Geometric Theory, Algorithms, and Techniques

Hong Qin Department of Computer Science State University of New York at Stony Brook Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu http://www.cs.sunysb.edu/~qin

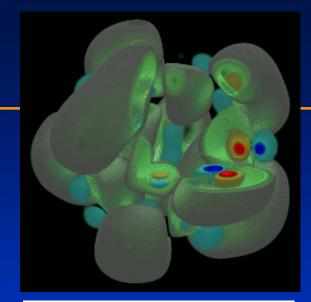
Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

STONY BROCK STATE UNIVERSITY OF NEW YORK

Introduction

- Geometric modeling and visual computing
 - Computer graphics
 - Visualization, animation, virtual reality
 - CAD/CAM
 - Engineering, manufacturing
 - Computer vision
 - Physical simulation
 - Natural phenomena



Department of Computer Science Center for Visual Computing SE530 Lecture Notes

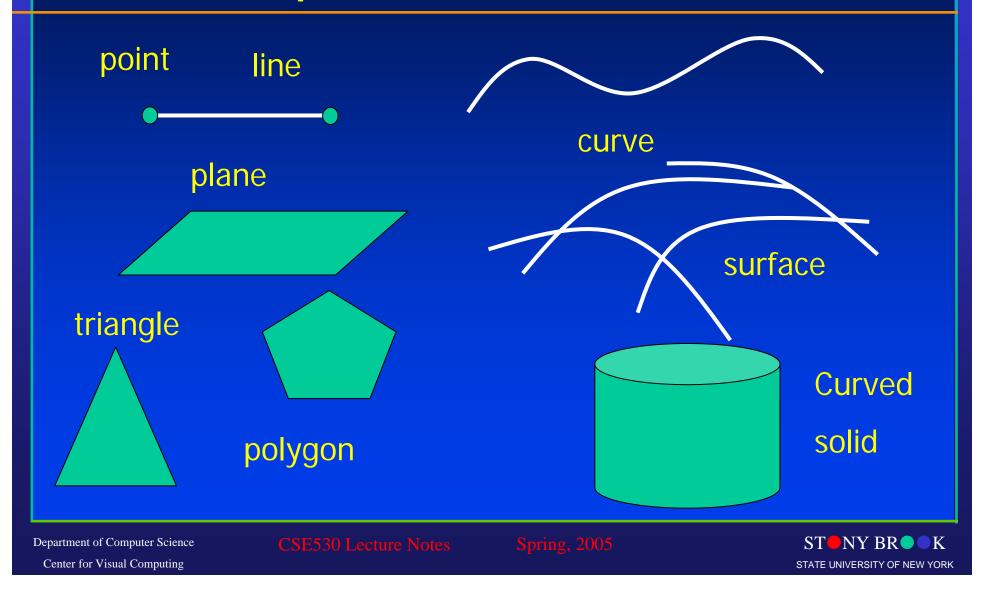
Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

3D Shape Representation

- Points (vertices), a set of points
- Lines, polylines, curve
- Triangles, polygons
- Triangular meshes, polygonal meshes
- Analytic (commonly-used) shape
- Quadric surfaces, sphere, ellipsoid, torus
- Superquadric surfaces, superellipse, superellipsoid
- Blobby models

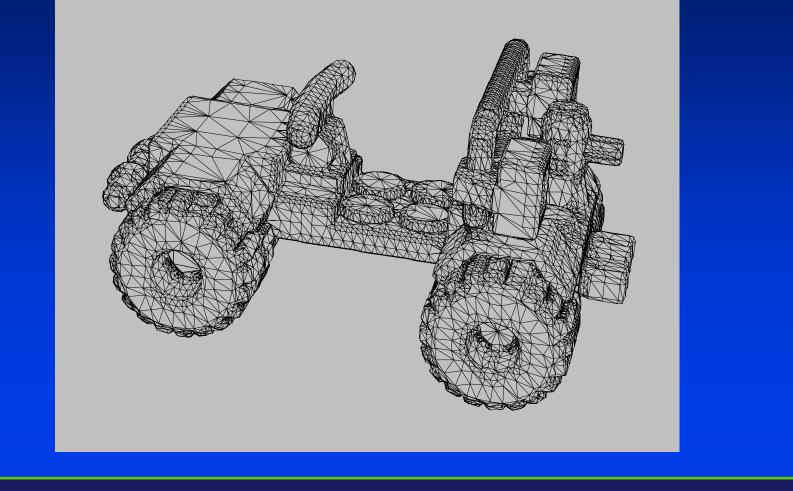
Basic Shapes



Fundamental Shapes

- Vertex (vertices)
- Line segments
- Triangle, triangular meshes
- Quadrilateral
- Polygon
- Curved object
- Tetrahedron, pyramid, hexahedron
- Many more....

Polygonal Meshes

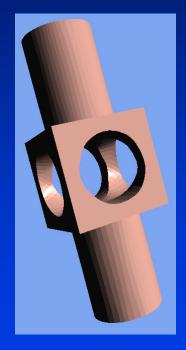


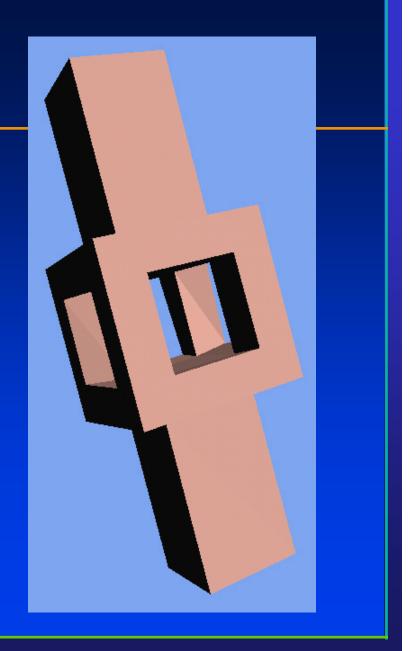
Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Shaded Model

Mechanical Part

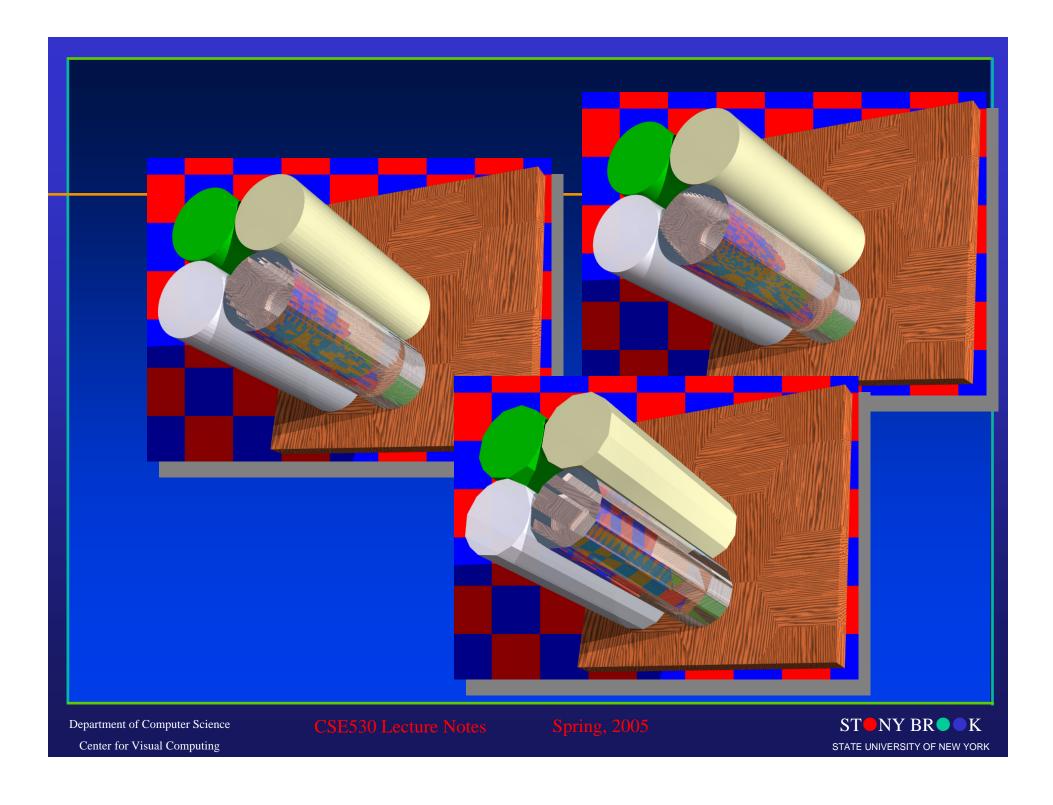


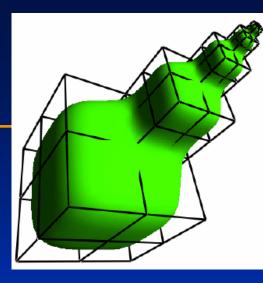


Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

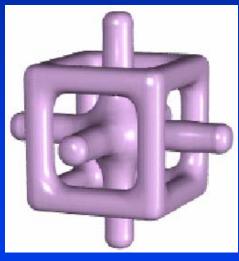
Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK





Subdivision model



Implicit model

NURBS model

PDE models

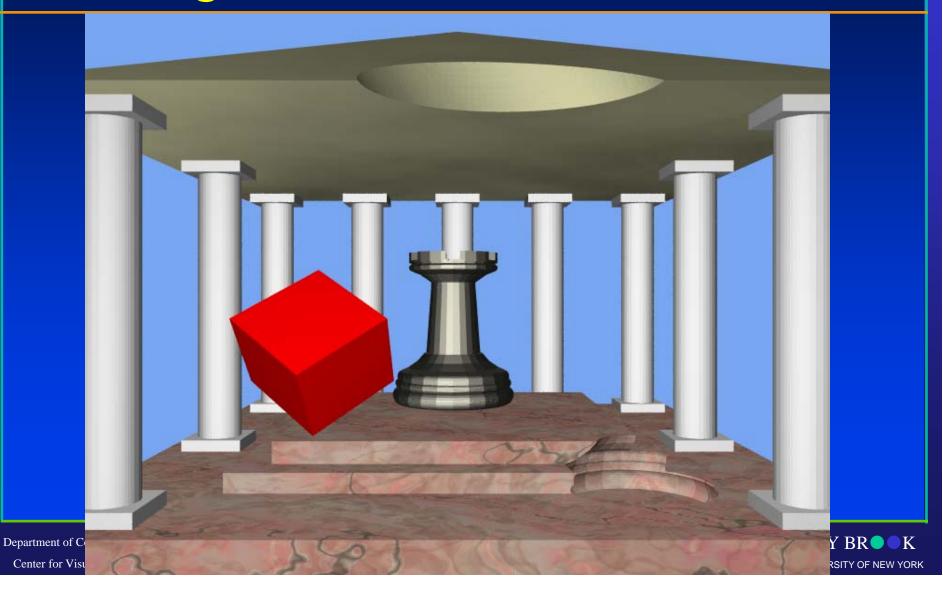
Department of Computer Science Center for Visual Computing

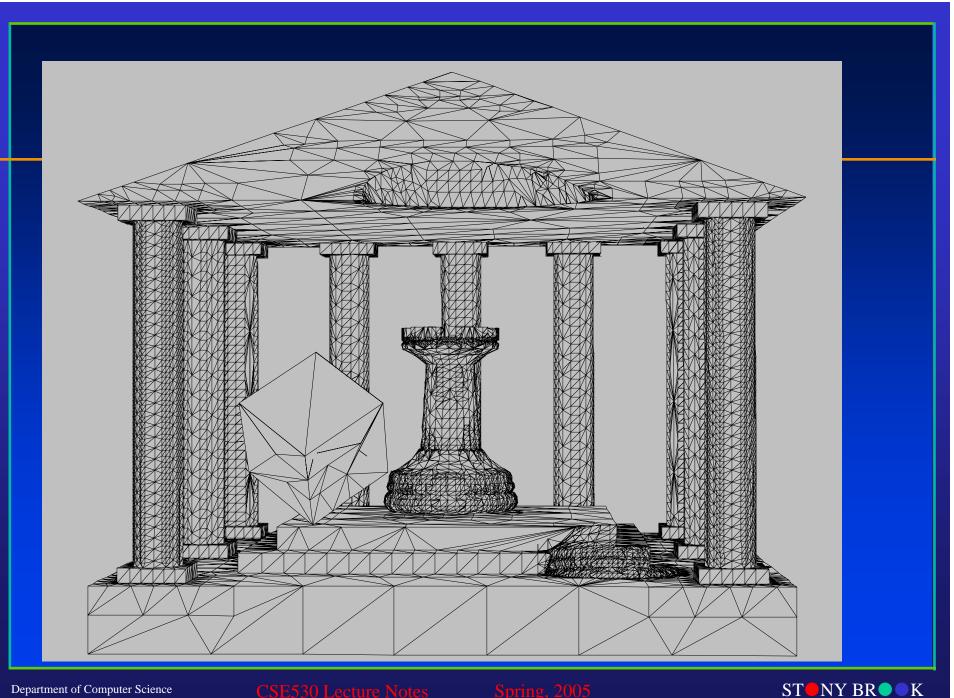
CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Building Structure





Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Mathematical Tools

- Parametric curves and surfaces
- Spline-based objects (piecewise polynomials)
- Explicit, implicit, and parametric representations
- The integrated way to look at the shape:
 - Object can be considered as a set of faces, each face can be further decomposed into a set of edges, each edge can be decomposed into vertices
- Subdivision models
- Other procedure-based models
- Sweeping
- Surfaces of revolution
- Volumetric models

Line Equation

- Parametric representation $\mathbf{l}(\mathbf{p}_0, \mathbf{p}_1) = \mathbf{p}_0 + (\mathbf{p}_1 \mathbf{p}_0)u$ $u \in [0,1]$
- Parametric representation is not unique
- In general $\mathbf{p} (u), u \in [a, b]$

$$l(\mathbf{p}_0, \mathbf{p}_1) = 0.5(\mathbf{p}_1 + \mathbf{p}_0) + 0.5(\mathbf{p}_1 - \mathbf{p}_0)v$$

 $v \in [-1,1]$

• Re-parameterization (variable transformation)

v = (u - a) / (b - a) u = (b - a) v + a q (v) = p ((b - a) v + a) $v \in [0, 1]$

Department of Computer Science Center for Visual Computing

Basic Concepts

• Linear interpolation:

$$\mathbf{v} = \mathbf{v}_0(1-t) + \mathbf{v}_1(t)$$

- Local coordinates:
- Reparameterization: f(u), u = g(v), f(g(v)) = h(v)

$$\mathbf{v} \in [\mathbf{v}_0, \mathbf{v}_1], l \in [0, 1]$$

-1 -1 -10 11

$$f(ax+by) = af(x) + bf(y)$$

- Polynomials
- Continuity

$$a + b = 1$$

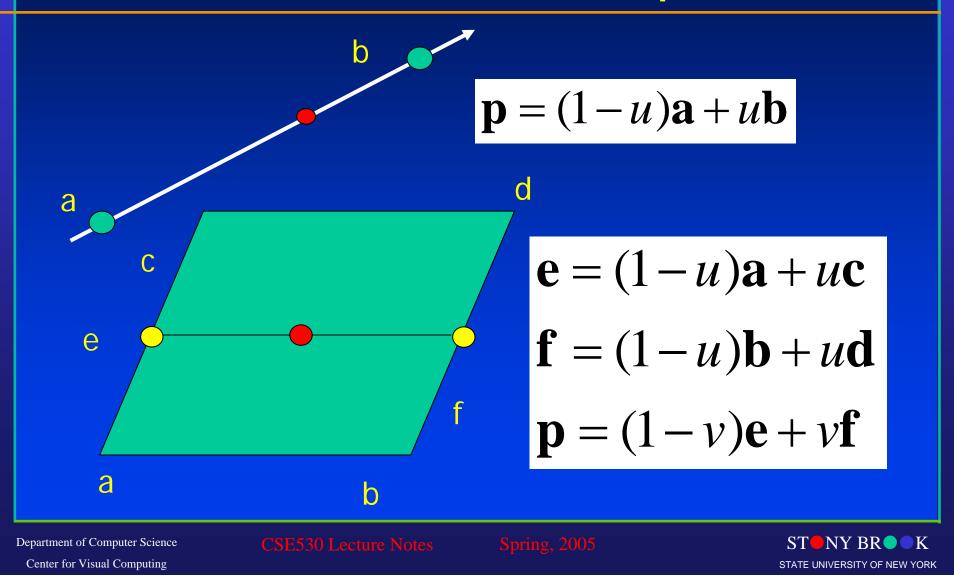
Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Linear and Bilinear Interpolation



Fundamental Features

- Geometry
 - Position, direction, length, area, normal, tangent, etc.
- Interaction
 - Size, continuity, collision, intersection
- Topology
- Differential properties
 - Curvature, arc-length
- Physical attributes
- Computer representation & data structure
- Others!

Mathematical Formulations

• Point:

$$\mathbf{p} = \begin{vmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \end{vmatrix}$$

• Line:
$$\mathbf{l}(u) = \begin{bmatrix} \mathbf{a} & \mathbf{a} & \mathbf{a} \end{bmatrix}^T u + \begin{bmatrix} \mathbf{b} & \mathbf{b} & \mathbf{b} \end{bmatrix}^T$$

• Quadratic curve:

$$\mathbf{q}(u) = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \end{bmatrix}^T u^2 + \begin{bmatrix} \mathbf{b}_x & \mathbf{b}_y & \mathbf{b}_z \end{bmatrix}^T u + \begin{bmatrix} \mathbf{c}_x & \mathbf{c}_y & \mathbf{c}_z \end{bmatrix}^T$$

Parametric domain and reparameterization:

$$u \in [u_s, u_e]; v \in [0,1]; v = (u - u_s) / (u_e - u_s)$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Parametric Polynomials

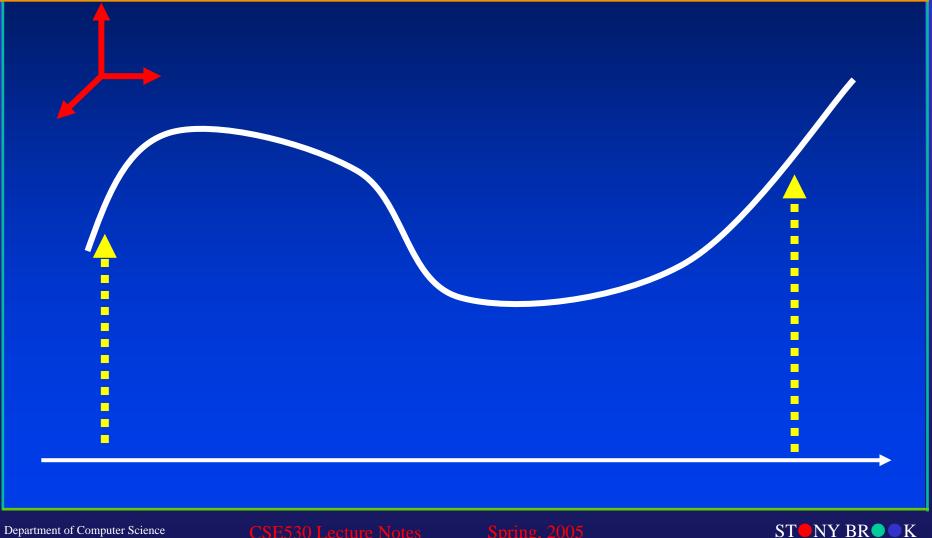
• High-order polynomials

$$\mathbf{c}(u) = \begin{bmatrix} \mathbf{a}_{0,x} \\ \mathbf{a}_{0,y} \\ \mathbf{a}_{0,z} \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{a}_{i,x} \\ \mathbf{a}_{i,y} \\ \mathbf{a}_{i,z} \end{bmatrix} u^{i} + \dots + \begin{bmatrix} \mathbf{a}_{n,x} \\ \mathbf{a}_{n,y} \\ \mathbf{a}_{n,z} \end{bmatrix} u^{n}$$

No intuitive insight for the curved shape

Difficult for piecewise smooth curves

Parametric Polynomials

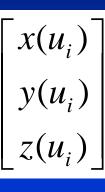


Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

How to Define a Curve?

• Specify a set of points for interpolation and/or approximation with fixed or unfixed parameterization



$$\begin{bmatrix} x'(u_i) \\ y'(u_i) \\ z'(u_i) \end{bmatrix}$$

- Specify the derivatives at some locations
- What is the geometric meaning to specify derivatives?
- A set of constraints
- Solve constraint equations

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

One Example

- Two end-vertices: c(0) and c(1)
- One mid-point: c(0.5)
- Tangent at the mid-point: c'(0.5)
- Assuming 3D curve

Cubic Polynomials

• Parametric representation (u is in [0,1])

$$\begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} = \begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix} u^3 + \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} u^2 + \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} u + \begin{bmatrix} a_0 \\ b_0 \\ c_0 \end{bmatrix}$$

- Each components are treated independently
- High-dimension curves can be easily defined
- Alternatively $x(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T = UA$ y(u) = UB z(u) = UC

Cubic Polynomial Example

 Constraints: two end-points, one mid-point, and tangent at the mid-point

$$x(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} A$$

$$x(0.5) = \begin{bmatrix} 0.5^3 & 0.5^2 & 0.5^1 & 1 \end{bmatrix} A$$

$$x'(0.5) = \begin{bmatrix} 3(0.5)^2 & 2(0.5) & 1 & 0 \end{bmatrix} A$$

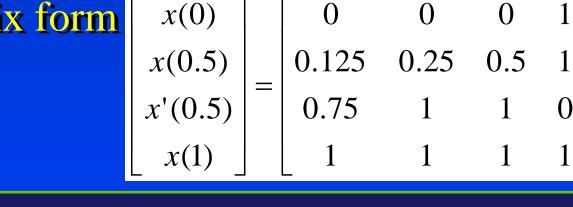
$$x(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} A$$

0

0

0

• In matrix form



Department of Computer Science Center for Visual Computing

A

Solve this Linear Equation

• Invert the matrix

$$A = \begin{bmatrix} -4 & 0 & -4 & 4 \\ 8 & -4 & 6 & -4 \\ -5 & 4 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(0.5) \\ x'(0.5) \\ x(1) \end{bmatrix}$$

Rewrite the curve expression

 $x(u) = UM[x(0) \quad x(0.5) \quad x'(0.5) \quad x(1)]^{T}$ $y(u) = UM[y(0) \quad y(0.5) \quad y'(0.5) \quad y(1)]^{T}$ $z(u) = UM[z(0) \quad z(0.5) \quad z'(0.5) \quad z(1)]^{T}$

Department of Computer Science Center for Visual Computing

Spring, 2005

Basis Functions

- Special polynomials $f_1(u) = -4 u^3 + 8 u^2 5 u + 1$
 - $f_{1}(u) = -4u^{3} + 8u^{2} 5u + f_{2}(u) = -4u^{2} + 4u$ $f_{3}(u) = -4u^{3} + 6u^{2} 2u$ $f_{4}(u) = 4u^{3} 4u^{2} + 1$
- What is the image of these basis functions?
- Polynomial curve can be defined by $\mathbf{c}(u) = \mathbf{c}(0)f_1(u) + \mathbf{c}(0.5)f_2(u) + \mathbf{c}'(0.5)f_3(u) + \mathbf{c}(1)f_4(u)$
- Observations

- More intuitive, easy to control, polynomials

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Lagrange Curve

Point interpolation

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Lagrange Curves

Curve

$$\mathbf{c}(u) = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{bmatrix} L_0^n(u) + \dots + \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ \mathbf{a} \end{bmatrix} L_n^n(u)$$

• Lagrange polynomials of degree n: $L^n(u)$

- Knot sequence: $u_0, ...,$ U
- Kronecker delta:

$$\mathcal{L}_{i}^{n}\left(u_{j}\right) = \delta_{ij}$$

• The curve interpolate all the data point, but unwanted oscillation

Department of Computer Science Center for Visual Computing

Lagrange Basis Functions

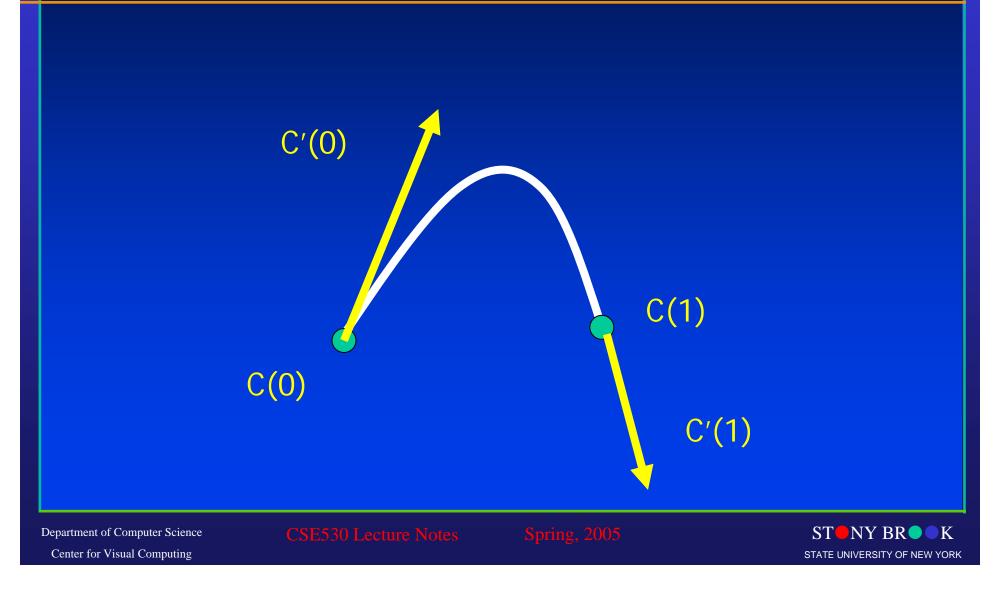
$$L_{i}^{n}(u_{j}) = \begin{cases} 1 & i = j(i, j = 0, 1, ..., n) \\ 0 & Otherwise \end{cases}$$
$$L_{0}^{n}(u) = \frac{(u - u_{1})(u - u_{2})...(u - u_{n})}{(u_{0} - u_{1})(u_{0} - u_{2})...(u_{0} - u_{n})}$$
$$L_{i}^{n}(u) = \frac{(u - u_{0})...(u - u_{i-1})(u - u_{i+1})...(u - u_{n})}{(u_{i} - u_{0})...(u_{i} - u_{i-1})(u_{i} - u_{i+1})...(u_{i} - u_{n})}$$
$$L_{n}^{n}(u) = \frac{(u - u_{0})...(u - u_{n-2})(u - u_{n-1})}{(u_{n} - u_{0})...(u_{n} - u_{n-2})(u_{n} - u_{n-1})}$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

Cubic Hermite Splines



Cubic Hermite Curve

• Hermite curve

$$\mathbf{c}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix}$$

• Two end-points and two tangents at end-points $\int_{x(0)}^{x(0)} \int_{0}^{y(0)} \int_{0$

x (1)

x '(0) x '(1)

• Matrix inversion

$$x(u) = U \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x'(0) \\ x'(1) \end{bmatrix}$$
$$y(u) = UM \begin{bmatrix} y(0) & y(1) & y'(0) & y'(1) \end{bmatrix}^{T}$$
$$z(u) = UM \begin{bmatrix} z(0) & z(1) & z'(0) & z'(1) \end{bmatrix}^{T}$$

1

0

0

Α

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

 $= \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix}$

2

1

3

Hermite Curve

• Basis functions

$$f_{1}(u) = 2 u^{3} - 3 u^{2} + 1$$

$$f_{2}(u) = -2 u^{3} + 3 u^{2}$$

$$f_{3}(u) = u^{3} - 2 u^{2} + u$$

$$f_{4}(u) = u^{3} - u^{2}$$

 Display the image of these basis functions and the Hermite curve itself

$$\mathbf{c}(u) = \mathbf{c}(0)f_1(u) + \mathbf{c}(1)f_2(u) + \mathbf{c}'(0)f_3(u) + \mathbf{c}'(1)f_4(u)$$

Department of Computer Science Center for Visual Computing

Cubic Hermite Splines

• Two vertices and two tangent vectors:

$$\mathbf{c}(0) = \mathbf{v}_0, \mathbf{c}(1) = \mathbf{v}_1;$$

 $\mathbf{c}^{(1)}(0) = \mathbf{d}_0, \mathbf{c}^{(1)}(1) = \mathbf{d}_1;$

Hermite curve

$$\mathbf{c}(u) = \mathbf{v}_0 H_0^3(u) + \mathbf{v}_1 H_1^3(u) + \mathbf{d}_0 H_2^3(u) + \mathbf{d}_1 H_3^3(u);$$

$$H_0^3(u) = f_1(u), H_1^3(u) = f_2(u), H_2^3(u) = f_3(u), H_3^3(u) = f_4(u)$$

Department of Computer Science Center for Visual Computing

Hermite Splines

• Higher-order polynomials

$$\mathbf{c}(u) = \mathbf{v}_{0}^{0} H_{0}^{n}(u) + \mathbf{v}_{0}^{1} H_{1}^{n}(u) + \dots + \mathbf{v}_{0}^{(n-1)/2} H_{(n-1)/2}^{n}(u) + \mathbf{v}_{1}^{(n-1)/2} H_{(n+1)/2}^{n}(u) + \dots + \mathbf{v}_{1}^{1} H_{(n-1)}^{n}(u) + \mathbf{v}_{1}^{0} H_{n}^{n}(u); \mathbf{v}_{0}^{i} = \mathbf{c}^{(i)}(0), \mathbf{v}_{1}^{i} = \mathbf{c}^{(i)}(1), i = 0, \dots (n-1)/2;$$

- Note that, n is odd!
- Geometric intuition
- Higher-order derivatives are required

Spring, 2005

Why Cubic Polynomials

- Lowest degree for specifying curve in space
- Lowest degree for specifying points to interpolate and tangents to interpolate
- Commonly used in computer graphics
- Lower degree has too little flexibility
- Higher degree is unnecessarily complex, exhibit undesired wiggles

Variations of Hermite Curve

Variations of Hermite curves

 $p_0 = c(0)$ $p_3 = c(1)$ $c'(0) = 3(p_1 - p_0), p_1 = p_0 + c'(0)/3$ $c'(1) = 3(p_3 - p_2), p_2 = p_3 - c'(1)/3$

• In matrix form (x-component only)

$$\begin{bmatrix} \mathbf{c}(0)_{x} \\ \mathbf{c}(1)_{x} \\ \mathbf{c}'(0)_{x} \\ \mathbf{c}'(1)_{x} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \\ \mathbf{p}_{0,x} \end{bmatrix}$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

STONY BROCK STATE UNIVERSITY OF NEW YORK

Cubic Bezier Curves

- Four control points
- Curve geometry

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Curve Mathematics (Cubic)

Bezier curve

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(u)$$

Control points and basis functions

$$B_{0}^{3}(u) = (1 - u)^{3}$$

$$B_{1}^{3}(u) = 3u(1 - u)^{2}$$

$$B_{2}^{3}(u) = 3u^{2}(1 - u)$$

$$B_{3}^{3}(u) = u^{3}$$

Image and properties of basis functions

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Recursive Evaluation

• Recursive linear interpolation

$$(1-u) \quad (u)$$

$$\mathbf{p}_{0}^{0} \quad \mathbf{p}_{1}^{0} \quad \mathbf{p}_{2}^{0} \quad \mathbf{p}_{3}^{0}$$

$$\mathbf{p}_{0}^{1} \quad \mathbf{p}_{1}^{1} \quad \mathbf{p}_{2}^{1}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{3} = \mathbf{c}(u)$$

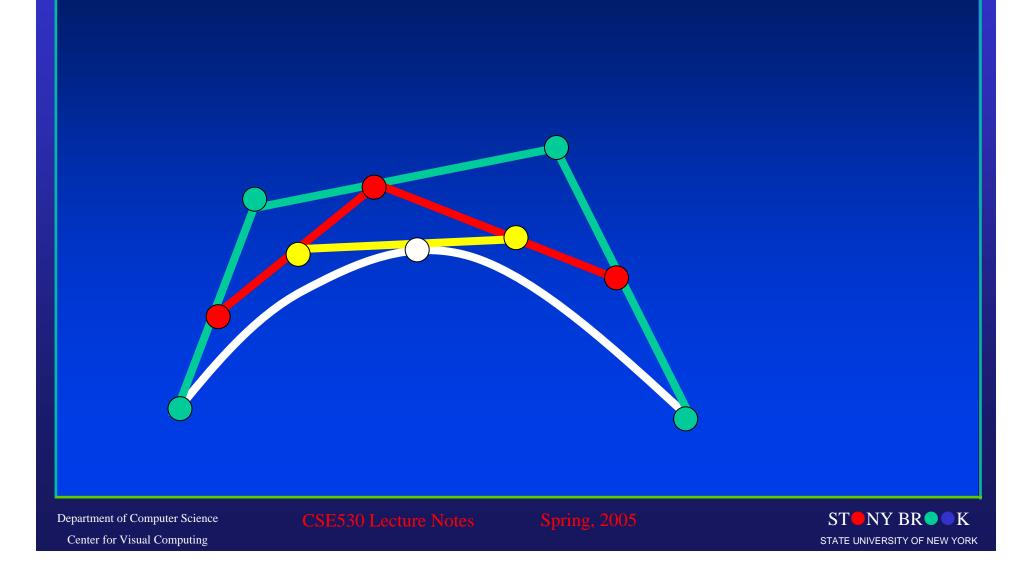
Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Recursive Subdivision Algorithm



Basic Properties (Cubic)

- The curve passes through the first and the last points (end-point interpolation)
- Linear combination of control points and basis functions
- Basis functions are all polynomials
- Basis functions sum to one (partition of unity)
- All basis functions are non-negative
- Convex hull (both necessary and sufficient)
 Predictability

Derivatives

- Tangent vectors can easily be evaluated at the end-points $\mathbf{c}'(0) = 3(\mathbf{p}_1 - \mathbf{p}_0); \mathbf{c}'(1) = (\mathbf{p}_3 - \mathbf{p}_2)$
- Second derivatives at end-points can also be easily computed:

$$\mathbf{c}^{(2)}(0) = 2 \times 3((\mathbf{p}_2 - \mathbf{p}_1) - (\mathbf{p}_1 - \mathbf{p}_0)) = 6(\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0)$$
$$\mathbf{c}^{(2)}(1) = 2 \times 3((\mathbf{p}_3 - \mathbf{p}_2) - (\mathbf{p}_2 - \mathbf{p}_1)) = 6(\mathbf{p}_3 - 2\mathbf{p}_2 + \mathbf{p}_1)$$

Department of Computer Science Center for Visual Computing

Derivative Curve

• The derivative of a cubic Bezier curve is a quadratic Bezier curve

$$\mathbf{c}'(u) = -3(1-u)^2 \mathbf{p}_0 + 3((1-u)^2 - 2u(1-u))\mathbf{p}_1 + 3(2u(1-u) - u^2)\mathbf{p}_2 + 3u^2 \mathbf{p}_3 =$$

 $3(\mathbf{p}_1 - \mathbf{p}_0)(1 - u)^2 + 3(\mathbf{p}_2 - \mathbf{p}_1)2u(1 - u) + 3(\mathbf{p}_3 - \mathbf{p}_2)u^2$

Department of Computer Science Center for Visual Computing

More Properties (Cubic)

Two curve spans are obtained, and both of them are standard Bezier curves (through reparameterization)
 c (v), v ∈ [0, u]

$$\mathbf{c} (v), v \in [0, u]$$

$$\mathbf{c} (v), v \in [u, 1]$$

$$\mathbf{c}_{l} (u), u \in [0, 1]$$

$$\mathbf{c}_{r} (u), u \in [0, 1]$$

• The control points for the left and the right are

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

STONY BROCK STATE UNIVERSITY OF NEW YORK

High-Degree Curves

• Generalizing to high-degree curves

$$\begin{bmatrix} x (u) \\ y (u) \\ z (u) \end{bmatrix} = \sum_{i=0}^{n} \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix} u^{i}$$

- Advantages:
 - Easy to compute, Infinitely differentiable
- Disadvantages:
 - Computationally complex, undulation, undesired wiggles
- How about high-order Hermite? Not natural!!!

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Bezier Splines

Bezier curves of degree n

c (*u*) =
$$\sum_{i=0}^{n}$$
 p_i *B*_iⁿ (*u*)

 Control points and basis functions (Bernstein polynomials of degree n):

$$B_{i}^{n}(u) = \binom{n}{i}(1-u)^{n-i}u^{i}$$
$$\binom{n}{i} = \frac{n!}{(n-i)!\,i!}$$

Department of Computer Science Center for Visual Computing

Recursive Computation

$$\mathbf{p}_{i}^{0} = \mathbf{p}_{i}, i = 0, 1, 2, \dots n$$
$$\mathbf{p}_{i}^{j} = (1 - u)\mathbf{p}_{i}^{j-1} + u\mathbf{p}_{i+1}^{j-1}$$
$$\mathbf{c}(u) = \mathbf{p}_{0}^{n}(u)$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Recursive Computation

• N+1 levels

$$(1 - u) (u)$$

$$p_{0}^{0} \dots p_{n}^{0} p_{n}^{0}$$

$$p_{0}^{1} \dots p_{n-1}^{1}$$

$$p_{0}^{n-1} p_{1}^{n-1}$$

$$p_{0}^{n} = c(u)$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

 Convex hull: the curve is bounded by the convex hull defined by control points

More Properties

- Recursive subdivision and evaluation
- Symmetry: c(u) and c(1-u) are defined by the same set of point points, but different ordering

$$\mathbf{p}_{0}, \dots, \mathbf{p}_{n};$$

 $\mathbf{p}_{n}, \dots, \mathbf{p}_{0}$

Department of Computer Science Center for Visual Computing

Tangents and Derivatives

- End-point tangents: $\mathbf{c}'(0) = n(\mathbf{p}_1 \mathbf{p}_0)$ $\mathbf{c}'(1) = n(\mathbf{p}_n - \mathbf{p}_{n-1})$
- I-th derivatives at two end-points depend on

$$\mathbf{p}_{0},...,\mathbf{p}_{i};$$

 $\mathbf{p}_{n},...,\mathbf{p}_{n-i}$

Derivatives at non-end-points involve all control points

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Other Advanced Topics

- Efficient evaluation algorithm
- Differentiation and integration
- Degree elevation
 - Use a polynomial of degree (n+1) to express that of degree (n)
- Composite curves
- Geometric continuity
- Display of curve

Bezier Curve Rendering

- Use its control polygon to approximate the curve
- Recursive subdivision till the tolerance is satisfied
- Algorithm go here
 - If the current control polygon is flat (with tolerance), then output the line segments, else subdivide the curve at u=0.5
 - Compute control points for the left half and the right half, respectively
 - Recursively call the same procedure for the left one and the right one

High-Degree Polynomials

- More degrees of freedom
- Easy to compute
- Infinitely differentiable
- Drawbacks:
 - High-order
 - Global control
 - Expensive to compute, complex
 undulation

Piecewise Polynomials

- Piecewise ---- different polynomials for different parts of the curve
- Advantages ---- flexible, low-degree
- Disadvantages ---- how to ensure smoothness at the joints (continuity)

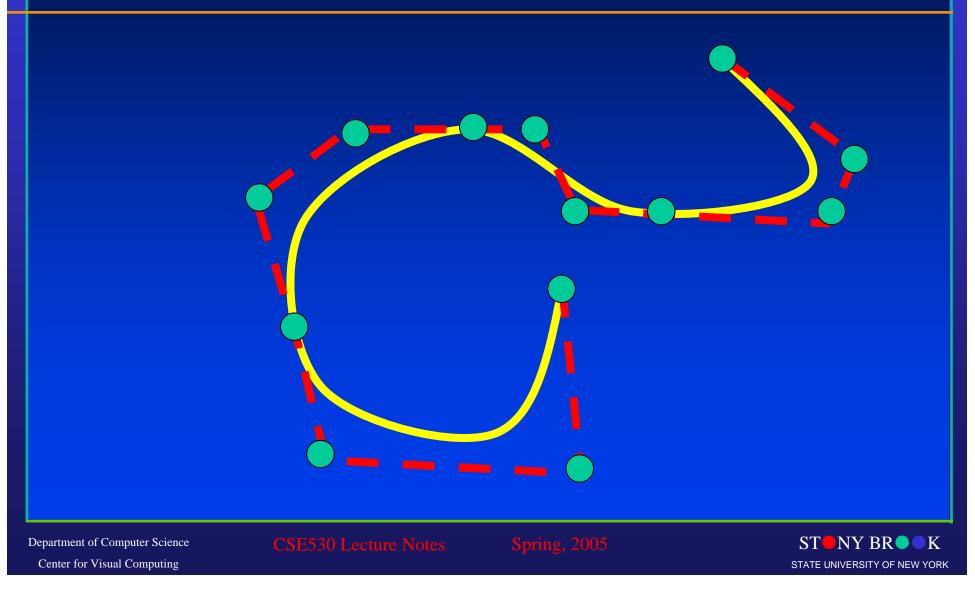
Piecewise Curves

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Piecewise Bezier Curves



Continuity

- One of the fundamental concepts
- Commonly used cases:

$$C^{0}$$
, C^{1} , C^{2}

• Consider two curves: a(u) and b(u) (u is in [0,1])

$$\mathbf{a}(1) = \mathbf{b}(0)$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

$$a(1) = b(0)$$

 $a'(1) = b'(0)$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

General Continuity

- Cn continuity: derivatives (up to n-th) are the same at the joining point $\mathbf{a}^{(i)}(1) = \mathbf{b}^{(i)}(0)$
- The prior definition is for parametric continuity
- Parametric continuity depends of parameterization! But, parameterization is not unique!
- Different parametric representations may express the same geometry
- Re-parameterization can be easily implemented
- Another type of continuity: geometric continuity, or Gn

i = 0, 1, 2, ..., n

• G0 and G1

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Geometric Continuity

- Depend on the curve geometry
- DO NOT depend on the underlying parameterization
- G0: the same joint
- G1: two curve tangents at the joint align, but may (or may not) have the same magnitude
- G1: it is C1 after the reparameterization
- Which condition is stronger???

Examples

Piecewise Hermite Curves

- How to build an interactive system to satisfy various constraints
- C0 continuity
- C1 continuity

$$a(1) = b(0)$$

 $a'(1) = b'(0)$

a(1) = b(0)

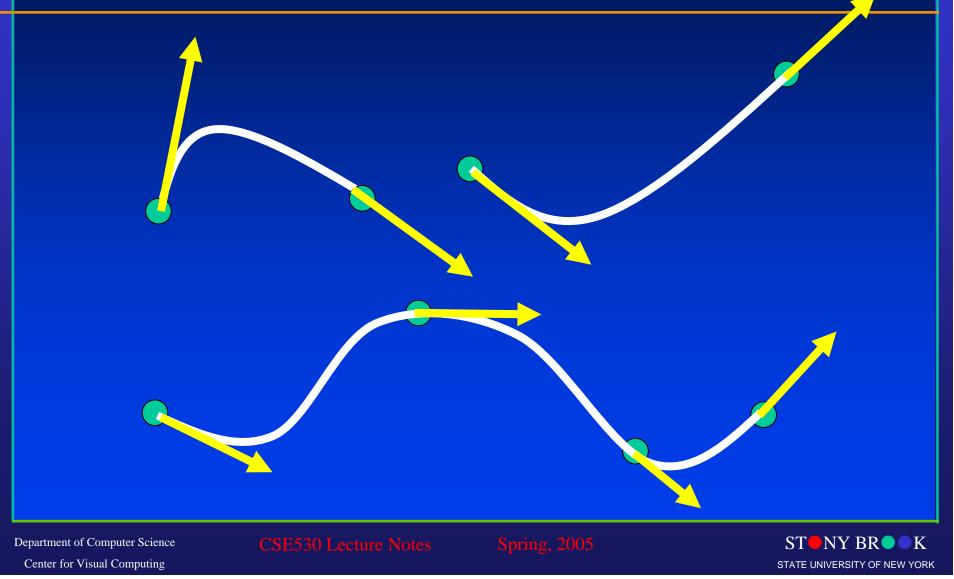
• G1 continuity

$$\mathbf{a}(1) = \mathbf{b}(0)$$
$$\mathbf{a}'(1) = \alpha \mathbf{b}'(0)$$

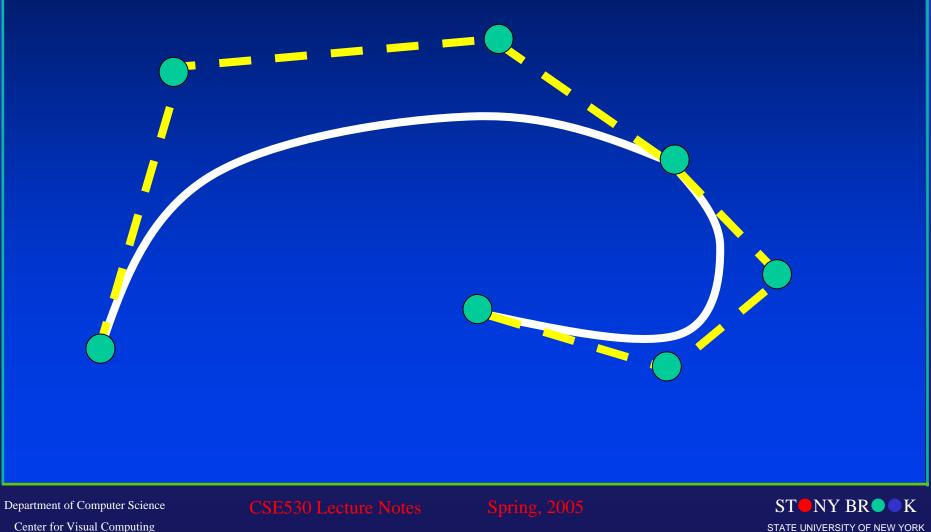
Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Piecewise Hermite Curves



Piecewise Bezier Curves



Center for Visual Computing

Piecewise Bezier Curves

- C0 continuity
- C1 continuity
- G1 continuity
- C2 continuity

$$p_{3} = q_{0}$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = (q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = \alpha(q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = (q_{1} - q_{0})$$

$$p_{3} = q_{0}$$

$$(p_{3} - p_{2}) = (q_{1} - q_{0})$$

$$p_{3} - 2p_{2} + p_{1} = q_{2} - 2q_{1} + q_{0}$$
retation

Geometric interpretati
G2 continuity

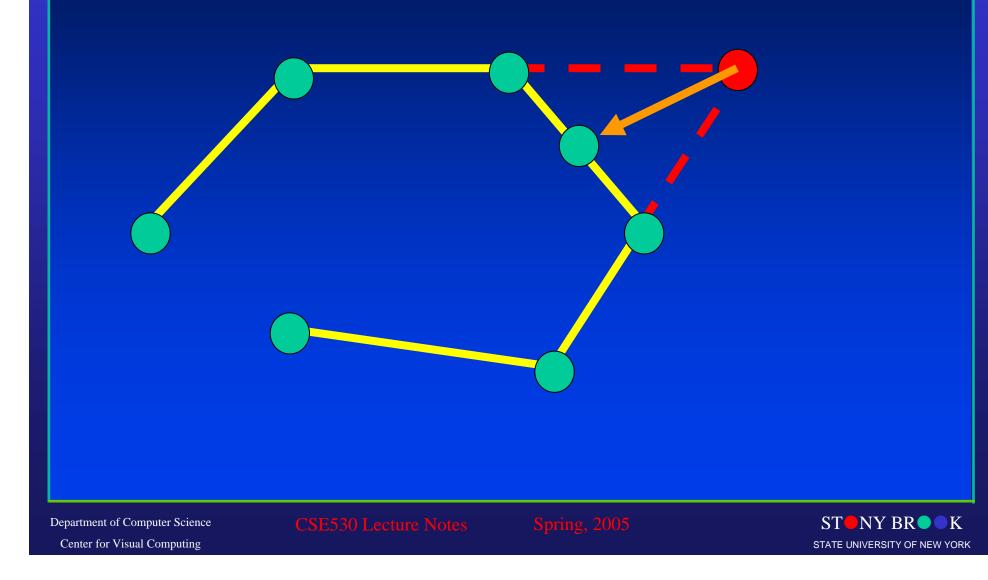
Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Piecewise C2 Bezier Curves



Continuity Summary

- C0: straightforward, but not enough
- C3: too constrained
- Piecewise curves with Hermite and Bezier representations satisfying various continuity conditions
- Interactive system for C2 interpolating splines using piecewise Bezier curves
- Advantages and disadvantages

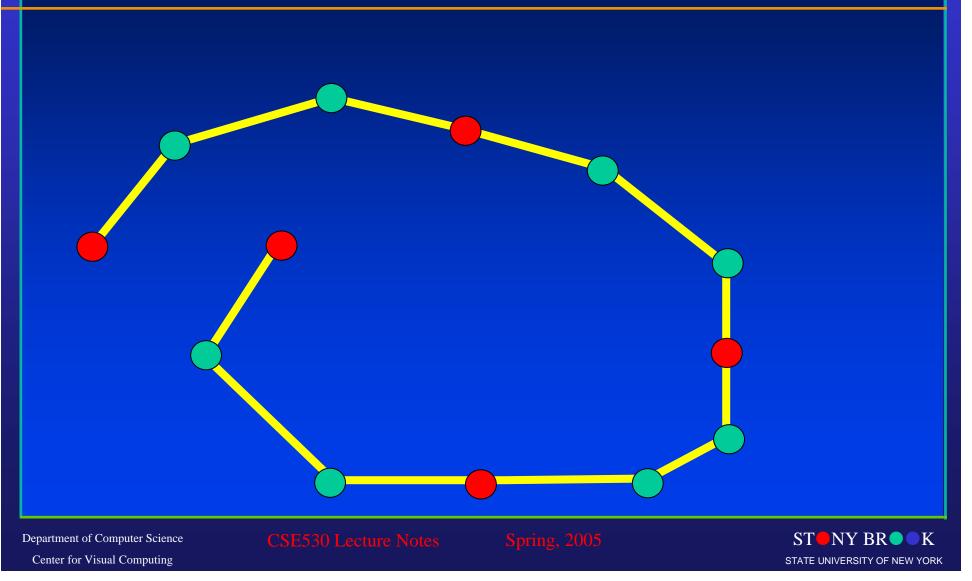
Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

C2 Interpolating Splines



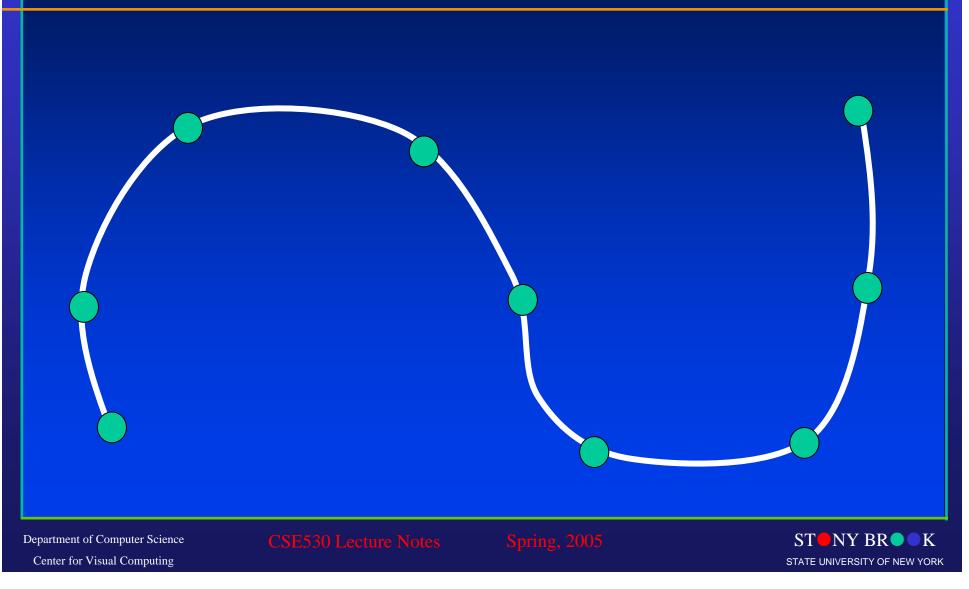
Natural C2 Cubic Splines

• A set of piecewise cubic polynomials

$$\mathbf{c}_{i}(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix}$$

C2 continuity at each vertex

Natural C2 Cubic Splines



Natural Splines

- Interpolate all control points
- Equivalent to a thin strip of metal in a physical sense
- Forced to pass through a set of desired points
- No local control (global control)
- N+1 control points
- N pieces
- 2(n-1) conditions
- We need two additional conditions

Natural Splines

- Interactive design system
 - Specify derivatives at two end-points
 - Specify the two internal control points that define the first curve span
 - Natural end conditions: second-order derivatives at two end points are defined to be zero
- Advantages: interpolation, C2
- Disadvantages: no local control (if one point is changed, the entire curve will move)
- How to overcome this drawback: B-Splines

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

CSE530 Lecture Notes

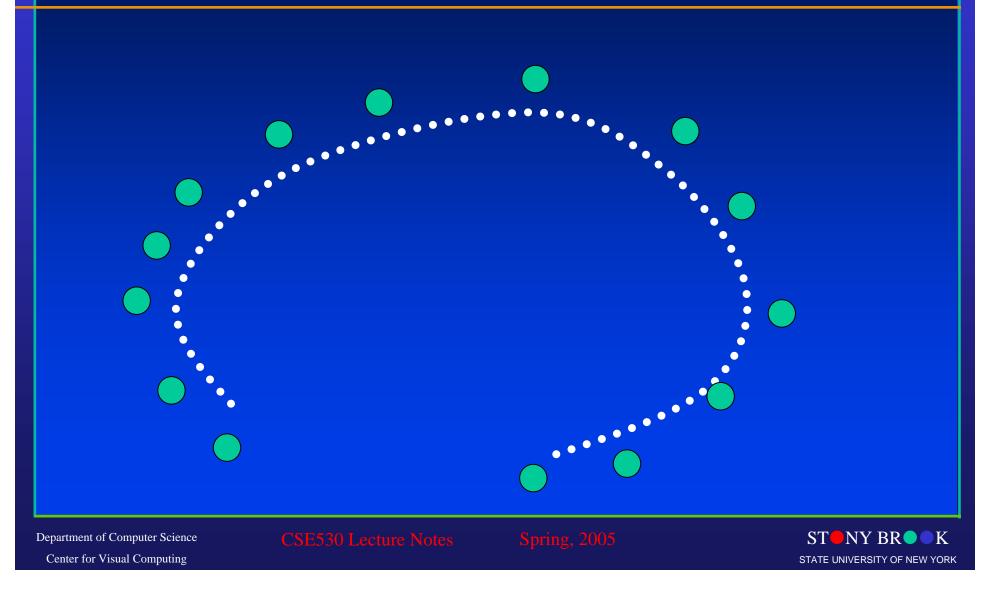
Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

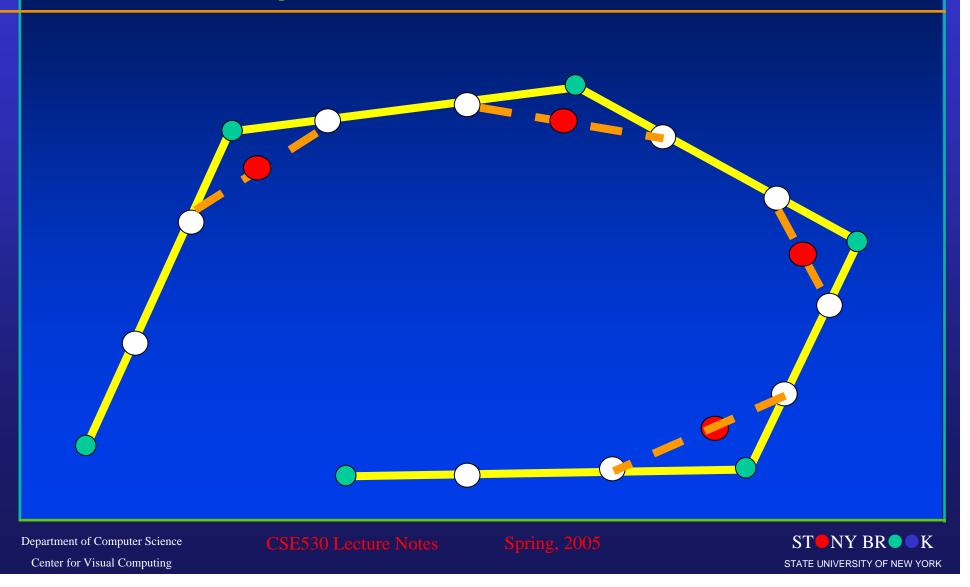
B-Splines Motivation

- The goal is local control!!!
- B-splines provide local control
- Do not interpolate control points
- C2 continuity
- Alternatively
 - Catmull-Rom Splines
 - Keep interpolations
 - Give up C2 continuity (only C1 is achieved)
 - Will be discussed later!!!

C2 Approximating Splines



From B-Splines to Bezier



Uniform B-Splines

• **B-spline control points:** $\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n$

• Bezier control points:

$$\mathbf{v}_{0} = \mathbf{p}_{0}$$

$$\mathbf{v}_{1} = \frac{2\mathbf{p}_{1} + \mathbf{p}_{2}}{3}$$

$$\mathbf{v}_{2} = \frac{\mathbf{p}_{1} + 2\mathbf{p}_{2}}{3}$$

$$\mathbf{v}_{0} = \frac{1}{2}\left(\frac{\mathbf{p}_{0} + 2\mathbf{p}_{1}}{3} + \frac{2\mathbf{p}_{1} + \mathbf{p}_{2}}{3}\right) = \frac{1}{6}(\mathbf{p}_{0} + 4\mathbf{p}_{1} + \mathbf{p}_{2})$$

$$\mathbf{v}_{3} = \frac{1}{6}(\mathbf{p}_{1} + 4\mathbf{p}_{2} + \mathbf{p}_{3})$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

ST NY BR K

Uniform B-Splines

 In general, I-th segment of B-splines is determined by four consecutive B-spline control points

$$\mathbf{v}_{1} = \frac{2 \mathbf{p}_{i+1} + \mathbf{p}_{i+2}}{3}$$

$$\mathbf{v}_{2} = \frac{\mathbf{p}_{i+1} + 2 \mathbf{p}_{i+2}}{3}$$

$$\mathbf{v}_{0} = \frac{1}{6} (\mathbf{p}_{i} + 4 \mathbf{p}_{i+1} + \mathbf{p}_{i+2})$$

$$\mathbf{v}_{3} = \frac{1}{6} (\mathbf{p}_{i+1} + 4 \mathbf{p}_{i+2} + \mathbf{p}_{i+3})$$

Department of Computer Science Center for Visual Computing

Uniform B-Splines

• In matrix form

$$\begin{bmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \\ \mathbf{p}_{i+3} \end{bmatrix}$$

• Question: how many Bezier segments???

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K

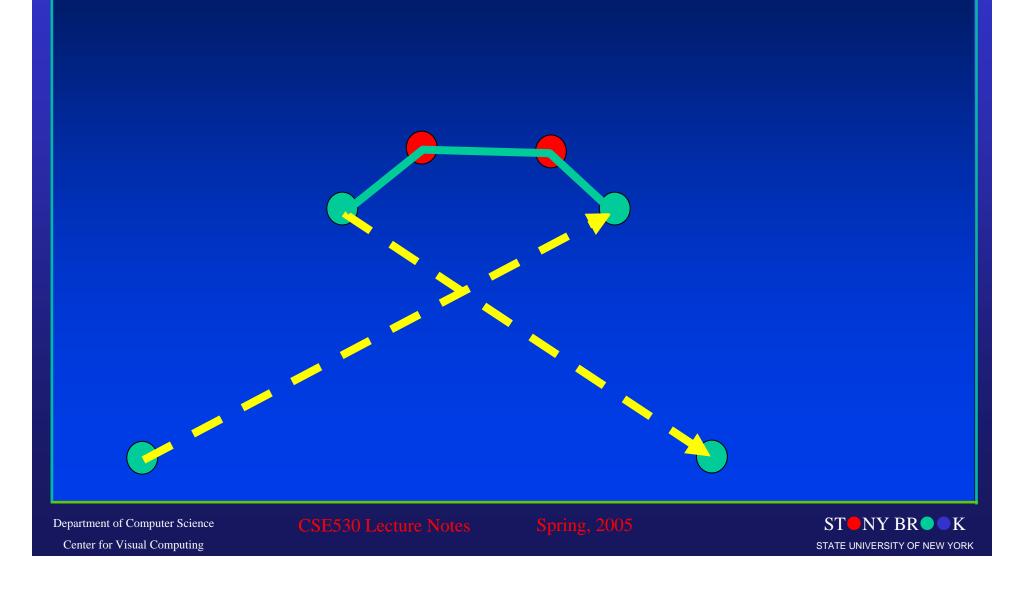
- C2 continuity, Approximation, Local control, convex hull
- Each segment is determined by four control points
- Questions: what happens if we put more than one control points in the same location???
 - Double vertices, triple vertices, collinear vertices
- End conditions
 - Double endpoints: curve will be tangent to line between first distinct points
 - Triple endpoint: curve interpolate endpoint, start with a line segment

B-spline display: transform it to Bezier curves Department of Computer Science CSE530 Lecture Notes Spring, 2005

Center for Visual Computing

ST NY BR K STATE UNIVERSITY OF NEW YORK

Catmull-Rom Splines



Catmull-Rom Splines

- Keep interpolation
- Give up C2 continuity
- Control tangents locally
- Idea: Bezier curve between successive points
- How to determine two internal vertices

$$\mathbf{c} (0) = \mathbf{p}_{i} = \mathbf{v}_{0}, \mathbf{c} (1) = \mathbf{p}_{i+1} = \mathbf{v}_{3}$$

$$\mathbf{c} '(0) = \frac{\mathbf{p}_{i+1} - \mathbf{p}_{i-1}}{2} = 3 (\mathbf{v}_{1} - \mathbf{v}_{0})$$

$$\mathbf{c} '(1) = \frac{\mathbf{p}_{i+2} - \mathbf{p}_{i}}{2} = 3 (\mathbf{v}_{3} - \mathbf{v}_{2})$$

$$\mathbf{v}_{1} = \frac{\mathbf{p}_{i+1} + 6 \mathbf{p}_{i} - \mathbf{p}_{i-1}}{6}$$

$$\mathbf{v}_{2} = \frac{-\mathbf{p}_{i+2} + 6\mathbf{p}_{i+1} + \mathbf{p}_{i}}{6}$$

Department of Computer Science Center for Visual Computing

Catmull-Rom Splines

• In matrix form

$$\begin{bmatrix} \mathbf{v}_{0} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 6 & 0 & 0 \\ -1 & 6 & 1 & 0 \\ 0 & 1 & 6 & -1 \\ 0 & 0 & 6 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i-1} \\ \mathbf{p}_{i} \\ \mathbf{p}_{i+1} \\ \mathbf{p}_{i+2} \end{bmatrix}$$

- Problem: boundary conditions
- Properties: C1, interpolation, local control, nonconvex-hull

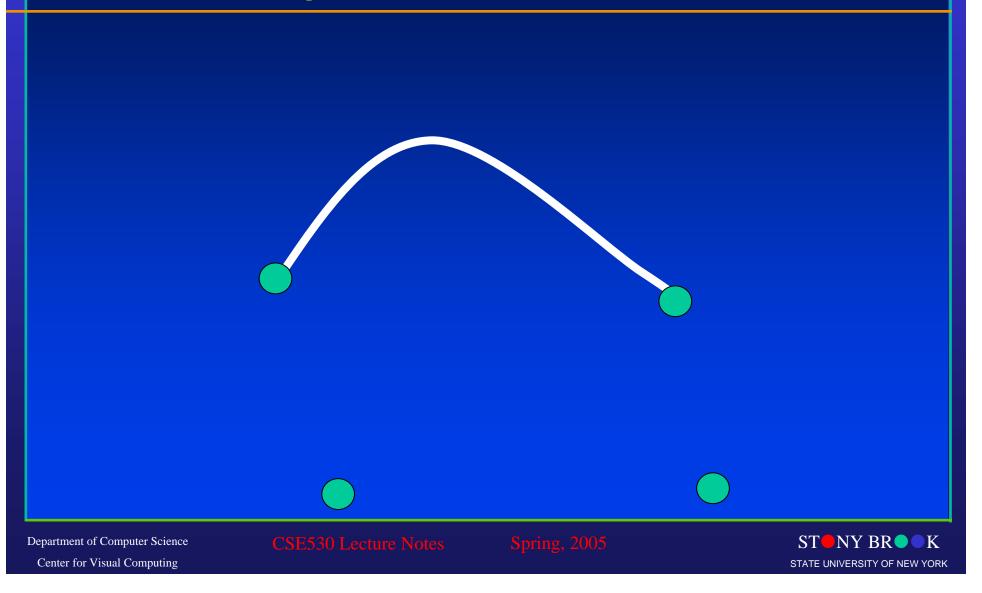
Cardinal Splines

Special case: Catmull-Rom splines when α = 0
 More general case: Kochanek-Bartels splines
 Tonsion, bias, continuity parameters

– Tension, bias, continuity parameters

 $\mathbf{c}^{(1)}(1) = \frac{1}{2}(1-\alpha)(\mathbf{v}_3 - \mathbf{v}_1)$

Cardinal Splines



Kochanek-Bartels Splines

• Four vertices to define four conditions

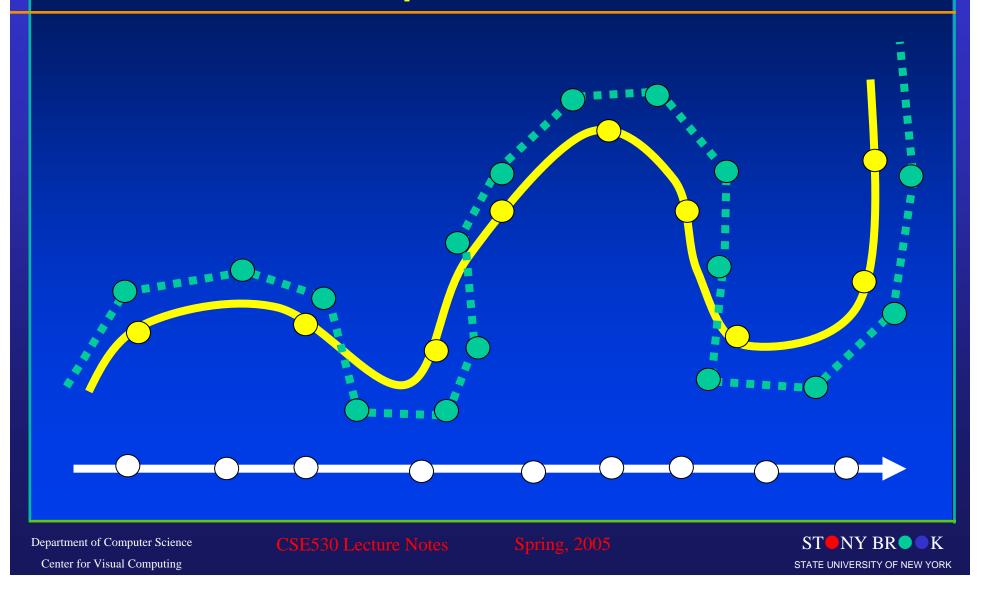
$$\mathbf{c}(0) = \mathbf{v}_{1}, \mathbf{c}(1) = \mathbf{v}_{2}$$

$$\mathbf{c}^{(1)}(0) = \frac{1}{2}(1-\alpha)((1+\beta)(1-\gamma)(\mathbf{v}_{1}-\mathbf{v}_{0}) + (1-\beta)(1+\gamma)(\mathbf{v}_{2}-\mathbf{v}_{1}))$$

$$\mathbf{c}^{(1)}(1) = \frac{1}{2}(1-\alpha)((1+\beta)(1+\gamma)(\mathbf{v}_{2}-\mathbf{v}_{1}) + (1-\beta)(1-\gamma)(\mathbf{v}_{3}-\mathbf{v}_{2}))$$

Tension parameter:
Bias parameter:
Continuity parameter:

Piecewise B-Splines



B-Spline Basis Functions

$$B_{i,1}(u) = \begin{cases} 1 & u_i < = u < u_{i+1} \\ 0 & otherwise \end{cases}$$
$$B_{i,k}(u) = \frac{u - u_i}{u_{i+k-1} - u_i} B_{i,k-1}(u) + \frac{u_{i+k} - u}{u_{i+k} - u_{i+1}} B_{i+1,k-1}(u)$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

ST NY BR K

Basis Functions

• Linear examples

$$B_{0,2}(u) = \begin{cases} u & u \in [0,1] \\ 2 - u & u \in [1,2] \end{cases}$$
$$B_{1,2}(u) = \begin{cases} u - 1 & u \in [1,2] \\ 3 - u & u \in [2,3] \end{cases}$$
$$B_{2,2}(u) = \begin{cases} u - 2 & u \in [2,3] \\ 4 - u & u \in [3,4] \end{cases}$$

How does it look like???

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

Basis Functions

• Quadratic cases (knot vector is [0,1,2,3,4,5,6])

$$B_{0,3}(u) = \begin{cases} \frac{1}{2}u^{2}, & 0 \le u \le 1\\ \frac{1}{2}u(2-u) + \frac{1}{2}(u-1)(3-u), & 1 \le u \le 2\\ \frac{1}{2}(3-u)^{2}, & 2 \le u \le 3 \end{cases}$$
$$B_{1,3}(u) = \begin{cases} \frac{1}{2}(u-1)(3-u) + \frac{1}{2}(u-2)(4-u), & 2 \le u \le 3\\ \frac{1}{2}(4-u)^{2}, & 3 \le u \le 4 \end{cases}$$
$$B_{2,3}(u) = \dots$$
$$B_{3,3}(u) = \dots$$

Department of Computer Science Center for Visual Computing

•

CSE530 Lecture Notes

ST NY BR K STATE UNIVERSITY OF NEW YORK

B-Spline Basis Function Image

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

B-Splines

• Mathematics

$$\mathbf{c}(u) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,k}(u)$$

- Control points and basis functions of degree (k-1)
- Piecewise polynomials
- Basis functions are defined recursively
- We also have to introduce a knot sequence (n+k+1) in a non-decreasing order

$$u_0, u_1, u_2, u_3, \dots, u_{n+k}$$

• Note that, the parametric domain: $u \in [u_{k-1}, u_{n+1}]$

Department of Computer Science Center for Visual Computing

Basis Functions

$$B_{0,1} \quad B_{1,1} \quad B_{2,1} \quad B_{3,1} \quad B_{4,1} \quad B_{5,1} \quad B_{6,1}$$

$$B_{0,2} \quad B_{1,2} \quad B_{2,2} \quad B_{3,2} \quad B_{4,2} \quad B_{5,2}$$

$$B_{0,3} \quad B_{1,3} \quad B_{2,3} \quad B_{3,3} \quad B_{4,3}$$

$$B_{0,4} \quad B_{1,4} \quad B_{2,4} \quad B_{3,4}$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

B-Spline Facts

- The curve is a linear combination of control points and their associated basis functions ((n+1) control points and basis functions, respectively)
- Basis functions are piecewise polynomials defined (recursively) over a set of non-decreasing knots

$$\{\boldsymbol{\mathcal{U}}_0,\ldots,\boldsymbol{\mathcal{\mathcal{U}}}_{k-1},\ldots,\boldsymbol{\mathcal{\mathcal{U}}}_{n+1},\ldots,\boldsymbol{\mathcal{\mathcal{U}}}_{n+k}\}$$

- The degree of basis functions is independent of the number of control points (note that, I is index, k is the order, k-1 is the degree)
- The first k and last k knots do NOT contribute to the parametric domain. Parametric domain is only defined by a subset of knots Department of computer Science CNES40 Locature Notes Spring 2005

Center for Visual Computing

ST NY BR K STATE UNIVERSITY OF NEW YORK

- C(u): piecewise polynomial of degree (k-1)
- Continuity at joints: C(k-2)
- The number of control points and basis functions: (n+1)
- One typical basis function is defined over k subintervals which are specified by k+1 knots ([u(k),u(I+k)])
- There are n+k+1 knots in total, knot sequence divides the parametric axis into n+k sub-intervals
- There are (n+1)-(k-1)=n-k+2 sub-intervals within the parametric domain ([u(k-1),u(n+1)])

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K

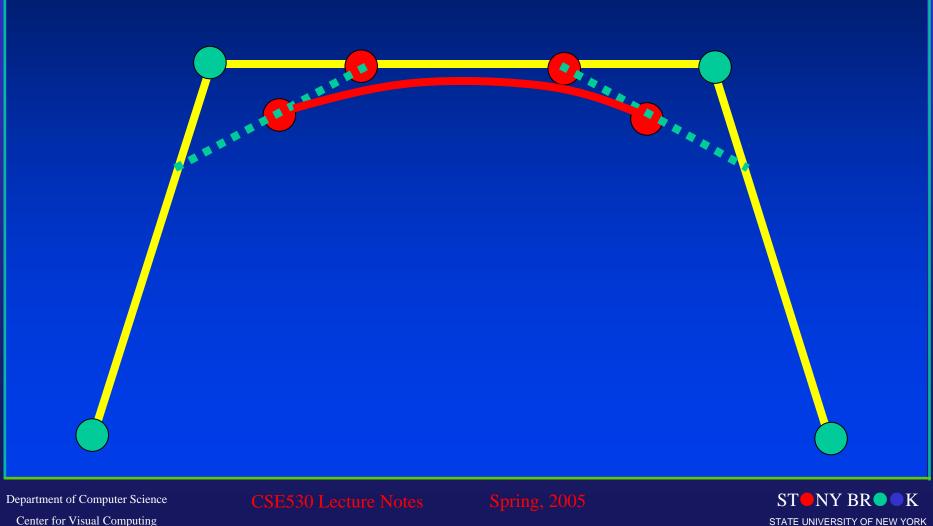
- There are n-k+2 piecewise polynomials
- Each curve span is influenced by k control points
- Each control points at most affects k curve spans
- Local control!!!!
- Convex hull
- The degree of B-spline polynomial can be independent from the number of control points
- Compare B-spline with Bezier!!!
- Key components: control points, basis functions, knots, parametric domain, local vs. global control, continuity

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

- Partition of unity, positivity, and recursive evaluation of basis functions
- Special cases: Bezier splines
- Efficient algorithms and tools
 - Evaluation, knot insertion, degree elevation, derivative, integration, continuity
- Composite Bezier curves for B-splines

Uniform B-Spline



Center for Visual Computing

Another Formulation

- Uniform B-spline
- Parameter normalization (u is in [0,1])
- End-point positions and tangents

$$\mathbf{c} (0) = \frac{1}{6} (\mathbf{p}_{0} + 4 \mathbf{p}_{1} + \mathbf{p}_{2})$$

$$\mathbf{c} (1) = \frac{1}{6} (\mathbf{p}_{1} + 4 \mathbf{p}_{2} + \mathbf{p}_{3})$$

$$\mathbf{c} '(0) = \frac{1}{2} (\mathbf{p}_{2} - \mathbf{p}_{0})$$

$$\mathbf{c} '(1) = \frac{1}{2} (\mathbf{p}_{3} - \mathbf{p}_{1})$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Another Formulation

• Matrix representation

$$\mathbf{c}(u) = UM_{h} \begin{bmatrix} \mathbf{c}(0) \\ \mathbf{c}(1) \\ \mathbf{c}'(0) \\ \mathbf{c}'(1) \end{bmatrix} = UM_{h}M' \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \end{bmatrix} = UM\mathbf{p}$$

• Basis matrix

$$M = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 0 & 3 & 0\\ 1 & 4 & 1 & 0 \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

Basis Functions

• Note that, u is now in [0,1]

$$B_{0,4}(u) = \frac{1}{6}(1 - u)^{3}$$

$$B_{1,4}(u) = \frac{1}{6}(3 u^{3} - 6 u^{2} + 4)$$

$$B_{2,4}(u) = \frac{1}{6}(-3 u^{3} + 3 u^{2} + 3 u + 1)$$

$$B_{3,4}(u) = \frac{1}{6}(u)^{3}$$

Department of Computer Science Center for Visual Computing

B-Spline Rendering

- Transform it to a set of Bezier curves
- Convert the I-th span into a Bezier representation

Consider the entire B-spline curve

 $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \dots, \mathbf{p}_{n}$

$$\mathbf{v}_0, \dots, \mathbf{v}_3, \mathbf{v}_4, \dots, \mathbf{v}_7, \dots, \mathbf{v}_{4(n-3)}, \dots, \mathbf{v}_{4(n-3)+3}$$

Department of Computer Science Center for Visual Computing

Matrix Expression

$$\begin{bmatrix} \mathbf{v}_{0} \\ \mathbf{M} \\ \mathbf{v}_{4(n-3)+3} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{M} \\ \mathbf{p}_{n} \end{bmatrix}$$

• The matrix structure and components of B? $q=A \neq AB$

• The matrix structure and components of A?

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K

B-Spline Discretization

- Parametric domain: [u(k-1),u(n+1)]
- There are n+2-k curve spans (pieces)
- Assuming m+1 points per span (uniform sampling)
- Total sampling points m(n+2-k)+1=1
- B-spline discretization with corresponding parametric values:
 q₀,...., q_{l-1}

$$\mathbf{v}_{0}$$
,...., \mathbf{v}_{l-1}
 $\mathbf{q}_{i} = \mathbf{c}(v_{i}) = \sum_{j=0}^{n} \mathbf{p}_{j} B_{j,k}(v_{i})$

Department of Computer Science

B-Spline Discretization

• Matrix equation

$$\begin{bmatrix} \mathbf{q}_{0} \\ \mathbf{M} \\ \mathbf{q}_{l-1} \end{bmatrix} = \begin{bmatrix} B_{0,k}(v_{0}) & \Lambda & B_{n,k}(v_{0}) \\ \mathbf{M} & \mathbf{O} & \mathbf{M} \\ B_{0,k}(v_{l-1}) & \Lambda & B_{n,k}(v_{l-1}) \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{M} \\ \mathbf{p}_{n} \end{bmatrix}$$

- A is (l)x(n+1) matrix, in general (l) is much larger than (n+1), so A is sparse
- The linear discretization for both modeling and rendering

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

From B-Splines to NURBS

- What are NURBS???
- Non Uniform Rational B-Splines (NURBS)
- Rational curve motivation
- Polynomial-based splines can not represent commonlyused analytic shapes such as conic sections (e.g., circles, ellipses, parabolas)
- Rational splines can achieve this goal
- NURBS are a unified representation
 - Polynomial, conic section, etc.
 - Industry standard

From B-Splines to NURBS

• **B-splines** $\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} w_{i} \\ \mathbf{p}_{i,y} w_{i} \\ \mathbf{p}_{i,z} w_{i} \\ w_{i} \end{bmatrix} B_{i,k}(u)$

NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Geometric NURBS

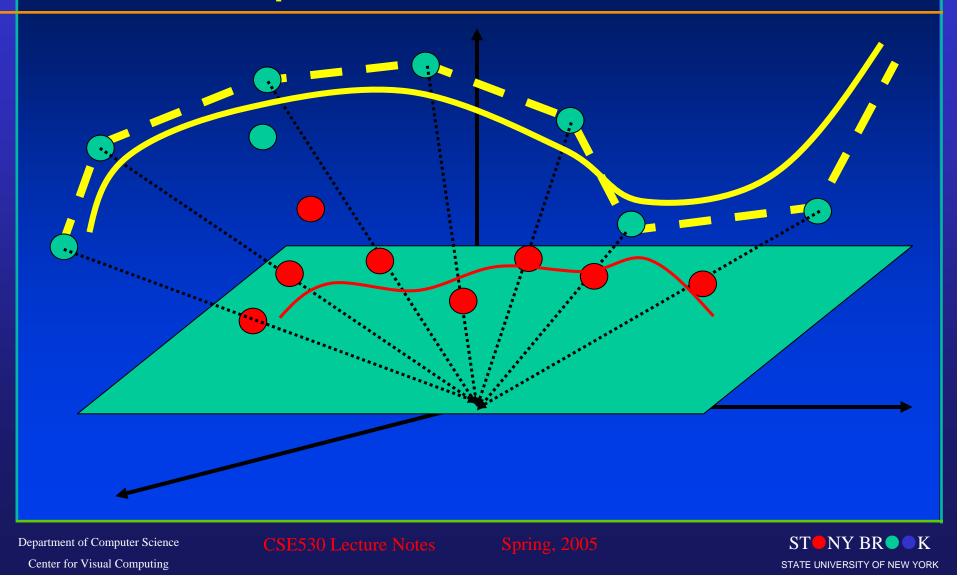
- Non-Uniform Rational B-Splines
- CAGD industry standard ---- useful properties
- Degrees of freedom
 - Control points
 - Weights

Rational Bezier Curve

Projecting a Bezier curve onto w=1 plane

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

From B-Splines to NURBS



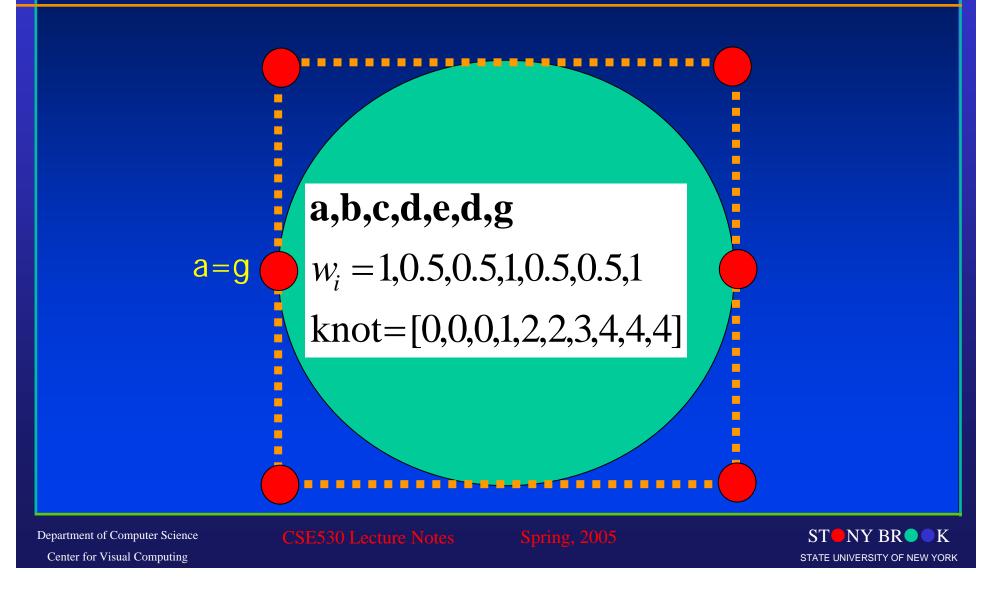
NURBS Weights

- Weight increase "attracts" the curve towards the associated control point
- Weight decrease "pushes away" the curve from the associated control point

NURBS for Analytic Shapes

- Conic sections
- Natural quadrics
- Extruded surfaces
- Ruled surfaces
- Surfaces of revolution

NURBS Circle



NURBS Curve

- Geometric components
 - Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning ---- obtained from projection
- Properties of NURBS
 - Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights

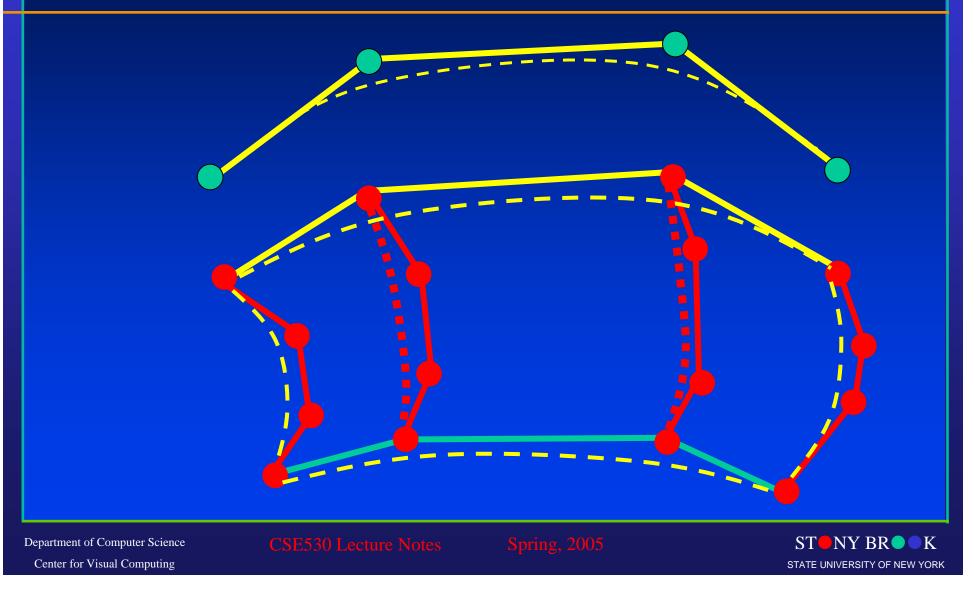
NURBS Properties

- Generalization of B-splines and Bezier splines
- Unified formulation for free-form and analytic shape
- Weights as extra DOFs
- Various smoothness requirements
- Powerful geometric toolkits
- Efficient and fast evaluation algorithm
- Invariance under standard transformations
- Composite curves
- Continuity conditions

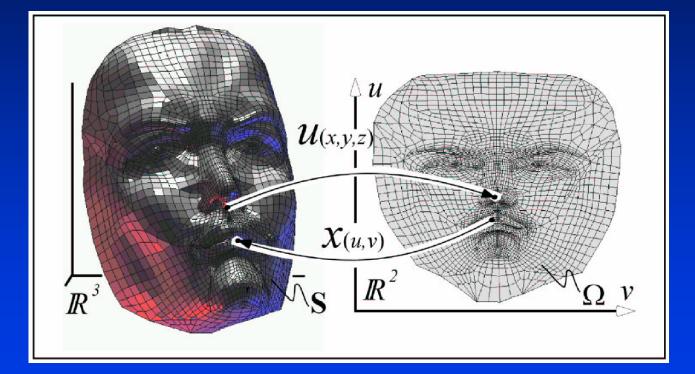
Geometric Modeling

- Why geometric modeling
- Fundamental for visual computing
 - Graphics, visualization
 - Computer aided design and manufacturing
 - Imaging
 - Entertainment, etc.
- Critical for virtual engineering
- Interaction
- Geometric information for decision making

From Curve to Surface



Parameterization



Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Surfaces

- From curves to surfaces
- A simple curve example (Bezier)

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}(u)$$
$$u \in [0,1]$$

• Consider each control point now becoming a Bezier curve $p = \sum_{n=1}^{3} p_{n-n} P_{n-n}(u)$

$$\mathbf{p}_{i} = \sum_{j=0}^{3} \mathbf{p}_{i,j} B_{j}(v)$$
$$v \in [0,1]$$

Department of Computer Science Center for Visual Computing

Surfaces

• Then, we have

$$\mathbf{s}(u,v) = \sum_{i=0}^{3} \left(\sum_{j=0}^{3} \mathbf{p}_{i,j} B_{j}(v) \right) B(u) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{p}_{i,j} B_{i}(u) B_{j}(v)$$

• Matrix form

$$\mathbf{s}(u,v) = \begin{bmatrix} B_0(u) & B_1(u) & B_2(u) & B_3(u) \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0,0} & \mathbf{p}_{0,1} & \mathbf{p}_{0,2} & \mathbf{p}_{0,3} \\ \mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2} & \mathbf{p}_{1,3} \\ \mathbf{p}_{2,0} & \mathbf{p}_{2,1} & \mathbf{p}_{2,2} & \mathbf{p}_{2,3} \\ \mathbf{p}_{3,0} & \mathbf{p}_{3,1} & \mathbf{p}_{3,2} & \mathbf{p}_{3,3} \end{bmatrix} \begin{bmatrix} B_0(u) \\ B_1(u) \\ B_2(u) \\ B_3(u) \end{bmatrix}$$

 $= UMPM^{T}V^{T}$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Surfaces

• Further generalize to degree of n and m along two parametric directions

$$\mathbf{s}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i,j} B_i^n(u) B_j^m(v)$$

Question: which control points are interpolated?
How about B-spline surfaces???

Tensor Product Surfaces

- Where are they from?
- Monomial form
- Bezier surface

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{a}_{i,j} u^{i} v^{j}$$

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{p}_{i,j} B_i^m(u) B_j^n(v)$$

• B-spline surface

$$\mathbf{s}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_{i,k}(u) B_{j,l}(v)$$

General case

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{v}_{i,j} F_i(u) G_j(v)$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Tensor Product Surface

• Bezier Surface

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

ST NY BR K

B-Splines

• B-spline curves

$$\mathbf{c}(u) = \sum_{i=0}^{n} \mathbf{p}_{i} B_{i,k}(u)$$

• Tensor product B-splines

$$\mathbf{s}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_{i,k}(u) B_{j,l}(v)$$

- Question again: which control points are interpolated???
- Another question: can we get NURBS surface this way???
- Answer: NO!!! NURBS are not tensor-product surfaces
- Another question: can we have NURBS surface?
- YES!!!!

NURBS Surface

NURBS surface mathematics

$$\mathbf{s}(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i,j} w_{i,j} B_{i,k}(u) B_{j,l}(v)}{\sum_{i=0}^{n} \sum_{j=0}^{m} w_{i,j} B_{i,k}(u) B_{j,l}(v)}$$

- Understand this geometric construction
- Question: why is it not the tensor-product formulation??? Compare it with Bezier and Bspline construction

NURBS Surface

- Parametric variables: u and v
- Control points and their associated weights: (m+1)(n+1)
- Degrees of basis functions: (k-1) and (l-1)
- Knot sequence:

$$u_0 <= u_1 <= \dots <= u_{m+k}$$

 $v_0 <= v_1 <= \dots <= v_{n+l}$

• Parametric domain:

$$u_{k-1} \le u \le u_{m+1}$$

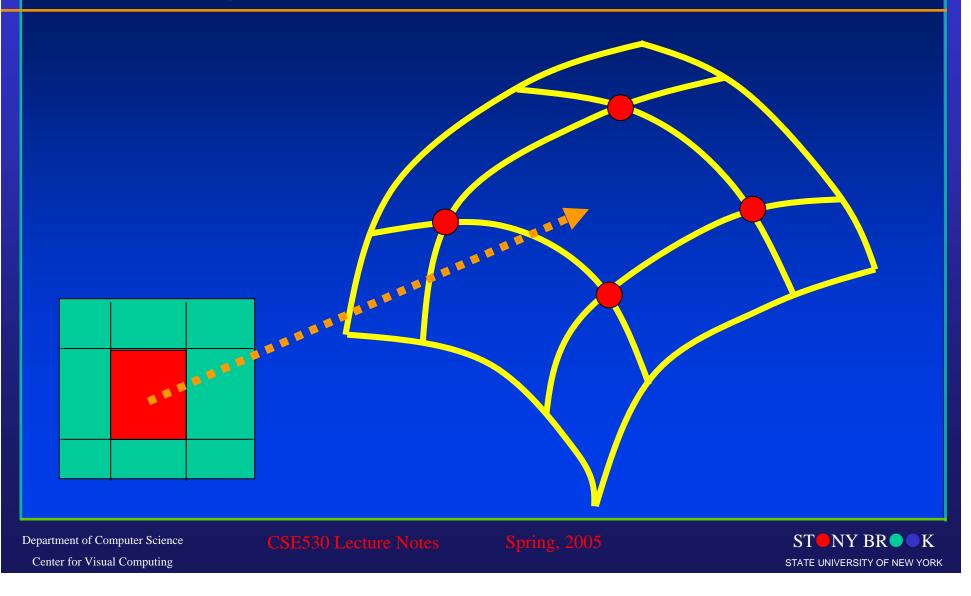
 $v_{l-1} \le v \le v_{n+1}$

Department of Computer Science Center for Visual Computing

NURBS Surface

- The same principle to generate curves via projection
- Idea: associate weights with control points
- Generalization of B-spline surface

Rectangular Surface



- How about Hermite surfaces???
- Hermite Curve

$$\mathbf{c}(u) = \begin{bmatrix} H_0(u) & H_1(u) & H_2(u) & H_3(u) \end{bmatrix} \begin{bmatrix} \mathbf{c}(1) \\ \mathbf{c}'(0) \\ \mathbf{c}'(1) \end{bmatrix}$$

 $\int \mathbf{c}(0)$

• C(0) is not a curve s(0,v) which is also a Hermite Curve:

 $s(0,v) = \begin{bmatrix} H_0(v) & H_1(v) & H_2(v) & H_3(v) \end{bmatrix} \begin{bmatrix} \mathbf{s}(0,0) \\ \mathbf{s}(0,1) \\ \mathbf{s}_v(0,0) \\ \mathbf{s}_v(0,1) \end{bmatrix}$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Similarly, c(1) is now a curve s(1,v) which is also a Hermite curve:

$$\mathbf{s}(1,v) = \begin{bmatrix} H_0(v) & H_1(v) & H_2(v) & H_3(v) \end{bmatrix} \begin{bmatrix} \mathbf{s}(1,1) \\ \mathbf{s}_v(1,0) \\ \mathbf{s}_v(1,1) \end{bmatrix}$$

• The same are for c'(0) and c'(1):

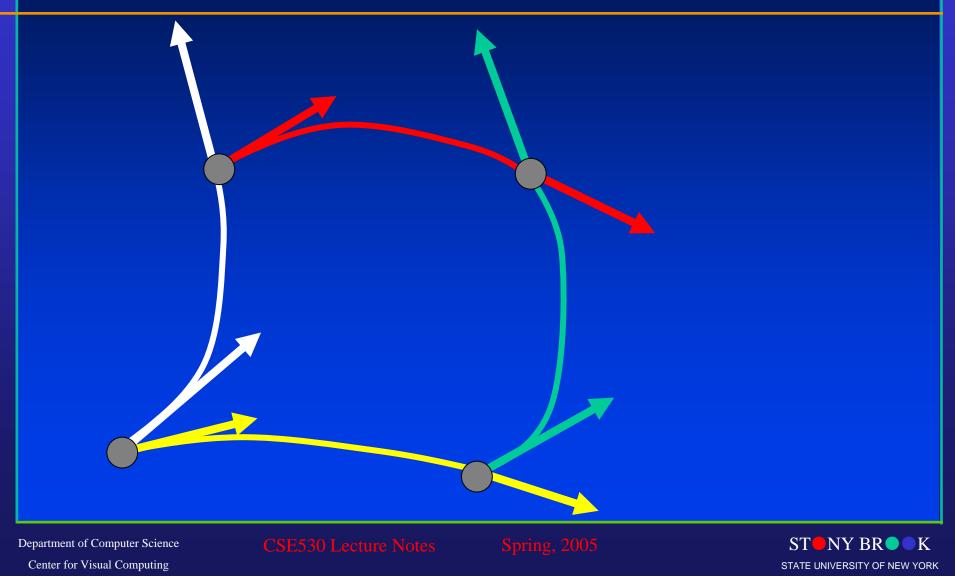
$$\mathbf{s}_{u}(0, v) = H(v) \begin{bmatrix} \mathbf{s}_{u}(0, 0) \\ \mathbf{s}_{u}(0, 1) \\ \mathbf{s}_{uv}(0, 0) \\ \mathbf{s}_{uv}(0, 1) \end{bmatrix}$$
$$\mathbf{s}_{uv}(0, 1) \begin{bmatrix} \mathbf{s}_{u}(1, 0) \\ \mathbf{s}_{uv}(1, 1) \\ \mathbf{s}_{uv}(1, 0) \\ \mathbf{s}_{uv}(1, 1) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

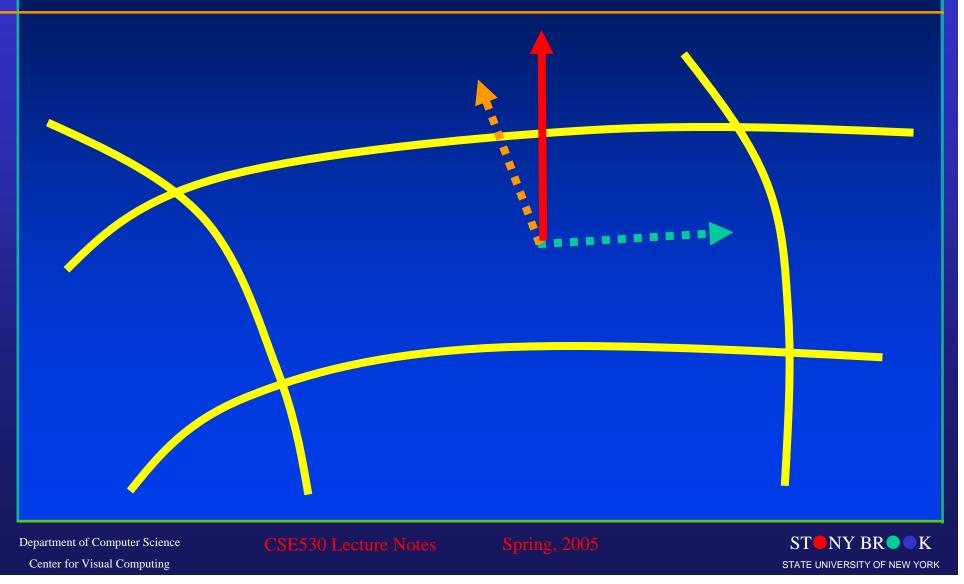
• It is time to put them together!

$\mathbf{s}(u,v) = H(u)$	s (0,0)	s (0,1)	s _v (0,0)	$s_{v}(0,1)$	$H(v)^{T}$
	s (1,0)	s (1,1)	$s_{v}(1,0)$	$s_{v}(1,1)$	
	$\mathbf{s}_{u}(0,0)$	$s_{u}(0,1)$	s _{uv} (0,0)	s _{uv} (0,1)	
	$\mathbf{s}_{u}(1,0)$	$s_{u}(1,1)$	s _{uv} (1,0)	s _{uv} (1,1)_	

- Continuity conditions for surfaces
- Bezier surfaces, B-splines, NURBS, Hermite surfaces
- C1 and G1 continuity



Surface Normal



Parametric grids ([0,1]X[0,1]) as a set of rectangles

Department of Computer Science Center for Visual Computing

Surface (Patch) Rendering

- We use bicubic as an example
- The simplest (naïve): convert curved patches into primitives that we always know how to render
- From curved surfaces to polygon quadrilaterals (nonplanar) and/or triangles (planar)
- Surface evaluation at grid points
- This is straight forward but inefficient, because it requires many times of evaluation of s(u,v)
- The total number is

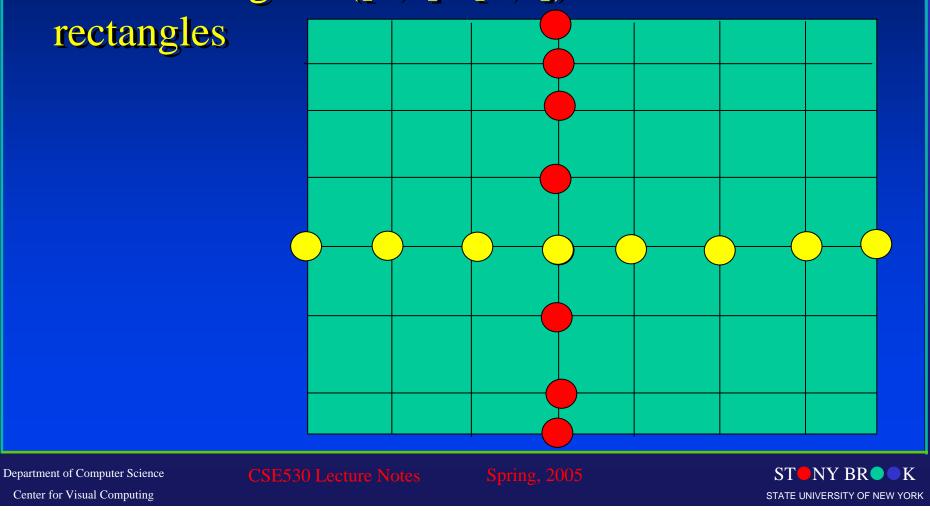
$$3\,\frac{1}{\delta u}\frac{1}{\delta v}$$

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

• Parametric grids ([0,1]X[0,1]) as a set of



• Better approach: precomputation

$$\mathbf{s}(u,v) = \begin{bmatrix} u^3 & u^2 & u^1 & 1 \end{bmatrix} M \begin{bmatrix} v^3 \\ v^2 \\ v^2 \end{bmatrix}$$

• M is constant unroughout the entire patch. The followings are the same along isoparametric lines $u^3 u^2 u 1$

$$\begin{bmatrix} u & ^{3} & u & ^{2} & u & 1 \\ v & ^{3} & v & ^{2} & v & 1 \end{bmatrix}$$

 Use one dimensional array to compute and store (evaluation only once)

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

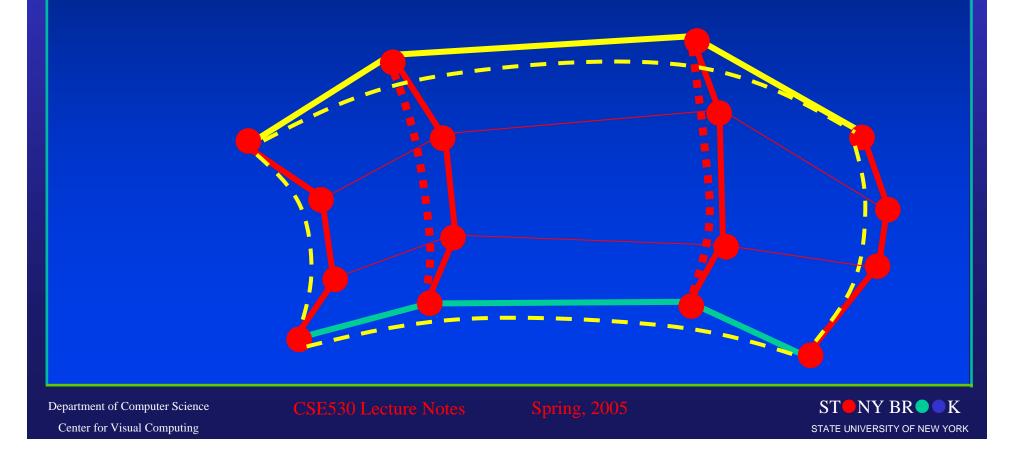
- How about many patches: the array is unchanged, its sampling rate is the same, this is more useful
- How about adaptive sampling based on curvature information!!!
- How to computer normal at any grid point (approximation)

 $\mathbf{s}_{u}(u,v) \times \mathbf{s}_{v}(u,v)$ ($\mathbf{s}(u + \delta u, v) - \mathbf{s}(u, v)$) × ($\mathbf{s}(u, v + \delta v) - \mathbf{s}(u, v)$)

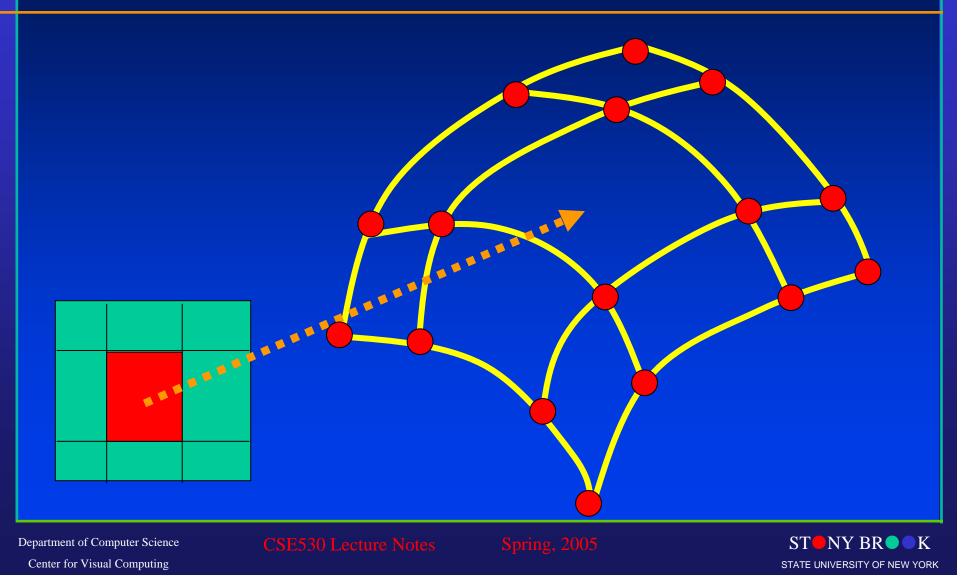
Department of Computer Science Center for Visual Computing

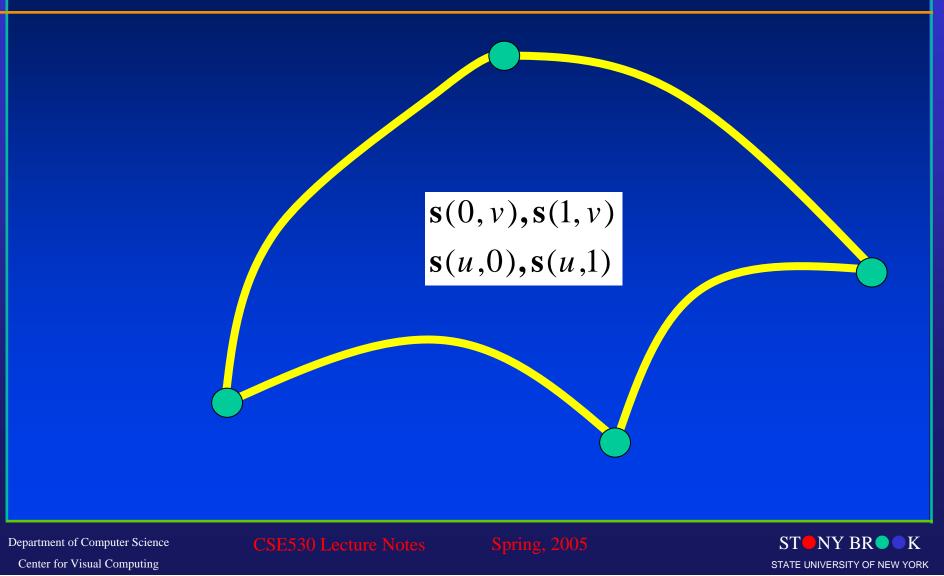
Regular Surface

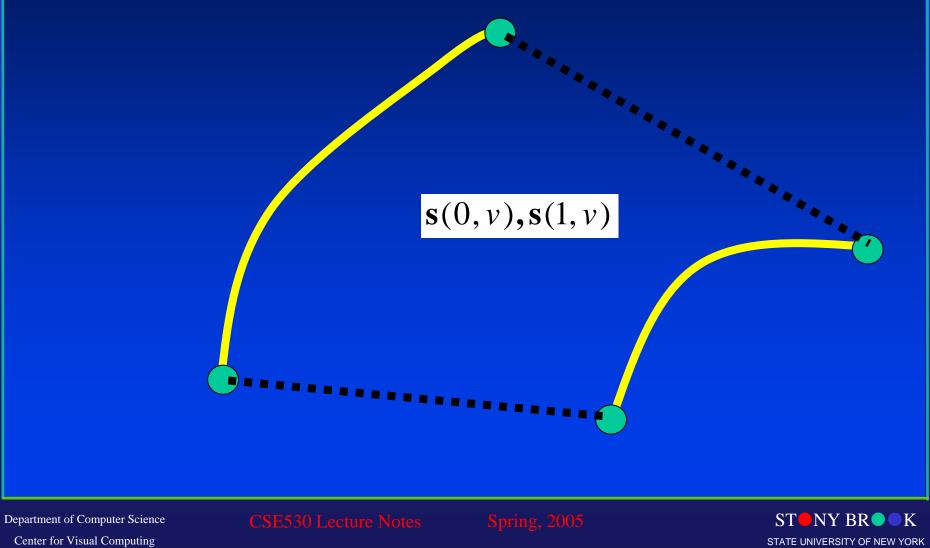
• Generated from a set of control points.

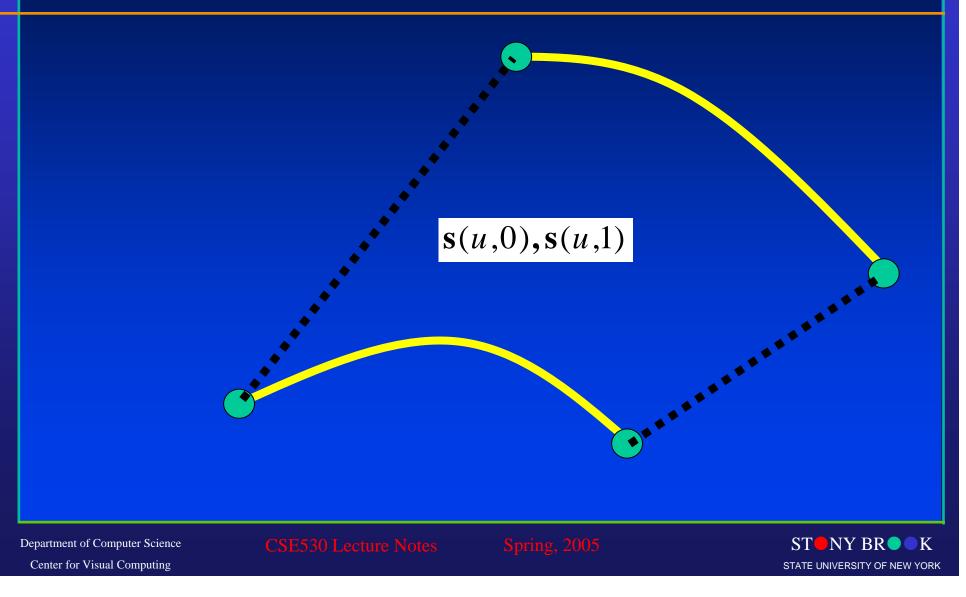


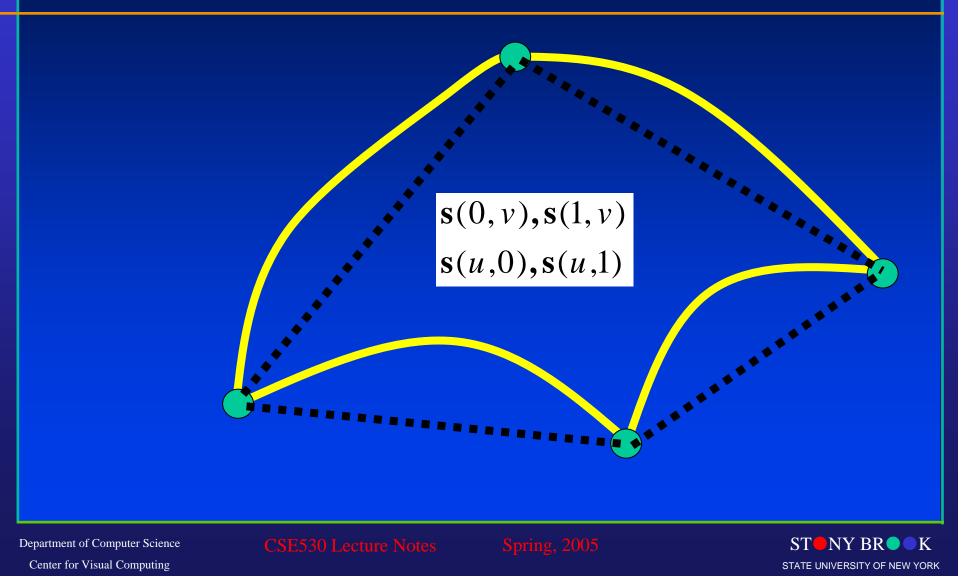
Curve Network











• Bilinearly blended Coons patch

$$(P)\mathbf{f} = (P_1 \oplus P_2)\mathbf{f} = (P_1 + P_2 - P_1P_2)\mathbf{f}$$

$$(P_1)\mathbf{f} = \mathbf{f}(0, v)L_0^1(u) + \mathbf{f}(1, v)L_1^1(u)$$

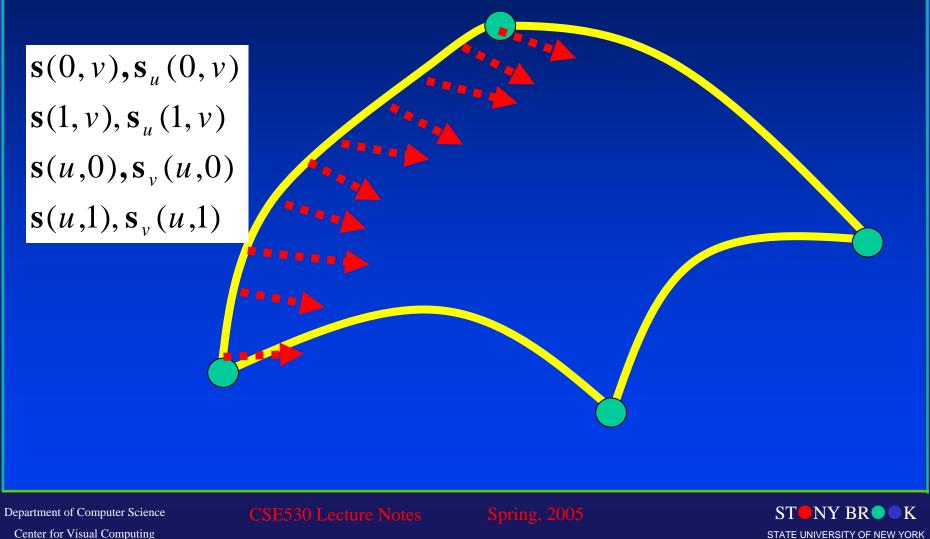
$$(P_2)\mathbf{f} = \mathbf{f}(u, 0)L_0^1(v) + \mathbf{f}(u, 1)L_1^1(v)$$

Bicubically blended Coons patch

 $(P_{1})\mathbf{f} = \mathbf{f}(0, v)H_{0}^{3}(u) + \mathbf{f}_{u}(0, v)H_{1}^{3}(u) + \mathbf{f}_{u}(1, v)H_{2}^{3}(u) + \mathbf{f}(1, v)H_{3}^{3}(u)$ $(P_{2})\mathbf{f} = \mathbf{f}(u, 0)H_{0}^{3}(v) + \mathbf{f}_{v}(u, 0)H_{1}^{3}(v) + \mathbf{f}_{v}(u, 1)H_{2}^{3}(v) + \mathbf{f}(u, 1)H_{3}^{3}(v)$

Department of Computer Science Center for Visual Computing Spring, 2005

ST NY BR K



Center for Visual Computing

Gordon Surfaces

- Generalization of Coons techniques
- A set of curves

$$f(u_i, v), i = 0,..., n$$

 $f(u, v_j), j = 0,..., m$

Boolean sum using Lagrange polynomials

$$(P_1)\mathbf{f} = \sum_{i=0}^{n} \mathbf{f}(u_i, v) L_i^n(u)$$

$$(P_2)\mathbf{f} = \sum_{j=0}^{m} \mathbf{f}(u, v_j) L_j^m(v)$$

$$(P)\mathbf{f} = (P_1 \oplus P_2)\mathbf{f} = (P_1 + P_2 - P_1P_2)\mathbf{f}$$

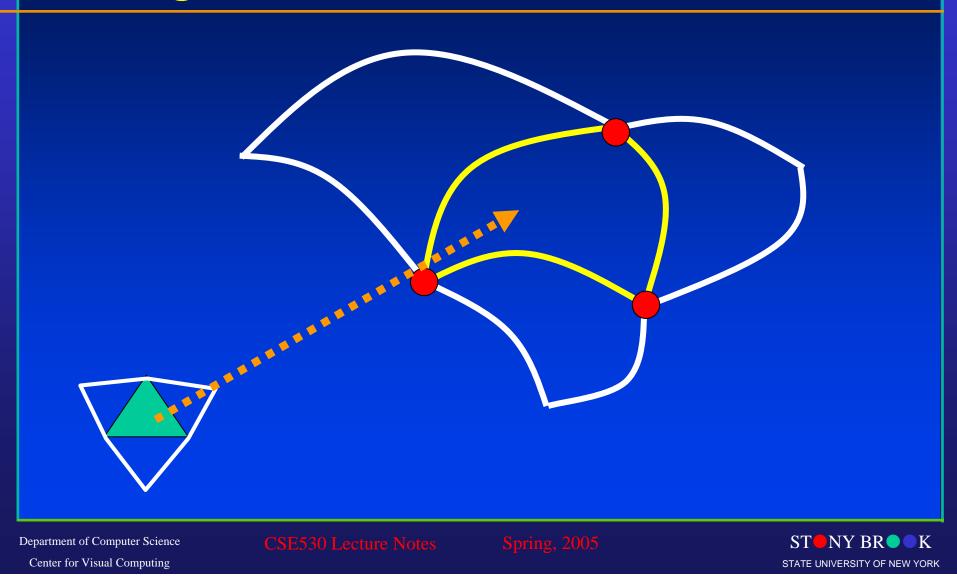
Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

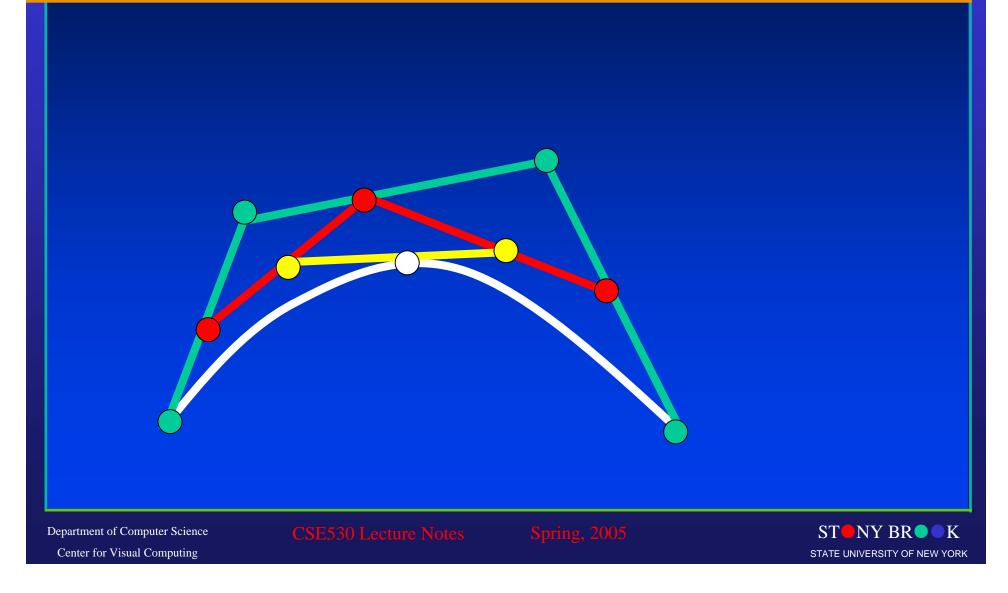
Transfinite Methods

- Bilinearly blended Coons patch
 - Interpolate four boundary curves
- Bicubically blended Coons patch
 - Interpolate curves and their derivatives
- Gordon surfaces
 - Interpolate a curve-network
- Triangular extension
 - Interpolate over triangles

Triangular Surfaces



Recursive Subdivision Algorithm



Curve Mathematics (Cubic)

Bezier curve

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(u)$$

Control points and basis functions

$$B_{0}^{3}(u) = (1 - u)^{3}$$

$$B_{1}^{3}(u) = 3u(1 - u)^{2}$$

$$B_{2}^{3}(u) = 3u^{2}(1 - u)$$

$$B_{3}^{3}(u) = u^{3}$$

Image and properties of basis functions

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

ST NY BR K

Recursive Evaluation

• Recursive linear interpolation

$$(1-u) \quad (u)$$

$$\mathbf{p}_{0}^{0} \quad \mathbf{p}_{1}^{0} \quad \mathbf{p}_{2}^{0} \quad \mathbf{p}_{3}^{0}$$

$$\mathbf{p}_{0}^{1} \quad \mathbf{p}_{1}^{1} \quad \mathbf{p}_{2}^{1}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{3} = \mathbf{c}(u)$$

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

 Convex hull: the curve is bounded by the convex hull defined by control points

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

 Convex hull: the curve is bounded by the convex hull defined by control points

Derivatives

- Tangent vectors can easily evaluated at the endpoints $\mathbf{c}'(0) = 3(\mathbf{p}_1 - \mathbf{p}_0); \mathbf{c}'(1) = (\mathbf{p}_3 - \mathbf{p}_2)$
- Second derivatives at end-points can also be easily computed:

$$\mathbf{c}^{(2)}(0) = 2 \times 3((\mathbf{p}_2 - \mathbf{p}_1) - (\mathbf{p}_1 - \mathbf{p}_0)) = 6(\mathbf{p}_2 - 2\mathbf{p}_1 + \mathbf{p}_0)$$
$$\mathbf{c}^{(2)}(1) = 2 \times 3((\mathbf{p}_3 - \mathbf{p}_2) - (\mathbf{p}_2 - \mathbf{p}_1)) = 6(\mathbf{p}_3 - 2\mathbf{p}_2 + \mathbf{p}_1)$$

Department of Computer Science Center for Visual Computing

Derivative Curve

• The derivative of a cubic Bezier curve is a quadratic Bezier curve

$$\mathbf{c}'(u) = -3(1-u)^2 \mathbf{p}_0 + 3((1-u)^2 - 2u(1-u))\mathbf{p}_1 + 3(2u(1-u) - u^2)\mathbf{p}_2 + 3u^2 \mathbf{p}_3 =$$

 $3(\mathbf{p}_1 - \mathbf{p}_0)(1 - u)^2 + 3(\mathbf{p}_2 - \mathbf{p}_1)2u(1 - u) + 3(\mathbf{p}_3 - \mathbf{p}_2)u^2$

Department of Computer Science Center for Visual Computing

More Properties (Cubic)

Two curve spans are obtained, and both of them are standard Bezier curves (through reparameterization)
 c (v), v ∈ [0, u]

$$\mathbf{c} (v), v \in [0, u]$$

$$\mathbf{c} (v), v \in [u, 1]$$

$$\mathbf{c}_{l} (u), u \in [0, 1]$$

$$\mathbf{c}_{r} (u), u \in [0, 1]$$

• The control points for the left and the right are

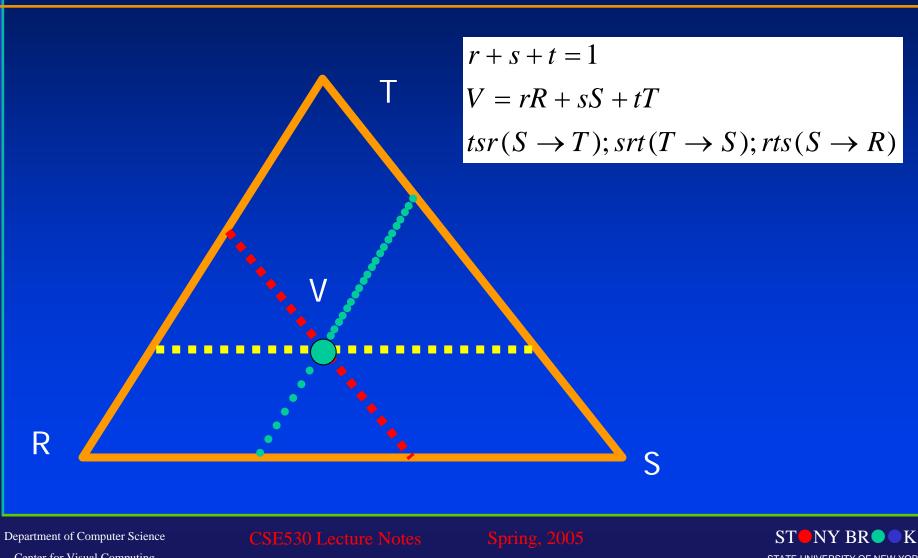
Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

STONY BROCK STATE UNIVERSITY OF NEW YORK

Barycentric Coordinates



Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Triangular Bezier Patch

• Triangular Bezier surface

$$\mathbf{s}(u, v) = \sum_{i, j, k \ge 0}^{i+j+k=n} \mathbf{p}_{i, j, k} B_{i, j, k}^{n}(r, s, t)$$

- Where r+s+t=1, and they are local barycentric coordinates
- Basis functions are Bernstein polynomials of degree n

$$B_{i,j,k}^n(r,s,t) = \frac{n!}{i!\,j!k!}r^is^jt^k$$

Department of Computer Science Center for Visual Computing Spring, 2005

Triangular Bezier Patch

• How many control points and basis functions:

• Partition of unity

$$\frac{1}{2}(n+1)(n+2)$$

$$\sum_{i, j, k \ge 0} B_{i, j, k}^{n}(r, s, t) = 1$$

Positivity

$$B_{i,j,k}^{n}(r,s,t) \ge 0; r,s,t \in [0,1]$$

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Recursive Evaluation

$$\mathbf{p}_{i,j,k}^{0} = \mathbf{p}_{i,j,k}$$

$$\mathbf{p}_{i,j,k}^{l} = r\mathbf{p}_{i+1,j,k}^{l-1} + s\mathbf{p}_{i,j+1,k}^{l-1} + t\mathbf{p}_{i,j,k+1}^{l-1}; i+j+k = n-l, i, j, k \ge 0$$

$$\mathbf{s}(u,v) = \mathbf{p}_{0,0,0}^{n}$$

Department of Computer Science Center for Visual Computing

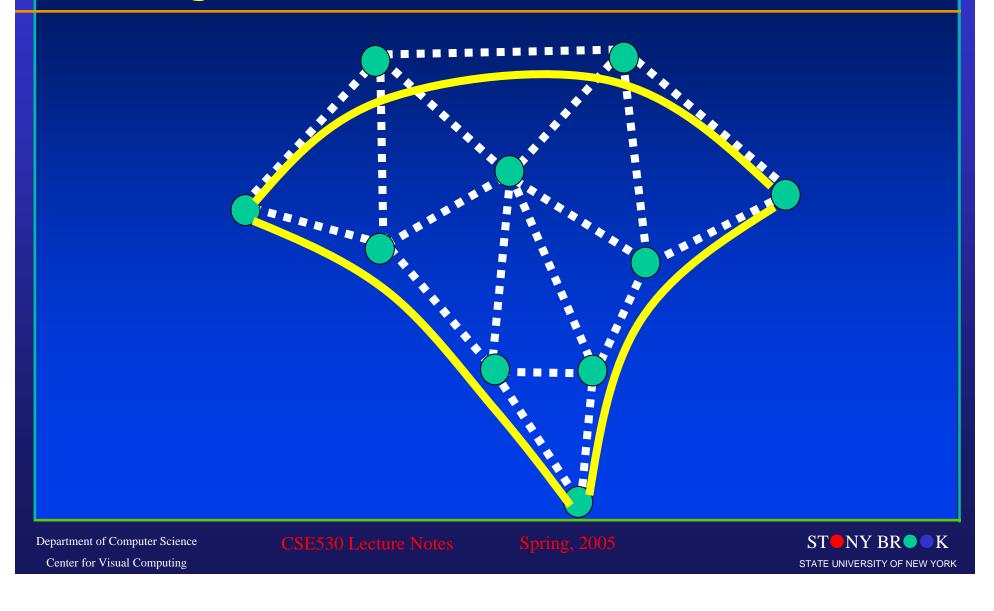
Properties

- Efficient algorithms
- Recursive evaluation
- Directional derivatives
- Degree elevation
- Subdivision
- Composite surfaces

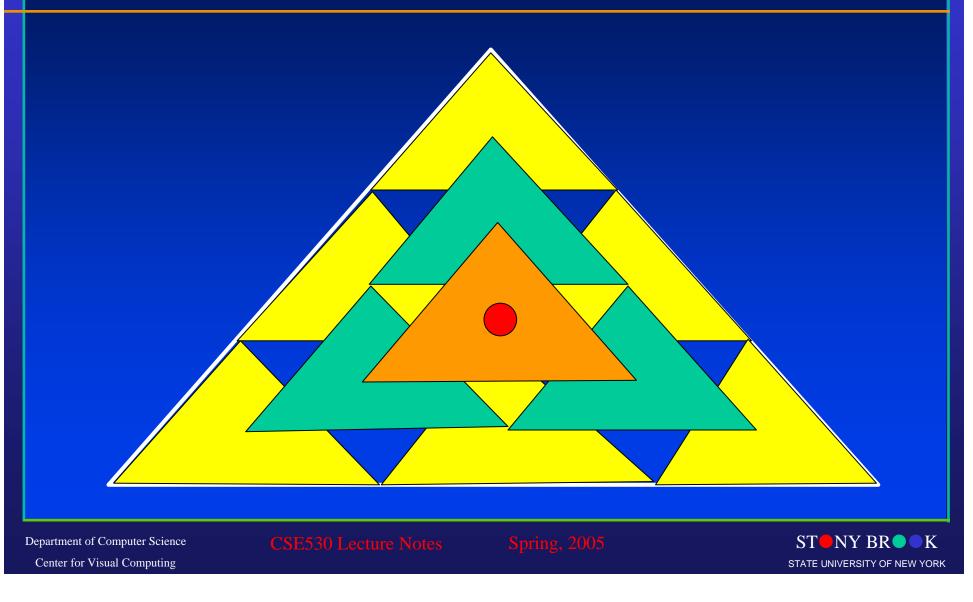
Research Issues

- Continuity across adjacent patches
- Integral computation
- Triangular splines over regular triangulation
- Transform triangular splines to a set of piecewise triangular Bezier patches
- Interpolation/approximation using triangular splines

Triangular Bezier Surface



Recursive Evaluation



p_{0,3,0}

Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

Basis Functions (Cubic)

SSS

3sst 3rss 3stt 6rst 3rrs ttt 3rtt 3rrt rrr

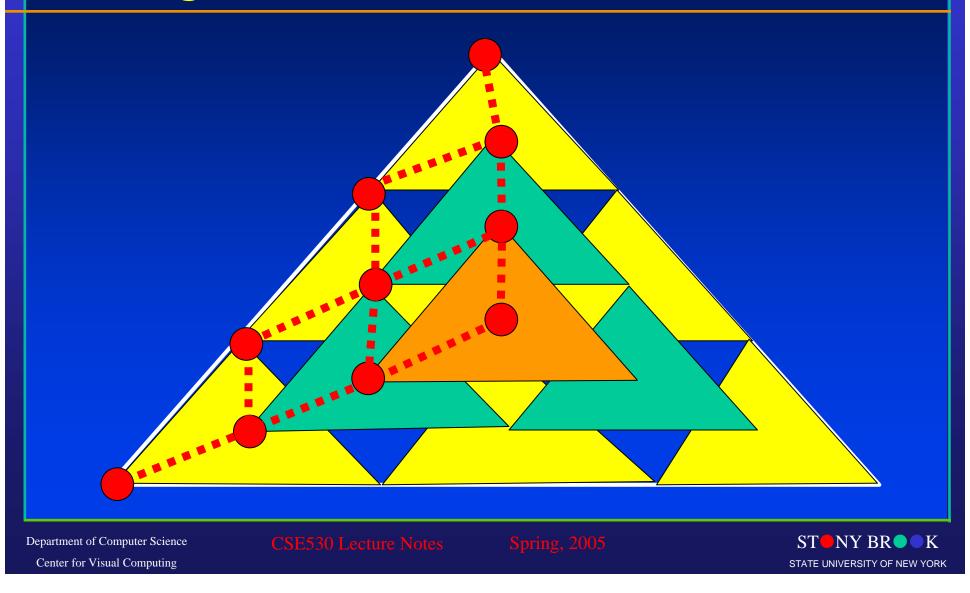
Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

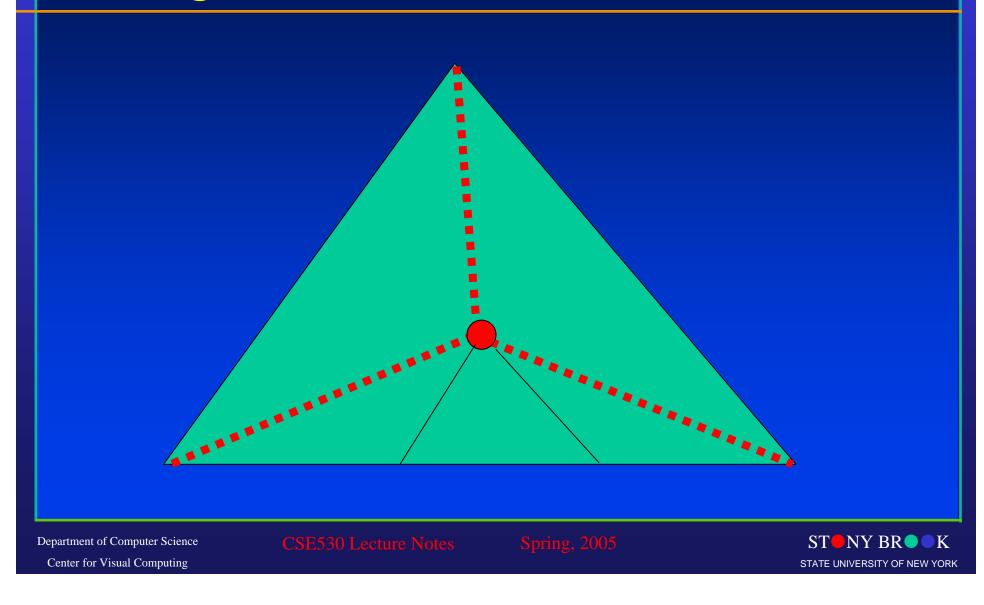
Spring, 2005

ST NY BR K

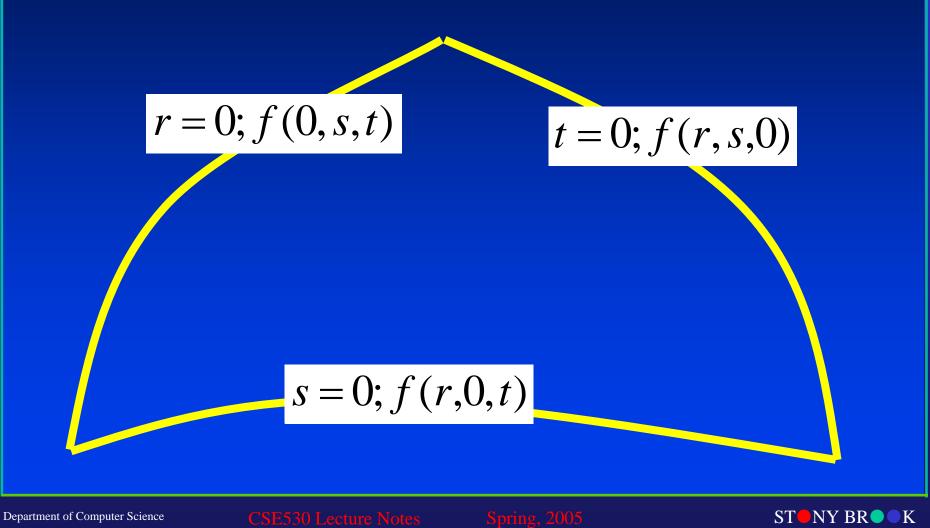
Triangular Patch Subdivision



Triangular Domain



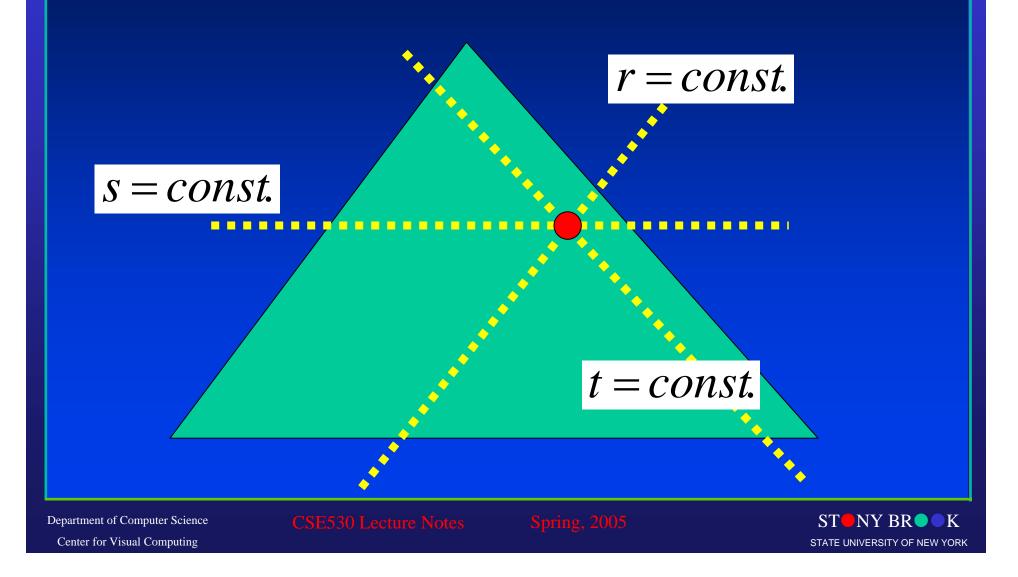
Triangular Coons-Gordon Surface



Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Triangular Coons-Gordon Surface



Triangular Interpolation

$$(P_{1})\mathbf{f} = \mathbf{f}(r,0,t)L_{0}^{1}(\alpha) + \mathbf{f}(r,s,0)L_{1}^{1}(\alpha)$$

$$\alpha = \frac{s}{s+t}$$

$$(P_{2})\mathbf{f} = \mathbf{f}(r,s,0)L_{0}^{1}(\beta) + \mathbf{f}(0,s,t)L_{1}^{1}(\beta)$$

$$\alpha = \frac{r}{r+t}$$

$$(P_{3})\mathbf{f} = \mathbf{f}(0,s,t)L_{0}^{1}(\gamma) + \mathbf{f}(r,0,t)L_{1}^{1}(\gamma)$$

$$\alpha = \frac{r}{r+s}$$

Department of Computer Science Center for Visual Computing

Triangular Interpolation

• The Boolean sum of any two operators results

the same! $(P_{12})\mathbf{f} = (P_1 \oplus P_2)\mathbf{f}$ $(P_{13})\mathbf{f} = (P_1 \oplus P_3)\mathbf{f}$ $(P_{23})\mathbf{f} = (P_2 \oplus P_3)\mathbf{f}$

 Use cubic blending functions for C1 interpolation!

 $(Q_{1})\mathbf{f} = \mathbf{f}(r,0,t)H_{0}^{3}(\alpha) + D_{\alpha}\mathbf{f}(r,0,t)H_{1}^{3}(\alpha) + D_{\alpha}\mathbf{f}(r,s,0)H_{2}^{3}(\alpha) + \mathbf{f}(r,s,0)H_{3}^{3}(\alpha)$ $(Q_{2})\mathbf{f} = \dots$ $(Q_{3})\mathbf{f} = \dots$

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Gregory's Method

Convex combination

$$(T_{1})\mathbf{f} = \mathbf{f}(r,0,t) + \alpha D_{\alpha}\mathbf{f}(r,0,t)$$

$$(T_{2})\mathbf{f} = \dots$$

$$(T_{3})\mathbf{f} = \dots$$

$$(T_{12})\mathbf{f} = (T_{1} \oplus T_{2})\mathbf{f}$$

$$(T_{13})\mathbf{f} = (T_{1} \oplus T_{3})\mathbf{f}$$

$$(T_{23})\mathbf{f} = (T_{2} \oplus T_{3})\mathbf{f}$$

$$(T)\mathbf{f} = (a_{1}T_{23} + a_{2}T_{13} + a_{3}T_{12})\mathbf{f}$$

$$a_{1} = \frac{s^{2}}{r^{2} + s^{2} + t^{2}}$$

$$a_{2} = \dots$$

$$a_{3} = \dots$$

Generalize to pentagonal patch!

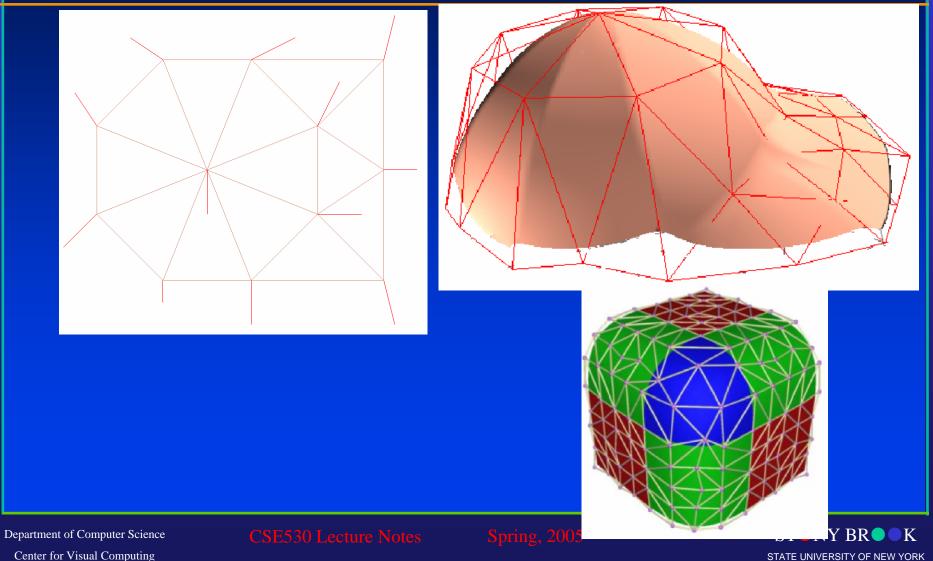
Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

ST NY BR K

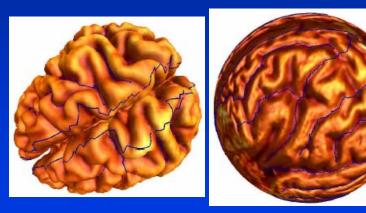
Triangular B-splines



Surface Properties

- Inherit from their curve generators
- More!
- Efficient algorithms
- Continuity across boundaries
- Interpolation and approximation tools

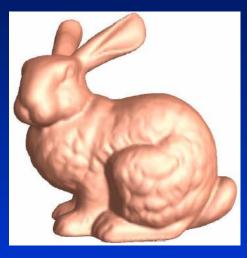
Spherical Parameterization

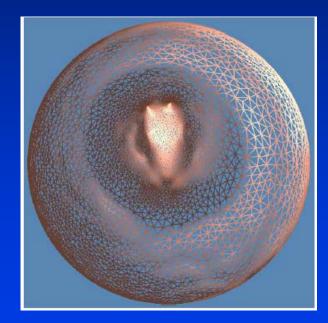


Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Spherical Parameterization





Department of Computer Science Center for Visual Computing

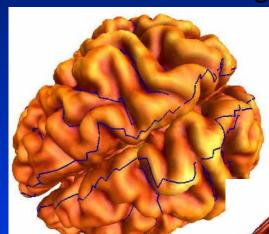
CSE530 Lecture Notes

Spring, 2005

Possible Applications

Smooth surface fitting

Shape classification Medical registration



set

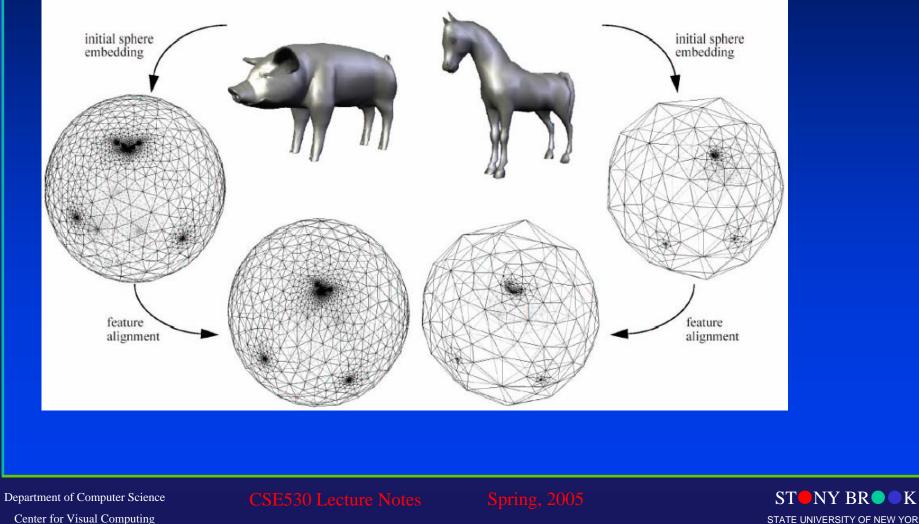
Solving PDEs on surfaces

Department or Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

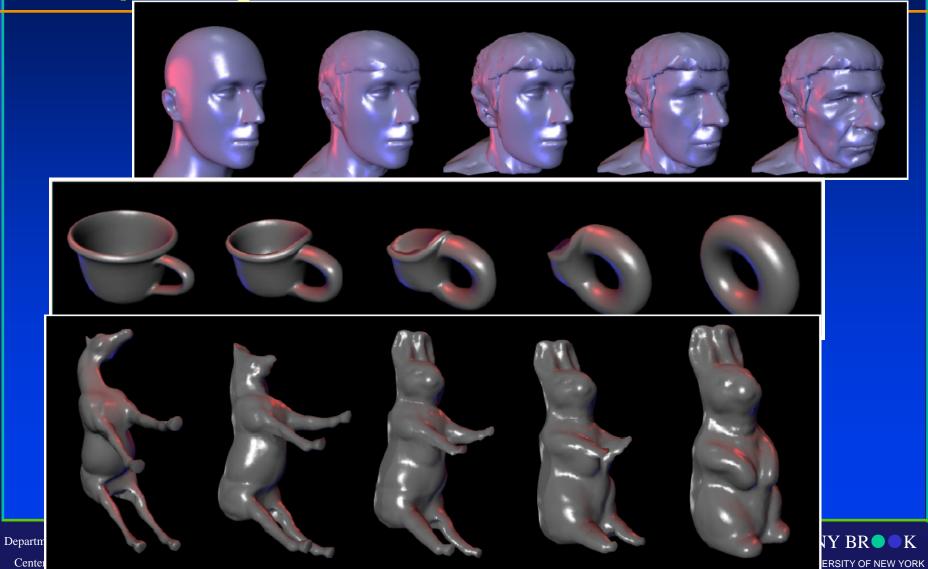
ST NY BR K

Shape Morphing



STATE UNIVERSITY OF NEW YORK

Morphing



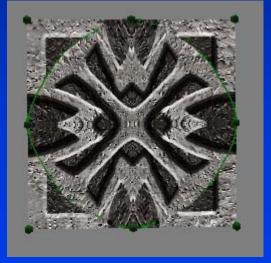
Center

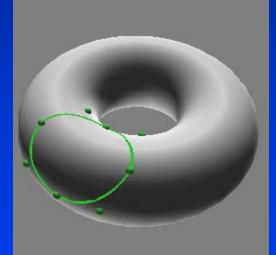
Multiresolution Mapping

• Multiresolution morphing

Department of Computer Science Center for Visual Computing

Feature Mapping



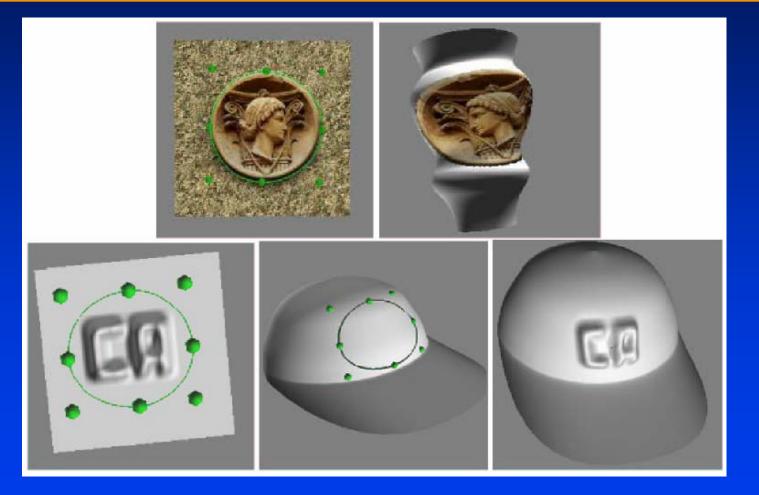


Department of Computer Science Center for Visual Computing

SE530 Lecture Notes

Spring, 2005

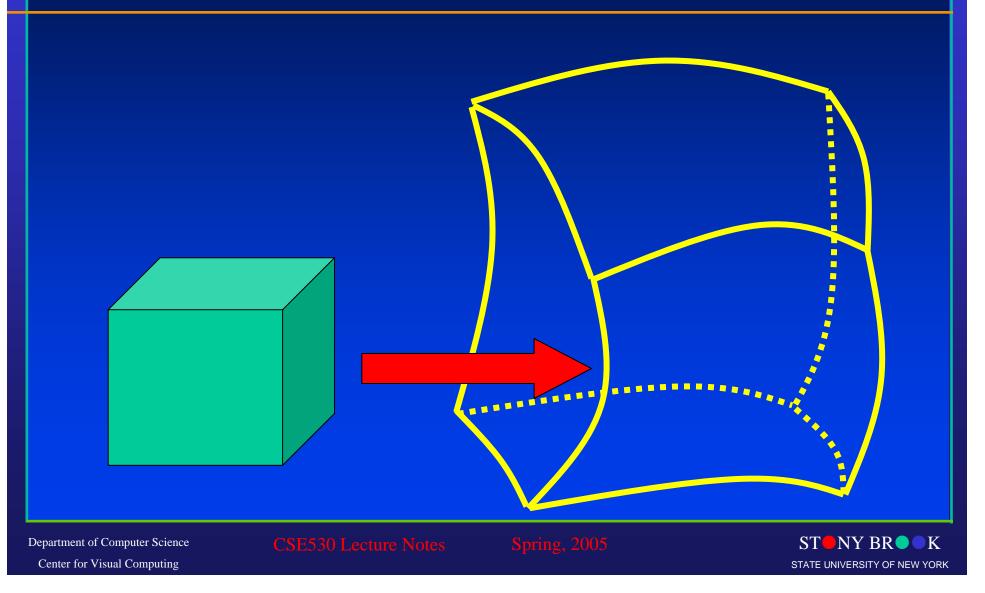
Texture Mapping



Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Solid



Parametric Solids

• Tricubic solid

$$\mathbf{p}(u, v, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{ijk} u^{i} v^{j} w^{k}$$
$$u, v, w \in [0, 1]$$

Bezier solid

$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i}(u) B_{j}(v) B_{k}(w)$$

• **B-spline solid**
$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)$$

• NURBS solid

$$\mathbf{p}(u,v,w) = \frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}{\sum_{i} \sum_{j} \sum_{k} \sum_{k} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K

Parametric Solids

- Tricubic Hermite solid
- In general

$$\mathbf{p}(u, v, w) = \begin{bmatrix} x(u, v, w) \\ y(u, v, w) \\ z(u, v, w) \end{bmatrix}$$

 $u, v, w \in [0,1]$

- Also known as "hyperpatch"
- Parametric solids represent both exterior and interior
- Examples
 - A rectangular sold, a trilinear solid
- Boundary elements
 - 8 corner points, 12 curved edges, and 6 curved faces

Spring, 2005

Curves, Surfaces, and Solids

Isoparametric curves for surfaces

$$\mathbf{s}(u, v), \mathbf{s}(u_i, v), \mathbf{s}(u, v_j)$$

 $u_i = const :, v_j = const .$

Isoparametric curves for solids

 $\mathbf{s}(u, v, w), \mathbf{s}(u_i, v_j, w), \mathbf{s}(u_i, v, w_k), \mathbf{s}(u, v_j, w_k)$

Isoparametric surfaces for solids

 $\mathbf{s}(u, v, w), \mathbf{s}(u_i, v, w), \mathbf{s}(u, v_j, w), \mathbf{s}(u, v, w_k)$

Department of Computer Science Center for Visual Computing Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Curves, Surfaces, and Solids

- Non-isoparametric curves for surfaces
- $\mathbf{c} (t) = \begin{bmatrix} u (t) \\ v (t) \end{bmatrix}$ • Non-isoparametric curves for solids

$$\mathbf{s} (u, v, w)$$

$$\mathbf{c} (t) = \begin{bmatrix} u (t) \\ v (t) \\ w (t) \end{bmatrix}$$

$$\mathbf{s} (u (t), v (t), w (t)$$

Non-isoparametric surfaces for solids

$$\mathbf{s}(u, v, w) = \mathbf{s}(u(a, b), v(a, b), w(a, b))$$

Department of Computer Science Center for Visual Computing

 $\mathbf{s}(u, v)$

s (u (t), v (t))

CSE530-11

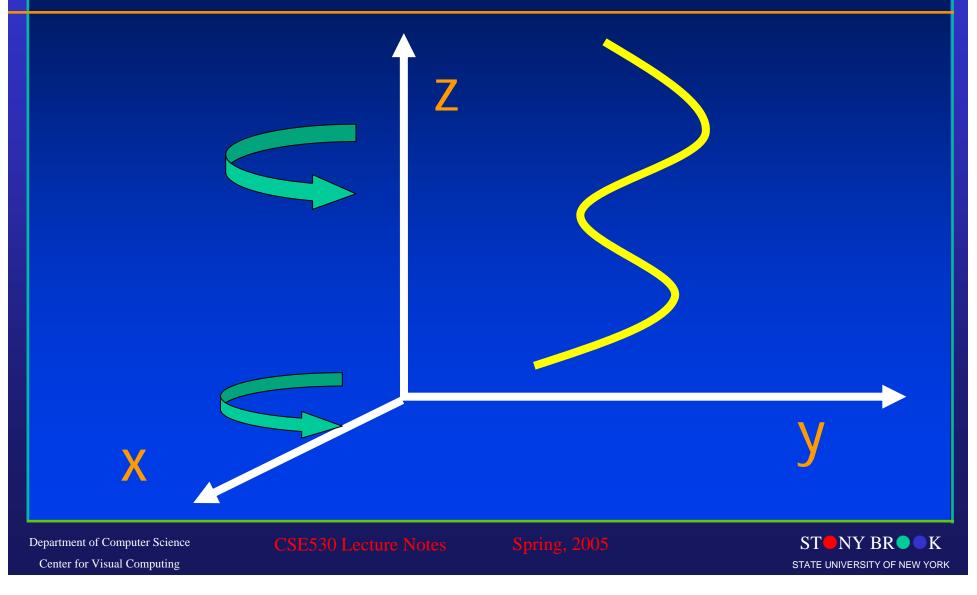
Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Surfaces of Revolution



Surfaces of Revolution

- Geometric construction
 - Specify a planar curve profile on y-z plane
 - Rotate this profile with respect to z-axis
- Procedure-based model
- What kinds of shape can we model?
- Review: three dimensional rotation w.r.t. z-axis

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Surfaces of Revolution

• Mathematics: surfaces of revolution

$$\mathbf{c}(u) = \begin{bmatrix} 0\\ y(u)\\ z(u) \end{bmatrix}$$
$$\mathbf{s}(u,v) = \begin{bmatrix} -y(u)\sin(v)\\ y(u)\cos(v)\\ z(u) \end{bmatrix}$$

Department of Computer Science

Center for Visual Computing

Frenet Frames

- Motivation: attach a smoothly-varying coordinate system to any location of a curve
- Three independent direction vectors for a 3D coordinate system: (1) tangent; (2) bi-normal; (3) normal

 $\mathbf{t}(u) = normalize \quad (\mathbf{c}_{u}(u))$ $\mathbf{b}(u) = normalize \quad (\mathbf{c}_{u}(u) \times \mathbf{c}_{uu}(u))$ $\mathbf{n}(u) = normalize \quad (\mathbf{b}(u) \times \mathbf{t}(u))$

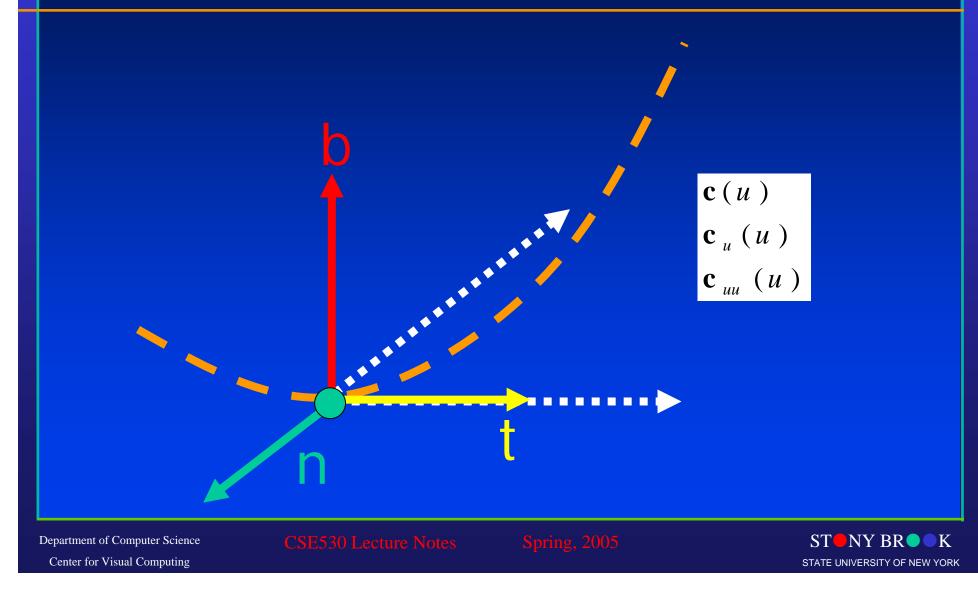
• Frenet coordinate system (frame) (t,b,n) varies smoothly, as we move along the curve c(u)

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

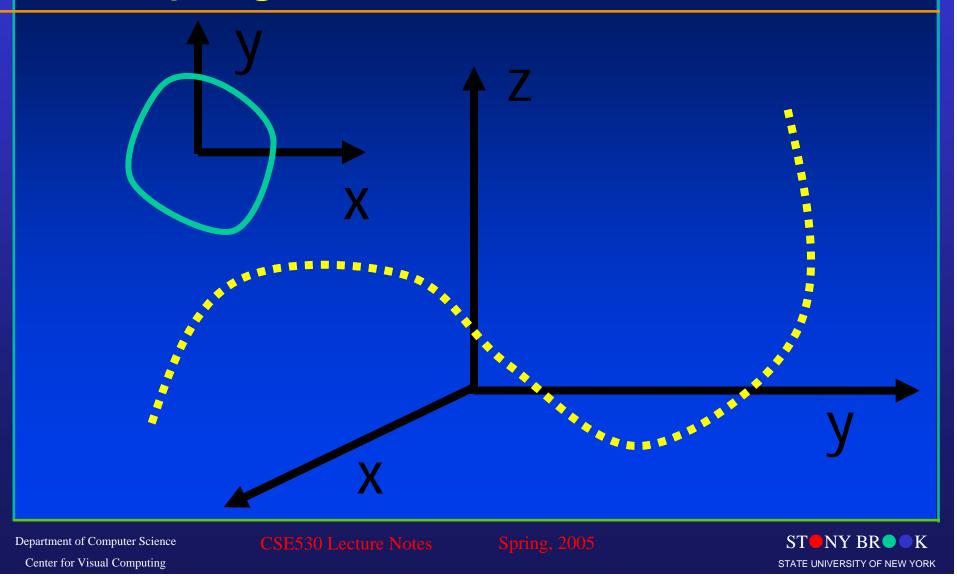
Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Frenet Coordinate System



Sweeping Surface



General Sweeping Surfaces

- Surface of revolution is a special case of a sweeping surface
- Idea: a profile curve and a trajectory curve

c $_{1}$ (*u*) **c** $_{2}$ (*v*)

- Move a profile curve along a trajectory curve to generate a sweeping surface
- Question: how to orient the profile curve as it moves along the trajectory curve?
- Answer: various options

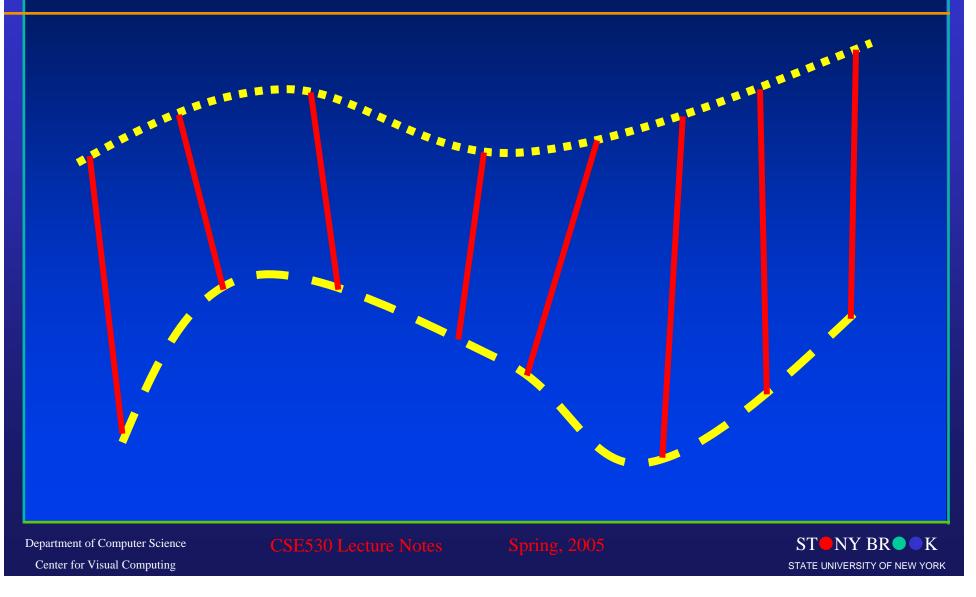
General Sweeping Surfaces

- Fixed orientation, simple translation of the coordinate system of the profile curve along the trajectory curve
- Rotation: if the trajectory curve is a circle
- Move using the "Frenet Frame" of the trajectory curve, smoothly varying orientation
- Example: surface of revolution
- Differential geometry fundamentals: Frenet frame

Frenet Swept Surfaces

- Orient the profile Curve (C1(u)) using the Frenet frame of C2(v)
 - Put C1(u) on the normal plane (n,b)
 - Place the original of C1(u) on C2(v)
 - Align the x-axis of C1(u) with -n
 - Align the y-axis of C1(u) with b
- Example: if C2(v) is a circle
- Variation (generalization)
- Scale C1(u) as it moves
- Morph C1(u) into C3(u) as it moves
- Use your own imagination!

Ruled Surfaces



Ruled Surfaces

- Move one straight line along a curve
- Example: plane, cone, cylinder
- Cylindrical surface
- Surface equation

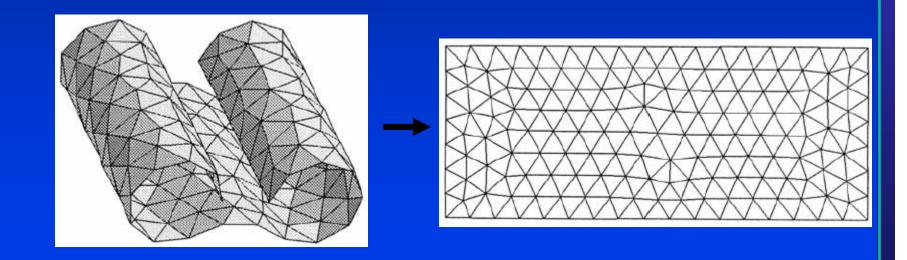
 $\mathbf{s}(u, v) = (1 - v)\mathbf{a}(u) + v\mathbf{b}(u)$ $\mathbf{s}(u, v) = (1 - v)\mathbf{s}(u, 0) + v\mathbf{s}(u, 1)$ $\mathbf{s}(u, v) = \mathbf{p}(u) + v\mathbf{q}(u)$

- Isoparametric lines
- More examples

Developable Surfaces

- Deform a surface to planar shape without length/area changes
- Unroll a surface to a plane without stretching/distorting
- Example: cone, cylinder
- Developable surfaces vs. Ruled surfaces
- More examples???

Developable Surface



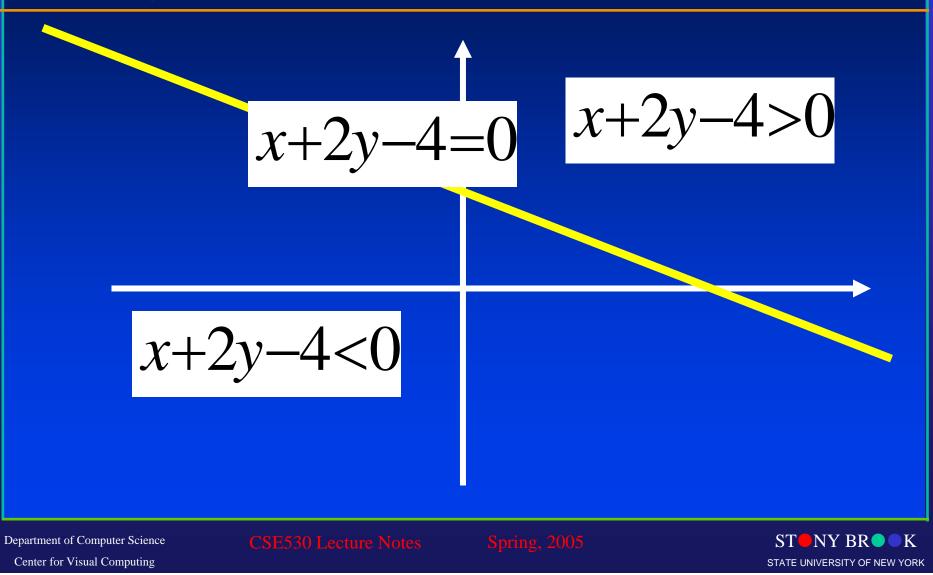
Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Summary

- Parametric curves and surfaces
- Polynomials and rational polynomials
- Free-form curves and surfaces
- Other commonly-used geometric primitives (e.g., sphere, ellipsoid, torus, superquadrics, blobby, etc.)
- Motivation:
 - Fewer degrees of freedom
 - More geometric coverage

Straight Line



Straight Line

• Mathematics

$$ax + by + c = 0$$

+ $\alpha (ax + by + c) = 0$
- $\alpha (ax + y + c) = 0$

• Example

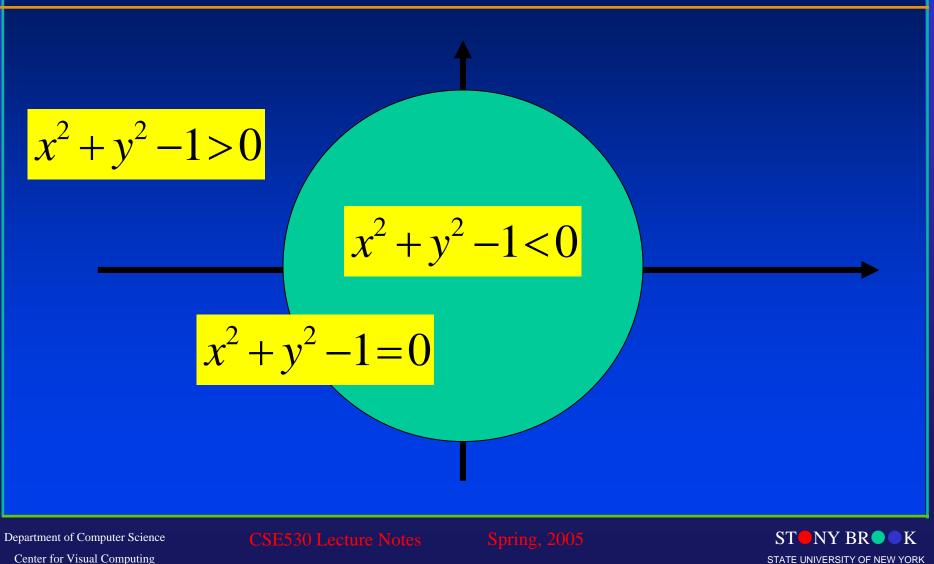
$$x + 2y - 4 = 0$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

Circle



Center for Visual Computing

Conic Sections

• Mathematics

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

- Examples
 - Ellipse
 - Hyperbola
 - Parabola
 - Empty set
 - Point
 - Pair of lines
 - Parallel lines
 - Repeated lines

$$2 x^{2} + 3 y^{2} - 5 = 0$$

$$2 x^{2} - 3 y^{2} - 5 = 0$$

$$2 x^{2} + 3 y = 0$$

$$2 x^{2} + 3 y^{2} + 1 = 0$$

$$2 x^{2} + 3 y^{2} = 0$$

$$2 x^{2} + 3 y^{2} = 0$$

$$2 x^{2} - 3 y^{2} = 0$$

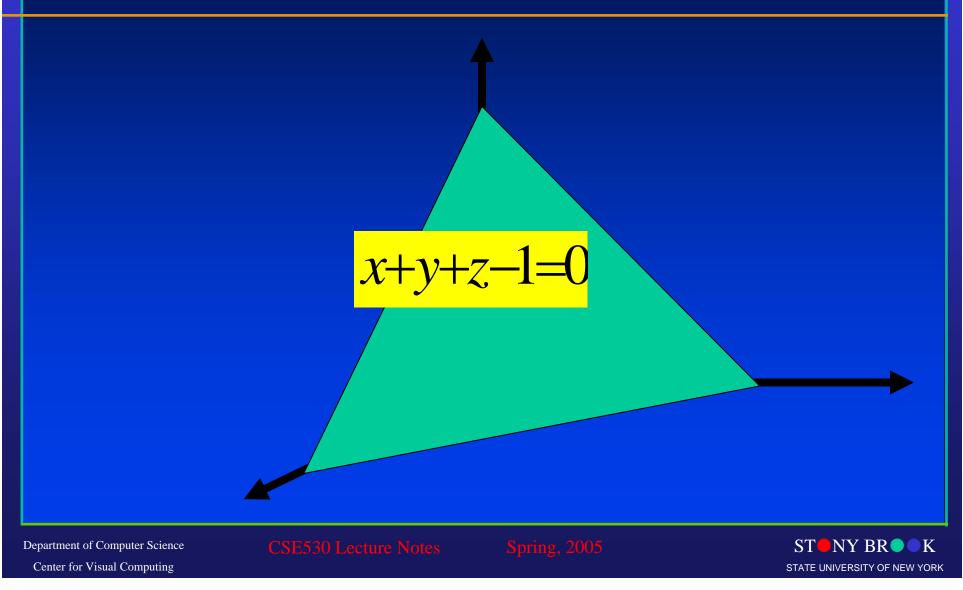
$$2 x^{2} - 7 = 0$$

$$2 x^{2} = 0$$

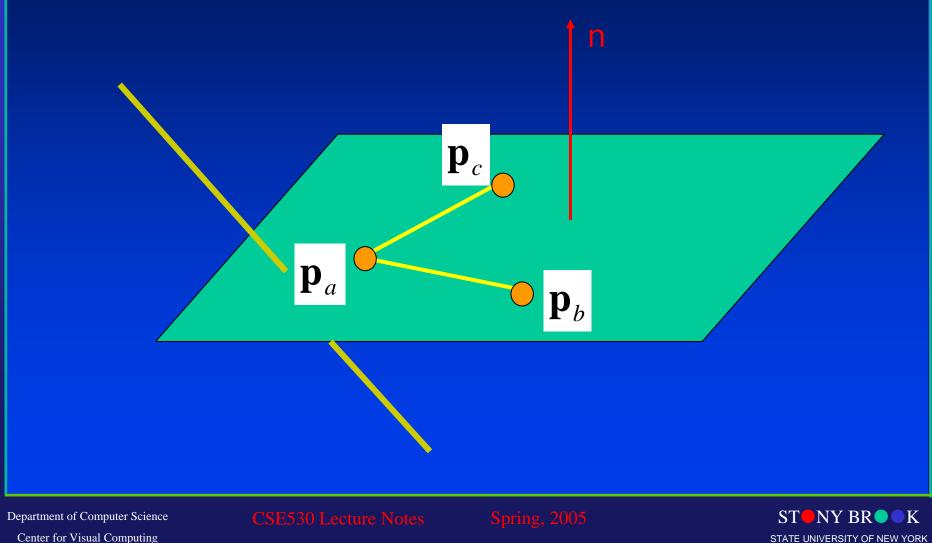
Department of Computer Science Center for Visual Computing

Conics

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves



Plane and Intersection



Center for Visual Computing

- **Example** x + y + z 1 = 0
- General plane equation ax + by + cz + y = 0
- Normal of the plane

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

• Arbitrary point on the plane

$$\mathbf{p}_a = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

• Plane equation derivation

$$(x - a_x)a + (y - a_y)b + (z - a_z)c = 0$$

ax + by + cz - (a_x a + a_y b + a_z c) = 0

• Parametric representation (given three points on the plane and they are non-collinear!)

$$\mathbf{p}(\boldsymbol{\mu},\boldsymbol{\nu}) = \mathbf{p}_a + (\mathbf{p}_b - \mathbf{p}_a)\boldsymbol{\mu} + (\mathbf{p}_c - \mathbf{p}_a)\boldsymbol{\nu}$$

Department of Computer Science Center for Visual Computing STONY BROCK STATE UNIVERSITY OF NEW YORK

• Explicit expression (if c is non-zero)

$$z = -\frac{1}{c}(ax + by + d)$$

Line-Plane intersection

$$\mathbf{l}(u) = \mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u$$

(\mbox{n})(\mbox{p}_0 + (\mbox{p}_1 - \mbox{p}_0)u) + d = 0
$$u = -\frac{\mathbf{np}_0}{\mathbf{np}_1 - \mathbf{np}_0} = -\frac{plane\ (\mathbf{p}_0)}{plane\ (\mathbf{p}_1) - plane\ (\mathbf{p}_0)}$$

Department of Computer Science Center for Visual Computing

Circle

- Implicit equation $x^2 + y^2 1 = 0$
- Parametric function

$$\mathbf{c}(\theta) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
$$0 \le \theta \le 2\pi$$

 Parametric representation using rational polynomials (the first quadrant)

$$x(u) = \frac{1 - u^{2}}{1 + u^{2}}$$
$$y(u) = \frac{2u}{1 + u^{2}}$$
$$u \in [0, 1]$$

• Parametric representation is not unique!

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

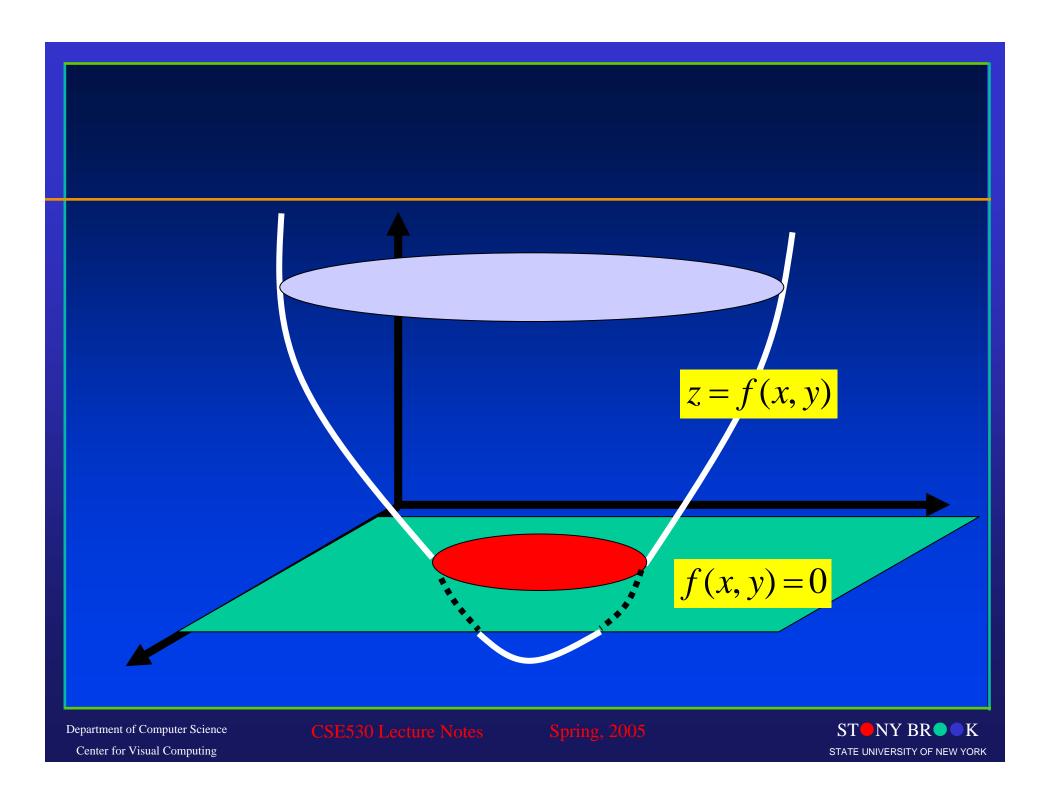
CSE530-13

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK



Implicit Equations for Curves

- Describe an implicit relationship
- Planar curve (point set) $\{(x, y) | f(x, y) = 0\}$
- The implicit function is not unique

 $\{(x, y) | + of(x, y) = 0\}$ $\{(x, y) | -of(x, y) = 0\}$

Comparison with parametric representation

$$\mathbf{p}(u) = \begin{bmatrix} x(u) \\ y(u) \end{bmatrix}$$

Department of Computer Science Center for Visual Computing

Implicit Equations for Curves

• Implicit function is a level-set

$$\begin{cases} z = f(x, y) \\ z = 0 \end{cases}$$

Examples (straight line and conic sections)

ax + by + c = 0ax² + 2bxy + cy² + dx + ey + f = 0

Other examples

Parabola, two parallel lines, ellipse, hyperbola, two intersection lines

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Implicit Functions for Curves

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Implicit Equations for Surfaces

- Surface mathematics $\{(x, y, z) | f(x, y, z) = 0\}$
- Again, the implicit function for surfaces is not unique $\{(x, y, z) | + \alpha f(x, y, z) = 0\}$

$$\{(x, y, z) | - of(x, y, z) = 0\}$$

Comparison with parametric representation

 $\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix}$

Department of Computer Science Center for Visual Computing Spring, 2005

Implicit Equations for Surfaces

• Surface defined by implicit function is a level-set

$$\begin{cases} w = f(x, y, z) \\ w = 0 \end{cases}$$

- Examples
 - Plane, quadric surfaces, tori, superquadrics, blobby objects
- Parametric representation of quadric surfaces
- Generalization to higher-degree surfaces

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Quadric Surfaces

• Implicit functions

- Examples
 - Sphere
 - Cylinder
 - Cone
 - Paraboloid
 - Ellipsoid
 - Hyperboloid
- More
 - Two parallel planes, two intersecting planes, single plane, line, point

$$x^{2} + y^{2} + z^{2} - 1 = 0$$

$$x^{2} + y^{2} - 1 = 0$$

$$x^{2} + y^{2} - z^{2} = 0$$

$$x^{2} + y^{2} + z = 0$$

$$2x^{2} + 3y^{2} + 4z^{2} - 5 = 0$$

$$x^{2} + y^{2} - z^{2} + 4 = 0$$

 $ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + jz + k = 0$

Quadrics: Parametric Rep.

• Sphere

- $x^{2} + y^{2} + z^{2} r^{2} = 0$ $x = r \cos(\alpha) \cos(\beta)$ $y = r \cos(\alpha) \sin(\beta)$ $z = r \sin(\alpha)$ $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$
- Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$

$$x = a \cos(-\alpha) \cos(-\beta)$$

$$y = b \cos(-\alpha) \sin(-\beta)$$

$$z = c \sin(-\alpha)$$

$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$$

Geometric meaning of these parameters

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

Generalization

• Higher-degree polynomials

$$\sum_{i} \sum_{j} \sum_{k} a_{ijk} x^{i} y^{j} z^{k} = 0$$

Non polynomials

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Superquadrics

- Geometry (generalization of quadrics)
- Superellipse
- Superellipsoid

$$\left(\frac{x}{a^{1}}\right)^{\frac{2}{s}} + \left(\frac{y}{a^{2}}\right)^{\frac{2}{s}} - 1 = 0$$

$$\left(\frac{x}{a_1}\right)^{\frac{2}{s_2}} + \left(\frac{y}{a_2}\right)^{\frac{2}{s_2}}\right)^{\frac{s_2}{s_1}} + \left(\frac{z}{a_3}\right) - 1 = 0$$

Parametric represe

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a_1 \cos^{-s_1}(\alpha) \sin^{-s_2}(\beta) \\ a_2 \cos^{-s_1}(\alpha) \sin^{-s_2}(\beta) \\ a_3 \sin^{-s_2}(\alpha) \end{bmatrix}$$

$$\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}]; \beta \in [-\pi, \pi]$$

• What is the meaning of these control parameters?

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

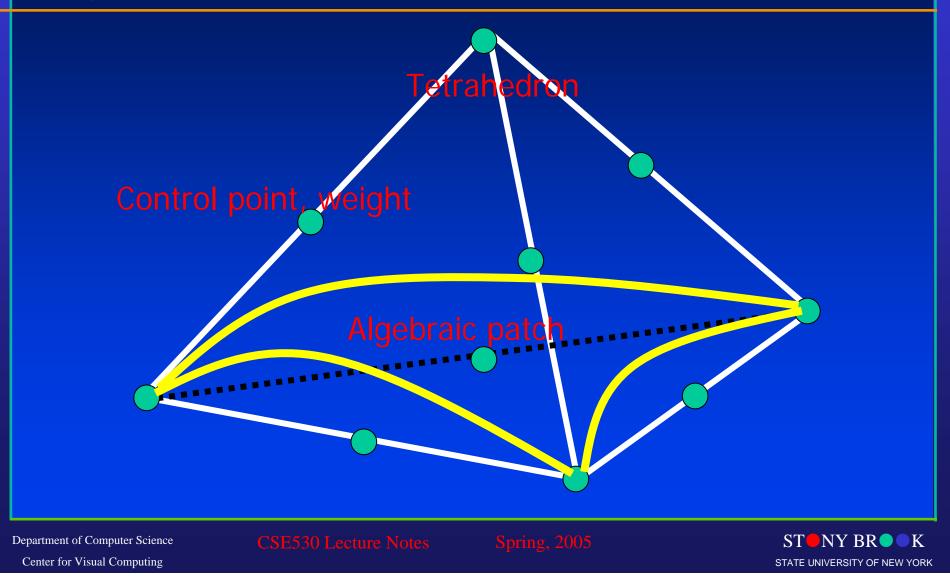
Algebraic Function

- Parametric representation is popular, but...
- Formulation

$$\sum_{i} \sum_{j} \sum_{k} a_{ijk} x^{i} y^{j} z^{k} = 0$$

- Properties...
 - Powerful, but lack of modeling tools

Algebraic Patch



Algebraic Patch

• A tetrahedron with non-planar vertices

$$\mathbf{V}_{n\ 000}$$
 , $\mathbf{V}_{0\ n\ 00}$, $\mathbf{V}_{00\ n\ 0}$, $\mathbf{V}_{000\ n\ 0}$, $\mathbf{V}_{000\ n\ 0}$

Trivariate barycentric coordinate (r,s,t,u) for p

$$\mathbf{p} = r \mathbf{v}_{n \, 000} + s \mathbf{v}_{0 \, n \, 00} + t \mathbf{v}_{00 \, n \, 0} + u \mathbf{v}_{000 \, n}$$
$$r + s + t + u = 1$$

A regular lattice of control points and weights

$$\mathbf{p}_{ijkl} = \frac{i\mathbf{v}_{n\,000} + j\mathbf{v}_{0\,n\,00} + k\mathbf{v}_{00\,n\,0} + l\mathbf{v}_{000\,n}}{n}$$

i, j, k, l >= 0; i + j + k + l = n

Department of Computer Science Center for Visual Computing SE530 Lecture Notes

Spring, 2005

STONY BROCK STATE UNIVERSITY OF NEW YORK

Algebraic Patch

- There are (n+1)(n+2)(n+3)/6 control points. A weight w(I,j,k,l) is also assigned to each control point
- Algebraic patch formulation
- Properties

$$\sum_{i} \sum_{j} \sum_{k} \sum_{l=n-i-j-k} w_{ijkl} \frac{n!}{i! j! k! l!} r^{i} s^{j} t^{k} u^{l} = 0$$

 Meaningful control, local control, boundary interpolation, gradient control, self-intersection avoidance, continuity condition across the boundaries, subdivision

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

Spatial Curves

• Intersection of two surfaces

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \end{cases}$$

Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

Algebraic Solid

• Half space $\{(x, y, z) | f(x, y, z) \le 0\}; or$ $\{(x, y, z) | f(x, y, z) \ge 0\}$

Useful for complex objects (refer to notes on solid modeling)

$$\mathbf{f}(x, y, z) = \begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \\ \Lambda \end{bmatrix} = \mathbf{0}$$

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Volume Datasets



Department of Computer Science Center for Visual Computing

CSE530 Lecture Notes

Spring, 2005

ST NY BR K STATE UNIVERSITY OF NEW YORK

Isosurface Rendering

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Direct Volume Rendering

STATE UNIVERSITY OF NEW YORK

Center for Visual Computing

Implicit Functions

- Long history: classical algebraic geometry
- Implicit and parametric forms
 - Advantages
 - Disadvantages
- Curves, surfaces, solids in higher-dimension
- Intersection computation
- Point classification
- Larger than parameter-based modeling
- Unbounded geometry
- Object traversal

SE530 Lecture Notes

Spring, 2005

Implicit Functions

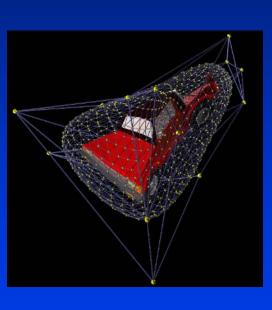
- Efficient algorithms, toolkits,software
- Computer-based shape modeling and design
- Geometric degeneracy and anomaly
- Algebraic and geometric operations are often closed
- Mathematics: algebraic geometry
- Symbolic computation
- Deformation and transformation
- Shape editing, rendering, and control

Implicit Functions

- Conversion between parametric and implicit forms
- Implicitization vs. parameterization
- Strategy: integration of both techniques
- Approximation using parametric models

• Free-Form Deformation Example

Original Model



Deformed Mesh

Result

Department of Computer Science Center for Visual Computing

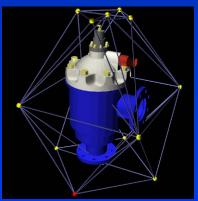
Solid Mesh

CSE530 Lecture Notes

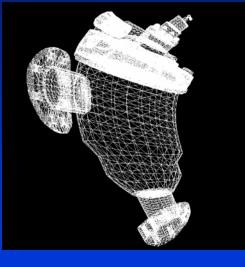
Spring, 2005

• Free-Form Deformation Example (Complex >> 49000

Original Model



Solid Mesh

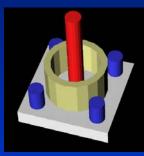


Deformed (Results in both surface rendered and wireframe)

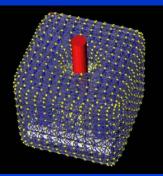
Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

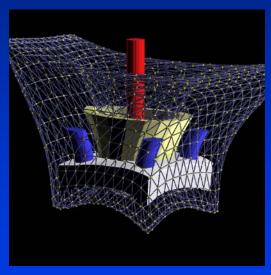
• Free-Form Deformation Example (Non-trivial topology)



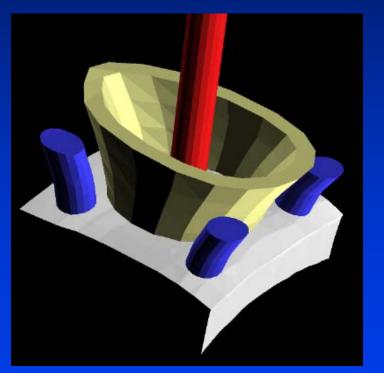
Original Model



Solid Mesh with a hole



Deformed Mesh

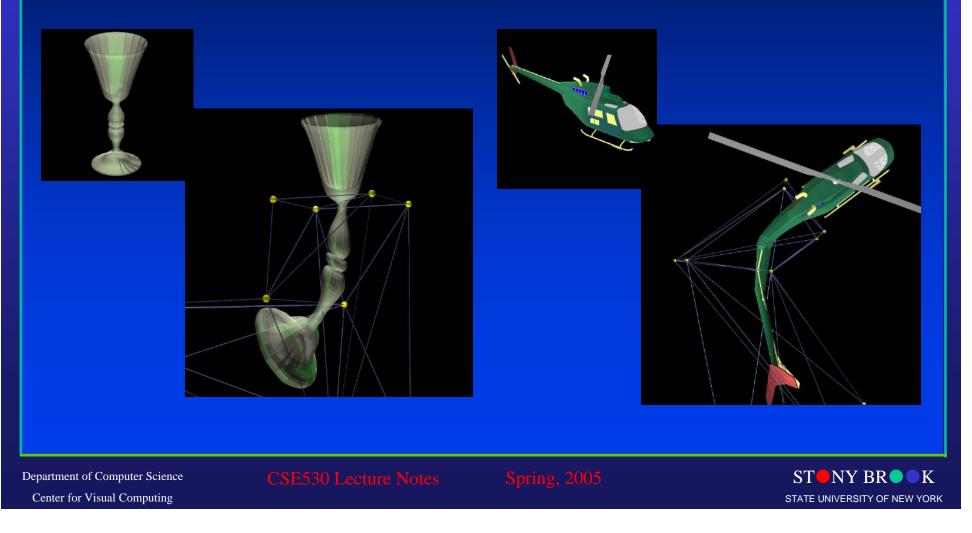


Result (no change in central cylinder)

Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

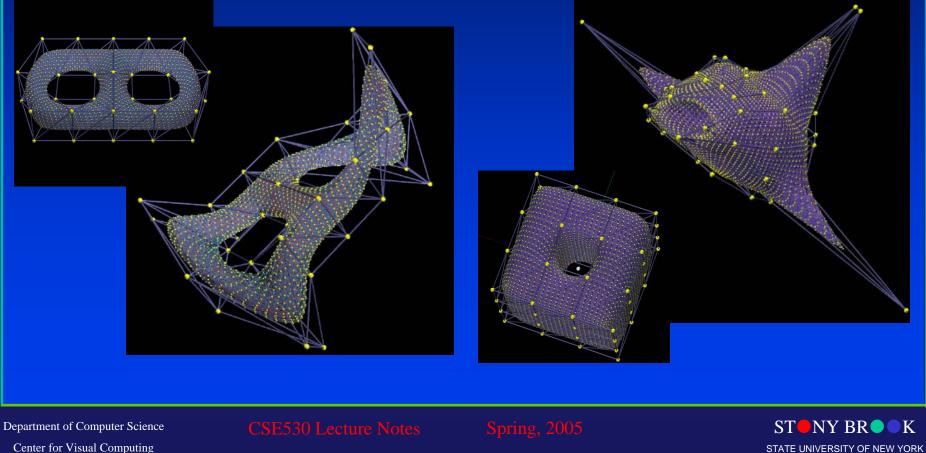
Spring, 2005

• Free-Form Deformation Example (Localized)



Shape Modeling

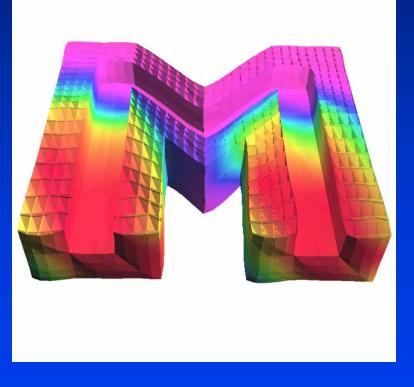
Direct Modeling / Manipulation •



Center for Visual Computing

Material Modeling

• Material Representation (Non-homogeneous)



Department of Computer Science Center for Visual Computing CSE530 Lecture Notes

Spring, 2005

