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Abstract

In this paper, we consider the problem of lifted inference in the context of Prism-like prob-
abilistic logic programming languages. Traditional inference in such languages involves the
construction of an explanation graph for the query and computing probabilities over this graph.
When evaluating queries over probabilistic logic programs with a large number of instances
of random variables, traditional methods treat each instance separately. For many programs
and queries, we observe that explanations can be summarized into substantially more compact
structures, which we call lifted explanation graphs. In this paper, we define lifted explana-
tion graphs and operations over them. In contrast to existing lifted inference techniques, our
method for constructing lifted explanations naturally generalizes existing methods for con-
structing explanation graphs. To compute probability of query answers, we solve recurrences
generated from the lifted graphs. We show examples where the use of our technique reduces
the asymptotic complexity of inference.

1 Introduction
Background. Probabilistic Logic Programming (PLP) provides a declarative programming frame-
work to specify and use combinations of logical and statistical models. A number of program-
ming languages and systems have been proposed and studied under the framework of PLP, e.g.
PRISM (Sato and Kameya 1997), Problog (De Raedt et al. 2007), PITA (Riguzzi and Swift 2011)
and Problog2 (Dries et al. 2015) etc. These languages have similar declarative semantics based
on the distribution semantics (Sato and Kameya 2001). Moreover, the inference algorithms used
in many of these systems to evaluate the probability of query answers, e.g. PRISM, Problog and
PITA, are based on a common notion of explanation graphs.

At a high level, the inference procedure follows traditional query evaluation over logic pro-
grams. Outcomes of random variables, i.e., the probabilistic choices, are abduced during query
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evaluation. Each derivation of an answer is associated with a set of outcomes of random vari-
ables, called its explanation, under which the answer is supported by the derivation. Systems
differ on how the explanations are represented and manipulated. Explanation graphs in PRISM
are represented using tables, and under mutual exclusion assumption, multiple explanations are
combined by adding entries to tables. In Problog and PITA, explanation graphs are represented by
Binary Decision Diagrams (BDDs), with probabilistic choices mapped to propositional variables
in BDDs.

Driving Problem. Inference based on explanation graphs does not scale well to logical/statistical
models with large numbers of random processes and variables. Several approximate inference
techniques have been proposed to estimate the probability of answers when exact inference is
infeasible. In general, large logical/statistical models involve families of independent, identically
distributed (i.i.d.) random variables. Moreover, in many models, inference often depends on the
outcomes of random processes but not on the identities of random variables with the particular
outcomes. However, query-based inference methods will instantiate each random variable and the
explanation graph will represent each of their outcomes. Even when the graph may ultimately
exhibit symmetry with respect to random variable identities, and many parts of the graph may
be shared, the computation that produced these graphs may not be shared. This paper presents a
structure for representing explanation graphs compactly by exploiting the symmetry with respect to
i.i.d random variables, and a procedure to build this structure without enumerating each instance
of a random process.

Illustration. We illustrate the problem and our approach using the simple example in Figure 1,
which shows a program describing a process of tossing a number of i.i.d. coins, and evaluating
if at least two of them came up “heads”. The example is specified in an extension of the PRISM
language, called Px. Explicit random processes of PRISM enables a clearer exposition of our
approach. In PRISM and Px, a special predicate of the form msw(p, i, v) describes, given a
random process p that defines a family of i.i.d. random variables, that v is the value of the i-
th random variable in the family. The argument i of msw is called the instance argument of the
predicate. In this paper, we consider Param-Px, a further extension of Px to define parameterized
programs. In Param-Px, a built-in predicate, in is used to specify membership; e.g. x in s means
x is member of an enumerable set s. The size of s is specified by a separate population directive.

The program in Figure 1 defines a family of random variables with outcomes in {h, t} gen-
erated by toss. The instances that index these random variables are drawn from the set coins.
Finally, predicate twoheads is defined to hold if tosses of at least two distinct coins come up
“heads”.

State of the Art, and Our Solution. Inference in PRISM, Problog and PITA follows the struc-
ture of the derivations for a query. Consider the program in Figure 1(a) and let the cardinality of
the set of coins be n. The query twoheads will take Θ(n2) time, since it will construct bindings to
both X and Y in the clause defining twoheads. However, the size of an explanation graph is Θ(n);
see Figure 1(b). Computing the probability of the query over this graph will also take Θ(n) time.

In this paper, we present a technique to construct a symbolic version of an explanation graph,
called a lifted explanation graph that represents instances symbolically and avoids enumerating

2



1 % Two distinct tosses show ”h”
2 twoheads :-

3 X in coins,

4 msw(toss, X, h),

5 Y in coins,

6 {X \= Y},

7 msw(toss, Y, h).

8

9 % Cardinality of coins:
10 :- population(coins, 100).

11

12 % Distribution parameters:
13 :- set_sw(toss,

14 categorical([h:0.5, t:0.5])).

(toss,1)

(toss,2)(toss,2)

(toss,n−1)(toss,3)1

0(toss,n)1

01

th

thth

thth

th

∃X ∈ coins.∃Y ∈ coins.X< Y

(toss,X)

(toss,Y) 0

1 0

h t

h t

(a) Simple Param-Px Program (b) Ground Explanation Graph (c) Lifted Explanation Graph

Figure 1: Example program and explanation graphs

the instances of random processes such as toss. The lifted explanation graph for query twoheads

is shown in Figure 1(c). Unlike traditional explanation graphs where nodes are specific instances
of random variables, nodes in the lifted explanation graph may be parameterized by their instance
(e.g (toss,X) instead of (toss,1)). A set of constraints on those variables, specify the allowed
groundings.

Note that the graph size is independent of the size of the population. Moreover, the graph
can be constructed in time independent of the population size as well. Probability computation is
performed by first deriving recurrences based on the graph’s structure and then solving the recur-
rences. The following recurrences capture the probability computation of the graph in Figure 1(c),
where π is the probability that toss is h.

f ({},ψ1) = h({1/X},ψ1) (1)

h({c/X},ψ1) =

{
g({c/X},ψ1)+(1−P(ψ̂1X)) ·h({c+1/X},ψ1), if c < u
g({c/X},ψ1), if c = u (2)

g({c/X},ψ1) = π · f ({c/X},ψ2) (3)
P(ψ̂1X) = π (4)

f ({c/X},ψ2) =

{
h({c/X ,c+1/Y},ψ2), if η{c/X} is satisfiable
0, otherwise (5)

h({c/X ,d/Y},ψ2) =

{
g({c/X ,d/Y},ψ2)+(1−P(ψ̂2Y )) ·h({c/X ,d +1/Y},ψ2), if d < u
g({c/X ,d/Y},ψ2), if d = u(6)

g({c/X ,d/Y},ψ2) = π (7)
P(ψ̂2Y ) = π (8)

These recurrences can be solved in O(n) time with tabling or dynamic programming. Moreover,
in certain cases, it is possible to obtain a closed form from a recurrence. For instance, noting that
g({c/X ,d/Y},ψ2) is independent of its parameters, we get h({c/X ,d/Y},ψ2) = 1−(1−π)n−c+1.
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Lifted explanations vs. Lifted Inference. Our work is a form of lifted inference, a set of tech-
niques that have been intensely studied in the context of first-order graphical models and Markov
Logic Networks (Poole 2003; Braz et al. 2005; Milch et al. 2008). Essentially, lifted explanations
provide a way to perform lifted inference over PLPs by leveraging their query evaluation mecha-
nism. Directed first-order graphical models (Kisynski 2010) can be readily cast as PLPs, and our
technique can be used to perform lifted inference over such models. Our solution, however, does
not cover techniques based on counting elimination (Braz et al. 2005; Milch et al. 2008).

It should be noted that Problog2 does not construct query-specific explanation graphs. Instead,
it uses a knowledge compilation approach where the models of a program are represented by a
propositional boolean formula. These formulae, in turn, are represented in a compact standard form
such as dDNNFs or SDDs (Darwiche 2001; Darwiche 2011). Query answers and their probabilities
are then computed using linear-time algorithms over these structures.

The knowledge compilation approach has been extended to do a generalized form of lifted in-
ference using first-order model counting (Van den Broeck et al. 2011). This technique performs
lifted inference, including inversion and counting elimination over a large class of first order mod-
els. However, first order model counting is defined only when the problem can be stated in a
first-order constrained CNF form. Problems such as the example in Figure 1 cannot be written in
that form. To address this, a skolemization procedure which eliminates existential quantifiers and
converts to first-order CNF without adding function symbols was proposed by Van den Broeck
et al. (2014). While the knowledge compilation approach takes a core lifted inference procedure
and moves to apply it to a class of logic programs, our approach generalizes existing inference
techniques to perform a form of lifted inference.

Contributions. The technical contribution of this paper is two fold.

1. We define a lifted explanation structure, and operations over these structures (see Section 3).
We also give method to construct such structures during query evaluation, closely following
the techniques used to construct explanation graphs.

2. We define a technique to compute probabilities over such structures by deriving and solving
recurrences (see Section 4). We provide examples to illustrate the complexity gains due to
our technique over traditional inference.

The rest of the paper begins by defining parameterized Px programs and their semantics (Section 2).
After presenting the main technical work, the paper concludes with a discussion of related work.
(Section 5).

2 Parameterized Px Programs
The PRISM language follows Prolog’s syntax. It adds a binary predicate msw to introduce random
variables into an otherwise familiar Prolog program. Specifically, in msw(s, v), s is a “switch”
that represents a random process which generates a family of random variables, and v is bound to
the value of a variable in that family. The domain and distribution parameters of the switches are
specified using value facts and set sw directives, respectively. Given a switch s, we use Ds to
denote the domain of s, and πs : Ds→ [0,1] to denote its probability distribution.
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The model-theoretic distribution semantics explicitly identifies each member of a random vari-
able family with an instance parameter. In the PRISM system, the binary msw is interpreted
stochastically, generating a new member of the random variable family whenever an msw is en-
countered during inference.

2.1 Px and Inference
The Px language extends the PRISM language in three ways. Firstly, the msw switches in Px are
ternary, with the addition of an explicit instance parameter. This brings the language closer to the
formalism presented when describing PRISM’s semantics (Sato and Kameya 2001). Secondly, Px
aims to compute the distribution semantics with no assumptions on the structure of the explana-
tions. Thirdly, in contrast to PRISM, the switches in Px can be defined with a wide variety of
univariate distributions, including continuous distributions (such as Gaussian) and infinite discrete
distributions (such as Poisson). However, in this paper, we consider only programs with finite
discrete distributions.

Exact inference of Px programs with finite discrete distributions uses explanation graphs with
the following structure.

Definition 1 (Ground Explanation Graph). Let S be the set of ground switches in a Px program P,
and Ds be the domain of switch s ∈ S. Let T be the set of all ground terms over symbols in P. Let
“≺” be a total order over S×T such that (s1, t1)≺ (s2, t2) if either t1 < t2 or t1 = t2 and s1 < s2.

A ground explanation tree over P is a rooted tree γ such that:

• Leaves in γ are labeled 0 or 1.

• Internal nodes in γ are labeled (s,z) where s ∈ S is a switch, and z is a ground term over
symbols in P.

• For node labeled (s,z), there are k outgoing edges to subtrees, where k = |Ds|. Each edge is
labeled with a unique v ∈ Ds.

• Let (s1,z1),(s2,z2), . . . ,(sk,zk),c be the sequence of node labels in a root-to-leaf path in the
tree, where c ∈ {0,1}. Then (si,zi) ≺ (s j,z j) if i < j for all i, j ≤ k. As a corollary, node
labels along any root to leaf path in the tree are unique.

An explanation graph is a DAG representation of a ground explanation tree. 2

We use φ to denote explanation graphs. We use (s, t)[vi : φi] to denote an explanation graph
whose root is labeled (s, t), with each edge labeled vi (ranging over a suitable index set i), leading
to subgraph φi.

Consider a sequence of alternating node and edge labels in a root-to-leaf path:
(s1,z1),v1,(s2,z2),v2, . . . ,(sk,zk),vk,c. Each such path enumerates a set of random variable val-
uations {s1[z1] = v1,s2[z2] = v2, . . . ,sk[zk] = vk}. When c = 1, the set of valuations forms an expla-
nation. An explanation graph thus represents a set of explanations.

Note that explanation trees and graphs resemble decision diagrams. Indeed, explanation graphs
are implemented using Binary Decision Diagrams (Bryant 1992) in PITA and Problog; and Multi-
Valued Decision Diagrams (Srinivasan et al. 1990) in Px. The union of two sets of explanations
can be seen as an “or” operation over corresponding explanation graphs. Pair-wise union of expla-
nations in two sets is an “and” operation over corresponding explanation graphs.

5



Inference via Program Transformation. Inference in Px is performed analogous to that in
PITA (Riguzzi and Swift 2011). Concretely, inference is done by translating a Px program to one
that explicitly constructs explanation graphs, performing tabled evaluation of the derived program,
and computing probability of answers from the explanation graphs. We describe the translation for
definite pure programs; programs with built-ins and other constructs can be translated in a similar
manner.

First every clause containing a disequality constraint is replaced by two clauses using less-
than constraints. Next, for every user-defined atom A of the form p(t1, t2, . . . , tn), we define
exp(A,E) as atom p(t1, t2, . . . , tn,E) with a new predicate p/(n + 1), with E as an added “ex-
planation” argument. For such atoms A, we also define head(A,E) as atom p′(t1, t2, . . . , tn,E)
with a new predicate p′/(n+ 1). A goal G is a conjunction of atoms, where G = (G1,G2) for
goals G1 and G2, or G is an atom A. Function exp is extended to goals such that exp((G1,G2)) =
((exp(G1,E1),exp(G2,E2)),and(E1,E2,E)), where and is a predicate in the translated program
that combines two explanations using conjunction, and E1 and E2 are fresh variables. Function exp
is also extended to msw atoms such that exp(msw(p, i,v),E) is rv(p, i,v,E), where rv is a predicate
that binds E to an explanation graph with root labeled (p, i) with an edge labeled v leading to a 1
child, and all other edges leading to 0.

Each clause of the form A :− G in a Px program is translated to a new clause
head(A,E) :− exp(G,E). For each predicate p/n, we define p(X1,X2, . . .Xn,E) to be such that
E is the disjunction of all E ′ for p′(X1,X2, . . .Xn,E ′). As in PITA, this is done using answer sub-
sumption.

Computing Answer Probabilities. Probability of an answer is determined by first materializing
the explanation graph, and then computing the probability over the graph. The probability associ-
ated with an explanation graph ϕ is denoted by prob(ϕ). This can be computed in time linear in
the size of the graph by using dynamic programming or tabling to reuse computation results from
shared subgraphs.

2.2 Syntax and Semantics of Parameterized Px Programs
Parameterized Px, called Param-Px for short, is a further extension of the Px language. The first
feature of this extension is the specification of populations and instances to specify ranges of
instance parameters of msws.

Definition 2 (Population). A population is a named finite set, with a specified cardinality. A popu-
lation has the following properties:

1. Elements of a population may be atomic, or depth-bounded ground terms.

2. Elements of a population are totally ordered using the default term order.

3. Distinct populations are disjoint. 2

Populations and their cardinalities are specified in a Param-Px program by population facts.
For example, the program in Figure 1(a) defines a population named coins of size 100. The
individual elements of this set are left unspecified. When necessary, element/2 facts may be used
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to define distinguished elements of a population. For example, element(fred, persons) defines
a distinguished element “fred” in population persons. In presence of element facts, elements of
a population are ordered as follows. The order of element facts specifies the order among the
distinguished elements, and all distinguished elements occur before other unspecified elements in
the order.

Definition 3 (Instance). An instance is an element of a population.
In a Param-Px program, a built-in predicate in/2 can be used to draw an instance from a

population. All instances of a population can be drawn by backtracking over in. 2

For example, in Figure 1(a), X in coins binds X to an instance of population coins.
An instance variable is one that occurs as the instance argument in a msw predicate in a clause

of a Param-Px program. For example, in Figure 1(a), X and Y in the clause defining twoheads are
instance variables.

Constraints. The second extension in Param-Px are atomic constraints, of the form {t1 = t2},
{t1 6= t2} and {t1 < t2}, where t1 and t2 are variables or constants, to compare instances of a
population. We use braces “{·}” to distinguish the constraints from Prolog built-in comparison
operators.

Types. We use populations in a Param-Px program to confer types to program variables. Each
variable that occurs in an “in” predicate is assigned a unique type. More specifically, X has type
p if X in p occurs in a program, where p is a population; and X is untyped otherwise. We extend
this notion of types to constants and switches as well. A constant c has type p if there is a fact
element(c, p); and c is untyped otherwise. A switch s has type p if there is an msw(s, X, t)
in the program and X has type p; and s is untyped otherwise.

Definition 4 (Well-typedness and Typability). A Param-Px program is well-typed if:

1. For every constraint in the program of the form {t1 = t2}, {t1 6= t2} or {t1 < t2}, the types of
t1 and t2 are identical.

2. Types of arguments of every atom on the r.h.s. of a clause are identical to the types of
corresponding parameters of l.h.s. atoms of matching clauses.

3. Every switch in the program has a unique type.

A Param-Px program is typable if we can add literals of the form X in p (where p is a population)
to r.h.s. of clauses such that the resulting program is well-typed. 2

The first two conditions of well-typedness ensure that only instances from the same popula-
tion are compared in the program. The last condition imposes that instances of random variables
generated by switch s are all indexed by elements drawn from the same population.

In the rest of the paper, unless otherwise specified, we assume all Param-Px programs under
consideration are well-typed.
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Semantics of Param-Px Programs. Each Param-Px program can be readily transformed into
a non-parameterized “ordinary” Px program. Each population fact is used to generate a set of
in/2 facts enumerating the elements of the population. Other constraints are replaced by their
counterparts is Prolog: e.g. {X < Y} with X<Y . Finally, each msw(s,i,t) is preceded by i in p
where p is the type of s. The semantics of the original parameterized program is defined by the
semantics of the transformed program.

3 Lifted Explanations
In this section we formally define lifted explanation graphs. These are a generalization of ground
explanation graphs defined earlier, and are introduced in order to represent ground explanations
compactly. As illustrated in Figure 1 in Introduction, the compactness of lifted explanations is a
result of summarizing the instance information. Constraints over instances form a basic building
block of lifted explanations. We use the following constraint domain for this purpose.

3.1 Constraints on Instances
Definition 5 (Instance Constraints). Let V be a set of instance variables, with subranges of integers
as domains, such that m is the largest positive integer in the domain of any variable. Atomic
constraints on instance variables are of one of the following two forms: X < aY ± k, X = aY ± k,
where X ,Y ∈ V , a ∈ 0,1, where k is a non-negative integer ≤ m+1. The language of constraints
over bounded integer intervals, denoted by L (V ,m), is a set of formulae η , where η is a non-
empty set of atomic constraints representing their conjunction.

Note that each formula in L (V ,m) is a convex region in Z|V |, and hence is closed under
conjunction and existential quantification.

Let vars(η) be the set of instance variables in an instance constraint η . A substitution σ :
vars(η)→ [1..m] that maps each variable to an element in its domain is a solution to η if each
constraint in η is satisfied by the mapping. The set of all solutions of η is denoted by [[η ]]. The
constraint formula η is unsatisfiable if [[η ]] = /0. We say that η |= η ′ if every σ ∈ [[η ]] is a solution
to η ′.

Note also that instance constraints are a subclass of the well-known integer octagonal
constraints (Miné 2006) and can be represented canonically by difference bound matrices
(DBMs) (Yovine 1998; LLP 1997), permitting efficient algorithms for conjunction and existen-
tial quantification. Given a constraint on n variables, a DBM is a (n+ 1)× (n+ 1) matrix with
rows and columns indexed by variables (and a special “zero” row and column). For variables X
and Y , the entry in cell (X ,Y ) of a DBM represents the upper bound on X −Y . For variable X ,
the value at cell (X ,0) is X’s upper bound and the value at cell (0,X) is the negation of X’s lower
bound.

Geometrically, each entry in the DBM representing a η is a “face” of the region represent-
ing [[η ]]. Negation of an instance constraint η can be represented by a set of mutually exclusive
instance constraints. Geometrically, this can be seen as the set of convex regions obtained by
complementing the “faces” of the region representing [[η ]]. Note that when η has n variables, the
number of instance constraints in ¬η is bounded by the number of faces of [[η ]], and hence by
O(n2).
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Let ¬η represent the set of mutually exclusive instance constraints representing the negation
of η . Then the disjunction of two instance constraints η and η ′ can be represented by the set of
mutually exclusive instance constraints (η ∧¬η ′)∪ (η ′∧¬η)∪{η ∧η ′}, where we overload ∧ to
represent the element-wise conjunction of an instance constraint with a set of constraints.

An existentially quantified formula of the form ∃X .η can be represented by a DBM obtained
by removing the rows and columns corresponding to X in the DBM representation of η . We denote
this simple procedure to obtain ∃X .η from η by Q(X ,η).

Definition 6 (Range). Given a constraint formula η ∈L (V ,m), and X ∈ vars(η), let σX(η) =
{v | σ ∈ [[η ]],σ(X) = v}. Then range(X ,η) is the interval [l,u], where l = min(σX(η)) and u =
max(σX(η)).

Since the constraint formulas represent convex regions, it follows that each variable’s range
will be an interval. Note that range of a variable can be readily obtained in constant time from the
entries for that variable in the zero row and zero column of the constraint’s DBM representation.

3.2 Lifted Explanation Graphs
Definition 7 (Lifted Explanation Graph). Let S be the set of ground switches in a Param-Px pro-
gram P, Ds be the domain of switch s ∈ S, m be the sum of the cardinalities of all populations in P
and C be the set of distinguished elements of the populations in P. A lifted explanation graph over
variables V is a pair (Ω : η ,ψ) which satisfies the following conditions

1. Ω : η is the notation for ∃Ω.η , where η ∈L (V ,m) is either a satisfiable constraint formula,
or the single atomic constraint false and Ω ⊆ vars(η) is the set of quantified variables in
η . When η is false, Ω = /0.

2. ψ is a singly rooted DAG which satisfies the following conditions

• Internal nodes are labeled (s, t) where s ∈ S and t ∈ V ∪C.

• Leaves are labeled either 0 or 1.

• Each internal node has an outgoing edge for each outcome ∈ Ds.

• If a node labeled (s, t) has a child labeled (s′, t ′) then η |= t < t ′ or η |= t = t ′ and
(s,c)≺ (s′,c) for any ground term c (see Def. 1).

Similar to ground explanation graphs (Def. 1), the DAG components of the lifted explanation
graphs are represented by textual patterns (s, t)[αi : ψi] where (s, t) is the label of the root and ψi
is the DAG associated with the edge labeled αi. Irrelevant parts may denoted “ ” to reduce clutter.

We define the standard notion of bound and free variables over lifted explanation graphs.

Definition 8 (Bound and free variables). Given a lifted explanation graph (Ω : η ,ψ), a variable
X ∈ vars(η), is called a bound variable if X ∈Ω, otherwise its called a free variable.

The lifted explanation graph is said to be well-structured if every pair of nodes (s,X) and (s′,X)
with the same bound variable X , have a common ancestor with X as the instance variable. In the
rest of the paper, we assume that the lifted explanation graphs are well-structured.
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Definition 9 (Substitution operation). Given a lifted explanation graph (Ω : η ,ψ), a variable
X ∈ vars(η), the substitution of X in the lifted explanation graph with a value k from its domain,
denoted by (Ω : η ,ψ)[k/X ] is defined as follows:

(Ω : η ,ψ)[k/X ] = ( /0 : {false},0), if η [k/X ] is unsatisfiable
(Ω : η ,ψ)[k/X ] = (Ω\{X} : η [k/X ],ψ[k/X ]), if η [k/X ] is satisfiable

((s, t)[αi : ψi])[k/X ] = (s,k)[αi : ψi[k/X ]], if t = X
((s, t)[αi : ψi])[k/X ] = (s, t)[αi : ψi[k/X ]], if t 6= X

0[k/X ] = 0
1[k/X ] = 1

In the above definition, η [k/X ] refers to the standard notion of substitution. The definition of
substitution operation can be generalized to mappings on sets of variables. Let σ be a substitution
that maps variables to their values. By (Ω : η ,ψ)σ we denote the lifted explanation graph obtained
by sequentially performing substitution operation on each variable X in the domain of σ .

Lemma 1 (Substitution lemma). If (Ω : η ,ψ) is a lifted explanation graph, and X ∈ vars(η), then
(Ω : η ,ψ)[k/X ] where k is a value in domain of X, is a lifted explanation graph.

When a substitution [k/X ] is applied to a lifted explanation graph, and η [k/X ] is unsatisfiable,
the result is ( /0 : {false},0) which is clearly a lifted explanation graph. When η [k/X ] is satisfiable,
the variable is removed from Ω and occurrences of X in ψ are replaced by k. The resultant DAG
clearly satisfies the conditions imposed by the Def 7. Finally we note that a ground explanation
graph φ (Def. 1) is a trivial lifted explanation graph ( /0 : {true},φ). This constitutes the informal
proof of lemma 1.

3.3 Semantics of Lifted Explanation Graphs
The meaning of a lifted explanation graph (Ω : η ,ψ) is given by the ground explanation tree
represented by it.

Definition 10 (Grounding). Let (Ω : η ,ψ) be a closed lifted explanation graph, i.e., it has no free
variables. Then the ground explanation tree represented by (Ω : η ,ψ), denoted Gr((Ω : η ,ψ)), is
defined as follows

Gr((Ω : η ,ψ))≡Gr(Ω,η ,ψ)

Gr(Ω,η ,(s, t)[αi : ψi])≡

{
(s, t)[αi : Gr(Ω,η ,ψi)], if η is satisfiable and t 6∈Ω

0, otherwise

Gr(Ω,η ,(s, t)[αi : ψi])≡

{∨
c∈range(t,η)(s,c)[αi : Gr(Ω\{t},η [c/t],ψi[c/t])], if η is satisfiable and t ∈Ω

0, otherwise

Gr( , ,0)≡0

Gr( ,η ,1)≡

{
1, if η is satisfiable
0, otherwise
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In the above definition ψ[c/t] represents the tree obtained by replacing every occurrence of
t in the tree with c. The disjunct (s,c)[αi : Gr(Ω \ {t},η [c/t],ψi[c/t])] in the above definition is
denoted φ(s,c) when the lifted explanation graph is clear from the context.

3.4 Operations on Lifted Explanation Graphs
And/Or Operations. Let (Ω : η ,ψ) and (Ω′ : η ′,ψ ′) be two lifted explanation graphs. We now
define “∧” and “∨” operations on them. The “∧” and “∨” operations are carried out in two steps.
First, the constraint formulas of the inputs are combined. The key issue in defining these operations
is to ensure the right order among the graph nodes (see criterion 3 of Def. 7). However, the free
variables in the operands may have no known order among them. Since, an arbitrary order cannot
be imposed, the operations are defined in a relational, rather than functional form. We use the
notation (Ω : η ,ψ)⊕ (Ω′ : η ′,ψ ′)→ (Ω′′ : η ′′,ψ ′′) to denote that (Ω′′ : η ′′,ψ ′′) is a result of
(Ω : η ,ψ)⊕ (Ω′ : η ′,ψ ′). When an operation returns multiple answers due to ambiguity on the
order of free variables, the answers that are inconsistent with the final order are discarded. We
assume that the variables in the two lifted explanation graphs are standardized apart such that the
bound variables of (Ω : η ,ψ) and (Ω′ : η ′,ψ ′) are all distinct, and different from free variables of
(Ω : η ,ψ) and (Ω′ : η ′,ψ ′). Let ψ = (s, t)[αi : ψi] and ψ ′ = (s′, t ′)[α ′i : ψ ′i ].

Combining constraint formulae

Q(Ω,η)∧Q(Ω′,η ′) is unsatisfiable. Then the orders among free variables in η and η ′ are in-
compatible.

• The ∧ operation is defined as (Ω : η ,ψ)∧ (Ω′ : η ′,ψ ′)→ ( /0 : {false},0)
• The ∨ operation simply returns the two inputs as outputs:

(Ω : η ,ψ)∨ (Ω′ : η
′,ψ ′)→(Ω : η ,ψ)

(Ω : η ,ψ)∨ (Ω′ : η
′,ψ ′)→(Ω′ : η

′,ψ ′)

Q(Ω,η)∧Q(Ω′,η ′) is satisfiable. The orders among free variables in η and η ′ are compatible

• The ∧ operation is defined as follows (Ω : η ,ψ)∧ (Ω′ : η ′,ψ ′)→ (Ω∪Ω′ : η ∧η ′,ψ ∧
ψ ′)

• The ∨ operation is defined as

(Ω : η ,ψ)∨ (Ω′ : η
′,ψ ′)→(Ω∪Ω

′ : η ∧¬η
′,ψ)

(Ω : η ,ψ)∨ (Ω′ : η
′,ψ ′)→(Ω∪Ω

′ : η
′∧¬η ,ψ ′)

(Ω : η ,ψ)∨ (Ω′ : η
′,ψ ′)→(Ω∪Ω

′ : η ∧η
′,ψ ∨ψ

′)

Combining DAGs Now we describe ∧ and ∨ operations on the two DAGs ψ and ψ ′ in the
presence of a single constraint formula. The general form of the operation is (Ω : η ,ψ⊕ψ ′).
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Base cases: The base cases are as follows (symmetric base cases are defined analogously).

(Ω : η ,0∨ψ
′)→(Ω : η ,ψ ′)

(Ω : η ,1∨ψ
′)→(Ω : η ,1)

(Ω : η ,0∧ψ
′)→(Ω : η ,0)

(Ω : η ,1∧ψ
′)→(Ω : η ,ψ ′)

Recursion: When the base cases do not apply, we try to compare the roots of ψ and ψ ′. The
root nodes are compared as follows: We say (s, t) = (s′, t ′) if η |= t = t ′ and s = s′, else
(s, t)< (s′, t ′) (analogously (s′, t ′)< (s, t)) if η |= t < t ′ or η |= t = t ′ and (s,c)≺ (s′,c) for
any ground term c. If neither of these two relations hold, then the roots are not comparable
and its denoted as (s, t) 6∼ (s′, t ′).

a. (s, t)< (s′, t ′)
(Ω : η ,ψ⊕ψ

′)→ (Ω : η ,(s, t)[αi : ψi⊕ψ
′])

b. (s′, t ′)< (s, t)
(Ω : η ,ψ⊕ψ

′)→ (Ω : η ,(s′, t ′)[α ′i : ψ⊕ψ
′
i ])

c. (s, t) = (s′, t ′)
(Ω : η ,ψ⊕ψ

′)→ (Ω : η ,(s, t)[αi : ψi⊕ψ
′
i ])

d. (s, t) 6∼ (s′, t ′)

i. t is a free variable or a constant, and t ′ is a free variable (the symmetric case is
analogous).

(Ω : η ,ψ⊕ψ
′)→(Ω : η ∧ t < t ′,ψ⊕ψ

′)

(Ω : η ,ψ⊕ψ
′)→(Ω : η ∧ t = t ′,ψ⊕ψ

′)

(Ω : η ,ψ⊕ψ
′)→(Ω : η ∧ t ′ < t,ψ⊕ψ

′)

ii. t is a free variable or a constant and t ′ is a bound variable (the symmetric case is
analogous)

(Ω : η ,ψ⊕ψ
′)→ (Ω : η ∧ t < t ′,ψ⊕ψ

′)

∨ (Ω : η ∧ t = t ′,ψ⊕ψ
′)

∨ (Ω : η ∧ t ′ < t,ψ⊕ψ
′)

Note that in the above definition, all three lifted explanation graphs use the same
variable names for bound variable t ′. Lifted explanation graphs can be easily stan-
dardized apart on the fly, and henceforth we assume that the operation is applied
as and when required.

iii. t and t ′ are bound variables. Let range(t,η) = [l1,u1] and range(t ′,η) = [l2,u2].
We can conclude that range(t,η) and range(t ′,η) are overlapping, otherwise (s, t)
and (s′, t ′) could have been ordered. Without loss of generality, we assume that
l1 ≤ l2 and we consider various cases of overlap as follows:
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When l1 = l2 and u1 = u2

(Ω : η ,ψ⊕ψ
′)→ (Ω∪{t ′′} : η ∧ l1−1 < t ′′∧ t ′′−1 < u1∧ t ′′ < t ∧ t ′′ < t ′,
(s, t ′′)[αi :
(ψi[t ′′/t]⊕ψ

′
i [t
′′/t ′])∨

(ψi[t ′′/t]⊕ψ
′)∨

(ψ ′i [t
′′/t ′]⊕ψ)])

When l1 = l2 and u1 < u2 the result is

(Ω : η ∧ t ′−1 < u1,ψ⊕ψ
′)∨ (Ω : η ∧u1 < t ′,ψ⊕ψ

′)

When l1 = l2 and u2 < u1 the result is

(Ω : η ∧ t = t ′,ψ⊕ψ
′)∨ (Ω : η ∧u2 < t,ψ⊕ψ

′)

When l1 < l2 and u1 = u2 the result is

(Ω : η ∧ t = t ′,ψ⊕ψ
′)∨ (Ω : η ∧ t < l2,ψ⊕ψ

′)

When l1 < l2 and u1 < u2 the result is

(Ω : η∧u1 < t ′,ψ⊕ψ
′)∨(Ω : η∧t < l2∧t ′−1< u1,ψ⊕ψ

′)∨(Ω : η∧t = t ′,ψ⊕ψ
′)

When l1 < l2 and u2 < u1 the result is

(Ω : η ∧u2 < t,ψ⊕ψ
′)∨ (Ω : η ∧ t < l2,ψ⊕ψ

′)∨ (Ω : η ∧ t = t ′,ψ⊕ψ
′)

Lemma 2 (Correctness of “∧” and “∨” operations). Let (Ω : η ,ψ) and (Ω′ : η ′,ψ ′) be two lifted
explanation graphs with free variables {X1,X2 . . . ,Xn}. Let Σ be the set of all substitutions mapping
each Xi to a value in its domain. Then, for every σ ∈ Σ, and ⊕ ∈ {∧,∨}

Gr(((Ω : η ,ψ)⊕ (Ω′ : η
′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)⊕Gr((Ω′ : η

′,ψ ′)σ)

Quantification.

Definition 11 (Quantification). Operation quantify((Ω : η ,ψ),X) changes a free variable X ∈
vars(η) to a quantified variable. It is defined as

quantify((Ω : η ,ψ),X) = (Ω∪{X} : η ,ψ), if X ∈ vars(η)

Lemma 3 (Correctness of quantify). Let (Ω : η ,ψ) be a lifted explanation graph, let σ−X be a
substitution mapping all the free variables in (Ω : η ,ψ) except X to values in their domains. Let
Σ be the set of mappings σ such that σ maps all free variables to values in their domains and is
identical to σ−X at all variables except X. Then the following holds

Gr(quantify((Ω : η ,ψ),X)σ−X) =
∨

σ∈Σ

Gr((Ω : η ,ψ)σ)
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Construction of Lifted Explanation Graphs Lifted explanation graphs for a query are con-
structed by transforming the Param-Px program P into one that explicitly constructs a lifted expla-
nation graph, following a similar procedure to the one outlined in Section 2 for constructing ground
explanation graphs. The main difference is the use of existential quantification. Let A :− G be a
program clause, and vars(G)−vars(A) be the set of variables in G and not in A. If any of these vari-
ables has a type, then it means that the variable used as an instance argument in G is existentially
quantified. Such clauses are then translated as head(A,Eh) :− exp(G,Eg),quantify(Eg,Vs,Eh),
where Vs is the set of typed variables in vars(G)− vars(A). A minor difference is the treatment of
constraints: exp is extended to atomic constraints ϕ such that exp(ϕ,E) binds E to ( /0 : {ϕ},1).

We order the populations and map the elements of the populations to natural numbers as fol-
lows. The population that comes first in the order is mapped to natural numbers in the rangle
1..m, where m is the cardinality of this population. Any constants in this population are mapped
to natural numbers in the low end of the range. The next population in the order is mapped to
natural numbers starting from m+1 and so on. Thus, each typed variable is assigned a domain of
contiguous positive values.

The rest of the program transformation remains the same, the underlying graphs are constructed
using the lifted operators.

4 Lifted Inference using Lifted Explanations
In this section we describe a technique to compute answer probabilities in a lifted fashion from
closed lifted explanation graphs. This technique works on a restricted class of lifted explanation
graphs satisfying a property we call the frontier subsumption property.

Definition 12 (Frontier). Given a closed lifted explanation graph (Ω : η ,ψ), the frontier of ψ w.r.t
X ∈Ω denoted frontierX(ψ) is the set of non-zero maximal subtrees of ψ , which do not contain a
node with X as the instance variable.

Analogous to the set representation of explanations described in 2.1, we consider the set rep-
resentations of lifted explanations, i.e., root-to-leaf paths in the DAGs of lifted explanation graphs
that end in a “1” leaf.

We consider term substitutions that can be applied to lifted explanations. These substitutions
replace a variable by a term and further apply standard re-writing rules such as simplification of
algebraic expressions. As before, we allow term mappings that specify a set of term substitutions.

Definition 13 (Frontier subsumption property). A closed lifted explanation graph (Ω : η ,ψ) sat-
isfies the frontier subsumption property w.r.t X ∈ Ω, if under term mappings σ1 = {X ± k+1/Y |
〈X± k < Y 〉 ∈ η} and σ2 = {X +1/X}, every tree φ ∈ frontierX(ψ) satisfies the following condi-
tion: for every lifted explanation E2 in ψ , there is a lifted explanation E1 in φ such that E1σ1 is a
sub-explanation (i.e., subset) of E2σ2.

A lifted explanation graph is said to satisfy frontier subsumption property, if it is satisfied for
each bound variable. This property can be checked in a bottom up fashion for all bound variables
in the graph. The tree obtained by replacing all subtrees in frontierX(ψ) by 1 in ψ is denoted ψ̂X .

For closed lifted explanation graphs satisfying the above property, the probability of query
answers can be computed using the following set of recurrences. With each subtree ψ = (s, t)[αi :
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ψi] of the DAG of the lifted explanation graph, we associate the function f (σ ,ψ) where σ is a
(possibly incomplete) mapping of variables in Ω to values in their domains.

Definition 14 (Probability recurrences). Given a closed lifted explanation graph (Ω : η ,ψ), we
define f (σ ,ψ) (as well as g(σ ,ψ) and h(σ ,ψ) wherever applicable) for a partial mapping σ of
variables in Ω to values in their domains based on the structure of ψ . As before ψ = (s, t)[αi : ψi]

Case 1: ψ is a 0 leaf node. Then f (σ ,0) = 0

Case 2: ψ is a 1 leaf node. Then f (σ ,1) =

{
1, if [[ησ ]] 6= /0
0, otherwise

Case 3: tσ is a constant. Then f (σ ,ψ) =

{
∑αi∈Ds πs(αi) · f (σ ,ψi), if [[ησ ]] 6= /0
0, otherwise

Case 4: tσ ∈Ω, and range(t,ησ) = (l,u). Then

f (σ ,ψ) =

{
h(σ [l/t],ψ), if [[ησ ]] 6= /0
0, otherwise

h(σ [c/t],ψ) =

{
g(σ [c/t],ψ)+((1−P(ψ̂X))×h(σ [c+1/t],ψ)), if c < u
g(σ [c/t],ψ), if c = u

g(σ ,ψ) =

{
∑αi∈Ds πs(αi) · f (σ ,ψi), if [[ησ ]] 6= /0
0, otherwise

In the above definition σ [c/t] refers to a new partial mapping obtained by augmenting σ with
the substitution [c/t], P(ψ̂X) is the sum of the probabilities of all branches leading to a 1 leaf in
ψ̂X . The recurrences defining f (σ ,ψ), g(σ ,ψ) and h(σ ,ψ) are well-defined, and are computable.

Definition 15 (Probability of Lifted Explanation Graph). Let (Ω : η ,ψ) be a closed lifted expla-
nation graph. Then, the probability of explanations represented by the graph, prob((Ω : η ,ψ)), is
the value of f ({},ψ).

Theorem 4 (Correctness of Lifted Inference). Let (Ω : η ,ψ) be a closed lifted explanation graph,
and φ = Gr(Ω : η ,ψ) be the corresponding ground explanation graph. Then prob((Ω : η ,ψ)) =
prob(φ).

Given a closed lifted explanation graph, let k be the maximum number of instance variables
along any root to leaf path. Then the function f (σ ,ψ) for the leaf will have to be computed for each
mapping of the k variables. Each recurrence equation itself is either of constant size or bounded
by the number of children of a node. Using dynamic programming (possibly implemented via
tabling), a solution to the recurrence equations can be computed in polynomial time.

Theorem 5 (Efficiency of Lifted Inference). Let ψ be a closed lifted inference graph, n be the size
of the largest population, and k be the largest number of instance variables along any root of leaf
path in ψ . Then, f ({},ψ) can be computed in O(|ψ|×nk) time.
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There are two sources of further optimization in the generation and evaluation of recurrences.
First, certain recurrences may be transformed into closed form formulae which can be more ef-
ficiently evaluated. For instance, the closed form formula for h(σ ,ψ) for the subtree rooted at
the node (toss,Y ) in Fig 1(c) can be evaluated in O(log(n)) time while a naive evaluation of the
recurrence takes O(n) time. Second, certain functions f (σ ,ψ) need not be evaluated for every
mapping σ because they may be independent of certain variables. For example, leaves are always
independent of the mapping σ .

Other Examples. There are a number of simple probabilistic models that cannot be tackled by
other lifted inference techniques but can be encoded in Param-Px and solved using our technique.
For one such example, consider an urn with n balls, where the color of each ball is given by a
distribution. Determining the probability that there are at least two green balls is easy to phrase as
a directed first-order graphical model. However, lifted inference over such models can no longer
be applied if we need to determine the probability of at least two green or two red balls. The
probability computation for one of these events can be viewed as a generalization of noisy-OR
probability computation, however dealing with the union requires the handling of intersection of
the two events, due to which the O(log(N)) time computation is no longer feasible.

For a more complex example, we use an instance of a collective graphical model (Sheldon and
Dietterich 2011). In particular, consider a system of n agents where each agent moves between
various states in a stochastic manner. Consider a query to evaluate whether there are at least k
agents in a given state s at a given time t. Note that we cannot compile a model of this system
into a clausal form without knowing the query. This system can be represented as a PRISM/Px
program by modeling each agent’s evolution as a Markov model. The size of the lifted explanation
graph, and the number of recurrences for this query is O(k.t). When the recurrences are evaluated
along three dimensions: time, total number of agents, and number of agents in state s, resulting in
a time complexity of O(n.k.t).

5 Related Work and Discussion
First-order graphical models (Poole 2003; Braz et al. 2005) are compact representations of propo-
sitional graphical models over populations. The key concepts in this field are that of parameterized
random variables and parfactors. A parameterized random variable stands for a population of i.i.d.
propositional random variables (obtained by grounding the logical variables). Parfactors are factors
(potential functions) on parameterized random variables. By allowing large number of identical
factors to be specified in a first-order fashion, first-order graphical models provide a representation
that is independent of the population size. A key problem, then, is to perform lifted probabilistic
inference over these models, i.e. without grounding the factors unnecessarily. The earliest such
technique was inversion elimination due to Poole (2003). When summing out a parameterized
random variable (i.e., all its groundings), it is observed that if all the logical variables in a parfactor
are contained in the parameterized random variable, it can be summed out without grounding the
parfactor.

The idea of inversion elimination, though powerful, exploits one of the many forms of sym-
metry present in first-order graphical models. Another kind of symmetry present in such models
is that the values of an intermediate factor may depend on the histogram of propositional random
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variable outcomes, rather than their exact assignment. This symmetry is exploited by counting
elimination (Braz et al. 2005) and elimination by counting formulas (Milch et al. 2008).

Van den Broeck et al. (2011) presented a form of lifted inference that uses constrained CNF
theories with positive and negative weight functions over predicates as input. Here the task of
probabilistic inference in transformed to one of weighted model counting. To do the latter, the
CNF theory is compiled into a structure known as first-order deterministic decomposable negation
normal form. The compiled representation allows lifted inference by avoiding grounding of the
input theory. This technique is applicable so long as the model can be formulated as a constrained
CNF theory.

Bellodi et al. (2014) present another approach to lifted inference for probabilistic logic pro-
grams. The idea is to convert a ProbLog program to parfactor representation and use a modified
version of generalized counting first order variable elimination algorithm (Taghipour et al. 2013)
to perform lifted inference. Problems where the model size is dependent on the query, such as
models with temporal aspects, are difficult to solve with the knowledge compilation approach.

In this paper, we presented a technique for lifted inference in probabilistic logic programs us-
ing lifted explanation graphs. This technique is a natural generalization of inference techniques
based on ground explanation graphs, and follows the two step approach: generation of an expla-
nation graph, and a subsequent traversal to compute probabilities. While the size of the lifted
explanation graph is often independent of population, computation of probabilities may take time
that is polynomial in the size of the population. A more sophisticated approach to computing
probabilities from lifted explanation graph, by generating closed form formulae where possible,
will enable efficient inference. Another direction of research would be to generate hints for lifted
inference based on program constructs such as aggregation operators. Finally, our future work is
focused on performing lifted inference over probabilistic logic programs that represent undirected
and discriminative models.

A Proofs
Lemma 2 (Correctness of “∧” and “∨” operations). Let (Ω : η ,ψ) and (Ω′ : η ′,ψ ′) be two lifted
explanation graphs with free variables {X1,X2 . . . ,Xn}. Let Σ be the set of all substitutions mapping
each Xi to a value in its domain. Then, for every σ ∈ Σ, and ⊕ ∈ {∧,∨}

Gr(((Ω : η ,ψ)⊕ (Ω′ : η
′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)⊕Gr((Ω′ : η

′,ψ ′)σ)

Proof. The proof is by structural induction.

Case 1: Q(Ω,η)∧Q(Ω′,η ′) is unsatisfiable.

Case 1.1: ∧ operation
Q(Ω,η)∧Q(Ω,η ′) is unsatisfiable, implies that for each σ ∈ Σ, either one or both
of Q(Ω,η)σ and Q(Ω′,η ′)σ are unsatisfiable. Either one or both of ∃Ω.ησ and
∃Ω′.η ′σ are unsatisfiable. By definition 9, either one or both of the (Ω : η ,ψ)σ
and (Ω′ : η ′,ψ ′)σ should be ( /0 : {false},0). By definition 10, we know that
Gr(( /0 : {false},0)) = 0. Therefore Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ) = 0. The ∧
operation in this case is defined as

(Ω : η ,ψ)∧ (Ω′ : η
′,ψ ′)→ ( /0 : {false},0)
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Therefore, Gr(((Ω : η ,ψ)∧ (Ω′ : η ′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ).

Case 1.2: ∨ operation
Assume without loss of generality that (Ω′ : η ′,ψ ′)σ = ( /0 : {false},0). Then by
definition 10 Gr((Ω : η ,ψ)σ)∨Gr((Ω′ : η ′,ψ ′)σ) = Gr((Ω : η ,ψ)σ). Since the
definition of ∨ operation in this case is to backtrack and return both (Ω : η ,ψ) and
(Ω′ : η ′,ψ ′), under the substitution σ , (Ω′ : η ′,ψ ′) will be discarded. Therefore,
Gr(((Ω : η ,ψ)∨ (Ω′ : η ′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)∨Gr((Ω′ : η ′,ψ ′)σ).

Case 2: Q(Ω,η)∧Q(Ω′,η ′) is satisfiable.

Case 2.1: ∧ operation
The ∧ operation is defined as (Ω : η ,ψ)∧ (Ω′ : η ′,ψ ′)→ (Ω∪Ω′ : η ∧η ′,ψ ∧ψ ′)

Case 2.1.1: (Q(Ω,η)∧Q(Ω′,η ′))σ is unsatisfiable
(Q(Ω,η) ∧ Q(Ω′,η ′))σ is unsatisfiable, implies atleast one of Q(Ω,η)σ and
Q(Ω′,η)σ is unsatisfiable. Atleast one of ∃Ω.ησ and ∃Ω′.η ′σ is unsatisfi-
able. By definition 9, atleast one of (Ω : η ,ψ)σ and (Ω′ : η ′,ψ ′)σ is equal to
( /0 : {false},0). By definition 10, Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ) = 0. Fur-
ther, if one of ∃Ω.ησ and ∃Ω′.η ′σ is unsatisfiable ∃Ω∪Ω′.η ∧η ′σ is also unsat-
isfiable. Therefore, by definition 9, Gr((Ω∪Ω′ : η ∧η ′,ψ ∧ψ ′)σ) = 0. Therefore
Gr(((Ω : η ,ψ)∧ (Ω′ : η ′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ).

Case 2.1.1: (Q(Ω,η)∧Q(Ω′,η ′))σ is satisfiable.
Case 2.1.1.1: ψ = 0 (analogously ψ ′ = 0).

By definition 10, Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ) = 0. Based on the
definition of∧ operation (Ω∪Ω′ : η∧η ′,ψ∧ψ ′)σ =(Ω∪Ω′ : η∧η ′,0)σ . By
definition 10 Gr((Ω∪Ω′ : η ∧η ′,0)σ) = 0. Therefore, Gr(((Ω : η ,ψ)∧ (Ω′ :
η ′,ψ ′))σ) = Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ).

Case 2.1.1.2: ψ = 1 (analogously ψ ′ = 1).
By definition 10, Gr((Ω : η ,ψ)σ) = 1. Therefore Gr((Ω : η ,ψ)σ)∧Gr((Ω′ :
η ′,ψ ′)σ) = Gr((Ω′ : η ′,ψ ′)σ). Based on the definition of ∧ operation (Ω∪
Ω′ : η ∧ η ′,ψ ∧ψ ′) = (Ω∪Ω′ : η ∧η ′,ψ ′). By definition 9 (Ω∪Ω′ : η ∧
η ′,ψ ′)σ =(Ω∪Ω′ : (η∧η ′)σ ,ψ ′σ) and (Ω′ : η ′,ψ ′)σ =(Ω′ : η ′σ ,ψ ′σ). We
can claim that Gr((Ω′ : η ′σ ,ψ ′σ)) = Gr((Ω∪Ω′ : (η ∧η ′)σ ,ψ ′σ)) because,
range(t,η ′σ) = range(t,(η ∧η ′)σ) for any t ∈Ω′ Why? Because there exist
no variables in common between ησ and η ′σ and ησ ∧ η ′σ is satisfiable
based on the assumptions.

Case 2.1.1.3 : Neither ψ nor ψ ′ is a leaf node and (s, t) < (s′, t ′) (analogously
(s′, t ′)< (s, t)).
Since (Q(Ω,η)∧Q(Ω′,η ′)σ) is satisfiable, we can conclude that ησ and η ′σ
are satisfiable. By definition 9, Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ)=Gr(Ω :
ησ ,ψσ)∧Gr(Ω′ : η ′σ ,ψ ′σ). Let us consider the case where t is either a con-
stant or a free variable. Since (s, t) < (s′, t ′) it implies that (s, tσ) ≺ (s′, t ′σ).
By definition 10, Gr(Ω : ησ ,ψσ)∧Gr(Ω′ : η ′σ ,ψ ′σ) = Gr(Ω,ησ ,ψσ)∧
Gr(Ω′,η ′σ ,ψ ′σ). Further Gr(Ω : ησ ,ψσ)∧Gr(Ω′ : η ′σ ,ψ ′σ) = (s, tσ)[αi :
Gr(Ω,ησ ,ψiσ)∧Gr(Ω′,η ′σ ,ψ ′σ)]. Based on the definition of ∧ operation
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(Ω∪Ω′ : η ∧η ′,ψ ∧ψ ′)σ = (Ω∪Ω′ : η ∪η ′,(s, t)[αi : ψi∧ψ ′])σ . Therefore,
Gr((Ω∪Ω′ : η∧η ′,ψ∧ψ ′)σ) =Gr(Ω∪Ω′,(η∧η ′)σ ,(s, t)[αi : ψi∧ψ ′]σ) =
(s, tσ)[αi : Gr(Ω∪Ω′,(η ∧η ′)σ ,(ψi∧ψ ′)σ)]. Based on inductive hypothe-
sis, Gr(Ω,ησ ,ψiσ)∧Gr(Ω′,η ′σ ,ψ ′σ) = Gr(Ω∪Ω′,(η∧η ′)σ ,(ψi∧ψ ′)σ).
Now consider the case when t ∈Ω. By definition 10 Gr(Ω : η ,ψ)σ ∧Gr(Ω′ :
η ′,ψ ′)σ = Gr(Ω,ησ ,ψσ) ∧ Gr(Ω′,η ′σ ,ψ ′σ) =

∨
c∈range(t,ησ)(s,c)[αi :

Gr(Ω \ {t},ησ [c/t],ψiσ [c/t]) ∧ Gr(Ω,η ′σ ,ψ ′σ)]. Similarly, Gr(Ω ∪
Ω′,(η ∧η ′)σ ,(s, t)[αi : ψi∧ψ ′]σ) =

∨
c∈range(t,(η∧η ′)σ)(s,c)[αi : Gr(Ω∪Ω′ \

{t},(η ∧ η ′)σ [c/t],(ψi ∧ ψ ′)σ [c/t])]. But range(t,ησ) = range(t,(η ∧
η ′)σ) and based on inductive hypothesis, Gr(Ω \ {t},ησ [c/t],ψiσ [c/t])∧
Gr(Ω′,η ′σ ,ψ ′σ) = Gr(Ω∪Ω′ \{t},(η ∧η ′)σ [c/t],(ψi∧ψ ′)σ [c/t])

Case 2.1.1.4: Neither ψ nor ψ ′ is a leaf node and (s, t) = (s′, t ′).
Since the variables in the lifted explanation graphs are standardized apart,
this implies that neither t nor t ′ is a bound variable. Gr((Ω : η ,ψ)σ) ∧
Gr((Ω′ : η ′,ψ ′)σ) = (s, tσ)[αi : Gr(Ω,ησ ,ψiσ)∧Gr(Ω′,η ′σ ,ψ ′i σ)]. Sim-
ilarly, Gr(Ω ∪ Ω′,(η ∧ η ′)σ ,(s, t)[αi : ψi ∧ ψ ′i ]σ) = (s, tσ)[αi : Gr(Ω ∪
Ω′,(η∧η ′)σ ,(ψi∧ψ ′i )σ)]. Based on inductive hypothesis, Gr(Ω,ησ ,ψiσ)∧
Gr(Ω′,η ′σ ,ψ ′i σ) = Gr(Ω∪Ω′,(η ∧η ′)σ ,(ψi∧ψ ′i )σ).

Case 2.1.1.5: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t is a free
variable or a constant and t ′ is a free variable.
Consider the case where t and t ′ are free variables, or t is a constant and t ′ is
a free variable. Based on σ exactly one of (s, tσ)< (s, t ′σ), (s, tσ) = (s′, tσ)
and (s, t ′σ) < (s, tσ) will hold. According to the definition of ∧ operation,
three lifted explanation graphs are returned (Ω∪Ω′ : η ∧η ′∧ t < t ′,ψ ∧ψ ′),
(Ω∪Ω′ : η ∧η ′∧ t = t ′,ψ ∧ψ ′), and (Ω∪Ω′ : η ∧η ′∧ t ′ < t,ψ ∧ψ ′). Under
the substitution σ only one will be retained. And the proof then proceeds as
in case 2.1.1.3 or case 2.1.1.4.

Case 2.1.1.6: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t is a free
variable or a constant and t ′ is a bound variable. Consider Gr((Ω : η ,ψ)σ)∧
Gr((Ω′ : η ′,ψ ′)σ). This can be written as (s, tσ)[αi : Gr(Ω,ησ ,ψiσ)] ∧∨

c∈range(t ′,η ′σ)(s,c)[α
′
i : Gr(Ω′ \ {t ′},η ′σ [c/t ′],ψ ′i σ [c/t ′])]. By using conti-

nuity of range we can rewrite it as

(s, tσ)[αi : Gr(Ω,ησ ,ψiσ)]∧∨
c∈range(t ′,(η ′∧t<t ′)σ)

(s,c)[α ′i : Gr(Ω′ \{t ′},η ′σ [c/t ′],ψ ′i σ [c/t ′])]

∨(s, tσ)[α ′i : Gr(Ω′ \{t ′},η ′σ [tσ/t ′],ψ ′i σ [tσ/t ′])]

∨
∨

c∈range(t ′,(η ′∧t ′<t)σ)

(s,c)[α ′i : Gr(Ω′ \{t ′},η ′σ [c/t ′],ψ ′i σ [c/t ′])]

By distributivity of ∧ over ∨ for ground explanation graphs, we can rewrite it
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as

(s, tσ)[αi : Gr(Ω,ησ ,ψiσ)]∧
∨

c∈range(t ′,(η ′∧t<t ′)σ)

(s,c)[α ′i : Gr(Ω′ \{t ′},η ′σ [c/t ′],ψ ′i σ [c/t ′])]

∨(s, tσ)[αi : Gr(Ω,ησ ,ψiσ)]∧(s, tσ)[α ′i : Gr(Ω′ \{t ′},η ′σ [tσ/t ′],ψ ′i σ [tσ/t ′])]

∨(s, tσ)[αi : Gr(Ω,ησ ,ψiσ)]
∨

c∈range(t ′,(η ′∧t ′<t)σ)

(s,c)[α ′i : Gr(Ω′ \{t ′},η ′σ [c/t ′],ψ ′i σ [c/t ′])]

This can be re-written as

Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η
′∧ t < t ′,ψ ′)σ)

∨Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η
′∧ t = t ′,ψ ′)σ)

Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η
′∧ t ′ < t,ψ ′)σ)

By inductive hypothesis this is equal to∨
ϕ∈{t<t ′,t=t ′,t ′<t ′}

Gr((Ω∪Ω
′ : η ∧η

′∧ϕ,ψ ∧ψ
′)σ)

Case 2.1.1.7: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t, t ′ are bound
variables.
When l1 = l2 and u1 = u2, Gr((Ω : η ,ψ)σ)∧Gr((Ω′ : η ′,ψ ′)σ) can be written
as∨
c∈[l1,u1]

(s,c)[αi : Gr((Ω,η ,ψi)σ [c/t])]∧
∨

c′∈[l2,u2]

(s,c′)[αi : Gr((Ω′,η ′,ψ ′i )σ [c′/t ′])]

Let the sequence of positive integers in the interval [l1,u1] be 〈l1 =
k1,k2, . . . ,kn = u1. Then the above expression can be re-written as(s,k1)[αi : Gr((Ω,η ,ψi)σ [k1/t])]∧

∨
c′∈[k1,kn]

(s,c′)[αi : Gr((Ω′,η ′,ψ ′i )σ [c/t ′])]

∨
((s,k2)[αi : Gr((Ω,η ,ψi)σ [k2/t])]∧

∨
c′∈[k1,kn]

(s,c′)[αi : Gr((Ω′,η ′,ψ ′i )σ [c′/t ′])]

∨
. . .((s,kn)[αi : Gr((Ω,η ,ψi)σ [kn/t])]∧

∨
c′∈[k1,kn]

(s,c′)[αi : Gr((Ω′,η ′,ψ ′i )σ [c′/t ′])]


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This can again be re-written as∨
c∈[k1,kn]

(
(s,c)[αi : Gr((Ω,η ,ψi)σ [c/t])]∧ (s,c)[αi : Gr((Ω′,η ′,ψ ′i )σ [c/t ′])]

)
∨

d∈[k1,kn−1]

(s,d)[αi : Gr((Ω,η ,ψi)σ [d/t])]∧
∨

e∈[d+1,kn]

(s,e)[αi : Gr((Ω′,η ′,ψ ′i )σ [e/t ′])]


∨

f∈[k1,kn−1]

(s, f )[αi : Gr((Ω′,η ′,ψ ′i )σ [ f/t])]∧
∨

g∈[d+1,kn]

(s,g)[αi : Gr((Ω,η ,ψi)σ [g/t ′])]


This is equivalent to∨
c∈[k1,kn−1]

(s,c)[αi : (Gr((Ω,η ,ψi)σ [c/t])∧Gr((Ω′,η ′,ψ ′i )σ [c/t ′]))∨

(Gr((Ω,η ,ψi)σ [c/t])∧Gr((Ω′,η ′∧ t < t ′,(s, t ′)[αi : ψ
′
i ])σ [c/t]))∨

(Gr((Ω′,η ′,ψ ′i )[t/t ′]σ [c/t])∧Gr((Ω,η ∧ t < t ′,(s, t ′)[αi : ψi])[t ′/t]σ [c/t]))]∨
(s,kn)[αi : (Gr((Ω,η ,ψi)σ [kn/t])∧Gr((Ω′,η ′,ψ ′i )σ [kn/t ′]))]

By inductive hypothesis this is equivalent to∨
c∈[k1,kn]

(s,c)[αi : Gr((Ω∪Ω
′,η ∧η

′,ψi∧ψ
′
i )σ [c/t][c/t ′])∨

Gr((Ω∪Ω
′,η ∧η

′∧ t < t ′,ψi∧ (s, t ′)[αi : ψ
′
i ])σ [c/t])∨

Gr((Ω∪Ω
′,η ∧η

′∧ t < t ′,ψ ′i [t/t ′]∧ (s, t ′)[αi : ψi[t ′/t]])σ [c/t])

But the definition of ∧ operation is

(Ω : η ,ψ ∧ψ
′)∧ (Ω′ : η

′,ψ ′)→ (Ω∪Ω
′ : η ∧η

′∧ t < t ′,(s, t)[αi : (ψi∧ψ
′
i [t/t ′])∨

(ψi∧ψ
′)∨

(ψ ′i [t/t ′]∧ψ[t ′/t])])

The grouding expansion given earlier can be rewritten as

Gr((Ω∪Ω
′ : η ∧η

′∧ t < t ′,(s, t)[αi : (ψi∧ψ
′[t/t ′])∨

(ψi∧ψ
′)∨

(ψ ′i [t/t ′]∧ψ[t ′/t])]))

Therefore the theorem is proved in this case.
The proof for remaining cases is analogous and straightforward, because based
on the values of l1,u1, l2 and u2 we have disjuncts where the ranges of root
variables are either identical or non-overlapping. Both of these cases have
been proved already.

Case 2.2: Operation ∨
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Case 2.2.1: When Q(Ω,η) is not identical to Q(Ω′,η ′). The definition of ∨ operation
returns several lifted explanation graphs. If Q(Ω,η)σ and Q(Ω′,η ′)σ are both un-
satisfiable then we can see that Gr((Ω : η ,ψ)σ)∨Gr((Ω′ : η ′,ψ ′)σ) = 0. Further,
all the lifted explanation graphs returned by the definition of ∨ have unsatisfiable
constraints therefore, the theorem is proved in this case. When Q(Ω,η)σ is satis-
fiable but not Q(Ω′,η ′)σ ( or vice-versa), Gr((Ω : η ,ψ)σ)∨Gr((Ω′ : η ′,ψ ′)σ) =
Gr((Ω : η ,ψ)σ). Based on the definition of ∨ operation, only the first lifted expla-
nation graph has satisfiable constraint, so the theorem is proved. Same reasoning
applies in the symmetric case.

Case 2.2.2: When Q(Ω,η) is identical to Q(Ω′,η ′) and Q(Ω,η)σ is unsatisfiable,
the proof of the theorem is trivial. So we consider the case where Q(Ω,η)σ
and Q(Ω′,η ′)σ are both satisfiable and Q(Ω,η) may or may not be identical to
Q(Ω′,η ′).
Case 2.2.2.1: When ψ = 0 (analogously ψ ′ = 0). Here Gr((Ω : η ,ψ)σ) ∨

Gr((Ω′ : η ′,ψ ′)σ) = Gr((Ω′ : η ′,ψ ′)σ). Similarly Gr((Ω ∪ Ω′ : η ∧
η ′,ψ ′)σ) = Gr((Ω′ : η ′,ψ ′)σ). Therefore the theorem is proved.

Case 2.2.2.2: When ψ = 1 (analogously ψ ′ = 1). Here Gr((Ω : η ,ψ)σ) ∨
Gr((Ω′ : η ′,ψ ′)σ) = 1. Similarly Gr((Ω∪Ω′ : η ∧η ′,1)σ) = 1. Therefore,
the theorem is proved.

Case 2.2.2.3: Neither ψ nor ψ ′ is a leaf node and (s, t) < (s, t ′) (analogously
(s′, t ′)< (s, t)). Proof is analogous to Case 2.1.1.3.

Case 2.2.2.4: Neither ψ nor ψ ′ is a leaf node and (s, t) = (s′, t ′). Proof is analo-
gous to Case 2.1.1.4.

Case 2.2.2.5: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t is a free
variable or a constant and t ′ is a free variable. Proof is analogous to Case
2.1.1.5.

Case 2.2.2.6: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t is a free
variable or a constant and t ′ is a bound variable. Proof is analogous to Case
2.1.1.6.

Case 2.2.2.7: Neither ψ nor ψ ′ is a leaf node and (s, t) 6∼ (s′, t ′) and t, t ′ are bound
variables. Proof is analogous to Case 2.1.1.7.

Lemma 3 (Correctness of quantify). Let (Ω : η ,ψ) be a lifted explanation graph, let σ−X be a
substitution mapping all the free variables in (Ω : η ,ψ) except X to values in their domains. Let
Σ be the set of mappings σ such that σ maps all free variables to values in their domains and is
identical to σ−X at all variables except X. Then the following holds

Gr(quantify((Ω : η ,ψ),X)σ−X) =
∨

σ∈Σ

Gr((Ω : η ,ψ)σ)

Proof. Let us first consider the case when the root is (s,X) for some switch s in ψ . quanti f y((Ω :
η ,ψ),X) = (Ω∪{X} : η ,ψ). If ησ−X is unsatisfiable, then Gr(quanti f y((Ω : η ,ψ),X)σ−X) = 0.
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Next,
∨

σ∈Σ Gr((Ω : η ,ψ)σ [c/X ]) = 0 since ησ is also unsatisfiable for any σ . On the other hand
if ησ−X is satisfiable,

Gr(quanti f y((Ω : η ,ψ),X)σX) = Gr((Ω∪{X} : η ,ψ)σ−X)

= Gr((Ω∪{X} : ησ−X ,ψσ−X))

=
∨

c∈range(X ,ησ−X )

(s,c)[αi : Gr(Ω\{X},ησ−X [c/X ],ψiσ−X [c/X ])]

Next, ∨
σ∈Σ

Gr((Ω : η ,ψ)σ) =
∨

c∈σX (ησ−X )

(s,c)[αi : Gr(Ω\{X},ησ−X [c/X ],ψiσ−X [c/X ])]

By using continuity of range, range(X ,ησ−X) = σX(ησ−X). Therefore the theorem is proved in
this case. Now consider the case where X doesn’t occur in the root of the lifted explanation graph.
Since, the lifted explanation graph is well-structured, there is subtree ψ ′ in ψ such that the root
of ψ ′ contains X and all occurrences of X are within ψ ′. If we remove the subtree ψ ′ from ψ ,
then Gr(quanti f y((Ω : η ,ψ),X)σ−X) =

∨
σ∈Σ Gr((Ω : η ,ψ)σ) since all the disjuncts on the right

hand side will be identical to each other and to the ground explanation tree on the left hand side.
Therefore, we need only show that the grounding of the subtree ψ ′ when X is a quantified variable
is same as

∨
σ∈Σ Gr((Ω,ησ ,ψ ′σ) which we already showed.

Theorem 4 (Correctness of Lifted Inference). Let (Ω : η ,ψ) be a closed lifted explanation graph,
and φ = Gr(Ω : η ,ψ) be the corresponding ground explanation graph. Then prob((Ω : η ,ψ)) =
prob(φ).

Proof. Consider the following modification of the grounding algorithm for lifted explanation
graphs. An extra argument is added to Gr(Ω,η ,ψ) to make it Gr(Ω,η ,ψ,σ). Whenever a variable
is substituted by a value from its domain, σ is augmented to record the substitution. Further the set
Ω and the constraint formula η are not altered when recursively grounding subtrees. Rather, ησ is
tested for satisfiability and tσ is tested for membership in Ω to determine if a node contains bound
variable. The grounding of a lifted explanation graph (Ω : η ,ψ) is given by Gr(Ω,η ,ψ,{}). It is
easy to see that the ground explanation tree produced by this modified procedure is same as that
produced by the procedure given in definition 10.

We will prove that if Gr(Ω,η ,ψ,σ) = φ , then prob(φ) = f (σ ,ψ). We prove this using struc-
tural induction based on the structure of ψ .

Case 1: If ψ is a 0 leaf node, then Gr(Ω,η ,0,σ) = 0. Therefore prob(φ) = f (σ ,ψ) = 0.

Case 2: If ψ is a 1 leaf node, and ησ is satisfiable, then Gr(Ω,η ,ψ,σ) = 1 and prob(φ) =
f (σ ,ψ). On the other hand if ησ is not satisfiable, then Gr(Ω,η ,ψ,σ) = 0 and prob(φ) =
f (σ ,ψ).

Case 3: If ψ = (s, t)[αi : ψi] and tσ 6∈ Ω, and ησ is satisfiable, then φ = (s, tσ)[αi :
Gr(Ω,η ,ψi,σ)]. Therefore, prob(φ) = ∑αi∈Ds πs(αi) · prob(Gr(Ω,η ,ψi,σ)). But
f (σ ,ψ) =∑αi∈Ds πs(αi) · f (σ ,ψi). Therefore, by inductive hypothesis the theorem is proved
in this case. If ησ is unsatisfiable, then φ = 0, therefore prob(φ) = f (σ ,ψ).
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Case 4: If ψ = (s, t)[αi : ψi] and tσ ∈ Ω and ησ is satisfiable. In this case φ is defined as the
disjunction of the ground trees (s,c)[αi : Gr(Ω,η ,ψi,σ [c/t])] where c ∈ range(t,ησ). Let
us order the grounding trees in the increasing order of the value c. Given two trees φ(s,c) and
φ(s,c+1) corresponding to values c,c+ 1 ∈ range(t,ησ), the ∨ operation on ground trees,
would recursively perform disjunction of the φ(s,c+1) with the subtrees in the following set

Fr = {φ ′ | φ ′ is a maximal subtree of φ(s,c) without c as instance argument of any node}

The set Fr contains ground trees corresponding to the trees in frontiert(ψ) and possibly 0
leaves. Since we assumed that frontier subsumption property is satisfied, for every φ ′ ∈ Fr
that is not a 0 leaf, it holds that every explanation in φ(s,c+1) contains a subexplanation in φ ′.
Therefore, φ(s,c) ∨ φ(s,c+1), can be computed equivalently as φ(s,c) ∨ (¬ψ̂t [c/t]∧ φ(s,c+1)).
Since ¬ψ̂t [c/t] contains only internal nodes with instance argument c, the explanations
of ¬ψ̂t [c/t] are independent of explanations in φ(s,c+1). Further, the explanations of
φ(s,c) are mutually exclusive with explanations in ¬ψ̂t [c/t]. Therefore the probability
prob(φ(s,c)∨φ(s,c+1)) can be computed as prob(φ(s,c))+(1− prob(ψ̂t [c/t])) · prob(ψ(s,c+1)).
The probability of the complete disjunction

∨
c∈range(t,ησ)(s,c)[αi : Gr(Ω,η ,ψi,σ [c/t])] is

obtained by the expression

prob(φ(s,l))+(1− prob(ψ̂t [l/t]))× (

prob(φ(s,l+1))+(1− prob(ψ̂t [l +1/t]))× (

· · ·
(1− prob(ψ̂t [u−1/t]))× prob(φ(s,u))))

Now consider f (σ ,ψ) for the same ψ , f (σ ,ψ) = h(σ [l/t],ψ). The expansion of
h(σ [l/t],ψ) is as follows

g(σ [l/t],ψ)+(1− prob(ψ̂t [l/t]))× (

g(σ [l +1/t],ψ)+(1− prob(ψ̂t [l +1/t]))× (

· · ·
(1− prob(ψ̂t [u−1/t])×g(σ [u/t],ψ)

For a given ground tree φ(s,c), prob(φ(s,c)) = ∑αi∈Ds πs(αi) · prob(Gr(Ω,η ,ψi,σ [c/t])).
Similarly g(σ [c/t],ψ) = ∑αi∈Ds πs(αi) · f (σ [c/t],ψi). But by inductive hypothesis,
Prob(Gr(Ω,η ,ψi,σ [c/t])) = f (σ [c/t],ψi). Therefore, prob(φ(s,c)) = g(σ [c/t],ψ). There-
fore prob(φ) = f (σ ,ψ). When, ησ is not satisfiable, prob(φ) = f (σ ,ψ) = 0. Therefore,
the theorem is proved.
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