Theory of Computation (Finite Automata)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

January 24, 2021

Contents

- Deterministic Finite Automata (DFA)
- Regular Languages
- Regular Expressions
- Nondeterministic Finite Automata (NFA)
- Transformations
- Non-Regular Languages

Deterministic Finite Automata (DFA)

Electric bulb

Problem

• Design the logic behind an electric bulb.

Electric bulb

Problem

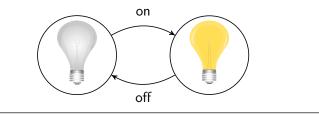
• Design the logic behind an electric bulb.

Solution

- Diagram.
- Analysis.

 $\mathsf{States} = \{\mathsf{nolight}, \mathsf{light}\}, \, \mathsf{Input} = \{\mathsf{off}, \mathsf{on}\}$

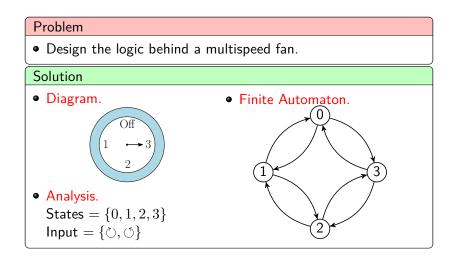
• Finite Automaton.



Multispeed fan

Problem

• Design the logic behind a multispeed fan.

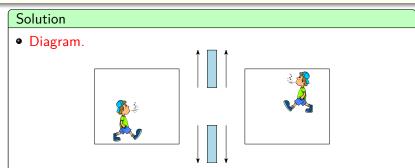


Automatic doors

Problem

• Design the logic behind automatic doors in Walmart.

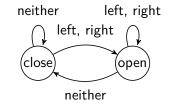
Automatic doors



• Analysis.

 $\mathsf{States} = \{\mathsf{close}, \mathsf{open}\}, \, \mathsf{Input} = \{\mathsf{left}, \mathsf{right}, \mathsf{neither}\}$

• Finite Automaton.



- A finite automaton is a simple computer with extremely limited memory
- A finite automaton has a finite set of states
- Current state of a finite automaton changes when it reads an input symbol
- A finite automaton acts as a language acceptor i.e., outputs "yes" or "no"

Why should you care?

Deterministic Finite Automata (DFA) are everywhere.

- ATMs
- Ticket machines
- Vending machines
- Traffic signal systems
- Calculators
- Digital watches
- Automatic doors
- Elevators
- Washing machines
- Dishwashing machines
- Thermostats
- Train switches
- (CS) Compilers
- (CS) Search engines
- (CS) Regular expressions

Why should you care?

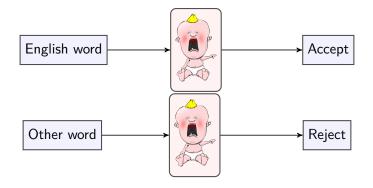
Probabilistic Finite Automata (PFA) are everywhere, too.

- Speech recognition
- Optical character recognition
- Thermodynamics
- Statistical mechanics
- Chemical reactions
- Information theory
- Queueing theory
- PageRank algorithm
- Statistics
- Reinforcement learning
- Price changes in finance
- Genetics
- Algorithmic music composition
- Bioinformatics
- Probabilistic forecasting

Definition

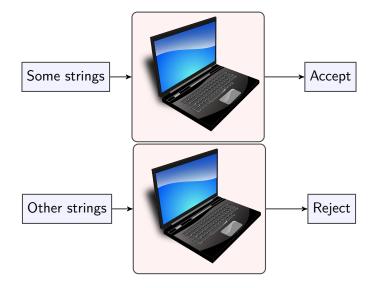
- A decision problem is a computational problem with a 'yes' or 'no' answer.
- A computer that solves a decision problem is a decider. Input to a decider: A string w Output of a decider: Accept (w is in the language) or Reject (w is not in the language)
 w Decider yes/no

What is a decision problem?



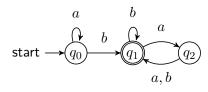
- $\bullet \ \mathsf{Language} = \mathsf{English} \ \mathsf{language} = \{\mathsf{milk}, \mathsf{food}, \mathsf{sleep}, \ldots\} \vartriangleright \mathsf{Accept}$
- Not in language = {zffgb, cdcapqw, . . .} \triangleright Reject

What is a decision problem?



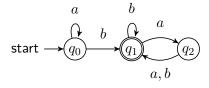
Problem

• Does the DFA accept the string *bbab*?



Problem

• Does the DFA accept the string *bbab*?



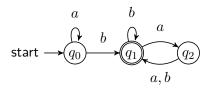
Solution

The DFA accepts the string *bbab*. The computation is:

- 1. Start in state q_0
- 2. Read b, follow transition from q_0 to q_1 .
- 3. Read b, follow transition from q_1 to q_1 .
- 4. Read a, follow transition from q_1 to q_2 .
- 5. Read b, follow transition from q_2 to q_1 .
- 6. Accept because the DFA is in an accept state q_1 at the end of the input.

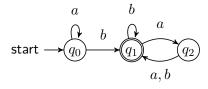
Problem

• Does the DFA accept the string *aaba*?



Problem

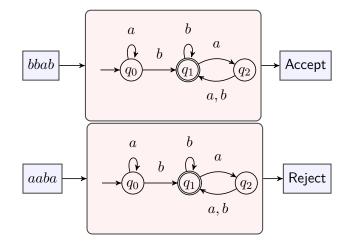
• Does the DFA accept the string *aaba*?

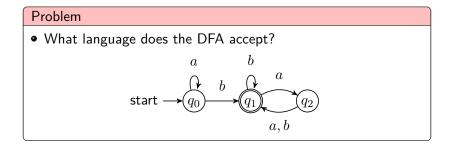


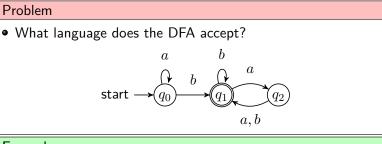
Solution

The DFA rejects the string aaba. The computation is:

- 1. Start in state q_0
- 2. Read a, follow transition from q_0 to q_0 .
- 3. Read a, follow transition from q_0 to q_0 .
- 4. Read b, follow transition from q_0 to q_1 .
- 5. Read a, follow transition from q_1 to q_2 .
- 6. Reject because the DFA is in a reject state q_2 at the end of the input.







Examples

- The DFA accepts the following strings:
 - $b, ab, bb, aabbbb, abababababab, \dots$ \triangleright ends with b $baa, abaa, ababaaaaaaa, \dots$ \triangleright ends with b followed by even a's
- The DFA rejects the following strings: *a*, *ba*, *babaaa*, ...
- What language does the DFA accept?

• Construct a DFA that accepts all strings from the language $L = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$

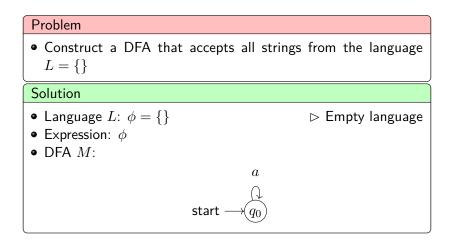
• Construct a DFA that accepts all strings from the language $L = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$

Solution

- Language L: $\Sigma^* = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$
- Expression: a^*
- Deterministic Finite Automaton (DFA) M:

start
$$\rightarrow q_0$$

• Construct a DFA that accepts all strings from the language $L=\{\}$



• Construct a DFA that accepts all strings from the language $L = \{a, aa, aaa, aaaa, \ldots\}$

• Construct a DFA that accepts all strings from the language $L = \{a, aa, aaa, aaaa, \ldots\}$

Solution

- Language $L: \Sigma^* \{\epsilon\} = \{a, aa, aaa, aaaa, \ldots\}$
- Expression: a^+
- DFA *M*:

start
$$\rightarrow q_0 \xrightarrow{a} q_1$$

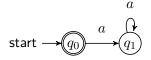
a

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon\}$

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon\}$

Solution

- Language L: = { ϵ }
- Expression: ϵ
- DFA *M*:

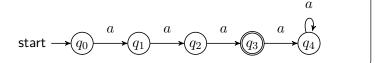


 \bullet Construct a DFA that accepts all strings from the language $L=\{aaa\}$

• Construct a DFA that accepts all strings from the language $L=\{aaa\}$

Solution

- Language L: {aaa}
- Expression: aaa
- DFA *M*:

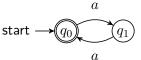


• Construct a DFA that accepts all strings from the language $L = \{\text{strings with even size}\}$

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with even size}\}$

Solution

- Language L: $\{\epsilon, aa, aaaa, aaaaaaa, \ldots\}$
- Expression: $(aa)^*$
- DFA *M*:



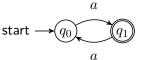
• Construct a DFA that accepts all strings from the language $L = \{ strings with odd size \}$

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings with odd size} \}$

Solution

• Language
$$L$$
: $\{a, aaa, aaaaa, \ldots\}$

- Expression: $a(aa)^*$
- DFA *M*:

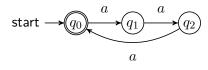


• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by } 3 \}$

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 3} \}$

Solution

- Language L: $\{\epsilon, aaa, aaaaaaa, aaaaaaaaaa, \ldots\}$
- Expression: $(aaa)^*$
- DFA *M*:

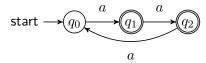


• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size not divisible by } 3 \}$

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size not divisible by } 3 \}$

Solution

- Language L: $\{a, aa, aaaa, aaaaa, \ldots\}$
- Expression: $(a \cup aa)(aaa)^*$
- DFA *M*:



Problem

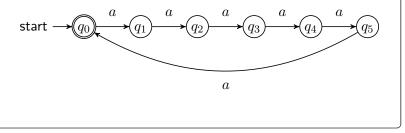
• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Problem

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by } 6 \}$

Solution

- Language L: $\{\epsilon, aaaaaa, aaaaaaaaaaaa, \ldots\}$
- Expression: (*aaaaaa*)*
- DFA *M*:

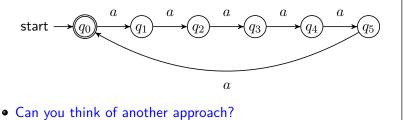


Problem

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by } 6 \}$

Solution

- Language L: $\{\epsilon, aaaaaa, aaaaaaaaaaaa, \ldots\}$
- Expression: (*aaaaaa*)*
- DFA *M*:



Problem

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Solution

- Let n = string size
- Observation

 $n \mod 6 = 0 \iff n \mod 2 = 0 \text{ and } n \mod 3 = 0$

• Idea

Build DFA M_1 for $n \mod 2 = 0$.

Build DFA M_2 for $n \mod 3 = 0$.

Run M_1 and M_2 in parallel.

Accept a string if both DFAs M_1 and M_2 accept the string.

Reject a string if at least one of the DFAs $M_1 \ {\rm and} \ M_2$ reject the string.

• It is possible to build complicated DFAs from simpler DFAs

Problem

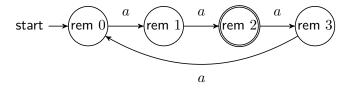
• Construct a DFA that accepts all strings from the language $L = \{ \text{strings with size } n \text{ where } n \mod 4 = 2 \}$

Problem

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings with size } n \text{ where } n \mod 4 = 2 \}$

Solution

- Language L: $\{aaa, aaaaaaaa, aaaaaaaaaaa, \ldots\}$
- Expression: $aa(aaaa)^*$
- DFA *M*:



• What about strings with size n where $n \mod k = i$?

More Problems

Construct a DFA that accepts all strings from the language $L = \{ \text{strings with size } n \}$ such that

•
$$n^2 - 5n + 6 = 0$$

- $n \in [4, 37]$
- n is a perfect cube
- *n* is a prime number
- n satisfies a mathematical function f(n)

The specification of DFA consists of:

- A (finite) alphabet
- A (finite) set of states
- Which state is the start state?
- Which states are the final states?
- What is the transition from each state, on each input character?

What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where, 1. Q: A finite set (set of states). \triangleright Space (computer memory) 2. Σ : A finite set (alphabet). 3. $\delta : Q \times \Sigma \rightarrow Q$ is the transition function. \triangleright Time (computation) 4. q_0 : The start state (belongs to Q). 5. F: The set of accepting/final states, where $F \in Q$.

Definition

- A DFA accepts a string $w = w_1 w_2 \dots w_k$ iff there exists a sequence of states r_0, r_1, \dots, r_k such that the current state starts from the start state and ends at a final state when all the symbols of w have been read.
- A DFA rejects a string iff it does not accept it.

Definition

- We say that a DFA M accepts a language L if $L = \{w \mid M \text{ accepts } w\}.$
- A language is called a regular language if some DFA accepts or recognizes it.

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b's\}$

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b's\}$

Solution

States

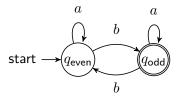
- q_{odd} : DFA is in this state if it has read odd b's.
- q_{even} : DFA is in this state if it has read even b's.

Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b's\}$

Solution

- Language L: {strings with odd number of b's}
- Expression: $a^*b(a \cup ba^*b)^*$ or $a^*ba^*(ba^*ba^*)^*$
- DFA *M*:



Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b's\}$

Solution (continued)

• DFA M is specified as Set of states is $Q = \{q_{\text{even}}, q_{\text{odd}}\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is q_{even} Set of accept states is $F = \{q_{\text{odd}}\}$ Transition function δ is: $\delta = \frac{\delta}{q_{\text{even}}} \frac{q_{\text{odd}}}{q_{\text{odd}}} \frac{q_{\text{even}}}{q_{\text{odd}}}$

Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$

• Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$

Solution

States

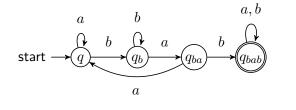
- q_b: DFA is in this state if the last symbol read was b, but the substring bab has not been read.
- q_{ba} : DFA is in this state if the last two symbols read were ba, but the substring bab has not been read.
- q_{bab} : DFA is in this state if the substring bab has been read in the input string.
- q: In all other cases, the DFA is in this state.

Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$

Solution (continued)

- Language L: {strings containing bab}
- Expression: $(a^*b^+aa)^*bab(a \cup b)^*$
- DFA *M*:



Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$

Solution (continued)

• DFA M is specified as Set of states is $Q = \{q, q_b, q_{ba}, q_{bab}\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is qSet of accept states is $F = \{q_{bab}\}$ Transition function δ is:

δ	a	b
q	q	q_b
q_b	q_{ba}	q_b
q_{ba}	q	q_{bab}
q_{bab}	q_{bab}	q_{bab}

Properties

Let L_1 and L_2 be regular languages.

Then, the following languages are regular.

- Complement. $\overline{L_1} = \{x \mid x \in \Sigma^* \text{ and } x \notin L_1\}.$
- Union. $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}.$
- Intersection. $L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\}.$
- Concatenation. $L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}.$
- Star. $L_1^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in L_1\}.$

Closure properties for languages

	Operation							
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	L'	L_1L_2	L^*	L^R	L^T	
Regular	>	1	~	>	>	>	>	
DCFL	×	×	~	×	X	×	×	
CFL	~	×	×	~	~	>	~	
Recursive	~	1	~	~	~	>	×	
R.E.	~	1	×	~	~	~	~	

- $L_1 \cup L_2 =$ Union of L_1 and L_2
- $L_1 \cap L_2 =$ Intersection of L_1 and L_2
- L' = Complement of L
- $L_1L_2 =$ Concatenation of L_1 and L_2
- $L^* =$ Powers of L
- $L^R = \text{Reverse of } L$
- L^T = Finite transduction of L (may include: intersection/shuffle/perfect-shuffle/quotient with arbitrary regular languages)

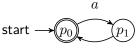
Construct DFA for $L_1 \cup L_2$

Problem

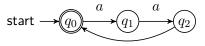
• Construct a DFA that accepts all strings from the language $L = \{ \text{strings with size multiples of 2 or 3} \}$ where $\Sigma = \{a\}$

Solution

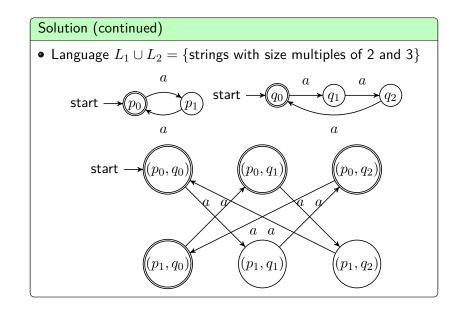
- Language $L_1 = \{ \text{strings with size multiples of } 2 \}$
- Language $L_2 = \{ \text{strings with size multiples of 3} \}$



a



Construct DFA for $L_1 \cup L_2$



Union

• Let M_1 accept L_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ Let M_2 accept L_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ • Let M accept $L_1 \cup L_2$, where $M = (Q, \Sigma, \delta, q, F)$. Then $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}
ightarrow Cartesian product$ $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \quad \forall (r_1, r_2) \in Q, a \in \Sigma$ $q_0 = (q_1, q_2)$

$$F = \{ (r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2 \}$$

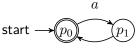
Construct DFA for $L_1 \cap L_2$

Problem

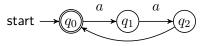
• Construct a DFA that accepts all strings from the language $L = \{\text{strings with size multiples of 2 and 3}\}$ where $\Sigma = \{a\}$

Solution

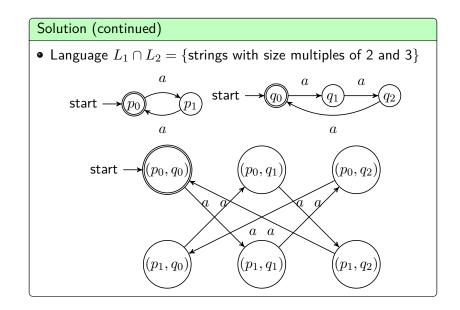
- Language $L_1 = \{ \text{strings with size multiples of } 2 \}$
- Language $L_2 = \{ \text{strings with size multiples of 3} \}$



a



Construct DFA for $L_1 \cap L_2$



Intersection

- Let M_1 accept L_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ Let M_2 accept L_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$
- Let M accept $L_1 \cap L_2$, where $M = (Q, \Sigma, \delta, q, F)$. Then $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} \quad \triangleright \text{ Cartesian product}$ $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \quad \forall (r_1, r_2) \in Q, a \in \Sigma$ $q_0 = (q_1, q_2)$ $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ and } r_2 \in F_2\}$

Problems for practice

Problems

Assume $\Sigma = \{a, b\}$ unless otherwise mentioned. Construct DFA's for the following languages and generalize: • $L = \{w \mid |w| = 2\}$ • $L = \{w \mid |w| < 2\}$ • $L = \{w \mid |w| > 2\}$ • $L = \{w \mid n_a(w) = 2\}$ • $L = \{w \mid n_a(w) < 2\}$ • $L = \{ w \mid n_a(w) \ge 2 \}$ • $L = \{w \mid n_a(w) \mod 3 = 1\}$ • $L = \{w \mid n_a(w) \mod 2 = 0 \text{ and } n_b(w) \mod 2 = 0\}$ • $L = \{w \mid n_a(w) \mod 3 = 2 \text{ and } n_b(w) \mod 2 = 1\}$ • $L = \{w \mid n_a(w) \mod 5 = 3, n_b(w) \mod 3 = 2, \text{ and }$ $n_c(w) \mod 2 = 1$ for $\Sigma = \{a, b, c\}$ • $L = \{w \mid n_a(w) \mod 3 > n_b(w) \mod 2\}$

Problems (continued)

• $L = \{b \mid \text{binary number } b \mod 3 = 1\}$ for $\Sigma = \{0, 1\}$

•
$$L = \{t \mid \text{ternary number } t \mod 4 = 3\}$$
 for $\Sigma = \{0, 1, 2\}$

• $L = \{w \mid w \text{ starts with } a\}$

•
$$L = \{w \mid w \text{ contains } a\}$$

•
$$L = \{w \mid w \text{ ends with } a\}$$

•
$$L = \{w \mid w \text{ starts with } ab\}$$

•
$$L = \{w \mid w \text{ contains } ab\}$$

•
$$L = \{w \mid w \text{ ends with } ab\}$$

•
$$L = \{w \mid w \text{ starts with } a \text{ and ends with } b\}$$

•
$$L = \{w \mid w \text{ starts and ends with different symbols}\}$$

•
$$L = \{w \mid w \text{ starts and ends with the same symbol}\}$$

•
$$L = \{w \mid \text{every } a \text{ in } w \text{ is followed by a } b\}$$

• $L = \{w \mid \text{every } a \text{ in } w \text{ is never followed by a } b\}$

Problems (continued)

•
$$L = \{w \mid \text{every } a \text{ in } w \text{ is followed by } bb\}$$

• $L = \{w \mid \text{every } a \text{ in } w \text{ is never followed by } bb\}$
• $L = \{w \mid w = a^m b^n \text{ for } m, n \ge 1\}$
• $L = \{w \mid w = a^m b^n \text{ for } m, n \ge 0\}$
• $L = \{w \mid w = a^m b^n c^{\ell} \text{ for } m, n, \ell \ge 1\} \text{ for } \Sigma = \{a, b, c\}$
• $L = \{w \mid w = a^m b^n c^{\ell} \text{ for } m, n, \ell \ge 0\} \text{ for } \Sigma = \{a, b, c\}$
• $L = \{w \mid w = a^m b^n c^{\ell} \text{ for } m, n, \ell \ge 0\} \text{ for } \Sigma = \{a, b, c\}$
• $L = \{w \mid w = a^m b^n c^{\ell} \text{ for } m, n, \ell \ge 0\} \text{ for } \Sigma = \{a, b, c\}$
• $L = \{w \mid second \text{ symbol from left end of } w \text{ is } a\}$
• $L = \{w \mid second \text{ symbol from right end of } w \text{ is } a\}$
• $L = \{w \mid w = a^3 bx a^3 \text{ such that } x \in \{a, b\}^*\}$

Equivalence of different computation models

- Two machines or computational models are computationally equivalent if they accept/recognize the same language.
- The following models are computationally equivalent: DFA, regular expressions, NFA, and regular grammars.

	Operation				
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	\bar{L}	$L_1 \circ L_2$	L^*
DFA	Easy	Easy	Easy	Hard	Hard
Regex	Easy	Hard	Hard	Easy	Easy
NFA	Easy	Hard	Hard	Easy	Easy

- $L_1 \cup L_2 =$ Union of L_1 and L_2
- $L_1 \cap L_2 =$ Intersection of L_1 and L_2
- $\bar{L} = \text{Complement of } L$
- $L_1 \circ L_2 =$ Concatenation of L_1 and L_2
- $L^* = \mathsf{Powers} \text{ of } L$

Regular Expressions

Example

• Arithmetic expression.

$$(5+3)\times 4=32={\rm Number}$$

• Regular expression.

 $(a \cup b)a^* = \{a, b, aa, ba, aaa, baa, \ldots\} = \mathsf{Regular} \mathsf{ language}$

Application

• Regular expressions in Linux.

Used to find patterns in filenames, file content etc. Used in Linux tools such as awk, grep, and Perl. Google search: http://www.googleguide.com/advanced_ operators_reference.html

Definition The following are regular expressions. *ϵ*, *φ*, *a* ∈ Σ. If *R*₁ and *R*₂ are regular expressions, then the following are regular expressions. (Union.) *R*₁ ∪ *R*₂ (Concatenation.) *R*₁ ∘ *R*₂ (Kleene star.) *R*₁^{*}

Regular language	Regular expression
{}	ϕ
$\{\epsilon\}$	ϵ
$\{a\}$	a
$\{a,b\}$	$a\cup b$
$\{a\}\{b\}$	ab
$\{a\}^* = \{\epsilon, a, aa, aaa, \ldots\}$	a^*
$\{aab\}^*\{a,ab\}$	$(aab)^*(a\cup ab)$
$(\{aa, bb\} \cup \{a, b\} \{aa\}^* \{ab, ba\})^*$	$(aa\cup bb\cup (a\cup b)(aa)^*(ab\cup ba))^*$

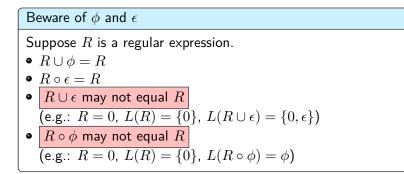
Equality

• Two regular expressions are equal if they describe the same regular language. E.g.: $(a^*b^*)^* = (a \cup b)^*ab(a \cup b)^* \cup b^*a^* = (a \cup b)^* = \Sigma^*$

Examples

Examples

Let
$$\Sigma = a \cup b$$
, $R^+ = RR^*$, and $R^k = \underbrace{R \cdots R}_{k \text{ times}}$
• $L = \{w \mid |w| = 2\}$
 $R = \Sigma\Sigma$
• $L = \{w \mid |w| \le 2\}$
 $R = \epsilon \cup \Sigma \cup \Sigma\Sigma$
• $L = \{w \mid |w| \ge 2\}$
 $R = \Sigma\Sigma\Sigma^*$
• $L = \{w \mid n_a(w) = 2\}$
 $R = b^*ab^*ab^*$
• $L = \{w \mid n_a(w) \le 2\}$
 $R = b^* \cup b^*ab^* \cup b^*ab^*ab^*$
• $L = \{w \mid n_a(w) \le 2\}$
 $R = b^*ab^*ab^*(ab^*)^*$



Rules

Rules

Suppose R_1, R_2, R_3 are regular expressions. Then • $R_1\phi = \phi R_1 = \phi$ • $R_1\epsilon = \epsilon R_1 = R_1 \cup \phi = \phi \cup R_1 = R_1$ • $R_1 \cup R_1 = R_1$ • $R_1 \cup R_2 = R_2 \cup R_1$ • $R_1(R_2 \cup R_3) = R_1R_2 \cup R_1R_3$ • $(R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$ • $R_1(R_2R_3) = (R_1R_2)R_3$ • $\phi^* = \epsilon$ • $(\epsilon \cup R_1)^* = (\epsilon \cup R_1)^+ = R_1^*$ • $R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^* = R_1^*$ • $R_1^*R_2 \cup R_2 = R_1^*R_2$ • $R_1(R_2R_1)^* = (R_1R_2)^*R_1$ • $(R_1 \cup R_2)^* = (R_1 * R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$

Construct a regex for $\Sigma = \{a, b\}$

Problem

• Construct a regular expression to describe the language $L = \{w ~|~ n_a(w) \text{ is odd}\}$

Problem • Construct a regular expression to describe the language $L = \{ w \mid n_a(w) \text{ is odd} \}$ Solution Incorrect expressions. $b^*ab^*(ab^*a)^*b^*$ \triangleright Why? $b^*a(b^*ab^*ab^*)^*$ \triangleright Why? Correct expressions. $b^*ab^*(b^*ab^*ab^*)^*$ \triangleright Why? $b^*ab^*(ab^*ab^*)^*$ \triangleright Why? $b^*a(b^*ab^*a)^*b^*$ \triangleright Why? $b^*a(b \cup ab^*a)^*$ \triangleright Why? $(b \cup ab^*a)^*ab^*$ \triangleright Why?

Problem

• Construct a regular expression to describe the language $L = \{w \mid w \text{ ends with } b \text{ and does not contain } aa\}$

Problem

• Construct a regular expression to describe the language $L = \{w \mid w \text{ ends with } b \text{ and does not contain } aa\}$

Solution

- A string not containing aa means that every a in the string:
 - is immediately followed by $\boldsymbol{b},$ or
 - is the last symbol of the string
- Each string in the language has to end with b.
- \bullet Hence, every a in each string of the language is immediately followed by b
- Regular expression is: $(b \cup ab)^+$

Construct a regex to recognize identifiers in C

Problem

- Identifiers are the names you supply for variables, types, functions, and labels.
- Construct a regular expression to recognize the identifiers in the C programming language i.e., $L = \{\text{identifiers in C}\}$

Problem

- Identifiers are the names you supply for variables, types, functions, and labels.
- Construct a regular expression to recognize the identifiers in the C programming language i.e., $L = \{\text{identifiers in C}\}$

Solution

- C identifier = FirstLetter OtherLetters FirstLetter = English letter or underscore OtherLetters = Alphanumeric letters or underscore
- Let $L = \{a, \dots, z, A, \dots, Z\}$ and $D = \{0, 1, \dots, 9\}$

• Regular expression is:

$$R = FirstLetter \circ OtherLetters$$

FirstLetter = $(L \cup _)$
OtherLetters = $(L \cup D \cup _)$

Construct a regex to recognize decimals in C

Problem

Construct a regular expression to recognize the decimal numbers in the C programming language i.e.,
 L = (decimal numbers in C)

 $L = \{ decimal numbers in C \}$

• Examples: 14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, and .3E+2

Problem

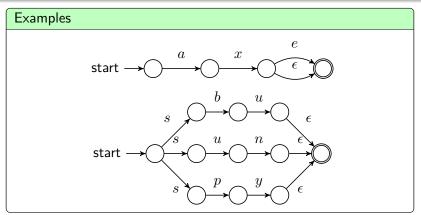
- Construct a regular expression to recognize the decimal numbers in the C programming language i.e.,
 - $L = \{ decimal numbers in C \}$
- Examples: 14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E 1, and .3E + 2

Solution

- C decimal number = Sign Decimals Exponent
- Let $D = \{0, 1, \dots, 9\}$
- Regular expression is: $R = \text{Sign} \circ \text{Decimals} \circ \text{Exponent}$ $\text{Sign} = (+ \cup - \cup \epsilon)$ $\text{Decimals} = (D^+ \cup D^+.D^* \cup D^*.D^+)$ $\text{Exponent} = (\epsilon \cup E \text{ Sign } D^+)$

Nondeterministic Finite Automata (NFA)

Example NFA's



Difference	DFA	NFA
Multiple transitions	1 exiting arrow	≥ 0 exiting arrows
Epsilon transitions	×	✓
Missing transitions	No missing transitions	Missing transitions mean transitions to sink/reject state

Intuition

Nondeterministic computation = Parallel computation

- (NFA searches all possible paths in a graph to the accept state)
- When NFA has multiple choices for the same input symbol, think of it as a process forking multiple processes for parallel computation.
- A string is accepted if any of the parallel processes accepts the string.

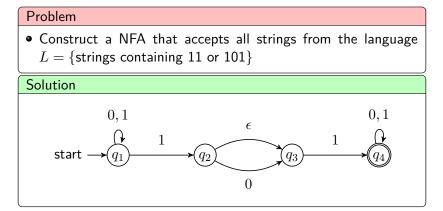
Nondeterministic computation = Tree of possibilities

(NFA magically guesses a right path to the accept state)

- Root of the tree is the start of the computation.
- Every branching point is the decision-making point consisting of multiple choices.
- Machine accepts a string if any of the paths from the root of the tree to a leaf leads to an accept state.

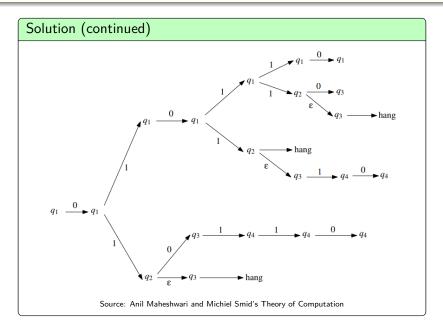
Uses of NFA's

- Constructing NFA's is easier than directly constructing DFA's for many problems.
 Hence, construct NFA's and then convert them to DFA's.
- NFA's are easier to understand than DFA's.



- How does the machine work for the input 010110?
- What is the equivalent DFA for solving the problem?

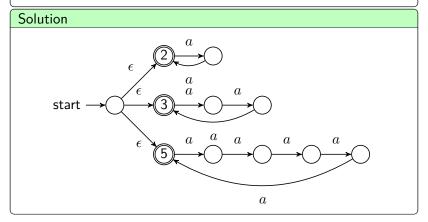
Construct NFA for $\Sigma = \{0, 1\}$



Construct NFA for $\Sigma = \{a\}$

Problem

• Construct a NFA that accepts all strings from the language $L = \{ \text{strings of size multiples of 2 or 3 or 5} \}$



• What is the equivalent DFA for solving the problem?

What is a nondeterministic finite automaton (NFA)?

- Nondeterministic = Event paths cannot be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

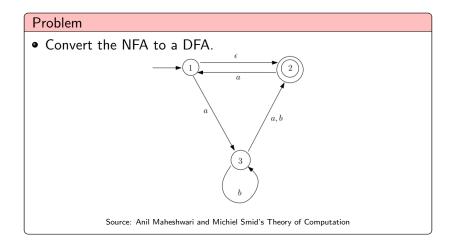
A nondeterministic finite automaton (NFA) M is a 5-tuple

- $M = (Q, \Sigma, \delta, q_0, F)$, where,
- 1. *Q*: A finite set (set of states). ▷ Space (computer memory)
- 2. Σ : A finite set (alphabet).
- 3. $\delta: Q \times (\Sigma \cup \epsilon) \to P(Q)$ is the transition function, where

 $\overline{P(Q)}$ is the power set of Q. \triangleright Time (computation)

- 4. q_0 : The start state (belongs to Q).
- 5. F: The set of accepting/final states, where $F \in Q$.

Convert NFA to DFA



Solution

• NFA M is specified as Set of states is $Q = \{1, 2, 3\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is 1 Set of accept states is $F = \{1\}$ Transition function δ is: $\delta = a = b$ $1 = \{3\} = \phi$ $2 = \{1\} = \phi$

1	נטן	φ	ι 4]
2	{1}	ϕ	ϕ
3	$\{2\}$	$\{2, 3\}$	ϕ

 ϵ

J9J

• How do you convert this NFA to DFA?

Solution

• NFA M is specified as Set of states is $Q = \{1, 2, 3\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is 1 Set of accept states is $F = \{1\}$ Transition function δ is: $\delta = b$ $1 = \{3\} = \phi$

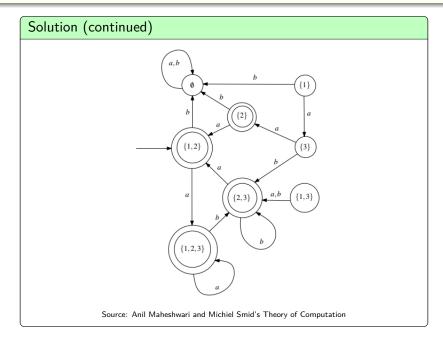
T	լմյ	φ	<u></u> ζ45
2	{1}	ϕ	ϕ
3	{2}	$\{2, 3\}$	ϕ

ເຈງ

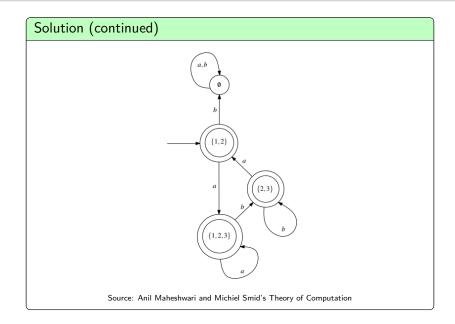
How do you convert this NFA to DFA?
 If NFA has states Q, then construct a DFA with states P(Q).

Solution (continued)	
• $\phi \xrightarrow{a} \phi$	• $\{1,2\} \xrightarrow{a} ?$
• $\phi \xrightarrow{b} \phi$	• $\{1,2\} \xrightarrow{b}$?
• $\{1\} \xrightarrow{a} \{3\}$	• $\{1,3\} \xrightarrow{a} ?$
• $\{1\} \xrightarrow{b} \phi$	• $\{1,3\} \xrightarrow{b}$?
• $\{2\} \xrightarrow{a} \{1,2\}$	• $\{2,3\} \xrightarrow{a} ?$
• $\{2\} \xrightarrow{b} \phi$	• $\{2,3\} \xrightarrow{b}$?
• $\{3\} \xrightarrow{a} \{2\}$	• $\{1,2,3\} \xrightarrow{a} ?$
• $\{3\} \xrightarrow{b} \{2,3\}$	• $\{1,2,3\} \xrightarrow{b} ?$

Construct DFA for the given NFA



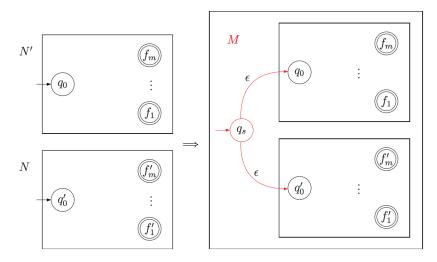
Construct DFA for the given NFA



Convert NFA to DFA

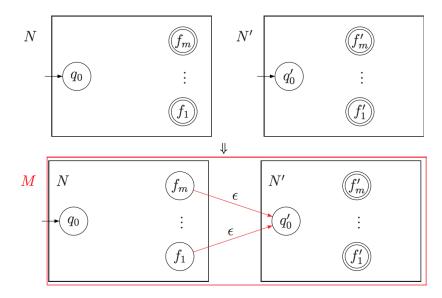
• Let $N = (Q, \Sigma, \delta, q, F)$ be the NFA. Let $M = (Q', \Sigma, \delta', q', F')$ be the DFA. Then • Q' = P(Q) \triangleright Power set of Q $q' = C_{\epsilon}(\{q\})$ $\triangleright \epsilon$ -closure of the start state $F' = \{S \in Q' \mid S \cap F \neq \phi\}$ $\triangleright S \cap F \neq \phi$ means that Scontains at least one accept state of N $\delta' : Q' \times \Sigma \rightarrow Q'$ is defined as follows: For all state $S \in Q'$ and for all letter $a \in \Sigma$, $\delta'(S, a) = \bigcup_{s \in S} C_{\epsilon}(\delta(s, a))$

Union of NFA



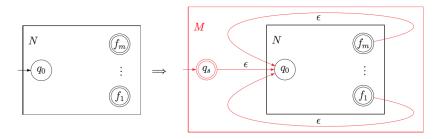
Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

Concatenation of NFA



Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

Star of NFA



Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

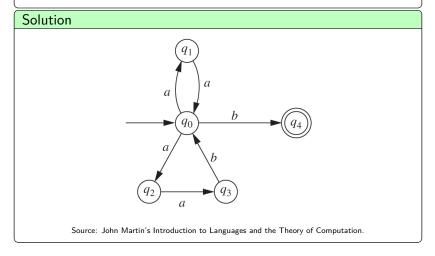
Construct a NFA for $(aa \cup aab)^*b$

Problem

• Construct a NFA for the regular expression $(aa \cup aab)^*b$.

Construct a NFA for $(aa \cup aab)^*b$

• Construct a NFA for the regular expression $(aa \cup aab)^*b$.

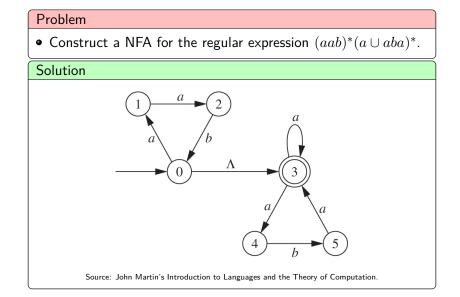


Construct a NFA for $(aab)^*(a \cup aba)^*$

Problem

• Construct a NFA for the regular expression $(aab)^*(a \cup aba)^*$.

Construct a NFA for $(aab)^*(a \cup aba)^*$



Non-Regular Languages

Let $\Sigma = \{a, b\}$ unless mentioned otherwise. Check if the languages are regular or non-regular (X): • $L = \{w \mid w = a^n \text{ and } n < 10^{100}\}$ • $L = \{w \mid w = a^n \text{ and } n \ge 1\}$ • $L = \{w \mid w = a^m b^n \text{ and } m, n \ge 1\}$ • $L = \{w \mid w = a^*b^*\}$ • $L = \{w \mid w = a^n b^n \text{ and } n \ge 1\}$ • $L = \{ww^R \mid |w| = 3\}$ • $L = \{ww^R \mid |w| > 1\}$ • $L = \{w \mid w = w^R \text{ and } |w| > 1\}$ • $L = \{w \mid w = a^{2i+1}b^{3j+2} \text{ and } i, j \ge 1\}$ • $L = \{w \mid w = a^n \text{ and } n \text{ is a square}\}$ • $L = \{w \mid w = a^n \text{ and } n \text{ is a prime}\}$ • $L = \{w \mid w = a^i b^{j^2} \text{ and } i, j \ge 1\}$

Problems Let $\Sigma = \{a, b\}$ unless mentioned otherwise. Check if the languages are regular or non-regular (X): • $L = \{w \mid w = a^n \text{ and } n < 10^{100}\}$ • $L = \{w \mid w = a^n \text{ and } n \ge 1\}$ • $L = \{w \mid w = a^m b^n \text{ and } m, n \ge 1\}$ • $L = \{w \mid w = a^*b^*\}$ • $L = \{w \mid w = a^n b^n \text{ and } n \geq 1\}$ • $L = \{ww^R \mid |w| = 3\}$ • $L = \{ww^R \mid |w| \ge 1\}$ • $L = \{w \mid w = w^R \text{ and } |w| \ge 1\}$ • $L = \{w \mid w = a^{2i+1}b^{3j+2} \text{ and } i, j \ge 1\}$ • $L = \{w \mid w = a^n \text{ and } n \text{ is a square}\}$ • $L = \{ w \mid w = a^i b^{j^2} \text{ and } i, j \ge 1 \}$

Problems (continued)

$$\begin{array}{l} \bullet \ L = \{w \mid n_a(w) = n_b(w)\} \\ \bullet \ L = \{w \mid n_a(w) \ \mathrm{mod} \ 3 \geq n_b(w) \ \mathrm{mod} \ 5\} \\ \bullet \ L = \{w \mid w = a^i b^j \ \mathrm{and} \ j > i \geq 1\} \\ \bullet \ L = \{w x w^R \mid x \in \Sigma^*, |w|, |x| \geq 1, \ \mathrm{and} \ |x| \leq 5\} \\ \bullet \ L = \{w x w^R \mid x \in \Sigma^* \ \mathrm{and} \ |w|, |x| \geq 1\} \\ \bullet \ L = \{x w w^R y \mid x, y \in \Sigma^* \ \mathrm{and} \ |w|, |x|, |y| \geq 1\} \\ \bullet \ L = \{x w w^R \mid x \in \Sigma^* \ \mathrm{and} \ |w|, |x| \geq 1\} \\ \bullet \ L = \{w w^R y \mid y \in \Sigma^* \ \mathrm{and} \ |w|, |y| \geq 1\} \\ \bullet \ L = \{w w^R y \mid y \in \Sigma^* \ \mathrm{and} \ |w|, |y| \geq 1\} \end{array}$$

Problems (continued)
• $L = \{w \mid n_a(w) = n_b(w)\}$ X • $L = \{w \mid n_a(w) \mod 3 \ge n_b(w) \mod 5\}$
• $L = \{w \mid w = a^i b^j \text{ and } j > i \ge 1\}$
$ \begin{array}{l} \bullet \ L = \{xww^Ry \mid x, y \in \Sigma^* \text{ and } w , x , y \ge 1 \} \\ \bullet \ L = \{xww^R \mid x \in \Sigma^* \text{ and } w , x \ge 1 \} \\ \bullet \ L = \{ww^Ry \mid y \in \Sigma^* \text{ and } w , y \ge 1 \} \\ \bullet \ L = \{ww^Ry \mid y \in \Sigma^* \text{ and } w , y \ge 1 \} \\ \end{array} $

How to prove that certain languages are not regular?

Pumping lemma

- Many languages are not regular.
- Pumping lemma is a method to prove that certain languages are not regular.

Pumping property

- If a language is regular, then it must have the pumping property.
- If a language does not have the pumping property, then the language is not regular.
 ▷ Proof by contraposition

How to prove languages non-regular using pumping lemma?

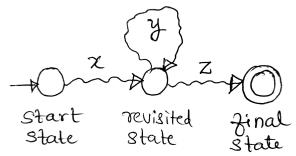
• Proof by contradiction.

Assume that the language is regular.

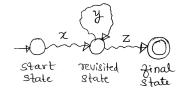
Show that the language does not have the pumping property. Contradiction! Hence, the language has to be non-regular.

Pumping property of regular languages

- Suppose a DFA M with s number of states accepts a very long string w such that $|w| \ge s$ from a language L.
- From pigeonhole principle, at least one state is visited twice.
- This implies that the string went through a loop.



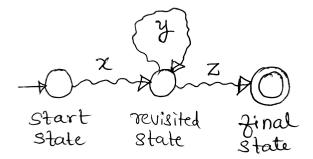
Pumping property of regular languages



Observations

- Suppose string w has more characters than the number of states in the DFA, i.e., $|w| \geq s$
- String w can be split into three parts i.e., w = xyz where x: string before the first loop
 - y: string of the first loop
 - z: string after the first loop (might contain loops)
- Loop must appear i.e., |y| ≥ 1 (x and z can be empty)
- Loop must appear in the first s characters of w i.e., $|xy| \leq s$

Pumping property of regular languages



Idea

- An infinite number of strings can be pumped with loop length and they must also be in the language.
- Formally, for all $i \ge 0$, $xy^i z$ must be in the language.
- xz, xyz, xyyz, xyyyz, etc must also belong to the language.

Theorem

Suppose L is a regular language over alphabet Σ . Suppose L is accepted by a finite automaton M having s states. Then, every long string $w \in L$ satisfying $|w| \geq s$ can be split into three strings w = xyz such that the following three conditions are true.

- $|xy| \leq s$.
- $|y| \ge 1$.
- For every $i \ge 0$, the string $xy^i z$ also belongs to L.

$L = \{a^n b^n \mid n \ge 0\}$ is non-regular

Problem

• Prove that $L = \{a^n b^n \mid n \ge 0\}$ is not a regular language.

$L = \{a^n b^n \mid n \ge 0\}$ is non-regular

Problem

• Prove that $L = \{a^n b^n \mid n \ge 0\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$w = a^s b^s$$

• Let
$$w = xyz = \boxed{a^p \quad a^q \quad a^r b^s}$$

where $|xy| \le s$, $|y| \ge 1$, and $p + q + r = s$.

- Also, $xy^i z$ must belong to L for all $i \ge 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \notin L$.

xyyz has more a's than b's.

• Contradiction! Hence, L is not regular.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$w = (ab)^s$$

• Let
$$w = xyz = \epsilon$$
 $(ab)^1$ $(ab)^{s-1}$

• We have
$$|xy| \leq s$$
 and $|y| \geq 1$.

• Also, $xy^i z$ must belong to L for all $i \ge 0$.

•
$$xy^i z$$
 belongs to L for all $i \ge 0$.

• No contradiction! Hence, L is regular.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

- Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = (a\underline{b})^s$.

• Let
$$w = xyz = \epsilon$$
 (ab)¹ (ab)^{s-1}

- We have $|xy| \leq \overline{s}$ and $|y| \geq 1$.
- Also, $xy^i z$ must belong to L for all $i \ge 0$.

•
$$xy^i z$$
 belongs to L for all $i \ge 0$.

• No contradiction! Hence, L is regular.

Mistakes

Incorrect solution! Why? Multiple reasons:

- 1. If we cannot find a contradiction, that does not prove anything.
- 2. We must try for all possible values of x,y such that $|xy| \leq s.$
- 3. The chosen string $(ab)^s$ is a bad string to work on.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

- Let $w = xyz = a^p a^q a^r b^s$ where $|xy| \le s$, $|y| \ge 1$, and p + q + r = s.
- Also, $xy^i z$ must belong to L for all $i \ge 0$.

• Contradiction! Hence, L is not regular.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

- Let $w = xyz = \boxed{a^p \quad a^q \quad a^r b^s}$ where $|xy| \le s$, $|y| \ge 1$, and p + q + r = s.
- Also, $xy^i z$ must belong to L for all $i \ge 0$.

• But,
$$xyyz$$
 is not in L .
Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \notin L$.
 $xyyz$ has more a's than b's.

• Contradiction! Hence, L is not regular.

Takeaway

1. Reduction! Reduce a problem to another. Reuse its solution.

• $\{a^n b^n\}$ is a subset of $\{w \mid n_a(w) = n_b(w)\}$. We used the fact that $\{a^n b^n\}$ is non-regular to prove that $\{w \mid n_a(w) = n_b(w)\}$ is non-regular. Is a superset of a non-regular language non-regular?

• $\{a^n b^n\}$ is a subset of $\{w \mid n_a(w) = n_b(w)\}$. We used the fact that $\{a^n b^n\}$ is non-regular to prove that $\{w \mid n_a(w) = n_b(w)\}$ is non-regular. Is a superset of a non-regular language non-regular?

Solution

No!

 Σ^* is a superset of every non-regular language. But, it is regular.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution (without using pumping lemma)

- Suppose *L* is regular.
- We know that $L' = \{w \ | \ w = a^i b^j, i, j \ge 0\}$ is regular.
- As regular languages are closed under intersection, $L \cap L'$ must also be regular.
- We see that $L \cap L' = \{ w \mid w = a^n b^n \text{ and } n \ge 0 \}.$
- But, this language was earlier proved to be non-regular.
- Contradiction! Hence, L is not regular.

Problem

• Prove that $L = \{ww\}$ is not a regular language.

Problem

• Prove that $L = \{ww\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$ww = a^s a^s$$
.

• Let
$$ww = xyz = a^p a^1 a^{s-p-1}a^s$$

• We have
$$|xy| \le s$$
 and $|y| \ge 1$.

• Also, $xy^i z$ must belong to L for all $i \ge 0$.

• Contradiction! Hence, L is not regular.

Problem

• Prove that $L = \{ww\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$ww = a^s a^s$$
.

• Let
$$ww = xyz = a^p a^1 a^{s-p-1}a^s$$

• We have
$$|xy| \le s$$
 and $|y| \ge 1$.

• Also, $xy^i z$ must belong to L for all $i \ge 0$.

xyyz has odd number of a's.

• Contradiction! Hence, L is not regular.

Mistakes

Incorrect solution! Why?

- 1. We must try all possible values of x,y such that $|xy| \leq s.$
- 2. Try pumping with $y \in \{a^2, a^4, \ldots\}$ such that $|y| \le s$.

Problem

• Prove that $L = \{ww\}$ is not a regular language.

• Prove that $L = \{ww\}$ is not a regular language.

Solution

• Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$ww = a^s b^s a^s b^s$$

- Let $ww = xyz = a^p a^q a^r b^s a^s b^s$ where $|xy| \le s$, $|y| \ge 1$, and p + q + r = s.
- Also, $xy^i z$ must belong to L for all $i \ge 0$.
- But, xyyz is not in L.
 Reason: xyyz = a^pa^qa^qa^rb^sa^sb^s = a^{s+q}b^sa^sb^s ∉ L.
- Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^n, n \text{ is a square}\}$$
 is non-regular

$$L = \{w \mid w = a^n, n \text{ is a square}\}$$
 is non-regular

• Prove that
$$L = \{w \mid w = a^{n^2}\}$$
 is not a regular language.

Solution

- $\bullet\,$ Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^{s^2}$.

• Let
$$w = xyz = a^p a^q a^{r}a^{s^2-s}$$

where $|xy| \le s$, $|y| \ge 1$, and $p+q+r=s$

• Also, xy^iz must belong to L for all $i \ge 0$.

• But,
$$xyyz$$
 is not in L .
Reason: $xyyz = a^p a^q a^q a^r a^{s^2-s} = a^{s^2+q} \notin L$.
Because, $s^2 < s^2 + q < (s+1)^2$.

• Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^n, n \text{ is prime}\}$$
 is non-regular

• Prove that $L = \{w \mid w = a^n, n \text{ is prime}\}$ is not regular.

$$L = \{w \mid w = a^n, n \text{ is prime}\}$$
 is non-regular

• Prove that $L = \{w \mid w = a^n, n \text{ is prime}\}$ is not regular.

Solution

- Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^m$, where m is prime and $m \ge s$.

• Let
$$w = xyz = a^p a^q a^r$$

where $|xy| \le s$, $|y| \ge 1$, and $p + q + r = m$.

- Also, $xy^i z$ must belong to L for all $i \ge 0$.
- But, $xy^{m+1}z$ is not in L. Reason: $xy^{m+1}z = a^p a^{q(m+1)}a^r = a^{m(q+1)} \notin L$.
- Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^m b^n, m > n\}$$
 is non-regular

• Prove that
$$L = \{w \mid w = a^m b^n, m > n\}$$
 is not regular.

$$L = \{w \mid w = a^m b^n, m > n\}$$
 is non-regular

• Prove that
$$L = \{w \mid w = a^m b^n, m > n\}$$
 is not regular.

Solution

 \bullet Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$w = a^{s+1}b^s$$
.

• Let
$$w = xyz = a^p a^q a^r b^s$$

where $|xy| \le s$, $|y| \ge 1$, and $p + q + r = s + 1$

• Also,
$$xy^i z$$
 must belong to L for all $i \ge 0$.

 But, xz is not in L. ▷ Pumping down Reason: xz = a^pa^rb^s = a^{p+r}b^s ∉ L. Because, p + r ≤ s i.e., #a's is not greater than #b's.
 Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is non-regular

• Prove that
$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is not regular.

$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is non-regular

• Prove that
$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is not regular.

Solution

 \bullet Suppose L is regular. Then it must satisfy pumping property.

• Suppose
$$w = a^s b^{s+s!}$$
.

• Let
$$w = xyz = \boxed{a^p \quad a^q \quad a^r b^{s+s!}}$$

where $|xy| \le s$, $|y| \ge 1$, and $p+q+r=s$.

• Also,
$$xy^i z$$
 must belong to L for all $i \ge 0$.

• Contradiction! Hence, L is not regular.

• Prove that $L = \{w \mid w = a^m b^n, m \neq n\}$ is not regular.

Solution (without using pumping lemma)

- Suppose *L* is regular.
- We know that $L' = \{w \ | \ w = a^i b^j, i, j \geq 0\}$ is regular.
- Let $L'' = \{ w \mid w = a^n b^n, n \ge 0 \}.$
- As regular languages are closed under intersection and complementation, $L = L' L'' = L' \cap \overline{L''}$ is regular. This implies that L'' is regular.
- But, the language L'' was earlier proved to be non-regular.
- Contradiction! Hence, L is not regular.