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Introduction

Computer graphics

* Visualization, animation, virtual
reality

CAD/CAM

» Engineering, manufacturing
Computer vision
Physical simulation
Natural phenomena
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3D Shape Representation

Points (vertices), a set of points
Lines, polylines, curve

Triangles, polygons

Triangular meshes, polygonal meshes

Analytic (commonly-used) shape

Quadric surfaces, sphere, ellipsoid, torus
Superquadric surfaces, superellipse, superellipsoid
Blobby models
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Basic Shapes

point line /\/\

plane

surface

- Curved

triangle

polygon solid
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Fundamental Shapes

Vertex (vertices)

L_ine segments

Triangle, triangular meshes
Quadrilateral

Polygon
Curved object
Tetrahedron, pyramid, hexahedron

Many more...
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Polygonal Meshes
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Shaded Model
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Mechanical Part
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Building Structure
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Mathematical Tools

Parametric curves and surfaces
Spline-based objects (piecewise polynomials)
Explicit, implicit, and parametric representations

The integrated way to look at the shape:
— Object can be considered as a set of faces, each face can be further

decomposed into a set of edges, each edge can be decomposed Into
vertices

Subdivision models

Other procedure-based models
Sweeping

Surfaces of revolution
\Volumetric models
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Line Equation

o Parametric representation (IR (YL
u<[01]

» Parametric representation Is not unigue
I(po , pl) = 0-5(p1 + po) + 0-5([31 - po)V

e |n genera| 0 (u), vel[-11]
ue[a,b]

o Re-parameterization (variable transformation)
v = (u-a)/(b - a)
u = (b -a)v+ a
q(v)=p({(b-a)v+a)
ve [0,1]
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Basic Concepts

* Linear interpolation: AVEERVNGERJERVA(Y

Local coordinates: Velvy, v, ] te[0]]
SEEIEgEE AU f (u),u = g(v), f(g(v)) =h(v)

Affine transformation:

f (ax+by) =af (x)+Dbf (y)
Polynomials at+b=1

Continuity
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Linear and Bilinear Interpolation

b &
P
d

e=(1-u)a+uc
f=(01-u)b+ud
p=Q-v)e+vf
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Fundamental Features

o Geometry

— Position, direction, length, area, normal, tangent, etc.

Interaction
— Size, continuity, collision, intersection

0] o]0) []0)Y;

Differential properties
— Curvature, arc-length

Physical attributes
Computer representation & data structure
Others!
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Mathematical Formulations

* Line: (W=[a a afu+[b b bf
e Quadratic curve:
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Parametric Polynomials

» High-order polynomials

» No Intuitive insight for the curved shape
o Difficult for piecewise smooth curves
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Parametric Polynomials
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How to Define a Curve?

» Specify a set of points for interpolation and/or
approximation with fixed or unfixed parameterization

Specify the derivatives at some locations
What Is the geometric meaning to specify derivatives?
A set of constraints

» Solve constraint equations
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One Example

e Two end-vertices: ¢(0) and c(1)
e One mid-point: ¢(0.5)
o Tangent at the mid-point: ¢’(0.5)

: Assummgg[)% _?
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Cubic Polynomials

e Parametric representation (u is in [0,1])

x(u) s d, & dy
y(u) |=| b, u®+| b, u®+|b, Ju+|b,
z(u) C, C, C, C,

e Each components are treated independently
» High-dimension curves can be easily defined
o Alternatively
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Cubic Polynomial Example

 Constraints: two end-points, one mid-point, and

tangent at the mid-point
x(0)=[0 0 0 1]A
x(0.5)=[0.5* 05° 0.5 1]a

x'(0.5) = [3(0.5)> 2(0.5) 1 OJA
x()=1 1 1 1]A

e In matrix form |ERQ©, 0 0 O
x(0.5) | [0.125 0.25 0.5

x'(05)| [075 1 1
x(1) 1 1 1
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Solve this Linear Equation

* Invert the matrix 4 0 -4 47 x(0)
8 -4 6 —4| x(0.5)

-5 4 -2 1 ||x'(0.5)
1 0 0 O X(1)

e Rewrite the curve expression
x(U)=UM[x(0) x(0.5) x'(0.5) x@]
y(u)=UM[y(0) y(05) y'(05) y@®J
z(u)=UM[z(0) z(0.5) z'(0.5) z()[
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Basis Functions

 Special polynomials e

e \What Is the iImage of these basis functions?

o Polynomial curve can be defined by
c(u) =¢(0) f,(u) +¢(0.5) f, (u) +¢'(0.5) f, (u) +c(1) f, (u)

o ODbservations
— More intuitive, easy to control, polynomials
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Lagrange Curve

e Point interpolation

Vi \//)
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Lagrange Curves

e Curve

a a
c(u)=|alLy(u)+..+|a]|L,(u)
a

Lagrange polynomials of degree n:

Knot sequence: [V

Kronecker delta:

The curve interpolate all the data point, but
unwanted oscillation
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Lagrange Basis Functions

Ln(u )_ 1 IZJ('!J:OJ- ----- n)
0 Otherwise

LB(U): (u_ul)(u_UZ)“'(u_un)
(uo o ul)(uo o uz)---( Ug — un)
L?(U): (u_uO)"'(u_ui—l)(u_ui+1)"'(u_un)
(ui o uo)---( u; — ui—l)(ui o ui+1)---( u; — un)
L?](U)Z (u_UO)"'(u_un—Z)(u_un—l)
(un B uo)---( u, — un—2)(un B un—l)
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Cubic Hermite Splines
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Cubic Hermite Curve

» Hermite curve C(u)_{ﬁﬁﬂﬂ
z(u)

e Two end-points and two tangents at end-points

i

e Matrix inversion

1 X (0)

-1 x(1)

0 x'(0)

0 || x'(1)
y(u)=UM [y(0) y@ vy'(©) y@T
z(u) =UM [z(0) z() z'(0) z'()]
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Hermite Curve

e Basis functions

» Display the image of these basis functions and
the Hermite curve itself

(W) =c(0) (W) +c(D) F,(U)+¢ (O) f, W)+ D) f, (u)
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Cubic Hermite Splines

e Two vertices and two tangent vectors:

c(0) = vy, c(1) = v,;
c(0) = do,c(l)(l) =dy;

e Hermite curve
o(u) =VoHg () +v; H} () +dyH, (u) +d,H3 (u);
Hy (u) = f,(u), H () = f, ), H, (u) = f,(u), H; W) = f, )
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Hermite Splines

e Higher-order polynomials

c(u) = VSH o (U)+VoH (u)+ ... + Vgn_l)/zH (nn—l)/2(u)

T Vin_l)/zH (nn+1)/2 (u)+...+viH (nn—l) (U)+ viH ] (u);

vi =c®(0),v! =cP(1),i=0,..(n-1)/2;

e Note that, n Is odd!
o Geometric intuition
» Higher-order derivatives are required
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Why Cubic Polynomials

Lowest degree for specifying curve in space

_owest degree for specifying points to
Interpolate and tangents to interpolate

Commonly used in computer graphics
Lower degree has too little flexibility

Higher degree Is unnecessarily complex, exhibit
undesired wiggles
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Variations of Hermite Curve

e Variations of Hermite curves
Po :C(O)
p3:C(1)
Cl(o):3(pl_p0)’p1:p0+cl(0)/3
¢'(1) =3(ps—P,),P, =Ps—C' (1) /3

 |n matrix form (x-component only)
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Cubic Bezier Curves

* Four control points
e Curve geometry
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Curve Mathematics (Cubic)

e Bezier curve

o Control points and basis functions

By(u) = (1-u)’
B’(u)=3u(@-u)?
BS(u) =3u’(1-u)
B)(u) =u?

» |mage and properties of basis functions
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Recursive Evaluation

e Recursive linear interpolation
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Recursive Subdivision Algorithm
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Basic Properties (Cubic)

e The curve passes through the first and the last
points (end-point interpolation)

Linear combination of control points and basis
functions

Basis functions are all polynomials

Basis functions sum to one (partition of unity)
All basis functions are non-negative

Convex hull (both necessary and sufficient)
Predictability
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Derivatives

e Tangent vectors can easily be evaluated at the
Il IS c'(0) = 3(p, —P,); ' (1) = (P, —P,)

» Second derivatives at end-points can also be
easily computed:

c'?(0) =2x3((p, —P;) - (P, —P,)) = 6(P, — 2P, +Py)
c? (1) =2x3((p;—p,) - (P, —P.)) =6(P; —2p, +Pp,)
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Derivative Curve

e The derivative of a cubic Bezier curve Is a
guadratic Bezier curve

C (U) =-31-U)"py +3((-U)" ~2U(L-U)p, +3 L) U )p, +3Ar P, =

R —P,)A-U)* +3p, P ) +3p, —p
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More Properties (Cubic)

e Two curve spans are obtained, and both of them
are standard Bezier curves (through

reparameterization) KESEEREEEIEUEIEN
c(v) v € [u,h1]
c,(u) u e [0,1]
c . (u) u e [0,1]

e The control points for the left and the right are

o P
0P

Po:P P
P o, P , P
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High-Degree Curves

» Generalizing to high-degree curves

o Advantages:
— Easy to compute, Infinitely differentiable

e Disadvantages:

— Computationally complex, undulation, undesired
wiggles

* How about high-order Hermite? Not natural!!!
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Bezier Splines

» Bezier curves of degree n

» Control points and basis functions (Bernstein
polynomials of degree n):
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Recursive Computation
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Recursive Computation

e N+1 levels
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Properties

 Basis functions are non-negative
The summation of all basis functions Is unity
End-point interpolation
Binomial expansion theorem

(1—-u)+u)" = Zn: (?ju‘(l— u)"

=0

Convex hull: the curve Is bounded by the convex
hull defined by control points
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More Properties

» Recursive subdivision and evaluation
o Symmetry: c(u) and c(1-u) are defined by the
same set of point points, but different ordering
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Tangents and Derivatives

* End-point tangents: [ROERU(HE TY)
c'Q)=n(P,—-pP.1)

o |-th derivatives at two end-points depend on

e Derivatives at non-end-points involve all control
poInts
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Other Advanced Topics

e Efficient evaluation algorithm
 Differentiation and integration
* Degree elevation

— Use a polynomial of degree (n+1) to express that of
degree (n)

Composite curves
Geometric continuity
Display of curve
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Bezier Curve Rendering

o Use Iits control polygon to approximate the curve
» Recursive subdivision till the tolerance Is satisfied

e Algorithm go here
— If the current control polygon is flat (with tolerance), then

output the line segments, else subdivide the curve at u=0.5
— Compute control points for the left half and the right half,
respectively

— Recursively call the same procedure for the left one and the
right one
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High-Degree Polynomials

* More degrees of freedom
e Easy to compute
o |nfinitely differentiable

» Drawbacks:
— High-order
— Global control
— EXxpensive to compute, complex
— undulation
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Piecewise Polynomials

e Plecewise --- different polynomials for different
parts of the curve

o Advantages --- flexible, low-degree

e Disadvantages --- how to ensure smoothness at
the joints (continuity)
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Piecewise Curves

-————___*
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Piecewise Bezier Curves

2

o~
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Continuity

* One of the fundamental concepts

» Commonly used cases:

» Consider two curves: a(u) and b(u) (uisin [0,1])
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Positional Continuity
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Derivative Continuity

a(1) = b(0)
a'(1) = b'(0)

—

~_
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General Continuity

Cn continuity: derivatives (up to n-th) are the same at
the joining point a( (1) = b () (0)

continuity

Parametric continuity depends of parameterization! But,
parameterization Is not unigue!

Different parametric representations may express the
same geometry

Re-parameterization can be easily implemented
Another type of continuity: geometric continuity, or Gn
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Geometric Continuity
» G0 and G1

/\
sz S
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Geometric Continuity

Depend on the curve geometry

DO NOT depend on the underlying
narameterization

GO: the same joint

G1: two curve tangents at the joint align, but
may (or may not) have the same magnitude

G1: 1t is C1 after the reparameterization
Which condition Is stronger???
Examples
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Piecewise Hermite Curves

 How to build an interactive system to satisfy
various constraints

e CO continuity a(1) =b(0)

» C1 continuity PYENETYO)
a'(l) =b'(0)
o G1 continuity

a(l) = b(0)
a'(1) = ab'(0)
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Piecewise Hermite Curves
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Piecewise Bezier Curves

———__~

N
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Piecewise Bezier Curves

CO continuity

C1 continuity D, =0,

(Ps—P,)=(a;—0,)

Ps =,

(p3 _pz) = a(ql _qo)
Ps; =,
(Ps—P,)=(9;—q,)

Geometric interpretation LA Pl PIRRa Al
G2 continuity

G1 continuity

C2 continuity
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Piecewise C2 Bezier Curves

ahd
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Continuity Summary

CO0: straightforward, but not enough
C3: too constrained
Piecewise curves with Hermite and Bezier

representations satisfying various continuity
conditions

Interactive system for C2 interpolating splines
using piecewise Bezier curves

Advantages and disadvantages
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C2 Interpolating Splines

/
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Natural C2 Cubic Splines

A set of piecewise cubic polynomials

X(u)
C;(u) =| y(u)
zZ(u)

o C2 continuity at each vertex
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Natural C2 Cubic Splines

/N
\
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Natural Splines

 Interpolate all control points

Equivalent to a thin strip of metal in a physical
sense

Forced to pass through a set of desired points

No local control (global control)
N+1 control points
N pieces
2(n-1) conditions
» \We need two additional conditions
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Natural Splines

* |nteractive design system
— Specify derivatives at two end-points

— Specify the two internal control points that define the
first curve span

— Natural end conditions: second-order derivatives at
two end points are defined to be zero

o Advantages: interpolation, C2

» Disadvantages: no local control (if one point Is
changed, the entire curve will move)

e How to overcome this drawback: B-Splines
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B-Splines Motivation

he goal is local control!!!
B-splines provide local control
Do not interpolate control points

C2 continuity

Alternatively

— Catmull-Rom Splines

— Keep Interpolations

— Give up C2 continuity (only C1 Is achieved)
— Will be discussed later!!!

Department of Computer Science
I NEW YORK
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C2 Approximating Splines
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From B-Splines to Bezier
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Uniform B-Splines

» B-spline control points:

* Plecewise Bezier curves with C2 continuity at
joints

o Bezier control points:
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Uniform B-Splines

 |n general, I-th segment of B-splines is
determined by four consecutive B-spline control
points
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Uniform B-Splines

e In matrix form

o Question: how many Bezier segments???
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B-Spline Properties

C2 continuity, Approximation, Local control, convex
hull

Each segment is determined by four control points
Questions: what happens If we put more than one

control points in the same location???
— Double vertices, triple vertices, collinear vertices
End conditions

— Double endpoints: curve will be tangent to line between first
distinct points

— Triple endpoint: curve interpolate endpoint, start with a line
segment

_s_B-spline-display:transform-t-to-Bezier-curves
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Catmull-Rom Splines
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Catmull-Rom Splines

o Keep Interpolation
Give up C2 continuity
Control tangents locally

|dea: Bezier curve between successive points
How to determine two Internal vertices
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Catmull-Rom Splines

e In matrix form

* Problem: boundary conditions

* Properties: C1, interpolation, local control, non-
convex-hull
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Cardinal Splines

» Four vertices define end-points and their
associated tangents |[AANEIANE

¢ (0) = (L= @)V, - Vo)

(W) = - @)W, - V)

e Special case; Catmull-Rom splines when [FEe9

» More general case: Kochanek-Bartels splines
— Tension, bias, continuity parameters
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Cardinal Splines
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Kochanek-Bartels Splines

e Four vertices to define four conditions
c(0)=v,,c(@)=v,

c(0) = %(1—06)((1+ BIL=7)Vi=Vo)+ (L= B)L+y)V, = V)
1

c® (1) = 5 A=)+ B)L+7)(v, = Vi) + (1= F)L=7)Vs = V,))

— Tension parameter: a
— Bias parameter: p
— Continuity parameter: |4
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Piecewise B-Splines

2

|
J
o«

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




B-Spline Basis Functions

1 u<=u<u,

3,1(U) :{

0 otherwise

_Uiu_ B,..(U)+ e B U)

a,k (U) —

ui+k—1 | l"Ii+k 1+l
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Basis Functions

o Linear examples

e How does It look l1ke???
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Basis Functions
e Quadratic cases (knot vector is [0,1,2,3,4,5,6])

0 <= u <1
1

2—u(2—u)+;—(u—1)(3—u),1<:u<2
2 <= U < 3
~ (-0t

1
~—(u -1)?%,
2( ) 1l <= U < 2

(U 13- u)+ (U - 2) (4-u) 2 <= <3
3 <= u<i4

B, (U)
o Cubic example
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B-Spline Basis Function Image
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B-Splines

e Mathematics
Control points and basis tunctions of degree (k-
1)
Piecewise polynomials

Basis functions are defined recursively

We also have to introduce a knot sequence
(n+k+1) In a non-decreasing orader

» Note that, the parametric domain:
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Basis Functions

BO,l B.I.,l BZ,l BS,l B4,1 BS,l BG,l
BO,Z Bl,2 BZ,Z B3,2 B4,2 BS,Z
BO,B Bl,3 BZ,3 BE»,B B4,3
BO,4 Bl,4 BZ,4 B3,4

-_______ﬁ
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B-Spline Facts

* The curve is a linear combination of control points and
their associated basis functions ((n+1) control points
and basis functions, respectively)

Basis functions are piecewise polynomials defined
(recursively) over a set of non-decreasing knots

The degree of basis functions IS Independent of: the
number of control points (note that, I is index, k Is the
order, k-1 Is the degree)

The first k and last k knots do NOT contribute to the
parametric domain. Parametric domain is only defined
——py-a-subset-of-knots
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B-Spline Properties

C(u): piecewise polynomial of degree (k-1)

Continuity at joints: C(k-2)

The number of control points and basis functions: (n+1)
One typical basis function is defined over k sub-

Intervals which are specified by k+1 knots
([u(k),u(l+k)])

There are ntk+1 knots In total, knot sequence divides
the parametric axis into n+k sub-intervals

There are (n+1)-(k-1)=n-k+2 sub-intervals within the
parametric domain (fu(k-1),u(n+1)])
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B-Spline Properties

There are n-k+2 piecewise polynomials

Each curve span Is influenced by k control points
Each control points at most affects k curve spans
LLocal control!!!

Convex hull

The degree of B-spline polynomial can be independent
from the number of control points

Compare B-spline with Bezier!!!

Key components: control points, basis functions, knots,
parametric domain, local vs. global control, continuity
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B-Spline Properties

 Partition of unity, positivity, and recursive
evaluation of basis functions

e Special cases: Bezier splines

o Efficient algorithms and tools

— Evaluation, knot insertion, degree elevation,
derivative, integration, continuity

» Composite Bezier curves for B-splines

Department of Computer Science ST NY BR K
TATE UNIVERSITY OF

Center for Visual Computing NEW YORK




Uniform B-Spline
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Another Formulation

e Uniform B-spline
e Parameter normalization (uis in [0,1])
* End-point positions and tangents

1
C(O):G_(p o+4p1+p2)

1
C(l):6_(p1+4p2+p3)

c'(0) = ;—(p L =P o)

1

c'(1) = 5 s - pP:)
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Another Formulation

e Matrix representation

e Basis matrix
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Basis Functions

* Note that, uis now in [0,1]
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B-Spline Rendering

e Transform it to a set of Bezier curves
e Convert the I-th span into a Bezier representation
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Matrix Expression

e The matrix structure and components of B?
O=AVAB

o The matrix structure and components of A?
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B-Spline Discretization

e Parametric domain: [u(k-1),u(n+1)]
There are n+2-k curve spans (pieces)
Assuming m+1 points per span (uniform

sampling)
Total sampling points m(n+2-k)+1=I
B-spline discretization with corresponding
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B-Spline Discretization

o Matrix equation

Qo Eb,k(Vo) A Bn,k(Vo) Po
M|= M O M
1] B A B (V) [P,

e Als (I)x(n+1) matrix, in general (I) 1Is much
larger than (n+1), so A IS sparse

o The linear discretization for both modeling and
rendering
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From B-Splines to NURBS

What are NURBS???

Non Uniform Rational B-Splines (NURBS)
Rational curve motivation

Polynomial-based splines can not represent commonly:-

used analytic shapes such as conic sections (e.g., circles,
ellipses, parabolas)

Rational splines can achieve this goal

NURBS are a unified representation

— Polynomial, conic section, etc.
— Industry standard
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From B-Splines to NURBS
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Geometric NURBS

* Non-Uniform Rational B-Splines
 CAGD Industry standard --- useful properties
e Degrees of freedom

— Control points
— Weights

ST NY BR K
TATE UNIVERSITY OF

| NEW YORK




Rational Bezier Curve
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From B-Splines to NURBS

g
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NURBS Weights

» \Weight increase “attracts” the curve towards the
associated control point

o \Weight decrease “pushes away” the curve from

the associated control point
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NURBS for Analytic Shapes

e Conic sections
Natural quadrics
Extruded surfaces

Ruled surfaces
Surfaces of revolution
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NURBS Circle

a,b,c,d,e,d,g
j w =1,0.5,0510.5,0.51
4 knot=[0,001,22,34,44]

ST NY BR K
STATE UNIVERSITY OF NEW YORK




NURBS Curve

e Geometric components
— Control points, parametric domain, weights, knots

 Homogeneous representation of B-splines
e Geometric meaning --- obtained from projection

* Properties of NURBS

— Represent standard shapes, invariant under
perspective projection, B-spline is a special case,
weights as extra degrees of freedom, common
analytic shapes such as circles, clear geometric
meaning of weights
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NURBS Properties

Generalization of B-splines and Bezier splines
Unified formulation for free-form and analytic shape
Weights as extra DOFs

Various smoothness requirements

Powerful geometric toolkits

Efficient and fast evaluation algorithm
Invariance under standard transformations
Composite curves

Continuity conditions
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Geometric Modeling

* \Why geometric modeling

e Fundamental for visual computing
— Graphics, visualization
— Computer aided design and manufacturing

— Imaging

— Entertainment, etc.

Critical for virtual engineering
Interaction

Geometric information for decision making
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From Curve to Surface
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Parameterization
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Surfaces

* From curves to surfaces
o A simple curve example (Bezier)

e Consider each control point now becoming a
Bezier curve
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Surfaces

e Then, we have s(u,v)=i(ipi,jsj(v))5(u)=izpi,j5i(u)sj(v)
o Matrix form

Po,o
P1o
P20
P30

sU,V)=[By(u) By(u) B,(u) By(u)]

=UMPM'V'
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Surfaces

 Further generalize to degree of n and m along
two parametric directions

s(u,v) = Zn: Zm: P: ;B (U)B} (v)

i=0 j=0

e Question: which control points are interpolated?
 How about B-spline surfaces???
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Tensor Product Surfaces

* \Where are they from?
Monomial form
Bezier surface

s(u,v) = ZZ p: ;B (U)B] (V)

B-spline surface HUNMEPIPNFEMOLEM

i=0 j=0

General case  RQMEPHABLICEAG
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Tensor Product Surface

e Bezier Surface
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B-Splines

B-spline curves
Tensor product B-splines |

s(u,v)=Z

m
i=0 j=

P; ;B (U)B;, (V)

Question again: which control points are interpolated???

Another guestion: can we get NURBS surface this
way???

Answer: NO!II' NURBS are not tensor-product surfaces
Another question: can we have NURBS surface?

YESIII
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NURBS Surface

e NURBS surface mathematics

303" bW, By (1)B,(v)

s(u,v) = =2

0 ]

Zn Zm: Wi,jBi,k (U)Bj,l (v)

i=0 j=0

» Understand this geometric construction

e Question: why: Is It not the tensor-product
formulation??? Compare i1t with Bezier and B-

spline construction
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NURBS Surface

e Parametric variables: u and v

Control points and their associated weights:
(m+1)(n+1)

Degrees of basis functions: (k-1) and (I-1)
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NURBS Surface

e The same principle to generate curves via
projection
 |dea: associate weights with control points

o Generalization of B-spline surface

K
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Rectangular Surface
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Hermite Surfaces

e How about Hermite surfaces???
e Hermite Curve

c(u)=[Hy(u) Hy(u) H,Uu) Hy(u)

c(0)
c(@)
c'(0)
c'(1)

e C(0) 1s not a curve s(0,v) which is also a Hermite
Curve: $(0.0)

s(0,)
s,(0,0)
s,(0,2)

s(0,V) =[Ho(v) H,(v) H,(v) H,(v)]
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Hermite Surfaces

o Similarly, c(1) Is now a curve s(1,v) which iIs
also a Hermite curve S(L0)
s(1,1)
s, (1,0)
s, (1D

S(LV)=[Ho(v) Hy(v) Hy(v) H,(v)

e The same are for.¢’(0) and ¢’(1):

{SU(O,O)}
s, (0,1)
s,(0,v) = H (v)

s, (0,0)

s, (0,1)

s, (1,0)

1.1

s,(1,v) = H (v) Ss“((l O))
suv (1!1)
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Hermite Surfaces

e |t Is time to put them together!

s(00) s(01) s,00 s,07
s@0) sd) s,@d0) s,1Y H
s,(00) s,(01) s,00) s,0)
5,00 s, 5,00 5,00

s(u,v) =H(u) v)'

« Continuity conditions for surfaces

o Bezier surfaces, B-splines, NURBS, Hermite
surfaces

e C1 and G1 continuity
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Hermite Surfaces
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Surface Normal
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Surface Rendering

o Parametric grids ([0,1]X[0,1]) as a set of

ecangles NN
I I
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Surface (Patch) Rendering

We use bicubic as an example

The simplest (naive): convert curved patches Into
orimitives that we always know how to render

—-rom curved surfaces to polygon quadrilaterals (non-

planar) and/or triangles (planar)

Surface evaluation at grid points

This Is straight forward but inefficient, because it
requires many times of evaluation of s(u,v)

The total number: Is 3 1 1
ou oV
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Surface Rendering

o Parametric grids ([0,1]X[0,1]) as a set of
rectangles
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Surface Rendering

o Better approach: precomputation

M Is consta tire patch. The
followings are the same along Isoparametric
lines

o Use one dimensional array to compute and store
(evaluation only once)
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Surface Rendering

 How about many patches: the array Is
unchanged, its sampling rate Is the same, this Is
more useful

How about adaptive sampling based on
curvature information!!!

How to computer normal at any grid point
(approximation)
s, (u,v)xs,(u,v)
(s(u+ou,v)—s(u,v))x(s(u,v+ov)—s(u,v))
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Regular Surface

e Generated from a set of control points.
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Curve Network
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Coons Patch

s(0,v),s(1,v)
s(u,0),s(u,l)

~ T\
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Coons Patch
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Coons Patch

s(u,0),s(u,l)
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Coons Patch

s(0,v),s(1,v)
s(u,0),s(u,l)

~ T\
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Coons Patch

 Bilinearly blended Coons patch
(P)f =(P,® P,))f =(P,+ P, —PP,)f
(P)f =f(0,v)Ly(u)+f(@,v)Li(u)
(P)f =f(u,0)L; (v)+f(ul)L;(v)

» Bicubically blended Coons patch

(P)f =f(0,v)Hg(u)+f, (0.v)H (u) +f, (L, v)H; (u) + (2, v)H; (u)
(P)f =1 (u,0)H;(v)+f,(u0)H (v)+f,(ul)H,(v) +f(ul)H (V)
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Coons Patch

s(0,v),s,(0,v)
s(1,v),s,(1,v)
s(u,0),s,(u,0)
s(u,1),s,(u,l)
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Gordon Surfaces

» Generalization of Coons techniques
o A set of curves f(u,v),i=0,
f(u,vy), ] =0,
e Boolean sum using Lagrange polynomials

(P)T =3 f(u, v)L](u)

(P)F =3 f(u,v,)L](V)

(P)f - (Pl@ Pz)f - (Pl + Pz - P1P2)f
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Transfinite Methods

 Bilinearly blended Coons patch
— Interpolate four boundary curves

» Bicubically blended Coons patch

— Interpolate curves and their derivatives
o Gordon surfaces
— Interpolate a curve-network

e Triangular. extension
— Interpolate over triangles
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Triangular Surfaces

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Recursive Subdivision Algorithm
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Curve Mathematics (Cubic)

e Bezier curve

o Control points and basis functions

By(u) = (1-u)’
B’(u)=3u(@-u)?
BS(u) =3u’(1-u)
B)(u) =u?

» |mage and properties of basis functions
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Recursive Evaluation

e Recursive linear interpolation

ST NY BR K
STATE UNIVERSITY OF

| NEW YORK




Properties

 Basis functions are non-negative
The summation of all basis functions Is unity
End-point interpolation
Binomial expansion theorem

(1—-u)+u)" = Zn: (?ju‘(l— u)"

=0

Convex hull: the curve Is bounded by the convex
hull defined by control points
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Properties

 Basis functions are non-negative
The summation of all basis functions Is unity
End-point interpolation
Binomial expansion theorem

(1—-u)+u)" = Zn: (?ju‘(l— u)"

=0

Convex hull: the curve Is bounded by the convex
hull defined by control points
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Derivatives

e Tangent vectors can easily evaluated at the end-

SULER ' (0) = 3(p, -, );c'(1) = (P - P,)
» Second derivatives at end-points can also be
easily computed:

c'?(0) =2x3((p, —P;) - (P, —P,)) = 6(P, — 2P, +Py)
c? (1) =2x3((p;—p,) - (P, —P.)) =6(pP; —2p, +Pp,)
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Derivative Curve

e The derivative of a cubic Bezier curve Is a
guadratic Bezier curve

C (U) =-31-U)"py +3((-U)" ~2U(L-U)p, +3 L) U )p, +3Ar P, =

R —P,)A-U)* +3p, P ) +3p, —p
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More Properties (Cubic)

e Two curve spans are obtained, and both of them
are standard Bezier curves (through

reparameterization) KESEEREEEIEUEIEN
c(v) v € [u,h1]
c,(u) u e [0,1]
c . (u) u e [0,1]

e The control points for the left and the right are

o P
0P

Po:P P
P o, P , P
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Barycentric Coordinates

r+s+t=1
V =rR +5sS +tT
tsr(S > T);srt(T — S);rts(S > R)
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Triangular Bezier Patch

* Triangular Bezier surface

i+ j+k=n

s(u,v) = Zpi,j,kBin,j,k(r!S1t)

i, j,k>=0

» \Where r+s+t=1, and they are local barycentric

coordinates

» Basis functions are Bernstein polynomials of
degree n
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Triangular Bezier Patch

 How many control points and basis functions:

%;(n-+])(n + 2)

 Partition of unity S B

{]j,k(r,s,t)zl

i j.k>=0

o Positivity B  (r,s,t) >=0;r,5,t [0,]]
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Recursive Evaluation

pio,j,k =Pi ik

-1 .

p:,j,k = rp:j,j,k +Sp:,_jl+1,k HP; 1+ ] Hk=n=11, |, k>=0

S(U, V) — pg,0,0
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Properties

o Efficient algorithms
Recursive evaluation
Directional derivatives

Degree elevation
Subdivision
Composite surfaces
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Research Issues

o Continuity across adjacent patches
Integral computation
riangular splines over regular triangulation

Transform triangular splines to a set of piecewise
triangular Bezier patches

Interpolation/approximation using triangular
splines
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Triangular Bezier Surface

' EEEEEEEEENENEENBNYJ
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Recursive Evaluation
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Control points (Cubic)

p0,0,B p1,0,2 p2,0,1 pB,0,0
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Basis Functions (Cubic)

SSS
3sst  3rss
3stt  6rst 3rrs
ttt  3rtt 3rrt  rrr
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Triangular Patch Subdivision
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Triangular Domain
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Triangular Coons-Gordon Surface

r=0; f(0,s,1) t=0; f(r,s,0)

s=0; f(r,0,1)
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Triangular Coons-Gordon Surface

S = CONst. o

EEEEEEEEEEEEEEEEEEEHNEENER IEEE EEEEEEENBNI
¢ ¢
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Triangular Interpolation

(P)f = f(r,0,t)Ly(a)+ f(r,s,0)L;(a)
S
s + t
(P )f =1(r,s,0)Lo(B)+f(0,s,t)L3(B)
r
r+t
(P)f = (0, s, )Ly (r)+ f(r,0,t)Li(y)
r
r + s
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Triangular Interpolation

* The Boolean sum of any two operators results
I (P, )f = (P, ® P,)f
(P, )f = (P, ® P,)f
_ (Pyu)f = (P, ® Pjy)f
o Use cubic blending Tunc

Interpolation!

(Q)f =f(r,0,t)H () +D f(r,0,t)H, () + D.f(r,s,00H, () +(r,5,0)H; ()
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Gregory’s Method

e Convex combination

(T,)f

(To)f

(T3)f

(T )f = (T, & T,)f

(T )T (T, & T,)f

(T )T (T, & T,)f

(T )f (alTZS + a2T13 + a3T12 )f

o (Generalize to pentagonal patch!
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Surface Properties

 |nherit from their curve generators

More!
Efficient algorithms

Continuity across boundaries
Interpolation and approximation tools
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Spherical Parameterization
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erical Parameterization

e e
T AT S
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Possible Applications




Shape Morphing

initial sphere initial sphere
embedding embedding

feature T - AVhe ! [l R et g U B feature
alignment | il 2 WU e alignment
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Multiresolution Mapping

« Multiresolution morphing
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Feature Mapping
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Texture Mapping

F lll r-q_ oy
L ""’1' {:“ P s
vl w.-. A ._r;:*e-:_'
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Parametric Solids

* Tricubic solic 1S

i=0 j=0 k=0

u,v,w e [0,1]

» Bezier soli
ezier solid PV, W)= > > Y Py, B, (u)B, (v)B, ()

o B-Spline solid p(u1V1W):ZZZpijkBi,l(U)Bj,J(V)Bk,K(W)

° NURBS SOIld Z Z Z Pk 9ix Bi (U)Bj,J (V)By « (W)
p(u,v,w) = -
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Parametric Solids

e Tricubic Hermite solid

In general X(u,v,w)
p(u,v,w)=1|vy(u,v,w)
z(u,v,w)

Also known as “hyperpatch” EEESTE

Parametric solids represent both exterior and interior
Examples

— A rectangular sold, a trilinear solid
Boundary elements
— 8 corner points, 12 curved edges, and 6 curved faces

Department of Computer Science ST NY BR K
Center for Visual Computing

STATE UNIVERSITY OF NEW YORK




Curves, Surfaces, and Solids

 |soparametric curves for surfaces

s(u,v),s(u;,v),s(u,v;)

u, = const SV = const .

o |soparametric curves for solids
s(u,v,w),s(u;,v;,w),s(u;,v,w,),s(u,v;,w,)

 |soparametric surfaces for solids
s(u,v,w),s(u;,v,w),s(u,v;,w),s(u,v,w,)
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Curves, Surfaces, and Solids

* Non-isoparametric curves for surfaces

s(u,v)
Sy

* Non-isoparametric curves for solids HENCEREES

s (u (t), v (t) w (t))

» Non-isoparametric surfaces for solids
s(u,v,w)=s(u(a,b),v(a,b),w(a,b))
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Surfaces of Revolution

X y
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Surfaces of Revolution

e Geometric construction
— Specify a planar curve profile on y-z plane
— Rotate this profile with respect to z-axis

e Procedure-based model
o \What kinds of shape can we model?
o Review: three dimensional rotation w.r.t. z-axis
[x} cos(@) —sin( @) OHX}
y'l=|sin(@d) cos(d) O]y
.

0 0 1| z
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Surfaces of Revolution

e Mathematics: surfaces of revolution

0
c(u) =|y(u)
Z(u)

—y(u)sin(v)
s(u,v)=| y(u)cos(Vv)
z(u)
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Frenet Frames

e Motivation: attach a smoothly-varying
coordinate system to any location of a curve

* Three independent direction vectors for a 3D
coordinate system: (1) tangent; (2) bi-normal; (3)

normal

t(u) = normalize (c,(u))
b(u) = normalize (c,(u)xc, (u))
n(u) = normalize (b(u)xt(u))

* Frenet coordinate system (frame) (t,b,n) varies
smoothly, as we move along the curve c(u)
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Frenet Coordinate System
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Sweeping Surface

4
L/
L J
L/
L/
L J
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General Sweeping Surfaces

 Surface of revolution is a special case of a sweeping
surface

Idea: a profile curve and a trajectory curve

c,(u)
c, (V)

Move a profile curve along a trajectory curve to
generate a sweeping surface

Question: how to orient the profile curve as It moves
along the trajectory curve?

Answer: various options

ST NY BR K

STATE UNIVERSITY OF NEW YORK
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General Sweeping Surfaces

Fixed orientation, simple translation of the
coordinate system of the profile curve along the
trajectory curve

Rotation: If the trajectory curve Is a circle

Move using the “Frenet Frame™ of the trajectory
curve, smoothly varying orientation

Example: surface of revolution

Differential geometry fundamentals: Frenet
frame
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Frenet Swept Surfaces

 Orient the profile Curve (C1(u)) using the Frenet frame
o) NO¥ALY))

— Put C1(u) on the normal plane (n,b)

— Place the original of C1(u) on C2(v)

— Align the x-axis of C1(u) with —n

— Align the y-axis of C1(u) with b
Example: if C2(v) Is a circle
Variation (generalization)

Scale C1(u) as It moves

Morph C1(u) into C3(u) as It moves

Use your. own imagination!
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Ruled Surfaces

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Ruled Surfaces

 Move one straight line along a curve
Example: plane, cone, cylinder
Cylindrical surface  prwesrmmermwm

Surface equation s(u,v) = (1-v)s(u,0) +vs(u1)
S(u,v) = p(u)+vg(u)

|soparametric lines
More examples

K
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Developable Surfaces

Deform a surface to planar shape without
length/area changes

Unroll a surface to a plane without

stretching/distorting

Example: cone, cylinder

Developable surfaces vs. Ruled surfaces
More examples???
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Developable Surface
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Summary

Parametric curves and surfaces
Polynomials and rational polynomials
-ree-form curves and surfaces

Other commonly-used geometric primitives
(e.q., sphere, ellipsoid, torus, superguadrics,
blobby, etc.)

Motivation:

— Fewer degrees of freedom

— More geometric coverage
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Straight Line
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Straight Line

e Mathematics

ax + by +¢c=0
+a(ax +by +¢c)=0
—a(ax +y+c)=0

e Example
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Circle
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Conic Sections

IRVEWENEU I oy 2 |+ 2hxy +cy? + dx +ey + f =0

o Examples
Ellipse

Hyperbola

Parabola
Empty set
— Point
— Pair of lines
— Parallel lines
— Repeated lines

N DD DN NN DN DD DD
X X X X X X X X
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conics

e Parametric equations of conics
» Generalization to higher-degree curves
 How about non-planar (spatial) curves
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Plane and Intersection
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Plane

» Example
NCT I N EUNCo[IEI o)l ax + by +cz + y = 0

* Normal of the plane
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Plane

 Plane equation derivation

(x—a,)a+(y—-a,)b+(z-a,)c=0

ax+by+cz-(a,a+ab+a,c)=0

o Parametric representation (given three points on
the plane and they are non-collinear!)

p@,V) =P, +(po _pa)u+(pc _pa)v
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Plane

o EXxplicit expression (if ¢ IS non-zero)

z:—%(ax+by+d)

e | Ine-Plane intersection

I(u) =py + (P, —PoIU
(n)(po +(p1 _po)u)"‘ d=0

LM, plane (p,)

Department of Computer Science

Center for Visual Computing

np,-np,  plane (p,)— plane (p,)
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Circle
» Implicit equation

 Parametric function C(Q){C?Sé;’))}
SIn

O<=60<=2rx

o Parametric representation using rational
polynomials (the first guadrant)

o Parametric representation Is not unigue!
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Implicit Equations for Curves

Describe an implicit relationship

Planar curve (point set) {¢SURISSIEY:

he implicit function Is not unigue

1% y)|+aof (x,y) =0}
1(%,y)|—of (x,y) =0}

Comparison with parametric representation

| x(u)
p(u)_{y(U)}
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Implicit Equations for Curves

 Implicit function is a level-set

7 = f(x,y)
{z: 0

o Examples (straight line and conic sections)
ax+by+c=0

ax” +2bxy +cy* +dx+ey+ f =0

o Other examples

— Parabola, two parallel lines, ellipse, hyperbola, two
Intersection lines
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Implicit Functions for Curves

e Parametric equations of conics
» Generalization to higher-degree curves
 How about non-planar (spatial) curves

Department of Computer Science
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Implicit Equations for Surfaces
o Surface mathematics WP A2IRINIRIRY,

* Again, the implicit function for surfaces Is not
unique {(x,y,2)|+cf (x,y,2) =0}

{(X1 y’ Z)l—df (X1 y’ Z):O}
o Comparison with parametric representation

X(u,V)
pu,v) = {y(u,V)}

z(u,v)
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Implicit Equations for Surfaces

o Surface defined by implicit function is a level-set
{W =  f(x,y,z)

W = 0

Examples

— Plane, quadric surfaces, tori, superquadrics, blobby
objects

Parametric representation of quadric surfaces
Generalization to higher-degree surfaces
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Quadric Surfaces

 [mplicit functions

« Examples ax’ +by*+cz’ +dxy +exz+ fyz+gx+hy+ jz+k =0

— Sphere
— Cylinder

— Cone

— Paraboloid

— Ellipsoid

— Hyperboloid
 More

— Two parallel planes, two intersecting planes, single plane,
line, point
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Quadrics: Parametric Rep.
e Sphere

» Ellipsoid

p)

a
X

y b cos( a )sin( )
z = csin( a)

T T
QE[—Z—,Z—];ﬁE[—ﬂ',ﬂ']
» (Geometric meaning of these parameters
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Generalization

* Higher-degree polynomials

* Non polynomials
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Superquadrics

o (Geometry (generalization of quadrics)
Superellipse ; ;
Superellipsoia

Parametric represe

X a, cos *(a)sin 2(f)
y|=|a,cos *(a)sin 2 (f)
4

a,sin *2(a)

T T
a € [—?1?]; pel-n,n)
o \What Is the meaning of these control parameters:
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Algebraic Function

o Parametric representation is popular, but...
e Formulation

* Properties...
— Powerful, but lack of modeling tools
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Algebraic Patch
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Algebraic Patch

o A tetrahedron with non-planar vertices

VnOOO ’VOnOO’VOOnO’VOOOn

rivariate barycentric coordinate (r,s,t,u) for p

P =TV, T SVgne T tVOOnO + UV 490

n

r+ s+t+u-=1

o A regular lattice of control points and weights

IVnOOO + JVOnOO + kVOOnO + IVOOOn

n
i, j,k,I>=0:i+ j+k+1=n

Piw =
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Algebraic Patch

e There are (n+1)(n+2)(n+3)/6 control points. A

weight w(l,J,k,l) Is also assigned to each control
point

» Algebraic patch formulation

* Properties

— Meaningful control, Iocal control, boundary
Interpolation, gradient control, self-intersection
avoidance, continuity condition across the
boundaries, subdivision
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Spatial Curves

e Intersection of two surfaces

{f(x,y,z):o

g(x,y,z)=0
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Algebraic Solid

e Half space {(x,y,2)| f(x,y,z)<=0};0r
{(x,y,2)| 1(x,y,2) >=0}

o Useful for complex objects (refer to notes on

solid modeling)
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Volume Datasets
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Isosurface Rendering
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Direct Volume Rendering

T+ vhuman - Revli

FP3: 39.33

i A
w. |0 1 I™ Change
o |0 255 I™ Change

WL 7511

i Fr
T MIP  MinlP
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Implicit Functions

* Long history: classical algebraic geometry

 [mplicit and parametric forms
— Advantages
— Disadvantages

Intersection computation

Point classification

L_arger than parameter-based modeling
Unbounded geometry
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Implicit Functions

Geometric degeneracy and anomaly

Algebraic and geometric operations are often
closed

Mathematics: algebraic geometry
Symbolic computation
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Implicit Functions

» Conversion between parametric and implicit
forms

o Implicitization vs. parameterization

o Strategy: Integration of both techniques
» Approximation using parametric models
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Free-Form Deformation

o Free-Form Deformation Example
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Free-Form Deformation

o Free-Form Deformation Example (Complex >> 49000

fA r:ac\
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Free-Form Deformation

* Free-Form Deformation Example (Non-trivial topology)
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Free-Form Deformation

* Free-Form Deformation Example (Localized)
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Shape Modeling

* Direct Modeling / Manipulation
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Material Modeling

o Material Representation (Non-homogeneous)
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