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Introduction
• Geometric modeling and 

visual computing
– Computer graphics

• Visualization, animation, virtual 
reality

– CAD/CAM
• Engineering, manufacturing

– Computer vision
– Physical simulation
– Natural phenomena

• Geometric modeling and 
visual computing
– Computer graphics
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reality
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– Computer vision
– Physical simulation
– Natural phenomena
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3D Shape Representation
• Points (vertices), a set of points
• Lines, polylines, curve
• Triangles, polygons
• Triangular meshes, polygonal meshes
• Analytic (commonly-used) shape
• Quadric surfaces, sphere, ellipsoid, torus
• Superquadric surfaces, superellipse, superellipsoid
• Blobby models

• Points (vertices), a set of points
• Lines, polylines, curve
• Triangles, polygons
• Triangular meshes, polygonal meshes
• Analytic (commonly-used) shape
• Quadric surfaces, sphere, ellipsoid, torus
• Superquadric surfaces, superellipse, superellipsoid
• Blobby models
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Basic Shapes
point line

plane

triangle

polygon

curve

surface

Curved

solid
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Fundamental Shapes
• Vertex (vertices)
• Line segments
• Triangle, triangular meshes
• Quadrilateral
• Polygon
• Curved object
• Tetrahedron, pyramid, hexahedron
• Many more…

• Vertex (vertices)
• Line segments
• Triangle, triangular meshes
• Quadrilateral
• Polygon
• Curved object
• Tetrahedron, pyramid, hexahedron
• Many more…
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Polygonal Meshes
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Shaded Model
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Mechanical Part
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NURBS model

PDE models

Subdivision model

Implicit model
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Building Structure
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Mathematical Tools
• Parametric curves and surfaces
• Spline-based objects (piecewise polynomials)
• Explicit, implicit, and parametric representations
• The integrated way to look at the shape: 

– Object can be considered as a set of faces, each face can be further 
decomposed into a set of edges, each edge can be decomposed into
vertices

• Subdivision models
• Other procedure-based models
• Sweeping
• Surfaces of revolution
• Volumetric models

• Parametric curves and surfaces
• Spline-based objects (piecewise polynomials)
• Explicit, implicit, and parametric representations
• The integrated way to look at the shape: 

– Object can be considered as a set of faces, each face can be further 
decomposed into a set of edges, each edge can be decomposed into
vertices

• Subdivision models
• Other procedure-based models
• Sweeping
• Surfaces of revolution
• Volumetric models
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Line Equation
• Parametric representation

• Parametric representation is not unique
• In general

• Re-parameterization (variable transformation)

• Parametric representation

• Parametric representation is not unique
• In general

• Re-parameterization (variable transformation)
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Basic Concepts
• Linear interpolation:

• Local coordinates: 
• Reparameterization: 
• Affine transformation: 

• Polynomials
• Continuity

• Linear interpolation:

• Local coordinates: 
• Reparameterization: 
• Affine transformation: 

• Polynomials
• Continuity
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Linear and Bilinear Interpolation
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Fundamental Features
• Geometry

– Position, direction, length, area, normal, tangent, etc.
• Interaction

– Size, continuity, collision, intersection
• Topology
• Differential properties

– Curvature, arc-length
• Physical attributes
• Computer representation & data structure
• Others!

• Geometry
– Position, direction, length, area, normal, tangent, etc.

• Interaction
– Size, continuity, collision, intersection

• Topology
• Differential properties

– Curvature, arc-length
• Physical attributes
• Computer representation & data structure
• Others!
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Mathematical Formulations
• Point:

• Line:
• Quadratic curve:

• Parametric domain and reparameterization:

• Point:

• Line:
• Quadratic curve:

• Parametric domain and reparameterization:
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Parametric Polynomials
• High-order polynomials

• No intuitive insight for the curved shape
• Difficult for piecewise smooth curves

• High-order polynomials

• No intuitive insight for the curved shape
• Difficult for piecewise smooth curves
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Parametric Polynomials
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How to Define a Curve?
• Specify a set of points for interpolation and/or 

approximation with fixed or unfixed parameterization

• Specify the derivatives at some locations
• What is the geometric meaning to specify derivatives?
• A set of constraints
• Solve constraint equations

• Specify a set of points for interpolation and/or 
approximation with fixed or unfixed parameterization

• Specify the derivatives at some locations
• What is the geometric meaning to specify derivatives?
• A set of constraints
• Solve constraint equations
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One Example
• Two end-vertices: c(0) and c(1)
• One mid-point: c(0.5)
• Tangent at the mid-point: c’(0.5)
• Assuming 3D curve

• Two end-vertices: c(0) and c(1)
• One mid-point: c(0.5)
• Tangent at the mid-point: c’(0.5)
• Assuming 3D curve
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Cubic Polynomials
• Parametric representation (u is in [0,1])

• Each components are treated independently
• High-dimension curves can be easily defined
• Alternatively

• Parametric representation (u is in [0,1])

• Each components are treated independently
• High-dimension curves can be easily defined
• Alternatively
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Cubic Polynomial Example
• Constraints: two end-points, one mid-point, and 

tangent at the mid-point

• In matrix form

• Constraints: two end-points, one mid-point, and 
tangent at the mid-point

• In matrix form
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Solve this Linear Equation
• Invert the matrix

• Rewrite the curve expression

• Invert the matrix

• Rewrite the curve expression
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Basis Functions
• Special polynomials

• What is the image of these basis functions?
• Polynomial curve can be defined by

• Observations
– More intuitive, easy to control, polynomials

• Special polynomials

• What is the image of these basis functions?
• Polynomial curve can be defined by

• Observations
– More intuitive, easy to control, polynomials
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Lagrange Curve
• Point interpolation• Point interpolation
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Lagrange Curves
• Curve

• Lagrange polynomials of degree n:
• Knot sequence: 
• Kronecker delta: 
• The curve interpolate all the data point,  but 

unwanted oscillation

• Curve

• Lagrange polynomials of degree n:
• Knot sequence: 
• Kronecker delta: 
• The curve interpolate all the data point,  but 

unwanted oscillation
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Lagrange Basis Functions
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Cubic Hermite Splines

C(0)

C’(0)

C(1)

C’(1)
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Cubic Hermite Curve
• Hermite curve

• Two end-points and two tangents at end-points

• Matrix inversion

• Hermite curve

• Two end-points and two tangents at end-points

• Matrix inversion
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Hermite Curve
• Basis functions

• Display the image of these basis functions and 
the Hermite curve itself

• Basis functions

• Display the image of these basis functions and 
the Hermite curve itself
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Cubic Hermite Splines
• Two vertices and two tangent vectors:

• Hermite curve

• Two vertices and two tangent vectors:

• Hermite curve
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Hermite Splines
• Higher-order polynomials

• Note that, n is odd!
• Geometric intuition
• Higher-order derivatives are required

• Higher-order polynomials

• Note that, n is odd!
• Geometric intuition
• Higher-order derivatives are required
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Why Cubic Polynomials
• Lowest degree for specifying curve in space
• Lowest degree for specifying points to 

interpolate and tangents to interpolate
• Commonly used in computer graphics
• Lower degree has too little flexibility
• Higher degree is unnecessarily complex, exhibit 

undesired wiggles

• Lowest degree for specifying curve in space
• Lowest degree for specifying points to 

interpolate and tangents to interpolate
• Commonly used in computer graphics
• Lower degree has too little flexibility
• Higher degree is unnecessarily complex, exhibit 

undesired wiggles
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Variations of Hermite Curve
• Variations of Hermite curves

• In matrix form (x-component only)

• Variations of Hermite curves

• In matrix form (x-component only)
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Cubic Bezier Curves
• Four control points
• Curve geometry
• Four control points
• Curve geometry
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Curve Mathematics (Cubic)
• Bezier curve

• Control points and basis functions

• Image and properties of basis functions

• Bezier curve

• Control points and basis functions

• Image and properties of basis functions
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Recursive Evaluation
• Recursive linear interpolation• Recursive linear interpolation
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Recursive Subdivision Algorithm
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Basic Properties (Cubic)
• The curve passes through the first and the last 

points (end-point interpolation)
• Linear combination of control points and basis 

functions
• Basis functions are all polynomials
• Basis functions sum to one (partition of unity)
• All basis functions are non-negative
• Convex hull (both necessary and sufficient)
• Predictability

• The curve passes through the first and the last 
points (end-point interpolation)

• Linear combination of control points and basis 
functions

• Basis functions are all polynomials
• Basis functions sum to one (partition of unity)
• All basis functions are non-negative
• Convex hull (both necessary and sufficient)
• Predictability
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Derivatives
• Tangent vectors can easily be evaluated at the 

end-points
• Second derivatives at end-points can also be 

easily computed:

• Tangent vectors can easily be evaluated at the 
end-points

• Second derivatives at end-points can also be 
easily computed:
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Derivative Curve
• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve
• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve
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More Properties (Cubic)
• Two curve spans are obtained, and both of them 

are standard Bezier curves (through 
reparameterization)

• The control points for the left and the right are

• Two curve spans are obtained, and both of them 
are standard Bezier curves (through 
reparameterization)
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High-Degree Curves
• Generalizing to high-degree curves

• Advantages:
– Easy to compute, Infinitely differentiable

• Disadvantages:
– Computationally complex, undulation, undesired 

wiggles
• How about high-order Hermite? Not natural!!!

• Generalizing to high-degree curves

• Advantages:
– Easy to compute, Infinitely differentiable

• Disadvantages:
– Computationally complex, undulation, undesired 

wiggles
• How about high-order Hermite? Not natural!!!
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Bezier Splines
• Bezier curves of degree n

• Control points and basis functions (Bernstein 
polynomials of degree n):

• Bezier curves of degree n

• Control points and basis functions (Bernstein 
polynomials of degree n):
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Recursive Computation
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Recursive Computation
• N+1 levels• N+1 levels
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Properties
• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points

• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points
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More Properties
• Recursive subdivision and evaluation
• Symmetry: c(u) and c(1-u) are defined by the 

same set of point points, but different ordering

• Recursive subdivision and evaluation
• Symmetry: c(u) and c(1-u) are defined by the 

same set of point points, but different ordering
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Tangents and Derivatives
• End-point tangents:

• I-th derivatives at two end-points depend on

• Derivatives at non-end-points involve all control 
points

• End-point tangents:

• I-th derivatives at two end-points depend on

• Derivatives at non-end-points involve all control 
points
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Other Advanced Topics
• Efficient evaluation algorithm
• Differentiation and integration
• Degree elevation

– Use a polynomial of degree (n+1) to express that of 
degree (n)

• Composite curves
• Geometric continuity
• Display of curve

• Efficient evaluation algorithm
• Differentiation and integration
• Degree elevation

– Use a polynomial of degree (n+1) to express that of 
degree (n)

• Composite curves
• Geometric continuity
• Display of curve
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Bezier Curve Rendering
• Use its control polygon to approximate the curve
• Recursive subdivision till the tolerance is satisfied
• Algorithm go here

– If the current control polygon is flat (with tolerance), then 
output the line segments, else subdivide the curve at u=0.5

– Compute control points for the left half and the right half, 
respectively

– Recursively call the same procedure for the left one and the 
right one

• Use its control polygon to approximate the curve
• Recursive subdivision till the tolerance is satisfied
• Algorithm go here

– If the current control polygon is flat (with tolerance), then 
output the line segments, else subdivide the curve at u=0.5

– Compute control points for the left half and the right half, 
respectively

– Recursively call the same procedure for the left one and the 
right one
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High-Degree Polynomials
• More degrees of freedom
• Easy to compute
• Infinitely differentiable
• Drawbacks:

– High-order
– Global control
– Expensive to compute, complex
– undulation

• More degrees of freedom
• Easy to compute
• Infinitely differentiable
• Drawbacks:

– High-order
– Global control
– Expensive to compute, complex
– undulation
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Piecewise Polynomials
• Piecewise --- different polynomials for different 

parts of the curve
• Advantages --- flexible, low-degree
• Disadvantages --- how to ensure smoothness at 

the joints (continuity)

• Piecewise --- different polynomials for different 
parts of the curve

• Advantages --- flexible, low-degree
• Disadvantages --- how to ensure smoothness at 

the joints (continuity)
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Piecewise Curves
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Piecewise Bezier Curves
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Continuity
• One of the fundamental concepts
• Commonly used cases:

• Consider two curves: a(u) and b(u) (u is in [0,1])

• One of the fundamental concepts
• Commonly used cases:

• Consider two curves: a(u) and b(u) (u is in [0,1])
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Positional Continuity
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Derivative Continuity
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General Continuity
• Cn continuity: derivatives (up to n-th) are the same at 

the joining point

• The prior definition is for parametric continuity
• Parametric continuity depends of parameterization! But, 

parameterization is not unique!
• Different parametric representations may express the 

same geometry
• Re-parameterization can be easily implemented
• Another type of continuity: geometric continuity, or Gn

• Cn continuity: derivatives (up to n-th) are the same at 
the joining point

• The prior definition is for parametric continuity
• Parametric continuity depends of parameterization! But, 

parameterization is not unique!
• Different parametric representations may express the 

same geometry
• Re-parameterization can be easily implemented
• Another type of continuity: geometric continuity, or Gn
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Geometric Continuity
• G0 and G1• G0 and G1
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Geometric Continuity
• Depend on the curve geometry
• DO NOT depend on the underlying 

parameterization
• G0: the same joint
• G1: two curve tangents at the joint align, but 

may (or may not) have the same magnitude
• G1: it is C1 after the reparameterization
• Which condition is stronger???
• Examples 

• Depend on the curve geometry
• DO NOT depend on the underlying 

parameterization
• G0: the same joint
• G1: two curve tangents at the joint align, but 

may (or may not) have the same magnitude
• G1: it is C1 after the reparameterization
• Which condition is stronger???
• Examples 
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Piecewise Hermite Curves
• How to build an interactive system to satisfy 

various constraints
• C0 continuity
• C1 continuity

• G1 continuity

• How to build an interactive system to satisfy 
various constraints

• C0 continuity
• C1 continuity

• G1 continuity
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Piecewise Hermite Curves
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Piecewise Bezier Curves
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Piecewise Bezier Curves
• C0 continuity
• C1 continuity

• G1 continuity

• C2 continuity

• Geometric interpretation
• G2 continuity

• C0 continuity
• C1 continuity

• G1 continuity

• C2 continuity

• Geometric interpretation
• G2 continuity
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Piecewise C2 Bezier Curves
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Continuity Summary
• C0: straightforward, but not enough
• C3: too constrained
• Piecewise curves with Hermite and Bezier 

representations satisfying various continuity 
conditions

• Interactive system for C2 interpolating splines
using piecewise Bezier curves

• Advantages and disadvantages

• C0: straightforward, but not enough
• C3: too constrained
• Piecewise curves with Hermite and Bezier 

representations satisfying various continuity 
conditions

• Interactive system for C2 interpolating splines
using piecewise Bezier curves

• Advantages and disadvantages
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C2 Interpolating Splines
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Natural C2 Cubic Splines
• A set of piecewise cubic polynomials

• C2 continuity at each vertex

• A set of piecewise cubic polynomials

• C2 continuity at each vertex
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Natural C2 Cubic Splines



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Natural Splines
• Interpolate all control points
• Equivalent to a thin strip of metal in a physical 

sense
• Forced to pass through a set of desired points
• No local control (global control)
• N+1 control points
• N pieces
• 2(n-1) conditions
• We need two additional conditions

• Interpolate all control points
• Equivalent to a thin strip of metal in a physical 

sense
• Forced to pass through a set of desired points
• No local control (global control)
• N+1 control points
• N pieces
• 2(n-1) conditions
• We need two additional conditions
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Natural Splines
• Interactive design system

– Specify derivatives at two end-points
– Specify the two internal control points that define the 

first curve span
– Natural end conditions: second-order derivatives at 

two end points are defined to be zero
• Advantages: interpolation, C2
• Disadvantages: no local control (if one point is 

changed, the entire curve will move)
• How to overcome this drawback: B-Splines

• Interactive design system
– Specify derivatives at two end-points
– Specify the two internal control points that define the 

first curve span
– Natural end conditions: second-order derivatives at 

two end points are defined to be zero
• Advantages: interpolation, C2
• Disadvantages: no local control (if one point is 

changed, the entire curve will move)
• How to overcome this drawback: B-Splines
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B-Splines Motivation
• The goal is local control!!!
• B-splines provide local control
• Do not interpolate control points
• C2 continuity
• Alternatively

– Catmull-Rom Splines
– Keep interpolations
– Give up C2 continuity (only C1 is achieved)
– Will be discussed later!!!

• The goal is local control!!!
• B-splines provide local control
• Do not interpolate control points
• C2 continuity
• Alternatively

– Catmull-Rom Splines
– Keep interpolations
– Give up C2 continuity (only C1 is achieved)
– Will be discussed later!!!
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C2 Approximating Splines
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From B-Splines to Bezier
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Uniform B-Splines
• B-spline control points: 
• Piecewise Bezier curves with C2 continuity at 

joints
• Bezier control points:

• B-spline control points: 
• Piecewise Bezier curves with C2 continuity at 

joints
• Bezier control points:
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Uniform B-Splines
• In general, I-th segment of B-splines is 

determined by four consecutive B-spline control 
points

• In general, I-th segment of B-splines is 
determined by four consecutive B-spline control 
points
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Uniform B-Splines
• In matrix form

• Question: how many Bezier segments???

• In matrix form

• Question: how many Bezier segments???

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

3

2

1

3

2

1

0

1410
0420
0240
0141

6
1

i

i

i

i

p
p
p
p

v
v
v
v



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

B-Spline Properties
• C2 continuity, Approximation, Local control, convex 

hull
• Each segment is determined by four control points
• Questions: what happens if we put more than one 

control points in the same location???
– Double vertices, triple vertices, collinear vertices

• End conditions
– Double endpoints: curve will be tangent to line between  first 

distinct points
– Triple endpoint: curve interpolate endpoint, start with a line 

segment
• B-spline display: transform it to Bezier curves

• C2 continuity, Approximation, Local control, convex 
hull

• Each segment is determined by four control points
• Questions: what happens if we put more than one 

control points in the same location???
– Double vertices, triple vertices, collinear vertices

• End conditions
– Double endpoints: curve will be tangent to line between  first 

distinct points
– Triple endpoint: curve interpolate endpoint, start with a line 

segment
• B-spline display: transform it to Bezier curves
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Catmull-Rom Splines
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Catmull-Rom Splines
• Keep interpolation
• Give up C2 continuity
• Control tangents locally
• Idea: Bezier curve between successive points
• How to determine two internal vertices

• Keep interpolation
• Give up C2 continuity
• Control tangents locally
• Idea: Bezier curve between successive points
• How to determine two internal vertices
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Catmull-Rom Splines
• In matrix form

• Problem: boundary conditions
• Properties: C1, interpolation, local control, non-

convex-hull

• In matrix form

• Problem: boundary conditions
• Properties: C1, interpolation, local control, non-

convex-hull
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Cardinal Splines
• Four vertices define end-points and their 

associated tangents

• Special case: Catmull-Rom splines when 
• More general case: Kochanek-Bartels splines

– Tension, bias, continuity parameters

• Four vertices define end-points and their 
associated tangents

• Special case: Catmull-Rom splines when 
• More general case: Kochanek-Bartels splines

– Tension, bias, continuity parameters
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Cardinal Splines
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Kochanek-Bartels Splines
• Four vertices to define four conditions

– Tension parameter:
– Bias parameter:
– Continuity parameter:

• Four vertices to define four conditions

– Tension parameter:
– Bias parameter:
– Continuity parameter:
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Piecewise B-Splines
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B-Spline Basis Functions
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Basis Functions
• Linear examples

• How does it look like???

• Linear examples

• How does it look like???
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Basis Functions
• Quadratic cases (knot vector is [0,1,2,3,4,5,6])

• Cubic example

• Quadratic cases (knot vector is [0,1,2,3,4,5,6])

• Cubic example
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B-Spline Basis Function Image
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B-Splines
• Mathematics
• Control points and basis functions of degree (k-

1)
• Piecewise polynomials
• Basis functions are defined recursively
• We also have to introduce a knot sequence 

(n+k+1) in a non-decreasing order

• Note that, the parametric domain: 

• Mathematics
• Control points and basis functions of degree (k-

1)
• Piecewise polynomials
• Basis functions are defined recursively
• We also have to introduce a knot sequence 

(n+k+1) in a non-decreasing order
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Basis Functions
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B-Spline Facts
• The curve is a linear combination of control points and 

their associated basis functions ((n+1) control points 
and basis functions, respectively)

• Basis functions are piecewise polynomials defined 
(recursively) over a set of non-decreasing knots

• The degree of basis functions is independent of the 
number of control points (note that, I is index, k is the 
order, k-1 is the degree)

• The first k and last k knots do NOT contribute to the 
parametric domain. Parametric domain is only defined 
by a subset of knots

• The curve is a linear combination of control points and 
their associated basis functions ((n+1) control points 
and basis functions, respectively)

• Basis functions are piecewise polynomials defined 
(recursively) over a set of non-decreasing knots

• The degree of basis functions is independent of the 
number of control points (note that, I is index, k is the 
order, k-1 is the degree)

• The first k and last k knots do NOT contribute to the 
parametric domain. Parametric domain is only defined 
by a subset of knots
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B-Spline Properties
• C(u): piecewise polynomial of degree (k-1)
• Continuity at joints: C(k-2)
• The number of control points and basis functions: (n+1)
• One typical basis function is defined over k sub-

intervals which are specified by k+1 knots 
([u(k),u(I+k)])

• There are n+k+1 knots in total, knot sequence divides 
the parametric axis into n+k sub-intervals

• There are (n+1)-(k-1)=n-k+2 sub-intervals within the 
parametric domain ([u(k-1),u(n+1)])

• C(u): piecewise polynomial of degree (k-1)
• Continuity at joints: C(k-2)
• The number of control points and basis functions: (n+1)
• One typical basis function is defined over k sub-

intervals which are specified by k+1 knots 
([u(k),u(I+k)])

• There are n+k+1 knots in total, knot sequence divides 
the parametric axis into n+k sub-intervals

• There are (n+1)-(k-1)=n-k+2 sub-intervals within the 
parametric domain ([u(k-1),u(n+1)])
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B-Spline Properties
• There are n-k+2 piecewise polynomials
• Each curve span is influenced by k control points
• Each control points at most affects k curve spans
• Local control!!!
• Convex hull
• The degree of B-spline polynomial can be independent 

from the number of control points
• Compare B-spline with Bezier!!!
• Key components: control points, basis functions, knots, 

parametric domain, local vs. global control, continuity

• There are n-k+2 piecewise polynomials
• Each curve span is influenced by k control points
• Each control points at most affects k curve spans
• Local control!!!
• Convex hull
• The degree of B-spline polynomial can be independent 

from the number of control points
• Compare B-spline with Bezier!!!
• Key components: control points, basis functions, knots, 

parametric domain, local vs. global control, continuity
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B-Spline Properties
• Partition of unity, positivity, and recursive 

evaluation of basis functions
• Special cases: Bezier splines
• Efficient algorithms and tools

– Evaluation, knot insertion, degree elevation, 
derivative, integration, continuity

• Composite Bezier curves for B-splines

• Partition of unity, positivity, and recursive 
evaluation of basis functions

• Special cases: Bezier splines
• Efficient algorithms and tools

– Evaluation, knot insertion, degree elevation, 
derivative, integration, continuity

• Composite Bezier curves for B-splines
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Uniform B-Spline
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Another Formulation
• Uniform B-spline
• Parameter normalization (u is in [0,1])
• End-point positions and tangents

• Uniform B-spline
• Parameter normalization (u is in [0,1])
• End-point positions and tangents
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Another Formulation
• Matrix representation

• Basis matrix

• Matrix representation

• Basis matrix
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Basis Functions
• Note that, u is now in [0,1]• Note that, u is now in [0,1]
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B-Spline Rendering
• Transform it to a set of Bezier curves
• Convert the I-th span into a Bezier representation

• Consider the entire B-spline curve

• Transform it to a set of Bezier curves
• Convert the I-th span into a Bezier representation

• Consider the entire B-spline curve
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Matrix Expression

• The matrix structure and components of B?

• The matrix structure and components of A?

• The matrix structure and components of B?

• The matrix structure and components of A?
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B-Spline Discretization
• Parametric domain: [u(k-1),u(n+1)]
• There are n+2-k curve spans (pieces)
• Assuming m+1 points per span (uniform 

sampling)
• Total sampling points m(n+2-k)+1=l
• B-spline discretization with corresponding 

parametric values:

• Parametric domain: [u(k-1),u(n+1)]
• There are n+2-k curve spans (pieces)
• Assuming m+1 points per span (uniform 

sampling)
• Total sampling points m(n+2-k)+1=l
• B-spline discretization with corresponding 

parametric values:
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B-Spline Discretization
• Matrix equation

• A is (l)x(n+1) matrix, in general (l) is much 
larger than (n+1), so A is sparse

• The linear discretization for both modeling and 
rendering

• Matrix equation

• A is (l)x(n+1) matrix, in general (l) is much 
larger than (n+1), so A is sparse

• The linear discretization for both modeling and 
rendering
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From B-Splines to NURBS
• What are NURBS???
• Non Uniform Rational B-Splines (NURBS)
• Rational curve motivation
• Polynomial-based splines can not represent commonly-

used analytic shapes such as conic sections (e.g., circles, 
ellipses, parabolas)

• Rational splines can achieve this goal
• NURBS are a unified representation

– Polynomial, conic section, etc.
– Industry standard

• What are NURBS???
• Non Uniform Rational B-Splines (NURBS)
• Rational curve motivation
• Polynomial-based splines can not represent commonly-

used analytic shapes such as conic sections (e.g., circles, 
ellipses, parabolas)

• Rational splines can achieve this goal
• NURBS are a unified representation

– Polynomial, conic section, etc.
– Industry standard
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From B-Splines to NURBS
• B-splines

• NURBS (curve)

• B-splines

• NURBS (curve)
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Geometric NURBS
• Non-Uniform Rational B-Splines
• CAGD industry standard --- useful properties
• Degrees of freedom

– Control points
– Weights

• Non-Uniform Rational B-Splines
• CAGD industry standard --- useful properties
• Degrees of freedom

– Control points
– Weights
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Rational Bezier Curve
• Projecting a Bezier curve onto w=1 plane• Projecting a Bezier curve onto w=1 plane
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From B-Splines to NURBS
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NURBS Weights
• Weight increase “attracts” the curve towards the 

associated control point
• Weight decrease “pushes away” the curve from 

the associated control point

• Weight increase “attracts” the curve towards the 
associated control point

• Weight decrease “pushes away” the curve from 
the associated control point
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NURBS for Analytic Shapes
• Conic sections
• Natural quadrics
• Extruded surfaces
• Ruled surfaces
• Surfaces of revolution

• Conic sections
• Natural quadrics
• Extruded surfaces
• Ruled surfaces
• Surfaces of revolution
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NURBS Circle
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NURBS Curve
• Geometric components

– Control points, parametric domain, weights, knots
• Homogeneous representation of B-splines
• Geometric meaning --- obtained from projection
• Properties of NURBS

– Represent standard shapes, invariant under 
perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common 
analytic shapes such as circles, clear geometric 
meaning of weights

• Geometric components
– Control points, parametric domain, weights, knots

• Homogeneous representation of B-splines
• Geometric meaning --- obtained from projection
• Properties of NURBS

– Represent standard shapes, invariant under 
perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common 
analytic shapes such as circles, clear geometric 
meaning of weights
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NURBS Properties
• Generalization of B-splines and Bezier splines
• Unified formulation for free-form and analytic shape
• Weights as extra DOFs
• Various smoothness requirements
• Powerful geometric toolkits
• Efficient and fast evaluation algorithm
• Invariance under standard transformations
• Composite curves
• Continuity conditions

• Generalization of B-splines and Bezier splines
• Unified formulation for free-form and analytic shape
• Weights as extra DOFs
• Various smoothness requirements
• Powerful geometric toolkits
• Efficient and fast evaluation algorithm
• Invariance under standard transformations
• Composite curves
• Continuity conditions
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Geometric Modeling
• Why geometric modeling
• Fundamental for visual computing

– Graphics, visualization
– Computer aided design and manufacturing
– Imaging
– Entertainment, etc.

• Critical for virtual engineering
• Interaction
• Geometric information for decision making

• Why geometric modeling
• Fundamental for visual computing

– Graphics, visualization
– Computer aided design and manufacturing
– Imaging
– Entertainment, etc.

• Critical for virtual engineering
• Interaction
• Geometric information for decision making
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From Curve to Surface
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Parameterization
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Surfaces
• From curves to surfaces
• A simple curve example (Bezier)

• Consider each control point now becoming a 
Bezier curve

• From curves to surfaces
• A simple curve example (Bezier)

• Consider each control point now becoming a 
Bezier curve
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Surfaces
• Then, we have
• Matrix form
• Then, we have
• Matrix form
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Surfaces
• Further generalize to degree of n and m along 

two parametric directions

• Question: which control points are interpolated?
• How about B-spline surfaces???

• Further generalize to degree of n and m along 
two parametric directions

• Question: which control points are interpolated?
• How about B-spline surfaces???
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Tensor Product Surfaces
• Where are they from?
• Monomial form
• Bezier surface

• B-spline surface 

• General case

• Where are they from?
• Monomial form
• Bezier surface

• B-spline surface 

• General case
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Tensor Product Surface
• Bezier Surface• Bezier Surface
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B-Splines
• B-spline curves
• Tensor product B-splines

• Question again: which control points are interpolated???
• Another question: can we get NURBS surface this 

way???
• Answer: NO!!! NURBS are not tensor-product surfaces
• Another question: can we have NURBS surface?
• YES!!!

• B-spline curves
• Tensor product B-splines

• Question again: which control points are interpolated???
• Another question: can we get NURBS surface this 

way???
• Answer: NO!!! NURBS are not tensor-product surfaces
• Another question: can we have NURBS surface?
• YES!!!
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NURBS Surface
• NURBS surface mathematics

• Understand this geometric construction
• Question: why is it not the tensor-product 

formulation??? Compare it with Bezier and B-
spline construction

• NURBS surface mathematics

• Understand this geometric construction
• Question: why is it not the tensor-product 

formulation??? Compare it with Bezier and B-
spline construction
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NURBS Surface
• Parametric variables: u and v
• Control points and their associated weights: 

(m+1)(n+1)
• Degrees of basis functions: (k-1) and (l-1)
• Knot sequence:

• Parametric domain:

• Parametric variables: u and v
• Control points and their associated weights: 

(m+1)(n+1)
• Degrees of basis functions: (k-1) and (l-1)
• Knot sequence:

• Parametric domain:
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NURBS Surface
• The same principle to generate curves via 

projection
• Idea: associate weights with control points
• Generalization of B-spline surface

• The same principle to generate curves via 
projection

• Idea: associate weights with control points
• Generalization of B-spline surface
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Rectangular Surface



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hermite Surfaces
• How about Hermite surfaces???
• Hermite Curve

• C(0) is not a curve s(0,v) which is also a Hermite
Curve:

• How about Hermite surfaces???
• Hermite Curve

• C(0) is not a curve s(0,v) which is also a Hermite
Curve:
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Hermite Surfaces
• Similarly, c(1) is now a curve s(1,v) which is 

also a Hermite curve:

• The same are for c’(0) and c’(1):

• Similarly, c(1) is now a curve s(1,v) which is 
also a Hermite curve:

• The same are for c’(0) and c’(1):
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Hermite Surfaces
• It is time to put them together!

• Continuity conditions for surfaces
• Bezier surfaces, B-splines, NURBS, Hermite

surfaces
• C1 and G1 continuity

• It is time to put them together!

• Continuity conditions for surfaces
• Bezier surfaces, B-splines, NURBS, Hermite

surfaces
• C1 and G1 continuity
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Hermite Surfaces
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Surface Normal
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Surface Rendering
• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles
• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles
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Surface (Patch) Rendering
• We use bicubic as an example
• The simplest (naïve): convert curved patches into 

primitives that we always know how to render
• From curved surfaces to polygon quadrilaterals (non-

planar) and/or triangles (planar)
• Surface evaluation at grid points
• This is straight forward but inefficient, because it 

requires many times of evaluation of s(u,v)
• The total number is 

• We use bicubic as an example
• The simplest (naïve): convert curved patches into 

primitives that we always know how to render
• From curved surfaces to polygon quadrilaterals (non-

planar) and/or triangles (planar)
• Surface evaluation at grid points
• This is straight forward but inefficient, because it 

requires many times of evaluation of s(u,v)
• The total number is 
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Surface Rendering
• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles
• Parametric grids ([0,1]X[0,1]) as a set of 

rectangles
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Surface Rendering
• Better approach: precomputation

• M is constant throughout the entire patch. The 
followings are the same along isoparametric
lines

• Use one dimensional array to compute and store 
(evaluation only once)

• Better approach: precomputation

• M is constant throughout the entire patch. The 
followings are the same along isoparametric
lines

• Use one dimensional array to compute and store 
(evaluation only once)
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Surface Rendering
• How about many patches: the array is 

unchanged, its sampling rate is the same, this is 
more useful

• How about adaptive sampling based on 
curvature information!!!

• How to computer normal at any grid point 
(approximation)

• How about many patches: the array is 
unchanged, its sampling rate is the same, this is 
more useful

• How about adaptive sampling based on 
curvature information!!!

• How to computer normal at any grid point 
(approximation)
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Regular Surface
• Generated from a set of control points. • Generated from a set of control points. 
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Curve Network
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Coons Patch
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Coons Patch
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Coons Patch
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Coons Patch

)1,()0,(
),1(),0(

uu
vv

s,s
s,s



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Coons Patch
• Bilinearly blended Coons patch

• Bicubically blended Coons patch

• Bilinearly blended Coons patch

• Bicubically blended Coons patch
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Coons Patch
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Gordon Surfaces
• Generalization of Coons techniques
• A set of curves

• Boolean sum using Lagrange polynomials

• Generalization of Coons techniques
• A set of curves

• Boolean sum using Lagrange polynomials
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Transfinite Methods
• Bilinearly blended Coons patch

– Interpolate four boundary curves
• Bicubically blended Coons patch

– Interpolate curves and their derivatives
• Gordon surfaces

– Interpolate a curve-network
• Triangular extension

– Interpolate over triangles

• Bilinearly blended Coons patch
– Interpolate four boundary curves

• Bicubically blended Coons patch
– Interpolate curves and their derivatives

• Gordon surfaces
– Interpolate a curve-network

• Triangular extension
– Interpolate over triangles
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Triangular Surfaces
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Recursive Subdivision Algorithm
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Curve Mathematics (Cubic)
• Bezier curve

• Control points and basis functions

• Image and properties of basis functions

• Bezier curve

• Control points and basis functions

• Image and properties of basis functions
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Recursive Evaluation
• Recursive linear interpolation• Recursive linear interpolation
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Properties
• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points

• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points
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Properties
• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points

• Basis functions are non-negative
• The summation of all basis functions is unity
• End-point interpolation
• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 
hull defined by control points
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Derivatives
• Tangent vectors can easily evaluated at the end-

points
• Second derivatives at end-points can also be 

easily computed:

• Tangent vectors can easily evaluated at the end-
points

• Second derivatives at end-points can also be 
easily computed:
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Derivative Curve
• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve
• The derivative of a cubic Bezier curve is a 

quadratic Bezier curve
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More Properties (Cubic)
• Two curve spans are obtained, and both of them 

are standard Bezier curves (through 
reparameterization)

• The control points for the left and the right are

• Two curve spans are obtained, and both of them 
are standard Bezier curves (through 
reparameterization)

• The control points for the left and the right are
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Barycentric Coordinates
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Triangular Bezier Patch
• Triangular Bezier surface

• Where r+s+t=1, and they are local barycentric
coordinates

• Basis functions are Bernstein polynomials of 
degree n

• Triangular Bezier surface

• Where r+s+t=1, and they are local barycentric
coordinates

• Basis functions are Bernstein polynomials of 
degree n
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Triangular Bezier Patch
• How many control points and basis functions:

• Partition of unity

• Positivity

• How many control points and basis functions:

• Partition of unity

• Positivity

)2)(1(
2
1

++ nn

∑
>=

=
0,,

,, 1),,(
kji

n
kji tsrB

]1,0[,,;0),,(,, ∈>= tsrtsrBn
kji



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Evaluation
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Properties
• Efficient algorithms
• Recursive evaluation
• Directional derivatives
• Degree elevation
• Subdivision
• Composite surfaces

• Efficient algorithms
• Recursive evaluation
• Directional derivatives
• Degree elevation
• Subdivision
• Composite surfaces
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Research Issues
• Continuity across adjacent patches
• Integral computation
• Triangular splines over regular triangulation
• Transform triangular splines to a set of piecewise 

triangular Bezier patches
• Interpolation/approximation using triangular 

splines

• Continuity across adjacent patches
• Integral computation
• Triangular splines over regular triangulation
• Transform triangular splines to a set of piecewise 

triangular Bezier patches
• Interpolation/approximation using triangular 

splines
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Triangular Bezier Surface
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Recursive Evaluation
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Control points (Cubic)
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Basis Functions (Cubic)
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Triangular Patch Subdivision
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Triangular Domain
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Triangular Coons-Gordon Surface
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Triangular Coons-Gordon Surface
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Triangular Interpolation
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Triangular Interpolation
• The Boolean sum of any two operators results 

the same!

• Use cubic blending functions for C1 
interpolation!

• The Boolean sum of any two operators results 
the same!

• Use cubic blending functions for C1 
interpolation!
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Gregory’s Method
• Convex combination

• Generalize to pentagonal patch!

• Convex combination

• Generalize to pentagonal patch!
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Triangular B-splines
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Surface Properties
• Inherit from their curve generators
• More!
• Efficient algorithms
• Continuity across boundaries
• Interpolation and approximation tools

• Inherit from their curve generators
• More!
• Efficient algorithms
• Continuity across boundaries
• Interpolation and approximation tools



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Spherical Parameterization
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Spherical Parameterization
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Possible Applications
Shape classification
Medical registration
Shape classification
Medical registration

Solving PDEs on surfaces

Smooth surface fitting
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Shape Morphing
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Morphing
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Multiresolution Mapping

• Multiresolution morphing• Multiresolution morphing
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Feature Mapping
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Texture Mapping
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Solid
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Parametric Solids
• Tricubic solid

• Bezier solid

• B-spline solid

• NURBS solid

• Tricubic solid

• Bezier solid

• B-spline solid

• NURBS solid
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Parametric Solids
• Tricubic Hermite solid
• In general

• Also known as “hyperpatch”
• Parametric solids represent both exterior and interior
• Examples

– A rectangular sold, a trilinear solid

• Boundary elements
– 8 corner points, 12 curved edges, and 6 curved faces

• Tricubic Hermite solid
• In general

• Also known as “hyperpatch”
• Parametric solids represent both exterior and interior
• Examples

– A rectangular sold, a trilinear solid

• Boundary elements
– 8 corner points, 12 curved edges, and 6 curved faces
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Curves, Surfaces, and Solids
• Isoparametric curves for surfaces

• Isoparametric curves for solids

• Isoparametric surfaces for solids

• Isoparametric curves for surfaces

• Isoparametric curves for solids

• Isoparametric surfaces for solids
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Curves, Surfaces, and Solids
• Non-isoparametric curves for surfaces

• Non-isoparametric curves for solids

• Non-isoparametric surfaces for solids

• Non-isoparametric curves for surfaces

• Non-isoparametric curves for solids

• Non-isoparametric surfaces for solids
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Surfaces of Revolution
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Surfaces of Revolution
• Geometric construction

– Specify a planar curve profile on y-z plane
– Rotate this profile with respect to z-axis

• Procedure-based model
• What kinds of shape can we model?
• Review: three dimensional rotation w.r.t. z-axis

• Geometric construction
– Specify a planar curve profile on y-z plane
– Rotate this profile with respect to z-axis

• Procedure-based model
• What kinds of shape can we model?
• Review: three dimensional rotation w.r.t. z-axis
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Surfaces of Revolution
• Mathematics: surfaces of revolution• Mathematics: surfaces of revolution
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Frenet Frames
• Motivation: attach a smoothly-varying 

coordinate system to any location of a curve
• Three independent direction vectors for a 3D 

coordinate system: (1) tangent; (2) bi-normal; (3) 
normal

• Frenet coordinate system (frame) (t,b,n) varies 
smoothly, as we move along the curve c(u)

• Motivation: attach a smoothly-varying 
coordinate system to any location of a curve

• Three independent direction vectors for a 3D 
coordinate system: (1) tangent; (2) bi-normal; (3) 
normal

• Frenet coordinate system (frame) (t,b,n) varies 
smoothly, as we move along the curve c(u)
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Frenet Coordinate System
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General Sweeping Surfaces
• Surface of revolution is a special case of a sweeping 

surface
• Idea: a profile curve and a trajectory curve

• Move a profile curve along a trajectory curve to 
generate a sweeping surface

• Question: how to orient the profile curve as it moves 
along the trajectory curve?

• Answer: various options

• Surface of revolution is a special case of a sweeping 
surface

• Idea: a profile curve and a trajectory curve

• Move a profile curve along a trajectory curve to 
generate a sweeping surface

• Question: how to orient the profile curve as it moves 
along the trajectory curve?

• Answer: various options
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General Sweeping Surfaces
• Fixed orientation, simple translation of the 

coordinate system of the profile curve along the 
trajectory curve

• Rotation: if the trajectory curve is a circle
• Move using the “Frenet Frame” of the trajectory 

curve, smoothly varying orientation
• Example: surface of revolution
• Differential geometry fundamentals: Frenet

frame

• Fixed orientation, simple translation of the 
coordinate system of the profile curve along the 
trajectory curve

• Rotation: if the trajectory curve is a circle
• Move using the “Frenet Frame” of the trajectory 

curve, smoothly varying orientation
• Example: surface of revolution
• Differential geometry fundamentals: Frenet

frame
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Frenet Swept Surfaces
• Orient the profile Curve (C1(u)) using the Frenet frame 

of C2(v)
– Put C1(u) on the normal plane (n,b)
– Place the original of C1(u) on C2(v)
– Align the x-axis of C1(u) with –n
– Align the y-axis of C1(u) with b

• Example: if C2(v) is a circle
• Variation (generalization)
• Scale C1(u) as it moves
• Morph C1(u) into C3(u) as it moves
• Use your own imagination!

• Orient the profile Curve (C1(u)) using the Frenet frame 
of C2(v)
– Put C1(u) on the normal plane (n,b)
– Place the original of C1(u) on C2(v)
– Align the x-axis of C1(u) with –n
– Align the y-axis of C1(u) with b

• Example: if C2(v) is a circle
• Variation (generalization)
• Scale C1(u) as it moves
• Morph C1(u) into C3(u) as it moves
• Use your own imagination!
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Ruled Surfaces
• Move one straight line along a curve
• Example: plane, cone, cylinder
• Cylindrical surface
• Surface equation

• Isoparametric lines
• More examples

• Move one straight line along a curve
• Example: plane, cone, cylinder
• Cylindrical surface
• Surface equation

• Isoparametric lines
• More examples
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Developable Surfaces
• Deform a surface to planar shape without 

length/area changes
• Unroll a surface to a plane without 

stretching/distorting
• Example: cone, cylinder
• Developable surfaces vs. Ruled surfaces
• More examples???

• Deform a surface to planar shape without 
length/area changes

• Unroll a surface to a plane without 
stretching/distorting

• Example: cone, cylinder
• Developable surfaces vs. Ruled surfaces
• More examples???
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Developable Surface
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Summary
• Parametric curves and surfaces
• Polynomials and rational polynomials
• Free-form curves and surfaces
• Other commonly-used geometric primitives 

(e.g., sphere, ellipsoid, torus, superquadrics, 
blobby, etc.)

• Motivation: 
– Fewer degrees of freedom
– More geometric coverage

• Parametric curves and surfaces
• Polynomials and rational polynomials
• Free-form curves and surfaces
• Other commonly-used geometric primitives 

(e.g., sphere, ellipsoid, torus, superquadrics, 
blobby, etc.)

• Motivation: 
– Fewer degrees of freedom
– More geometric coverage
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Straight Line
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Straight Line
• Mathematics

• Example

• Mathematics

• Example
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Circle
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Conic Sections
• Mathematics
• Examples

– Ellipse
– Hyperbola
– Parabola
– Empty set
– Point
– Pair of lines
– Parallel lines
– Repeated lines

• Mathematics
• Examples

– Ellipse
– Hyperbola
– Parabola
– Empty set
– Point
– Pair of lines
– Parallel lines
– Repeated lines
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Conics 
• Parametric equations of conics
• Generalization to higher-degree curves
• How about non-planar (spatial) curves

• Parametric equations of conics
• Generalization to higher-degree curves
• How about non-planar (spatial) curves
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Plane

01=−++ zyx



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Plane and Intersection
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Plane 
• Example
• General plane equation
• Normal of the plane

• Arbitrary point on the plane

• Example
• General plane equation
• Normal of the plane

• Arbitrary point on the plane
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Plane
• Plane equation derivation

• Parametric representation (given three points on 
the plane and they are non-collinear!)

• Plane equation derivation

• Parametric representation (given three points on 
the plane and they are non-collinear!)
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Plane 
• Explicit expression (if c is non-zero)

• Line-Plane intersection

• Explicit expression (if c is non-zero)

• Line-Plane intersection
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Circle
• Implicit equation
• Parametric function

• Parametric representation using rational 
polynomials (the first quadrant)

• Parametric representation is not unique!

• Implicit equation
• Parametric function

• Parametric representation using rational 
polynomials (the first quadrant)

• Parametric representation is not unique!
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Implicit Equations for Curves
• Describe an implicit relationship
• Planar curve (point set)
• The implicit function is not unique

• Comparison with parametric representation

• Describe an implicit relationship
• Planar curve (point set)
• The implicit function is not unique

• Comparison with parametric representation
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Implicit Equations for Curves
• Implicit function is a level-set

• Examples (straight line and conic sections)

• Other examples
– Parabola, two parallel lines, ellipse, hyperbola, two 

intersection lines

• Implicit function is a level-set

• Examples (straight line and conic sections)

• Other examples
– Parabola, two parallel lines, ellipse, hyperbola, two 

intersection lines
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Implicit Functions for Curves
• Parametric equations of conics
• Generalization to higher-degree curves
• How about non-planar (spatial) curves

• Parametric equations of conics
• Generalization to higher-degree curves
• How about non-planar (spatial) curves
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Implicit Equations for Surfaces
• Surface mathematics
• Again, the implicit function for surfaces is not 

unique

• Comparison with parametric representation

• Surface mathematics
• Again, the implicit function for surfaces is not 

unique

• Comparison with parametric representation
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Implicit Equations for Surfaces
• Surface defined by implicit function is a level-set

• Examples
– Plane, quadric surfaces, tori, superquadrics, blobby 

objects
• Parametric representation of quadric surfaces
• Generalization to higher-degree surfaces

• Surface defined by implicit function is a level-set

• Examples
– Plane, quadric surfaces, tori, superquadrics, blobby 

objects
• Parametric representation of quadric surfaces
• Generalization to higher-degree surfaces

⎩
⎨
⎧

=
=

0
),,(

w
zyxfw



Spring, 2005CSE530 Lecture Notes ST NY BR K
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadric Surfaces
• Implicit functions
• Examples

– Sphere
– Cylinder
– Cone
– Paraboloid
– Ellipsoid
– Hyperboloid

• More 
– Two parallel planes, two intersecting planes, single plane, 

line, point

• Implicit functions
• Examples

– Sphere
– Cylinder
– Cone
– Paraboloid
– Ellipsoid
– Hyperboloid

• More 
– Two parallel planes, two intersecting planes, single plane, 

line, point
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Quadrics: Parametric Rep.
• Sphere

• Ellipsoid

• Geometric meaning of these parameters

• Sphere

• Ellipsoid

• Geometric meaning of these parameters
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Generalization
• Higher-degree polynomials

• Non polynomials

• Higher-degree polynomials

• Non polynomials
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Superquadrics
• Geometry (generalization of quadrics)
• Superellipse
• Superellipsoid

• Parametric representation

• What is the meaning of these control parameters?

• Geometry (generalization of quadrics)
• Superellipse
• Superellipsoid

• Parametric representation

• What is the meaning of these control parameters?
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Algebraic Function
• Parametric representation is popular, but…
• Formulation

• Properties…
– Powerful, but lack of modeling tools

• Parametric representation is popular, but…
• Formulation

• Properties…
– Powerful, but lack of modeling tools
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Algebraic Patch

Tetrahedron

Control point, weight

Algebraic patch
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Algebraic Patch
• A tetrahedron with non-planar vertices

• Trivariate barycentric coordinate (r,s,t,u) for p

• A regular lattice of control points and weights

• A tetrahedron with non-planar vertices

• Trivariate barycentric coordinate (r,s,t,u) for p

• A regular lattice of control points and weights
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Algebraic Patch
• There are (n+1)(n+2)(n+3)/6 control points. A 

weight w(I,j,k,l) is also assigned to each control 
point

• Algebraic patch formulation

• Properties
– Meaningful control, local control, boundary 

interpolation, gradient control, self-intersection 
avoidance, continuity condition across the 
boundaries, subdivision

• There are (n+1)(n+2)(n+3)/6 control points. A 
weight w(I,j,k,l) is also assigned to each control 
point

• Algebraic patch formulation

• Properties
– Meaningful control, local control, boundary 

interpolation, gradient control, self-intersection 
avoidance, continuity condition across the 
boundaries, subdivision
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Spatial Curves
• Intersection of two surfaces• Intersection of two surfaces
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Algebraic Solid
• Half space

• Useful for complex objects (refer to notes on 
solid modeling)

• Half space

• Useful for complex objects (refer to notes on 
solid modeling)
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Volume Datasets
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Isosurface Rendering

Isovalue =30IsovalueIsovalue =30=30 Isovalue =100IsovalueIsovalue =100=100 Isovalue =200IsovalueIsovalue =200=200
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Direct Volume Rendering
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Implicit Functions
• Long history: classical algebraic geometry
• Implicit and parametric forms

– Advantages
– Disadvantages

• Curves, surfaces, solids in higher-dimension
• Intersection computation
• Point classification
• Larger than parameter-based modeling
• Unbounded geometry
• Object traversal
• Evaluation

• Long history: classical algebraic geometry
• Implicit and parametric forms

– Advantages
– Disadvantages

• Curves, surfaces, solids in higher-dimension
• Intersection computation
• Point classification
• Larger than parameter-based modeling
• Unbounded geometry
• Object traversal
• Evaluation
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Implicit Functions
• Efficient algorithms, toolkits,software
• Computer-based shape modeling and design
• Geometric degeneracy and anomaly
• Algebraic and geometric operations are often 

closed
• Mathematics: algebraic geometry
• Symbolic computation
• Deformation and transformation
• Shape editing, rendering, and control

• Efficient algorithms, toolkits,software
• Computer-based shape modeling and design
• Geometric degeneracy and anomaly
• Algebraic and geometric operations are often 

closed
• Mathematics: algebraic geometry
• Symbolic computation
• Deformation and transformation
• Shape editing, rendering, and control
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Implicit Functions
• Conversion between parametric and implicit 

forms
• Implicitization vs. parameterization
• Strategy: integration of both techniques
• Approximation using parametric models

• Conversion between parametric and implicit 
forms

• Implicitization vs. parameterization
• Strategy: integration of both techniques
• Approximation using parametric models
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Free-Form Deformation
• Free-Form Deformation Example• Free-Form Deformation Example

Original Model

Solid Mesh

Deformed Mesh

Result
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Free-Form Deformation
• Free-Form Deformation Example (Complex  >> 49000 

faces)
• Free-Form Deformation Example (Complex  >> 49000 

faces)

Original Model

Solid Mesh

Deformed (Results in 
both surface rendered 
and wireframe)
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Free-Form Deformation
• Free-Form Deformation Example (Non-trivial topology)• Free-Form Deformation Example (Non-trivial topology)

Original Model

Solid Mesh with a hole

Deformed Mesh

Result (no change in central cylinder)
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Free-Form Deformation
• Free-Form Deformation Example (Localized)• Free-Form Deformation Example (Localized)
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Shape Modeling
• Direct Modeling / Manipulation• Direct Modeling / Manipulation
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Material Modeling
• Material Representation (Non-homogeneous)• Material Representation (Non-homogeneous)


