Theory of Computation (Turing-Complete Systems)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

July 28, 2023

Contents

Contents

- Turing-Complete Systems
- Unrestricted Grammars
- Lindenmayer Systems
- Gödel's μ-Recursive Functions
- While Programs

Turing-Complete Systems

Problem

- Are there models of computation more powerful than Turing machines?

Models more powerful than TM's

Problem

- Are there models of computation more powerful than Turing machines?

Solution

- Nobody knows if there are more powerful models.
- However, there are many computational models equivalent in power to TM's. They are called Turing-complete systems.

Problem

- How do you prove the functional equivalence of two given computation models M_{1} and M_{2}, i.e., $M_{1} \Leftrightarrow M_{2}$?

Models more powerful than TM's

Problem

- Are there models of computation more powerful than Turing machines?

Solution

- Nobody knows if there are more powerful models.
- However, there are many computational models equivalent in power to TM's. They are called Turing-complete systems.

Problem

- How do you prove the functional equivalence of two given computation models M_{1} and M_{2}, i.e., $M_{1} \Leftrightarrow M_{2}$?

Solution

- Simulation!
- Simulate M_{1} from M_{2}. Simulate M_{2} from M_{1}.

Turing-complete systems

Variants of TM's

- TM's with a two-way infinite tape
- TM's with multiple heads
- TM's with a multidimensional tape
- TM's with multiple tapes
- TM's with random access memory
- TM's with nondeterminism
- TM's with stacks
- TM's with queues
- TM's with counters
- None of these variants are more powerful than a TM.

More Turing-complete systems

Systems

- Modern computers (assuming ∞ memory)
- Church's lambda calculus.
- Gödel's μ-recursive functions (building computable functions).
- Post's tag systems aka Post machines (NFA + FIFO queue)
- Post production systems (has grammar-like rules)
- Unrestricted grammars (generalization of CFG's).
- Markov algorithms.
- Conway's Game of Life.
- One dimensional cellular automata.
- Theoretical models of DNA-based computing.
- Lindenmayer systems or L-systems.
- While programs.

Unrestricted Grammars

What is an unrestricted grammar (UG)?

- Grammar $=\mathrm{A}$ set of rules for a language
- Unrestricted $=$ No restrictions/constraints on production rules

What is an unrestricted grammar (UG)?

- Grammar $=\mathrm{A}$ set of rules for a language
- Unrestricted $=$ No restrictions/constraints on production rules

Definition
An unrestricted grammar (UG) M is a 4-tuple
$G=(N, \Sigma, S, P)$, where,

1. N : A finite set (set of nonterminals/variables).
2. Σ : A finite set (alphabet).
3. $P:$ A finite set of productions/rules of the form $\alpha \rightarrow \beta$, $\alpha, \beta \in(N \cup \Sigma)^{*}$ and α contains at least one nonterminal.
\triangleright Time (computation)
\triangleright Space (computer memory)
4. S : The start nonterminal (belongs to N).

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution

- $S \rightarrow L a R$
$L \rightarrow L D$
$D a \rightarrow a a D$
$\triangleright D$ acts as a doubling operator
$D R \rightarrow R$
$L \rightarrow \epsilon$
$R \rightarrow \epsilon$
- Can you derive the string a from the grammar?

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution (continued)

- Grammar:

$$
\begin{aligned}
& S \rightarrow L a R \\
& L \rightarrow L D \\
& D a \rightarrow a a D
\end{aligned}
$$

$$
\begin{aligned}
& D R \rightarrow R \\
& L \rightarrow \epsilon \\
& R \rightarrow \epsilon
\end{aligned}
$$

- Recognizing a :

$$
\begin{aligned}
& S \Rightarrow L a R \\
& \Rightarrow a R \\
& \Rightarrow a
\end{aligned}
$$

- Can you derive the string $a a$ from the grammar?

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution (continued)

- Grammar:

$$
\begin{aligned}
& S \rightarrow L a R \\
& L \rightarrow L D \\
& D a \rightarrow a a D
\end{aligned}
$$

$$
\begin{aligned}
& D R \rightarrow R \\
& L \rightarrow \epsilon \\
& R \rightarrow \epsilon
\end{aligned}
$$

- Recognizing aa:

$$
\begin{aligned}
& S \Rightarrow L a R \\
& \Rightarrow L D a R \\
& \Rightarrow L a a D R \\
& \Rightarrow L a a R \\
& \Rightarrow a a R \\
& \Rightarrow a a
\end{aligned}
$$

- Can you derive the string aaaa from the grammar?

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution (continued)

- Grammar:

$$
\begin{aligned}
& S \rightarrow L a R \\
& L \rightarrow L D \\
& D a \rightarrow a a D
\end{aligned}
$$

$$
\begin{aligned}
& D R \rightarrow R \\
& L \rightarrow \epsilon \\
& R \rightarrow \epsilon
\end{aligned}
$$

- Recognizing aaaa:
$S \Rightarrow L a R$
\Rightarrow LaaaaDDR
$\Rightarrow L D a R$
$\Rightarrow L D D a R$
$\Rightarrow L D a a D R$
$\Rightarrow L a a D a D R$
\Rightarrow Laaaa DR
\Rightarrow LaaaaR
\Rightarrow aaaaR
$\Rightarrow a a a a$
- Can you derive the string aaaaaaaa from the grammar?

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution (continued)

- Grammar:

$$
\begin{aligned}
& S \rightarrow L a R \\
& L \rightarrow L D \\
& D a \rightarrow a a D
\end{aligned}
$$

- Recognizing aaaaaaaa:

$$
\begin{aligned}
& S \Rightarrow L a R \\
& \Rightarrow L D a R \\
& \Rightarrow L D D a R \\
& \Rightarrow L D D D a R \\
& \Rightarrow L D D a a D R \\
& \Rightarrow L D a a D a D R \\
& \Rightarrow L D a a a a D D R \\
& \Rightarrow \text { LaaDaaaDDR }
\end{aligned}
$$

$$
D R \rightarrow R
$$

$$
L \rightarrow \epsilon
$$

$$
R \rightarrow \epsilon
$$

$$
\Rightarrow \text { LaaaaDaaDDR }
$$

$$
\Rightarrow \text { Laaaaaa } D a D D R
$$

$$
\Rightarrow \text { Laaaaaaaa } D D D R
$$

$$
\Rightarrow \text { LaaaaaaaaaDDR }
$$

$$
\Rightarrow \text { LaaaaaaaaDR }
$$

$$
\Rightarrow \text { LaaaaaaaaR }
$$

$$
\Rightarrow \text { aaaaaaaaaR }
$$

$$
\Rightarrow a a a a a a a a
$$

- Can you identify the generic technique in deriving the string $a^{2^{k}}$ from the grammar?

Construct an UG for $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{2^{n}} \mid n \geq 0\right\}$

Solution (continued)

- Recognizing $a^{2^{k}}$:

$$
\begin{aligned}
& S \Rightarrow^{*} L a R \\
& \Rightarrow^{*} L D^{k} a R \\
& \Rightarrow^{*} L a^{2^{k}} D^{k} R \\
& \Rightarrow^{*} L a^{2^{k}} R \\
& \Rightarrow^{*} a^{2^{k}} R \\
& \Rightarrow^{*} a^{2^{k}}
\end{aligned}
$$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Solution

- $S \rightarrow A B C S$
$S \rightarrow T_{c}$
$T_{c} \rightarrow T_{b}$
$T_{b} \rightarrow T_{a}$
$T_{a} \rightarrow \epsilon$
$C A \rightarrow A C$
$B A \rightarrow A B$
$C B \rightarrow B C$
$C T_{c} \rightarrow T_{c} c$
$B T_{b} \rightarrow T_{b} b$
$A T_{a} \rightarrow T_{a} a$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Solution (continued)

- Recognizing $a b c$:

$$
\begin{array}{lc}
S \Rightarrow A B C S & \\
\Rightarrow A B C T_{c} & \left(\because S \rightarrow T_{c}\right) \\
\Rightarrow A B T_{c} c & \left(\because C T_{c} \rightarrow T_{c} c\right) \\
\Rightarrow A B T_{b} c & \left(\because T_{c} \rightarrow T_{b}\right) \\
\Rightarrow A T_{b} b c & \left(\because B T_{b} \rightarrow T_{b} b\right) \\
\Rightarrow A T_{a} b c & \left(\because T_{b} \rightarrow T_{a}\right) \\
\Rightarrow T_{a} a b c & \left(\because A T_{a} \rightarrow T_{a} a\right) \\
\Rightarrow a b c & \left(\because T_{a} \rightarrow \epsilon\right)
\end{array}
$$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Solution (continued)

- Recognizing aabbcc:
$S \Rightarrow A B C S$
$\Rightarrow A B C A B C S$
$\Rightarrow A B A C B C S$
$\Rightarrow A A B C B C S$
$\Rightarrow A A B B C C S$
$\Rightarrow A A B B C C T_{c}$
$\Rightarrow A A B B C T_{c} c$
$\Rightarrow A A B B T_{c} c c$
$\Rightarrow A A B B T_{b} c c$
$\Rightarrow A A B T_{b} b c c$
$\Rightarrow A A T_{b} b b c c$
$\Rightarrow A A T_{a} b b c c$
$\Rightarrow A T_{a} a b b c c$
$\Rightarrow T_{a} a a b b c c$
$\Rightarrow a a b b c c$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Solution (continued)

- Recognizing aaabbbccc:
$S \Rightarrow A B C S$
$\Rightarrow A B C A B C S$
$\Rightarrow A B C A B C A B C S$
$\Rightarrow A B A C B C A B C S$
$\Rightarrow A A B C B C A B C S$
$\Rightarrow A A B C B A C B C S$
$\Rightarrow A A B C A B C B C S$
$\Rightarrow A A B A C B C B C S$
$\Rightarrow A A A B C B C B C S$
$\Rightarrow A A A B B C C B C S$
$\Rightarrow A A A B B C B C C S$
$\Rightarrow A A A B B B C C C S$
$\Rightarrow A A A B B B B C C C T_{c}$
$\Rightarrow A A A B B B C C T_{c} c$
$\Rightarrow A A A B B B C T_{c} c c$
$\Rightarrow A A A B B B T_{c} c c c$
$\Rightarrow A A A B B B T_{b} c c c$
$\Rightarrow A A A B B T_{b} b c c c$
$\Rightarrow A A A B T_{b} b b c c c$
$\Rightarrow A A A T_{b} b b b c c c$
$\Rightarrow A A A T_{a} b b b c c c$
$\Rightarrow A A T_{a} a b b b c c c$
$\Rightarrow A T_{a} a a b b b c c c$
$\Rightarrow T_{a} a a a b b b c c c$
\Rightarrow aaabbbccc

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

Solution (continued)

- Recognizing $a^{k} b^{k} c^{k}$:
$S \Rightarrow A B C S$
$\Rightarrow{ }^{*}(A B C)^{k} S$
$\Rightarrow^{*} A^{k} B^{k} C^{k} S \quad \triangleright$ Toughest step
$\Rightarrow{ }^{*} A^{k} B^{k} C^{k} T_{c}$
$\Rightarrow{ }^{*} A^{k} B^{k} T_{c} c^{k}$
$\Rightarrow{ }^{*} A^{k} B^{k} T_{b} c^{k}$
$\Rightarrow{ }^{*} A^{k} T_{b} b^{k} c^{k}$
$\Rightarrow{ }^{*} A^{k} T_{a} b^{k} c^{k}$
$\Rightarrow{ }^{*} T_{a} a^{k} b^{k} c^{k}$
$\Rightarrow{ }^{*} a^{k} b^{k} c^{k}$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Solution

- $S \rightarrow S A B C$
$S \rightarrow L A B C$
$B A \rightarrow A B$
$C B \rightarrow B C$
$C A \rightarrow A C$
$L A \rightarrow a$
$a A \rightarrow a a$
$a B \rightarrow a b$
$b B \rightarrow b b$
$b C \rightarrow b c$
$c C \rightarrow c c$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Solution (continued)

- Recognizing $a b c: S \Rightarrow L A B C \Rightarrow a B C \Rightarrow a b C \Rightarrow a b c$
- Recognizing aabbcc:
$S \Rightarrow S A B C$
$\Rightarrow L A B C A B C$
$\Rightarrow a a B B C C$
$\Rightarrow L A B A C B C$
$\Rightarrow L A B A B C C$
$\Rightarrow L A A B B C C$
$\Rightarrow a a b b c c$

Construct an UG for $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Problem

- Construct an UG that accepts all strings from the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$

Solution (continued)

- Recognizing $a^{k} b^{k} c^{k}$:
$S \Rightarrow S A B C$
$\Rightarrow^{*} S(A B C)^{k-1}$
$\Rightarrow^{*} L(A B C)^{k}$
$\Rightarrow^{*} L A^{k} B^{k} C^{k} \quad \triangleright$ Toughest step
$\Rightarrow{ }^{*} a^{k} B^{k} C^{k}$
$\Rightarrow^{*} a^{k} b^{k} C^{k}$
$\Rightarrow{ }^{*} a^{k} b^{k} c^{k}$

Lindenmayer Systems

What is an L-system?

Definition

A Lindenmayer system (L-system) is a 4-tuple
$L=(V, C, S, R)$, where,

1. V : A finite set (set of variables).
2. C : A finite set of constants.
3. S : The starting string (belongs to $(V \cup C)^{*}$), aka axiom.
4. R : A finite set of rules of the form $\alpha \rightarrow \beta$,
$\alpha, \beta \in(V \cup C)^{*}$ and α contains at least one variable.
\triangleright Time (computation) and Space (computer memory)

What is an L-system?

Definition

A Lindenmayer system (L-system) is a 4-tuple
$L=(V, C, S, R)$, where,

1. V : A finite set (set of variables).
2. C : A finite set of constants.
3. S : The starting string (belongs to $\left.(V \cup C)^{*}\right)$, aka axiom.
4. R : A finite set of rules of the form $\alpha \rightarrow \beta$,
$\alpha, \beta \in(V \cup C)^{*}$ and α contains at least one variable.
\triangleright Time (computation) and Space (computer memory)

Difference

A Lindenmayer system (L-system) differs from an unrestricted grammar in three major ways:

1. You apply all rules in parallel or simultaneously.
2. You start with a starting string.
3. All strings produced are in the language.

What are the applications of L-systems?

Applications

- Generate self-similar fractals.
- Model the growth processes of a variety of organisms (e.g.: plants, algae, etc).
- Compose music, predict protein folding, and design buildings.

Example: Rabbit population

Problem

- Construct an L-system to model rabbit population.

Example: Rabbit population

Problem

- Construct an L-system to model rabbit population.

Solution

- Variables $=\{I, M\}$, Terminals $=\phi$,

Start $=I$, Rules $=\{I \rightarrow M, M \rightarrow M I\}$.
($I=$ immature, $M=$ mature) rabbit pair.

- $n=0: I$
$n=1: M$
$n=2: M I$
$n=3: M I M$
$n=4:$ MIMMI
- Lengths of strings:
$1,1,2,3,5, \ldots$ Fibonacci sequence

Example: Sierpinksi triangle

Problem

- Construct an L-system to draw a Sierpinksi triangle.

Example: Sierpinksi triangle

Problem

- Construct an L-system to draw a Sierpinksi triangle.

Solution

- L-system.

Variables $=\{A, B\}$.
Terminals $=\{+,-\}$.
Starting string $=A B A--A A--A A$.
Rules $=\{A \rightarrow A A, B \rightarrow--A B A++A B A++A B A--\}$.

- Meaning.
$A, B=$ go forward a unit length.
$+=$ turn left by 60°.
$-=$ turn right by 60°.

Example: Sierpinksi triangle

Source: Robert M. Dickau

Example: Trees

Problem

- Construct an L-system to draw a tree.

Example: Trees

Problem

- Construct an L-system to draw a tree.

Solution

- L-system.

Variables $=\{F\}$. Terminals $=\{+,-,[]$,$\} .$
Start $=F$. Rules $=\{F \rightarrow F[-F] F[+F][F]\}$.

- Meaning.
$F=$ go forward a unit length.
$+=$ turn left by $36^{\circ} .-=$ turn right by 36°.
[= push the current pen position and direction onto the stack.
] = pop the top pen position/direction off the stack, lift up the pen, move it to the position that is now on the top of the stack, put it back down, and set its direction to the one on the top of the stack.

Example: Trees

Solution (continued)

Source: Elaine Rich's Automata, Computability and Complexity: Theory and Applications.

Gödel's μ-Recursive Functions

What are computable functions?

Concept

- Computable functions are comparable to algorithms.
- Gödel developed primitive recursive functions to model all computable functions.
- Ackermann showed a computable function that was not primitive recursive.
- Gödel expanded his definition and developed μ-recursive functions to model all computable functions.
- Gödel's μ-recursive functions are computationally equivalent to algorithms or Turing-computable functions.

What are μ-recursive functions?

.
Equivalent to algorithms or Turing-computable functions

What are primitive recursive functions?

Definition

The primitive recursive functions are the smallest class of functions from $\mathbb{W} \times \mathbb{W} \times \cdots \times \mathbb{W}$ to \mathbb{W} that includes:

1. zero function
2. successor function
3. projection function
and that is closed under the operations:
4. composition of functions
5. primitive recursion

Examples

- Arithmetic operations, logical operations, several mathematical functions (such as factorial, combination, etc), and so on.

Zero function ($\mathbb{W}^{k} \rightarrow \mathbb{W}$)

Definition

- The k-ary zero function for any $k \in \mathbb{W}$ is defined as
zero $_{k}(X)=0$, where $X=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$
for all $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{W}$

Examples

- zero $_{0}()=0$
- zero $_{1}(n)=0$
- zero $_{2}\left(n_{1}, n_{2}\right)=0$
- $\operatorname{zero}_{100}\left(n_{1}, n_{2}, \ldots, n_{100}\right)=0$

Successor function $(\mathbb{W} \rightarrow \mathbb{W})$

Definition

- The successor function is defined as

$$
\operatorname{succ}(n)=n+1, \text { for all } n \in \mathbb{W}
$$

Examples

- $\operatorname{succ}(-1)$ is not defined for negative numbers
- $\operatorname{succ}(0)=1$
- $\operatorname{succ}(1)=2$
- $\operatorname{succ}(100)=101$
- For what value of x we have $\operatorname{succ}(x)=0$?

Projection function $\left(\mathbb{W}^{k} \rightarrow \mathbb{W}\right)$

Definition

- The projection function for any $i, k \in \mathbb{N}$ and $i \leq k$ is defined as
$\operatorname{proj}_{k, i}(X)=n_{i}$, where $X=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$
for all $n_{1}, \ldots, n_{k} \in \mathbb{W}$

Examples

- proj for $k=0$ is not defined
- $\operatorname{proj}_{1,1}(n)=n$
\triangleright identity function
- $\operatorname{proj}_{2,1}\left(n_{1}, n_{2}\right)=n_{1}$
- $\operatorname{proj}_{100,57}\left(n_{1}, n_{2}, \ldots, n_{100}\right)=n_{57}$

Combining functions

Composition function ($\mathbb{W}^{k} \rightarrow \mathbb{W}$)

- The k-ary composition function of g and $h_{1}, h_{2}, \ldots, h_{\ell}$ for any $k, \ell \in \mathbb{W}$ is defined as

```
f(X)=g(h}(X),\mp@subsup{h}{2}{}(X),\ldots,\mp@subsup{h}{\ell}{}(X)
where }X=(\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{k}{})\mathrm{ and }\mp@subsup{n}{1}{},\ldots,\mp@subsup{n}{k}{}\in\mathbb{W
```

Primitive recursion $\left(\mathbb{W}^{k+1} \rightarrow \mathbb{W}\right)$

- The ($k+1$)-ary function defined recursively by g and h for any $k, \ell \in \mathbb{W}$ is defined as

$$
f(X, 0)=g(X)
$$

$$
f(X, m+1)=h(f(X, m), X, m)
$$

where $X=\left(n_{1}, \ldots, n_{k}\right)$ and $n_{1}, \ldots, n_{k}, m \in \mathbb{W}$

Primitive recursive functions

Examples

- Constant.
\triangleright constant

$$
\begin{aligned}
& 3=\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{zero}(m)))) \\
& k=\underbrace{\operatorname{succ}(\cdots(\operatorname{succ}(\operatorname{zero}(m)) \cdots)}_{k \text { times }}
\end{aligned}
$$

- Addition.
$\triangleright \operatorname{add}(m, n)=m+n$
$\operatorname{add}(m, 0)=\operatorname{proj}_{2,1}(m, 0)$ $\operatorname{add}(m, n+1)=\operatorname{succ}(\operatorname{add}(m, n))$
- Multiplication.
$\triangleright \operatorname{mult}(m, n)=m \times n$
$\operatorname{mult}(m, 0)=\operatorname{zero}(m, 0)$
$\operatorname{mult}(m, n+1)=\operatorname{plus}(\operatorname{mult}(m, n), m)$
- Exponentiation.

$$
\triangleright \operatorname{pow}(m, n)=m^{n}
$$

$\operatorname{pow}(m, 0)=\operatorname{succ}(\operatorname{zero}(m, 0))$ $\operatorname{pow}(m, n+1)=\operatorname{mult}(\operatorname{pow}(m, n), m)$

Primitive recursive functions

Examples

- Sign. $\triangleright \operatorname{sign}(n)=0$ if $n=0,1$ if $n>0$
$\operatorname{sign}(0)=\operatorname{zero}(0)$
$\operatorname{sign}(n+1)=\operatorname{succ}(z e r o(n+1))$
- Positive.
positive $(n)=\operatorname{sign}(n)$
- IsZero.
$\triangleright \operatorname{iszero}(n)=1$ if $n=0,1$ otherwise
iszero(0) $=\operatorname{succ}(z e r o(0))$
iszero $(n+1)=\operatorname{zero}(n+1)$
- IsOne. \triangleright isone $(n)=1$ if $n=1,0$ otherwise isone $(0)=0$ isone $(n+1)=\operatorname{iszero}(n+1)$

Ackermann function

Definition

- Ackermann function is the simplest example of an intuitively computable total function that is not primitive recursive.
- It is defined as:

$$
A(m, n)= \begin{cases}n+1 & \text { if } m=0 \\ A(m-1,1) & \text { if } n=0 \\ A(m-1, A(m, n-1)) & \text { otherwise }\end{cases}
$$

Computable functions
Primitive recursive functions

- Ackermann function

What are μ-recursive functions?

Definition
The μ-recursive functions are the smallest class of functions from $\mathbb{W} \times \mathbb{W} \times \cdots \times \mathbb{W}$ to \mathbb{W} that includes:

1. zero function
2. successor function
3. projection function
and that is closed under the operations:
4. composition of functions
5. primitive recursion $\quad \triangleright$ halting for-loop
6. minimalization of minimalizable functions
\triangleright halting while-loop

- μ-recursive functions are computationally equivalent to algorithms or Turing-computable functions.

What are minimizable functions?

Definition

- Let g be a $(k+1)$-ary function, for some $k \geq 0$. The minimalization of g is the k-ary function f defined as follows. $f(X)= \begin{cases}\text { least } m \in \mathbb{W} \text { such that } g(X, m)=1 & \text { if } m \text { exists, } \\ 0 & \text { otherwise. }\end{cases}$

TM- $\operatorname{Min}(g, X)$	$\triangleright f(X)$
1. $m \leftarrow 0$	
2. while $g(X, m) \neq 1$ do	
3. $m \leftarrow m+1$	
4. return m	

TM-Min might not halt if no value of m exists.

What are minimizable functions?

Definition

- Let g be a $(k+1)$-ary function, for some $k \geq 0$. The minimalization of g is the k-ary function f defined as follows. $f(X)= \begin{cases}\text { least } m \in \mathbb{W} \text { such that } g(X, m)=1 & \text { if } m \text { exists, } \\ 0 & \text { otherwise. }\end{cases}$

TM- $\operatorname{Min}(g, X)$	$\triangleright f(X)$
1. $m \leftarrow 0$	
2. while $g(X, m) \neq 1$ do	
3. $m \leftarrow m+1$	
4. return m	

TM-Min might not halt if no value of m exists.

- A function g is called minimalizable function iff for every X, there is an m such that $g(X, m)=1$.
A function g is minimalizable iff TM-Min always halts.

(Primitive vs. μ) recursive functions

	Primitive rec. functions	μ-recursive functions
Comparable to	Halting for-loops	Halting while-loops
\#Iterations	Known beforehand	Not known beforehand

μ-Recursive functions		
Primitive recursive functions		Equivalent to algorithms or Turing-computable
- Ackermann function		

While Programs

What are for and while programs?

Operations	For programs	While programs
Assignments e.g. $x \leftarrow y+5$	\checkmark	\checkmark
Sequential compositions e.g. $p ; q$	\checkmark	\checkmark
Conditionals e.g. if $(x<y)$ then p else q	\checkmark	\checkmark
For loops e.g. for y do p	\checkmark	\checkmark
While loops e.g. while $x<y$ do p	\boldsymbol{x}	\checkmark

What are for and while programs?

Difference	For programs	While programs
Definition	For programs are computer programs without the while construct.	While programs are com- puter programs with the while construct.
\#lterations	Known beforehand. Does change after the execution of the loop body.	Might change after the exe- cution of the loop body.
Halting	Always halt.	Might not halt.

Relationship with recursive functions

Time	Formal functions	Computer programs
Finite	Primitive rec. functions μ-recursive functions	For programs Halting while programs
Infinite	Partially rec. functions	Non-halting while programs

