple technique that discards too

much information

Copyright © 2008 Hong Qin 404

Streamlines, Pathlines, Streaklines

• Particle advection (line
integration)

• Streamline – path always
tangent to flow field

• Streamlines best used for
stationary flows, flows that
do not change as a function
of time

• Color-coded

Copyright © 2008 Hong Qin 405

Streamlines, Pathlines

• Pathline – similar to streamline; trajectory that results if
single particle is released and traced over time

• If flow is stationary (time invariant), pathline coincides
exactly with the streamline at a given starting position

Copyright © 2008 Hong Qin 406

Particle Systems

• Particles are injected into
the flow field, which may
be time-varying
(turbulent)

• Enter, travel, leave
• Animated particles show

direction and magnitude
of velocity

Copyright © 2008 Hong Qin 407

Ribbons and Tubes

• Multiple particle advections per segment in the
discretized line integration

• Connect two of them together to generate a ribbon, more
to make a tube

Copyright © 2008 Hong Qin 408

Hedgehogs

• Draw the vectors themselves
• Advantages: simple
• Disadvantages: many!
• Clutter
• Direction ambiguity
• Spatial ambiguity (start/end

locations of arrow)

Copyright © 2008 Hong Qin 409

Streamlines + Hedgehogs

• Can you identify the physical phenomenon being
visualized here?

Copyright © 2008 Hong Qin 410

Stream Surfaces

• Calculate multiple stream lines
• Discretize
• Connect points to form triangles
• Diverging and converging flow causes problems
• Divergence: add extra vertices
• Convergence: merge vertices

Copyright © 2008 Hong Qin 411

Stream Surfaces

Copyright © 2008 Hong Qin 412

Streamballs

• Basic idea is to create a continuous function f(x,y,z).
• Take isocontours of this function.
• Use meta-balls (not meatballs) to generate this function

Copyright © 2008 Hong Qin 413

Streamballs

Copyright © 2008 Hong Qin 414

Flow Volumes

• Imagine standing outside with a smoking flare in hand
• Smoke trail guided by wind field
• This is the basic idea of flow volumes

Copyright © 2008 Hong Qin 415

Flow Volumes

• Seed polygon (square) is used as smoke generator
• Constrained such that center is perpendicular to flow
• Square can be subdivided into a finer mesh

Copyright © 2008 Hong Qin 416

Flow Volumes

• Fast rendering on commodity hardware
• Can color the smoke to indicate other quantities

Copyright © 2008 Hong Qin 417

Flow Volumes

• Currently defined for regular, rectilinear, curvilinear,
multigrid and unsteady meshes

Copyright © 2008 Hong Qin 418

Flow Volumes – Unsteady Flows

• Can work for unsteady flows for all mesh types
(curvilinear, rectilinear, irregular, etc.)

• Complex twisting must be handled carefully

Copyright © 2008 Hong Qin 419

Textured Splats

• Basic idea: map reconstruction footprint from splatting
to a 2D textured square

• Splat textures oriented in projected direction of flow

Copyright © 2008 Hong Qin 420

Textured Splats

• Movies 18h, 18i
Wind direction
and magnitude

Soil conductivity

Copyright © 2008 Hong Qin 421

	Fundamentals of Scientific Visualization and Computer Graphics Techniques
	What is Scientific Visualization?
	Why is Visualization Useful & Important?
	Visualization Terminology
	Visualization Terminology
	Visualization Terminology
	Motivations of Visualization
	Motivations of Visualization
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Volume Visualization Examples
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Examples of Visualization
	Image Processing, Computer Graphics & Visualization
	Image Processing, Computer Graphics & Visualization
	The Visualization Process
	An Alternate Visualization Pipeline
	Other Important Issues
	Current Trends in Visualization
	Summary & Questions
	Traditional Visualization: Historical Perspectives
	Traditional Visualization
	Graphical Display
	Surprise Hidden in the Data
	Dr. John Snow’s Cholera Map of London (1854)
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Graphical Display – Large Datasets
	Traditional Visualization (“Information Graphics”)
	Graphical Display – Large Datasets
	Time-Series Display
	Compare with this way…
	Visualization in Narrative Form
	Computer Graphics vs. Scientific Visualization
	What is Computer Graphics?
	Computer Graphics
	Lights, Cameras and Objects
	Lights, Cameras and Objects
	Lights, Cameras and Objects
	Surface Ray-Tracing
	Rendering Processes:Image-Order and Object-Order
	Rendering Processes:Image-Order and Object-Order
	Rendering Processes:Image-Order and Object-Order
	Surface Rendering
	Surface Graphics
	Surface Graphics – Pros and Cons
	Surface Graphics
	Volume Graphics
	Volumetric Representations
	Volume Graphics
	Volumetric Ray-Tracing
	Volume Rendering
	Volume Rendering
	Volume Rendering
	Volume Graphics
	Surface Graphics vs. Volume Graphics
	Human Visual System andColor Theory
	Human Visual System and Color Theory
	Human Visual System
	Human Visual System
	Rods
	Cones
	Color
	Color Receptors
	Human Eye Color Perception
	Human Eye Color Response
	Human Eye Color Perception
	Information Coding with Color
	Information Coding with Color
	Information Coding with Color – Helpful Tips
	Color Response and Perception Summary
	Color Response and Perception Summary
	Computer Representation of Color
	RGB Color Arithmetic
	RGB Color Model
	HSV Color Model
	HSV Color Model
	HSV Color Model
	HSV Color Model
	HSV Examples
	RGB vs. HSV
	Modeling Methods and Techniques for Illumination and Shading
	Illumination and Shading
	Illumination
	Shading Model
	Total Light Decomposition
	Shading Model
	Local vs. Infinite Light Sources
	Surface Properties – Ambient Lighting
	Surface Properties – Ambient Lighting
	Surface Properties – Ambient Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Diffuse Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Specular Lighting
	Surface Properties – Total Illumination
	Surface Properties – Total Illumination
	Other Shading and Illumination Effects
	Global Illumination
	Shadows
	Key Elements of Cameras and Geometric Coordinate Systems
	Cameras
	Camera Attributes
	Camera Attributes
	Camera Attributes
	Camera Manipulation
	Camera Manipulation
	Camera Manipulation
	Camera Manipulation
	Coordinate Systems
	Coordinate Systems
	Model Coordinate System
	World Coordinate System
	World Coordinate System
	View Coordinate System
	Display Coordinate System
	Coordinate Systems
	Coordinate Systems
	Coordinate Transformations
	Object Representations
	Coordinate Transformations
	Coordinate Transformations: Translation
	Coordinate Transformations: Translation
	Coordinate Transformations: Translation
	Coordinate Transformations: Scaling
	Coordinate Transformations: Scaling
	Coordinate Transformations: Rotation
	Coordinate Transformations
	Coordinate Transformations
	Actor Geometry: Modeling
	Actor Geometry: Modeling
	Actor Geometry: Actor Location and Orientation
	Actor Geometry: Actor Location and Orientation
	Camera Attributes
	Camera Attributes
	Graphics Hardware and Display Devices
	Graphics Hardware
	Raster Devices
	Raster Devices
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Color Display Technology – CRT
	Raster Devices: Display Resolution
	Raster Devices: Color Depth
	Image Resolution
	How Many Bits Do We Need?
	Bit Depth
	Dithering
	Interfacing to the Hardware
	Interfacing to the Hardware
	Graphics Primitives
	Graphics Primitives
	Graphics Primitives
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Rasterization
	Flat Surface Rendering
	Gouraud Surface Rendering
	Phong Surface Rendering
	Phong Surface Rendering
	Hidden Surface Removal
	Hidden Surface Removal:Painter’s Algorithm
	Hidden Surface Removal:Z-Buffer Algorithm
	Visualization Toolkits: Overview
	VisualizationToolKits
	VTK
	Compiling Cone.cxx
	Cone.cxx
	Cone.cxx
	Events and Observers
	Transformations
	Assemblies
	Programs for You to Try
	Data Visualization Pipeline in VTK
	The Visualization Pipeline
	Data Visualization Example
	Data Visualization Example
	Data Visualization Example
	Visualization Pipeline
	Visualization Pipeline
	Data Objects
	Process Objects
	Process Objects
	VTK’s Visualization Pipeline
	VTK’s Visualization Pipeline
	ColorSph.cxx
	StrSph.cxx
	LoopShrk.cxx
	The Object Model
	The Functional Model: Example
	The Visualization Model
	Pipeline Topology
	Multiplicity
	Loops
	Executing the Pipeline
	Execution Control
	Explicit Execution
	Implicit Execution
	Implicit Execution
	Explicit vs. Implicit Execution
	Conditional Execution
	Memory and Computation Tradeoff
	Static and Dynamic Memory Models
	Reference Counting
	Reference Counting
	Programming Models
	Example IBM DX Visualization Network
	Programming Models
	Simple Scene Graph
	How VTK Fits In
	Example of VTK’s Implicit Execution Framework with Multiple I/O Filters
	VTK’s Visualization Pipeline
	Basic Data Representation
	Data Representations
	Dataset = Structure + Attributes
	
	Cell Example: Hexahedron
	Non-Linear Cell Decomposition
	Non-Linear Cell Decomposition
	Attribute Data
	Attribute Data
	Attribute Data
	Types of Data-sets
	Polygonal Data
	Image Data
	Rectilinear Grid
	Structured Grid
	Unstructured Points
	Unstructured Grid
	VTK Data Representations
	VTK Data Representations
	VTK Cell Types
	Example: Cube.cxx
	Example: Vol.cxx
	Example: SGrid.cxx
	Example: RGrid.cxx
	Example: UGrid.cxx
	Fundamental Visualization Algorithms
	Visualization Algorithms
	Visualization Algorithms
	Scalar Algorithms
	Transfer Functions
	Transfer Functions
	Transfer Functions
	Transfer Function Design Galleries
	Transfer Functions
	Transfer Functions
	Contouring
	Contouring
	Marching Squares Cases
	Marching Squares Ambiguous Case
	Marching Cubes
	Marching Cubes Cases
	Marching Cubes Ambiguous Cases
	Marching Cubes Complementary CasesUsed to Avoid Holes
	Marching Triangles & Tetrahedra
	Contouring Examples
	Scalar Generation
	Scalar Generation
	Vector Field Visualization
	Streamlines Example
	Streamribbons Example
	Streamtubes Example
	Streamesurfaces Example
	Advanced Computer Graphics and Volume Rendering
	Transparency and Alpha Values
	Alpha Compositing
	Alpha Compositing
	Alpha Compositing Example
	Compositing Order Matters!
	Texture Mapping
	Texture Mapping
	Texture Mapping in Visualization
	Volume Rendering
	Ray Casting
	Ray Casting
	Ray Profile Example
	Maximum Intensity Projection
	Ray Traversal
	Interpolation Techniques
	Ray Traversal
	Ray Traversal Pseudocode
	Step Size Affects Image Quality
	Step Size
	Voxel-based Ray Traversal
	Voxel-based Ray Traversal
	Object-Order Volume Rendering
	Splatting
	Implementing Splatting
	Texture Mapping-based Volume Rendering
	2D Texture-Mapped Volume Rendering Example
	Shear-Warp Volume Rendering
	Shear-Warp Volume Rendering
	Volume Classification
	Volume Classification
	Volume Classification
	Volume Classification
	Uses of the Gradient Vector
	Volumetric Shading
	Volumetric Shading: How?
	Volumetric Shading
	Gradient Interpolation
	More Volumetric Shading Examples
	Gradient Modulation
	Volumetric Global Illumination
	Regions of Interest
	Image Processing Primer
	Image Processing
	Image Processing
	Intensity Transformations
	Intensity Transformations
	Intensity Transformation Examples
	Contrast Enhancement
	Contrast Enhancement
	Contrast Enhancement
	Thresholding
	Image Transformations
	Histograms
	Histograms
	Example Histograms
	Example Histograms
	Histogram Equalization
	Histogram Equalization
	Histogram Equalization Example
	Histogram Equalization Examples
	Histogram Equalization Example
	Can This Work for Color Images?
	Histograms Summary
	Discrete Convolution (Filtering)
	Discrete Convolution (Filtering)
	Image Smoothing
	Image Smoothing
	Image Smoothing
	Image Smoothing Example
	Image Sharpening
	Image Sharpening
	Image Sharpening Mask Example: The Sobel Mask
	Image Sharpening Mask Example: The Sobel Mask
	Sobel Mask
	Sobel Mask
	Median Filter
	Median Filter
	Image Enhancement via Image Masking/Subtraction
	Image Subtraction Example
	Subsampling
	Quantization
	Color Transformations
	Volume Rendering Hardware
	Volume Rendering Hardware
	VolumePro Rendering Hardware
	VolumePro 1000
	VolumePro Rendering Hardware
	VolumePro Rendering Algorithm
	VolumePro Rendering Algorithm
	VolumePro Rendering Algorithm
	VolumePro Ray-Casting Pipeline
	Interpolating Voxel Values
	Gradient Estimation
	Gradient Magnitude
	Assigning Color and Opacity
	Sample Illumination
	Reflectance Map
	Accumulating Color Values Along Rays
	Example Visualizations
	Advanced Features of VolumePro: Supersampling
	Advanced Features of VolumePro: Supervolumes and Subvolumes
	Advanced Features of VolumePro: Cropping and Cut Planes
	Advanced Features of VolumePro: Hardware Cursor
	Clipping Planes
	vg500 Chip Architecture: Parallel Pipelines
	vg500 Chip Architecture: Voxel Memory Organization
	VolumePro PCI Card
	VLI – The Volume Library Interface
	VolumePro 1000
	Vector Field Visualization
	Vector Field Visualization
	Vector Field Visualization
	Data Contraction
	Streamlines, Pathlines, Streaklines
	Streamlines, Pathlines
	Particle Systems
	Ribbons and Tubes
	Hedgehogs
	Streamlines + Hedgehogs
	Stream Surfaces
	Stream Surfaces
	Streamballs
	Streamballs
	Flow Volumes
	Flow Volumes
	Flow Volumes
	Flow Volumes
	Flow Volumes – Unsteady Flows
	Textured Splats
	Textured Splats

