
Theory of Computation
(Turing Machines)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

January 24, 2021

Contents

Contents
Turing Machines
Universal Turing Machines

Turing Machines

What was the aim of Alan Turing?

Turing’s aim
Design a model that is:
Simple,
Intuitive,
Generic, and
Formalizes computation performed by a human mind

How does a human compute?

Write input on a paper
Do the computation (think and write the intermediate results on
the paper)
Write output on the paper

How did Turing formalize human computation?

Turing = Named after Alan Mathison Turing
Machine = Computing machine

Human computation Machine computation

Tape

Tape head

Transition function

Diagram of a Turing machine (TM)

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

Operation Explanation
Write (Optionally) writes a new symbol at the current tape position.
Move (Optionally) moves either left or right.
Think (Optionally) changes to a new state.

Diagram of a Turing machine (TM)

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

Concept Meaning
Tape Simulates unlimited sheets of paper for computation.
Tape head Read/write onto a tape cell. Moves left/right.
States Simulates states of a human mind.
Input Finite number of symbols initially on the tape.
Output Finite number of symbols finally on the tape.
Computation State transitions based on rules and input symbols.

What is a Turing machine (TM)?

Definition
A Turing machine (TM) M is a 6-tuple
M = (Q,Σ,Γ, δ, q0, H), where,
1. Q: A finite set (set of states).
2. Σ: A finite set (input alphabet). Σ excludes .,�,←,→.
3. Γ: A finite set (tape alphabet).

Σ ∪ {.,�} ⊆ Γ. Γ excludes ←,→.
4. δ : (Q−H)×Γ to Q×(Γ∪{←,→}) is the transition function

such that the tape head never falls off or erases . symbol
B Time (computation)

5. q0: The start state (belongs to Q).
6. H = {qacc, qrej}: The set of halting states (subset of Q).

Some notes on the Turing machine

Symbols
. : Left end symbol
� : Blank symbol
←,→ : Left and right movement symbols
Σ : Represents input/output/special symbols
Γ : Represents symbols that can be present on the tape

Transition
M never falls off the left end of the tape i.e.,
when the current symbol is ., the tape head has to move right
M stops when it reaches an accept or a reject state i.e.,
δ is not defined for states in H

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as erasing strings.
So, no DFA can be used for erasing strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as erasing strings.
So, no CFG can be used for erasing strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for erasing strings.

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as erasing strings.
So, no DFA can be used for erasing strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as erasing strings.
So, no CFG can be used for erasing strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for erasing strings.

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution (continued)

Time State Tape
0 q0 . a a a � · · ·
1 q0 . a a a � · · ·
2 q1 . � a a � · · ·
3 q0 . � a a � · · ·
4 q1 . � � a � · · ·
5 q0 . � � a � · · ·
6 q1 . � � � � · · ·
7 q0 . � � � � · · ·
8 qh . � � � � · · ·

Construct TM to erase the input string

Problem
Construct a TM to erase the input string

Solution (continued)

q0 q1 qh

(a,�)
(�,�)

(a, a), (�,→)

(.,→)

Current symbol (Γ)
Current state (Q−H) . a �

q0 (q0,→) (q1,�) (qh,�)
q1 − (q0, a) (q0,→)

Construct TM for a regular language

Problem
Construct a DFA that accepts all strings from the language
L = {strings containing ab or end with ba}

Solution
Expression: ((a|b)∗ab(a|b)∗) | ((a|b)∗ba)
DFA:

q1start q2 q3

q4 q5

a b

b
a

a
b

a a, b

b

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution

q0

q1 q2 q3

q4 q5 qacc

(.,→)

(a,→) (b,→)

(b,→)

(a,→)

(a,→) (b,→) ({�, a, b},→)

(�,→)

(a,→)

(b,→)

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

Current symbol (Γ)
Current state (Q−H) . a b �

q0 (q1,→) − − −
q1 − (q2,→) (q4,→) −
q2 − (q2,→) (q3,→) −
q3 − (qacc,→) (qacc,→) (qacc,→)
q4 − (q5,→) (q4,→) −
q5 − (q2,→) (q3,→) (qacc,→)

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM accepts the string bba because it enters the qacc state
Time State Tape
0 q0 . b b a � � · · ·
1 q1 . b b a � � · · ·
2 q4 . b b a � � · · ·
3 q4 . b b a � � · · ·
4 q5 . b b a � � · · ·
5 qacc . b b a � � · · ·

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM rejects the string bbb because it enters the qrej state

Time State Tape
0 q0 . b b b � � · · ·
1 q1 . b b b � � · · ·
2 q4 . b b b � � · · ·
3 q4 . b b b � � · · ·
4 q4 . b b b � � · · ·
5 qrej . b b b � � · · ·

Construct TM for a regular language

Problem
Construct a Turing machine that accepts all strings from the
language L = {strings containing ab or end with ba}

Solution (continued)

TM accepts the string aabbbbb because it enters the qacc state
Unlike DFA and CFG, a TM can accept a string without scan-
ning the string completely

Time State Tape
0 q0 . a a b b b b b � · · ·
1 q1 . a a b b b b b � · · ·
2 q2 . a a b b b b b � · · ·
3 q2 . b b b b b b b � · · ·
4 q3 . b b a b b b b � · · ·
5 qacc . b b b b b b b � · · ·

Construct TM for a regular language

More problems
Use the TM to check acceptance of the following strings:
ε
aba B contains ab and ends with ba
aaa
aab
baa

TM’s with different features

Problem
Suppose you have TM’s with the following characteristics.
What are the computational powers of the TM’s?
← movement → movement Write Computational power

7 3 7 ?
3 3 7 ?
7 7 3 ?
7 3 3 ?
3 3 3 TM

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as copying strings.
So, no DFA can be used for copying strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as copying strings.
So, no CFG can be used for copying strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for copying strings.

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution
Language recognizers such as DFA’s cannot perform computa-
tional tasks such as copying strings.
So, no DFA can be used for copying strings.
Language generators such as CFG’s cannot perform computa-
tional tasks such as copying strings.
So, no CFG can be used for copying strings.
TM’s are more powerful than language recognizers and lan-
guage generators.
A TM can be used for copying strings.

Construct TM for copying strings

Solution (continued)

State Tape
q0 . b b a � � � � � · · ·
q2 . b b a # � � � � · · ·
q2 . b b a # � � � � · · ·
q5 . 2 b a # � � � � · · ·
q6 . 2 b a # b � � � · · ·
q7 . b b a # b � � � · · ·
q5 . b 2 a # b � � � · · ·
q6 . b 2 a # b b � � · · ·
q7 . b b a # b b � � · · ·
q4 . b b 1 # b b � � · · ·
q6 . b b 1 # b b a � · · ·
q7 . b b a # b b a � · · ·
q3 . b b a # b b a � · · ·
qacc . b b a # b b a � · · ·

Construct TM for copying strings

Problem
Construct a Turing machine that copies a string from the lan-
guage L = Σ∗ where Σ = {a, b}.

Solution (continued)

Γ = Σ ∪ {.,�,#, 1, 2}
Cells with “−” means that the TM terminates in qrej state

Current symbol (Γ)
State . a b # 1 2 �

q0 (q1,→) − − − − − −
q1 − (q1,→) (q1,→) − − − (q2,#)
q2 (q3,→) (q2,←) (q2,←) (q2,←) − − −
q3 − (q4, 1) (q5, 2) (qacc,#) − − −
q4 − (q4,→) (q4,→) (q4,→) (q4,→) − (q6, a)
q5 − (q5,→) (q5,→) (q5,→) − (q5,→) (q6, b)
q6 − (q6,←) (q6,←) (q6,←) (q7, a) (q7, b) −
q7 − (q3,→) (q3,→) − − − −

Construct TM for copying strings

Solution (continued)

q0 q1 q2

q3 qacc

q7q4 q5

q6

(.,→) (�,#)
({a, b},→)

({a, b,#},←)

(.,→)
(#,#)

(a, 1) (b, 2)

(�, a) (�, b)
(1, a), (2, b)

({a, b},→)

({a, b,#},←)

({a, b,#, 1},→) ({a, b,#, 2},→)

Construct TM for copying strings

More problems
Use the TM to copy the following strings:
ε
a
b
aab

Construct TM for accepting L = {anbncn | n ≥ 1}

Problem
Construct a Turing machine to accept all strings from the lan-
guage L = {anbncn | n ≥ 1}

Solution
Language A = {abc, aabbcc, aaabbbccc, . . .}
No DFA can accept this language. B Use pumping lemma
No CFG can accept this language. B Use pumping lemma
A TM accepts this language.

Construct TM for accepting L = {anbncn | n ≥ 1}

Problem
Construct a Turing machine to accept all strings from the lan-
guage L = {anbncn | n ≥ 1}

Solution
Language A = {abc, aabbcc, aaabbbccc, . . .}
No DFA can accept this language. B Use pumping lemma
No CFG can accept this language. B Use pumping lemma
A TM accepts this language.

Construct TM for accepting L = {anbncn | n ≥ 1}

Problem
Construct a Turing machine to accept all strings from the lan-
guage L = {anbncn | n ≥ 1}

Solution (continued)

State Tape
q0 . a a b b c c � · · ·
q2 . x a b b c c � · · ·
q3 . x a y b c c � · · ·
q4 . x a y b z c � · · ·
q2 . x x y b z c � · · ·
q3 . x x y y z c � · · ·
q4 . x x y y z z � · · ·
q5 . x x y y z z � · · ·
qacc . x x y y z z � · · ·

Construct TM for accepting L = {anbncn | n ≥ 1}

Problem
Construct a Turing machine to accept all strings from the lan-
guage L = {anbncn | n ≥ 1}

Solution (continued)

Γ = Σ ∪ {.,�, x, y, z}
Cells with “−” means that the TM terminates in qrej state

Current symbol (Γ)
St. . a b c x y z �

q0 (q1,→) − − − − − − −
q1 − (q2, x) − − − (q5,→) − −
q2 − (q2,→) (q3, y) − (q2,→) (q2,→) − −
q3 − − (q3,→) (q4, z) − (q3,→) (q3,→) −
q4 − (q4,←) (q4,←) − (q1,→) (q4,←) (q4,←) −
q5 − − − − − (q5,→) (q5,→) (qacc,�)

Construct TM for accepting L = {anbncn | n ≥ 1}

Problem
Construct a Turing machine to accept all strings from the lan-
guage L = {anbncn | n ≥ 1}

Solution (continued)

q0 q1 q2 q3

q4q5qacc

(.,→) (a, x)
({a, x, y},→)

(b, y)
({b, y, z},→)

(c, z)(y,→)

({a, b, y, z},←)

(x,→)

({y, z},→)
(�,�)

Construct TM for accepting L = {anbncn | n ≥ 1}

More problems
Use the TM to check acceptance of the following strings:
abc, aa, c, abbc, aabc, abcc, ε.
Construct a TM that accepts language L = {anbncn | n ≥ 0}.

How are TM’s different from DFA’s and PDA’s?

Feature DFA PDA TM
Memory size Finite Infinite Infinite
Halts? 3 3 3, 7

Input scanning Left-to-right Left-to-right Arbitrary
#Passes 1 pass 1 pass Any
Halting End of input End of input Accept state
Computing power Least Medium Highest
Language recognizer? 3 3 3

Function calculator? 7 7 3

Decide RL’s? 3 3 3

Decide CFL’s? 7 3 3

Decide REL’s? 7 7 3

What is a computation?

Example computation of a TM M

Time Configuration State Tape
0 C0 q0 . b b b � � · · ·
1 C1 q1 . b b b � � · · ·
2 C2 q4 . b b b � � · · ·
3 C3 q4 . b b b � � · · ·
4 C4 q4 . b b b � � · · ·
5 C5 qrej . b b b � � · · ·

Configurations: Information about the current state, tape head
position, and the tape content. e.g.: (q4, .bbb�)
C0, C1, C2, C3, C4, C5
Starting, accepting, rejecting, halting configurations
Computation: Sequence of successive configurations
C0 `M C1 `M C2 `M C3 `M C4 `M C5
Computation time/length: 5, written as C0 `5

M C5
Yields: e.g.: C1 `∗M C4

Let’s think!
Deep problems
How does a computer really work?
Sequence of computer states, i.e., a computation.
How does a human brain really work?
The brain consists of, say, 86 billion neurons. Each neuron
might temporarily store some information. Each neuron is con-
nected to, say, 10,000 neurons. So, there might be 860 trillion
neural connections. Suppose we represent the brain using a
dynamic graph. Then, the human thinking and the human ex-
perience might just be sequences of configurations of neurons,
i.e., a giant computation.
How does the universe really work?
The number of atoms in the observable universe is, say, 1080

in a higher dimensional space. The number of types of atoms
might be finite. An atom moves from one point in space to an-
other. Then, the happenings in the observe universe might just
be a sequence of configurations, i.e., a gigantic computation.

Let’s think!

Deep problems
Suppose the workings of computers, human brains, and the
observable universe is really a computation. What does that
mean?
We can simulate them on a real computer, if we have enough
resources such as memory and processing power.
What is the biggest assumption when we defined a Turing ma-
chine?
Finiteness
What happens when we move out of this assumption?
?

How to construct complicated TM’s?

Constructing complicated TM’s
We can make complicated TM’s from simpler TM’s using the
structure of a finite automaton
Nodes of the automaton are the simpler TM’s
A connection Mi

k−→ Mj means when TM Mi halts and the
current tape symbol is k, then TM Mj can start.

M1start M2

M3

a

b

Can you think of some examples of complicated TM’s built from
simpler TM’s?

Universal Turing Machines

Universal Turing machine (UTM)

Definition
A Universal Turing machine (UTM) MU can simulate the ex-
ecution of any Turing machine M on any input w.

Working of UTM U(〈M,w〉)

Halt iff M halts on input w.
If M is a deciding/semideciding machine, then
If M accepts, accept.
If M rejects, reject.

If M computes a function, then U(〈M,w〉) must equal M(w).

Simulating a TM

Theorem
Given any Turing machineM and an input string w, there exists
a Turing machine M ′ that simulates the execution of M on w
and
Halts iff M halts on w, and
If it halts, returns whatever result M returns.

Universal machines

Problem
We can construct a universal TM that accepts the language
L = {〈M,w〉 | M is a TM and w ∈ L(M)}
Can we construct a universal DFA that accepts the language
L = {〈M,w〉 | M is a DFA and w ∈ L(M)}?
Can we construct a universal CFG that accepts the language
L = {〈M,w〉 | M is a CFG and w ∈ L(M)}?

Solution
No! B Why?
No! B Why?

Universal machines

Problem
We can construct a universal TM that accepts the language
L = {〈M,w〉 | M is a TM and w ∈ L(M)}
Can we construct a universal DFA that accepts the language
L = {〈M,w〉 | M is a DFA and w ∈ L(M)}?
Can we construct a universal CFG that accepts the language
L = {〈M,w〉 | M is a CFG and w ∈ L(M)}?

Solution
No! B Why?
No! B Why?

Compilers

Problem
Suppose you discover a new programming language X. You
want to write and compile your first program inX. Of course, a
compiler forX is not available as it is a new language discovered
by you. You know that you can use C++ or Java to write your
compiler. But, is it possible to write your compiler in X that
can be used to compile your program written in X?

Solution
Yes! B How?

Compilers

Problem
Suppose you discover a new programming language X. You
want to write and compile your first program inX. Of course, a
compiler forX is not available as it is a new language discovered
by you. You know that you can use C++ or Java to write your
compiler. But, is it possible to write your compiler in X that
can be used to compile your program written in X?

Solution
Yes! B How?

