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Turing-Complete Systems



Models more powerful than TM’s

Problem
Are there models of computation more powerful than Turing
machines?

Solution
Nobody knows if there are more powerful models.
However, there are many computational models equivalent in
power to TM’s. They are called Turing-complete systems.

Problem
How do you prove the functional equivalence of two given com-
putation models M1 and M2, i.e., M1 ⇔M2?

Solution
Simulation!
Simulate M1 from M2. Simulate M2 from M1.
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Turing-complete systems

Variants of TM’s
TM’s with a two-way infinite tape
TM’s with multiple heads
TM’s with a multidimensional tape
TM’s with multiple tapes
TM’s with random access memory
TM’s with nondeterminism
TM’s with stacks
TM’s with queues
TM’s with counters

None of these variants are more powerful than a TM.



More Turing-complete systems

Systems

Modern computers (assuming ∞ memory)
Church’s lambda calculus.
Gödel’s µ-recursive functions (building computable functions).
Post’s tag systems aka Post machines (NFA + FIFO queue)
Post production systems (has grammar-like rules)
Unrestricted grammars (generalization of CFG’s).
Markov algorithms.
Conway’s Game of Life.
One dimensional cellular automata.
Theoretical models of DNA-based computing.
Lindenmayer systems or L-systems.
While programs.



Unrestricted Grammars



What is an unrestricted grammar (UG)?

Grammar = A set of rules for a language
Unrestricted = No restrictions/constraints on production rules

Definition
An unrestricted grammar (UG) M is a 4-tuple
G = (N,Σ, S, P ), where,
1. N : A finite set (set of nonterminals/variables).
2. Σ: A finite set (alphabet).
3. P : A finite set of productions/rules of the form α→ β,
α, β ∈ (N ∪ Σ)∗ and α contains at least one nonterminal.

B Time (computation)
B Space (computer memory)

4. S: The start nonterminal (belongs to N).
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Construct an UG for L = {a2n | n ≥ 0}

Problem
Construct an UG that accepts all strings from the language
L = {a2n | n ≥ 0}

Solution
S → LaR
L→ LD
Da→ aaD B D acts as a doubling operator
DR→ R
L→ ε
R→ ε

Can you derive the string a from the grammar?
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Construct an UG for L = {a2n | n ≥ 0}

Solution (continued)

Grammar:
S → LaR
L→ LD
Da→ aaD

DR→ R
L→ ε
R→ ε

Recognizing a:
S ⇒ LaR
⇒ aR
⇒ a

Can you derive the string aa from the grammar?
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Solution (continued)

Grammar:
S → LaR
L→ LD
Da→ aaD

DR→ R
L→ ε
R→ ε

Recognizing aa:
S ⇒ LaR
⇒ LDaR
⇒ LaaDR
⇒ LaaR
⇒ aaR
⇒ aa

Can you derive the string aaaa from the grammar?



Construct an UG for L = {a2n | n ≥ 0}

Solution (continued)

Grammar:
S → LaR
L→ LD
Da→ aaD

DR→ R
L→ ε
R→ ε

Recognizing aaaa:
S ⇒ LaR
⇒ LDaR
⇒ LDDaR
⇒ LDaaDR
⇒ LaaDaDR

⇒ LaaaaDDR
⇒ LaaaaDR
⇒ LaaaaR
⇒ aaaaR
⇒ aaaa

Can you derive the string aaaaaaaa from the grammar?



Construct an UG for L = {a2n | n ≥ 0}

Solution (continued)

Grammar:
S → LaR
L→ LD
Da→ aaD

DR→ R
L→ ε
R→ ε

Recognizing aaaaaaaa:
S ⇒ LaR
⇒ LDaR
⇒ LDDaR
⇒ LDDDaR
⇒ LDDaaDR
⇒ LDaaDaDR
⇒ LDaaaaDDR
⇒ LaaDaaaDDR

⇒ LaaaaDaaDDR
⇒ LaaaaaaDaDDR
⇒ LaaaaaaaaDDDR
⇒ LaaaaaaaaDDR
⇒ LaaaaaaaaDR
⇒ LaaaaaaaaR
⇒ aaaaaaaaR
⇒ aaaaaaaa

Can you identify the generic technique in deriving the string a2k

from the grammar?



Construct an UG for L = {a2n | n ≥ 0}

Problem
Construct an UG that accepts all strings from the language
L = {a2n | n ≥ 0}

Solution (continued)

Recognizing a2k :
S ⇒∗ LaR
⇒∗ LDkaR
⇒∗ La2k

DkR B Most important step
⇒∗ La2k

R
⇒∗ a2k

R
⇒∗ a2k



Construct an UG for L = {anbncn | n ≥ 0}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 0}

Solution
S → ABCS
S → Tc

Tc → Tb

Tb → Ta

Ta → ε
CA→ AC
BA→ AB
CB → BC
CTc → Tcc
BTb → Tbb
ATa → Taa
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Construct an UG for L = {anbncn | n ≥ 0}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 0}

Solution (continued)

Recognizing abc:
S ⇒ ABCS
⇒ ABCTc (∵ S → Tc)
⇒ ABTcc (∵ CTc → Tcc)
⇒ ABTbc (∵ Tc → Tb)
⇒ ATbbc (∵ BTb → Tbb)
⇒ ATabc (∵ Tb → Ta)
⇒ Taabc (∵ ATa → Taa)
⇒ abc (∵ Ta → ε)
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Construct an UG for L = {anbncn | n ≥ 0}
Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 0}

Solution (continued)

Recognizing aaabbbccc:
S ⇒ ABCS
⇒ ABCABCS
⇒ ABCABCABCS
⇒ ABACBCABCS
⇒ AABCBCABCS
⇒ AABCBACBCS
⇒ AABCABCBCS
⇒ AABACBCBCS
⇒ AAABCBCBCS
⇒ AAABBCCBCS
⇒ AAABBCBCCS
⇒ AAABBBCCCS
⇒ AAABBBBCCCTc

⇒ AAABBBCCTcc
⇒ AAABBBCTccc
⇒ AAABBBTcccc
⇒ AAABBBTbccc
⇒ AAABBTbbccc
⇒ AAABTbbbccc
⇒ AAATbbbbccc
⇒ AAATabbbccc
⇒ AATaabbbccc
⇒ ATaaabbbccc
⇒ Taaaabbbccc
⇒ aaabbbccc



Construct an UG for L = {anbncn | n ≥ 0}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 0}

Solution (continued)

Recognizing akbkck:
S ⇒ ABCS
⇒∗ (ABC)kS
⇒∗ AkBkCkS B Toughest step
⇒∗ AkBkCkTc

⇒∗ AkBkTcc
k

⇒∗ AkBkTbc
k

⇒∗ AkTbb
kck

⇒∗ AkTab
kck

⇒∗ Taa
kbkck

⇒∗ akbkck



Construct an UG for L = {anbncn | n ≥ 1}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 1}

Solution
S → SABC
S → LABC
BA→ AB
CB → BC
CA→ AC
LA→ a
aA→ aa
aB → ab
bB → bb
bC → bc
cC → cc
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Problem
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L = {anbncn | n ≥ 1}

Solution
S → SABC
S → LABC
BA→ AB
CB → BC
CA→ AC
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Construct an UG for L = {anbncn | n ≥ 1}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 1}

Solution (continued)

Recognizing abc: S ⇒ LABC ⇒ aBC ⇒ abC ⇒ abc
Recognizing aabbcc:

S ⇒ SABC
⇒ LABCABC
⇒ LABACBC
⇒ LABABCC
⇒ LAABBCC
⇒ aABBCC

⇒ aaBBCC
⇒ aabBCC
⇒ aabbCC
⇒ aabbcC
⇒ aabbcc



Construct an UG for L = {anbncn | n ≥ 1}

Problem
Construct an UG that accepts all strings from the language
L = {anbncn | n ≥ 1}

Solution (continued)

Recognizing akbkck:
S ⇒ SABC
⇒∗ S(ABC)k−1

⇒∗ L(ABC)k

⇒∗ LAkBkCk B Toughest step
⇒∗ akBkCk

⇒∗ akbkCk

⇒∗ akbkck



Lindenmayer Systems



What is an L-system?

Definition
A Lindenmayer system (L-system) is a 4-tuple
L = (V,C, S,R), where,
1. V : A finite set (set of variables).
2. C: A finite set of constants.
3. S: The starting string (belongs to (V ∪ C)∗), aka axiom.
4. R : A finite set of rules of the form α→ β,
α, β ∈ (V ∪ C)∗ and α contains at least one variable.

B Time (computation) and Space (computer memory)

Difference
A Lindenmayer system (L-system) differs from an unrestricted
grammar in three major ways:
1. You apply all rules in parallel or simultaneously.
2. You start with a starting string.
3. All strings produced are in the language.
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What are the applications of L-systems?

Applications
Generate self-similar fractals.
Model the growth processes of a variety of organisms (e.g.:
plants, algae, etc).
Compose music, predict protein folding, and design buildings.

Source: Wikipedia



Example: Rabbit population

Problem
Construct an L-system to model rabbit population.

Solution
Variables = {I,M}, Terminals = φ,
Start = I, Rules = {I →M,M →MI}.
(I = immature, M = mature) rabbit pair.
n = 0: I
n = 1: M
n = 2: MI
n = 3: MIM
n = 4: MIMMI
Lengths of strings:
1, 1, 2, 3, 5, . . . Fibonacci sequence
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Example: Sierpinksi triangle

Problem
Construct an L-system to draw a Sierpinksi triangle.

Solution
L-system.
Variables = {A,B}.
Terminals = {+,−}.
Starting string = ABA−−AA−−AA.
Rules = {A→ AA,B → −−ABA+ +ABA+ +ABA−−}.
Meaning.
A,B = go forward a unit length.
+ = turn left by 60◦.
− = turn right by 60◦.
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Example: Sierpinksi triangle

Solution (continued)

Source: Robert M. Dickau



Example: Trees

Problem
Construct an L-system to draw a tree.

Solution
L-system.
Variables = {F}. Terminals = {+,−, [, ]}.
Start = F . Rules = {F → F [−F ]F [+F ][F ]}.
Meaning.
F = go forward a unit length.
+ = turn left by 36◦. − = turn right by 36◦.
[ = push the current pen position and direction onto the stack.
] = pop the top pen position/direction off the stack, lift up the
pen, move it to the position that is now on the top of the stack,
put it back down, and set its direction to the one on the top of
the stack.
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Example: Trees

Solution (continued)

Source: Elaine Rich’s Automata, Computability and Complexity: Theory and Applications.



Gödel’s µ-Recursive Functions



What are computable functions?

Concept
Computable functions are comparable to algorithms.
Gödel developed primitive recursive functions to model all
computable functions.
Ackermann showed a computable function that was
not primitive recursive.
Gödel expanded his definition and developed
µ-recursive functions to model all computable functions.
Gödel’s µ-recursive functions are computationally equivalent to
algorithms or Turing-computable functions.



What are µ-recursive functions?

Primitive recursive

functions

µ-Recursive functions

Ackermann function

Equivalent to

Turing-computable

algorithms or

functions



What are primitive recursive functions?

Definition
The primitive recursive functions are the smallest class of func-
tions from W×W× · · · ×W to W that includes:
1. zero function
2. successor function
3. projection function
and that is closed under the operations:
4. composition of functions
5. primitive recursion B for loop

Examples
Arithmetic operations, logical operations, several mathematical
functions (such as factorial, combination, etc), and so on.



Zero function (Wk →W)

Definition
The k-ary zero function for any k ∈W is defined as
zerok(X) = 0, where X = (n1, n2, . . . , nk)
for all n1, n2, . . . , nk ∈W

Examples

zero0() = 0
zero1(n) = 0
zero2(n1, n2) = 0
zero100(n1, n2, . . . , n100) = 0



Successor function (W→W)

Definition
The successor function is defined as
succ(n) = n+ 1, for all n ∈W

Examples

succ(−1) is not defined for negative numbers
succ(0) = 1
succ(1) = 2
succ(100) = 101
For what value of x we have succ(x) = 0?



Projection function (Wk →W)

Definition
The projection function for any i, k ∈ N and i ≤ k is defined
as
projk,i(X) = ni, where X = (n1, n2, . . . , nk)
for all n1, . . . , nk ∈W

Examples
proj for k = 0 is not defined
proj1,1(n) = n B identity function
proj2,1(n1, n2) = n1
proj100,57(n1, n2, . . . , n100) = n57



Combining functions

Composition function (Wk →W)

The k-ary composition function of g and h1, h2, . . . , h` for any
k, ` ∈W is defined as
f(X) = g(h1(X), h2(X), . . . , h`(X))
where X = (n1, . . . , nk) and n1, . . . , nk ∈W

Primitive recursion (Wk+1 →W)

The (k+ 1)-ary function defined recursively by g and h for any
k, ` ∈W is defined as
f(X, 0) = g(X)
f(X,m+ 1) = h(f(X,m), X,m)
where X = (n1, . . . , nk) and n1, . . . , nk,m ∈W



Primitive recursive functions

Examples
Constant. B constant
3 = succ(succ(succ(zero(m))))
k = succ(· · · (succ(︸ ︷︷ ︸

k times

zero(m)) · · · )

Addition. B add(m,n) = m+ n
add(m, 0) = proj2,1(m, 0)
add(m,n+ 1) = succ(add(m,n))
Multiplication. B mult(m,n) = m× n
mult(m, 0) = zero(m, 0)
mult(m,n+ 1) = plus(mult(m,n),m)
Exponentiation. B pow(m,n) = mn

pow(m, 0) = succ(zero(m, 0))
pow(m,n+ 1) = mult(pow(m,n),m)



Primitive recursive functions

Examples

Sign. B sign(n) = 0 if n = 0, 1 if n > 0
sign(0) = zero(0)
sign(n+ 1) = succ(zero(n+ 1))
Positive.
positive(n) = sign(n)
IsZero. B iszero(n) = 1 if n = 0, 1 otherwise
iszero(0) = succ(zero(0))
iszero(n+ 1) = zero(n+ 1)
IsOne. B isone(n) = 1 if n = 1, 0 otherwise
isone(0) = 0
isone(n+ 1) = iszero(n+ 1)



Ackermann function

Definition
Ackermann function is the simplest example of an intuitively
computable total function that is not primitive recursive.
It is defined as:

A(m,n) =


n+ 1 if m = 0,
A(m− 1, 1) if n = 0,
A(m− 1, A(m,n− 1)) otherwise.

Primitive recursive

functions

Computable functions

Ackermann function



What are µ-recursive functions?

Definition
The µ-recursive functions are the smallest class of functions from
W×W× · · · ×W to W that includes:
1. zero function
2. successor function
3. projection function
and that is closed under the operations:
4. composition of functions
5. primitive recursion B halting for-loop
6. minimalization of minimalizable functions

B halting while-loop

µ-recursive functions are computationally equivalent to
algorithms or Turing-computable functions.



What are minimizable functions?

Definition
Let g be a (k + 1)-ary function, for some k ≥ 0. The
minimalization of g is the k-ary function f defined as follows.

f(X) =
{
least m ∈W such that g(X,m) = 1 if m exists,
0 otherwise.

TM-Min(g, X) B f(X)
1. m← 0
2. while g(X, m) 6= 1 do
3. m← m + 1
4. return m

TM-Min might not halt if no value of m exists.

A function g is called minimalizable function iff for every X,
there is an m such that g(X,m) = 1.
A function g is minimalizable iff TM-Min always halts.
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(Primitive vs. µ) recursive functions

Primitive rec. functions µ-recursive functions
Comparable to Halting for-loops Halting while-loops
#Iterations Known beforehand Not known beforehand

Primitive recursive

functions

µ-Recursive functions

Ackermann function

Equivalent to

Turing-computable

algorithms or

functions



While Programs



What are for and while programs?

Operations For programs While programs
Assignments 3 3

e.g. x← y + 5
Sequential compositions 3 3

e.g. p; q
Conditionals 3 3

e.g. if (x < y) then p else q
For loops 3 3

e.g. for y do p
While loops 7 3

e.g. while x < y do p



What are for and while programs?

Difference For programs While programs
Definition For programs are computer

programs without the while
construct.

While programs are com-
puter programs with the
while construct.

#Iterations Known beforehand. Does
change after the execution
of the loop body.

Might change after the exe-
cution of the loop body.

Halting Always halt. Might not halt.



Relationship with recursive functions

Time Formal functions Computer programs
Finite Primitive rec. functions For programs

µ-recursive functions Halting while programs
Infinite Partially rec. functions Non-halting while programs


