Theory of Computation (Context-Free Grammars)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

January 24, 2021

Contents

- Context-Free Grammars (CFG)
- Context-Free Languages
- Pushdown Automata (PDA)
- Transformations
- Pumping Lemma

Context-Free Grammars (CFG)

Computer program compilation

```
C++ program:
```

```
#include <iostream>
1.
    using namespace std;
2.
    int main()
3.
4.
    {
        if (true)
5.
6.
         Ł
             cout << "Hi 1";
7.
8.
             else
9.
                 cout << "Hi 2";
10
        }
        return 0;
11.
12.
    }
```

```
C++ program:
```

```
#include <iostream>
 1.
    using namespace std;
 2.
3.
 4.
    int main()
    ſ
 5.
         if (true)
6.
            cout << "Hi 1";
 7.
8
             else
                 cout << "Hi 2";
9.
10
         return 0;
11.
    | }
12.
```

Computer program compilation

C++ program:

```
#include <iostream>
1.
    using namespace std;
2.
    int main()
3.
4.
    {
         if (true)
5.
6.
         Ł
             cout << "Hi 1";
7.
8.
             else
                 cout << "Hi 2";
9.
10
         }
         return 0;
11.
12.
    }
```

```
C++ program:
```

```
#include <iostream>
 1.
 2.
    using namespace std;
 3.
 4.
    int main()
    ſ
 5.
6.
         if (true)
            cout << "Hi 1";
 7.
             else
 8
                 cout << "Hi 2";
9.
10
        return 0;
11.
    }
12.
```

Output:

```
error: expected '}' before 'else'
```

```
Output:
Hi 1
```

Computer program compilation

C++ program: C++ program: #include <iostream> #include <iostream> 1. 1. 2. using namespace std; 2. using namespace std; int main() 3 3. 4. { 4. int main() if (true) Ł 5 5 6. Ł if (true) 6. cout << "Hi 1"; cout << "Hi 1"; 7. 7. else else 8 8 cout << "Hi 2"; cout << "Hi 2"; 9. 9. } 10 10 11. return 0: 11. return 0: } 12. 12.

Output:

```
error: expected '}' before 'else'
```

```
Output:
```

Hi 1

- DFA cannot check the syntax of a computer program.
- We need context-free grammars a computational model more powerful than finite automata to check the syntax of most structures in a computer program.

Construct CFG for $L = \{a^n b^n \mid n \ge 0\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{a^n b^n \ | \ n \geq 0\}$

Construct CFG for $L = \{a^n b^n \mid n \ge 0\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{a^n b^n \ | \ n \geq 0\}$

Solution

• Language
$$L = \{\epsilon, ab, aabb, aaabbb, aaaabbbb, \dots$$

• CFG G.

$$S \to aSb$$

$$S \to \epsilon$$

Construct CFG for $L = \{a^n b^n \mid n \ge 0\}$

Solution (continued)

- CFG G. $S \to aSb \mid \epsilon$
- Accepting ϵ .

$$S \Rightarrow \epsilon \qquad (\because S \to \epsilon)$$

- Accepting *ab*.
 - $\begin{array}{ll} S \Rightarrow aSb & (\because S \rightarrow aSb) \\ \Rightarrow ab & (\because S \rightarrow \epsilon) \end{array}$
- Accepting *aabb*.
 - $\begin{array}{ll} S \Rightarrow aSb & (\because S \rightarrow aSb) \\ \Rightarrow aaSbb & (\because S \rightarrow aSb) \\ \Rightarrow aabb & (\because S \rightarrow \epsilon) \end{array}$
- Accepting *aaabbb*. $S \Rightarrow aSb$ ($\because S \rightarrow aSb$) $\Rightarrow aaSbb$ ($\because S \rightarrow aSb$)
 - $\Rightarrow aaaSbbb \qquad (:: S \rightarrow aSb)$
 - $\Rightarrow aaabbb \qquad (\because S \to \epsilon)$

1-step computation
2-steps computation
3-steps computation

▷ 4-steps computation

Problems

Construct CFGs to accept all strings from the following languages:

- $R = a^*$
- $R = a^+$
- $R = a^*b^*$
- $R = a^+b^+$
- $\bullet \ R = a^* \cup b^*$

•
$$R = (a \cup b)^*$$

• $R = a^*b^*c^*$

Construct CFG for palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w ~|~ w=w^R \text{ and } \Sigma=\{a,b\}\}$

Construct CFG for palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w ~|~ w=w^R \text{ and } \Sigma=\{a,b\}\}$

Solution

- Language $L = \{\epsilon, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, baab, bbbb, \ldots \}$
- CFG G.
 - $S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$

Construct CFG for palindromes over $\{a, b\}$

Solution (continued)	
• CFG G . $S \to aSa \mid bSb \mid a \mid b \mid \epsilon$	
• Accepting ϵ . $S \Rightarrow \epsilon$	ho 1 step
Accepting $a. S \Rightarrow a$	
Accepting $b. S \Rightarrow b$	
• Accepting aa . $S \Rightarrow aSa \Rightarrow aa$	\triangleright 2 steps
Accepting bb . $S \Rightarrow bSb \Rightarrow bb$	
• Accepting <i>aaa</i> . $S \Rightarrow aSa \Rightarrow aaa$	\triangleright 2 steps
Accepting aba . $S \Rightarrow aSa \Rightarrow aba$	
Accepting bab. $S \Rightarrow bSb \Rightarrow bab$	
Accepting <i>bbb</i> . $S \Rightarrow bSb \Rightarrow bbb$	
• Accepting <i>aaaa</i> . $S \Rightarrow aSa \Rightarrow aaSaa \Rightarrow aaaa$	ho 3 steps
Accepting $abba$. $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$	
Accepting baab. $S \Rightarrow bSb \Rightarrow baSab \Rightarrow baab$	
Accepting <i>bbbb</i> . $S \Rightarrow bSb \Rightarrow bbSbb \Rightarrow bbbb$	

Construct CFG for non-palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w ~|~ w \neq w^R \text{ and } \Sigma=\{a,b\}\}$

Construct CFG for non-palindromes over $\{a, b\}$

Problem

• Construct a CFG that accepts all strings from the language $L=\{w ~|~ w \neq w^R \text{ and } \Sigma=\{a,b\}\}$

Solution

• Language
$$L = \{\epsilon, ab, ba, aab, abb, baa, bba, \ldots\}$$

• CFG C

$$CFG G.$$

$$S \to aSa \mid bSb \mid aAb \mid bAa$$

$$A \to Aa \mid Ab \mid \epsilon$$

Construct CFG for non-palindromes over $\{a, b\}$

What is a context-free grammar (CFG)?

- Grammar = A set of rules for a language
- Context-free = LHS of productions have only 1 nonterminal

Definition

A context-free grammar (CFG) G is a 4-tuple

- $G = (N, \Sigma, S, P)$, where,
- 1. N: A finite set (set of nonterminals/variables).
- 2. Σ : A finite set (set of terminals).
- 3. P : A finite set of productions/rules of the form $A \to \alpha$, $A \in N, \alpha \in (N \cup \Sigma)^*$. \triangleright Time (computation) \triangleright Space (computer memory)

4. S: The start nonterminal (belongs to N).

Definition

- If $G = (N, \Sigma, S, P)$ is a CFG, the language generated by G is $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^*_G w\}$
- A language L is a context-free language (CFL) if there is a CFG G with L = L(G).

Construct CFG for
$$L = \{w \mid n_a(w) = n_b(w)\}$$

Problem

• Construct a CFG that accepts all strings from the language $L = \{w ~|~ n_a(w) = n_b(w)\}$

Construct CFG for $L = \{w \mid n_a(w) = n_b(w)\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{w \mid n_a(w) = n_b(w)\}$

Solution

- Language $L = \{\epsilon, ab, ba, ba, aabb, abab, abba, bbaa, \ldots\}$
- CFGs.

1.
$$S \rightarrow SaSbS \mid SbSaS \mid \epsilon$$

2.
$$S \rightarrow aSbS \mid bSaS \mid e$$

3.
$$S \rightarrow aSb \mid bSa \mid SS \mid \epsilon$$

- Derive the following 4-letter strings from *G*. *aabb*, *abab*, *abba*, *bbaa*, *baba*, *baab*
- Write G as a 4-tuple.
- What is the meaning/interpretation/logic of the grammar?

Problem

Construct CFGs that accepts all strings from the following languages $1 - L = \{u_1 \mid v_2 \mid u_3\} > v_2(u_3)$

1.
$$L = \{w \mid n_a(w) > n_b(w)\}$$

2. $L = \{w \mid n_a(w) = 2n_b(w)\}$
3. $L = \{w \mid n_a(w) \neq n_b(w)\}$

Problem

Construct CFGs that accepts all strings from the following languages

1.
$$L = \{w \mid n_a(w) > n_b(w)\}$$

2. $L = \{w \mid n_a(w) = 2n_b(w)\}$
3. $L = \{w \mid n_a(w) \neq n_b(w)\}$

Solutions

1.
$$S \rightarrow aS \mid bSS \mid SSb \mid SbS \mid a$$

2. $S \rightarrow SS \mid bAA \mid AbA \mid AAb \mid \epsilon$
 $A \rightarrow aS \mid SaS \mid Sa \mid a$
3. ?

Union, concatenation, and star are closed on CFL's

Properties

• If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1 \cup L_2$, L_1L_2 , and L_1^* are also CFL's.

Union, concatenation, and star are closed on CFL's

Properties

• If L_1 and L_2 are context-free languages over an alphabet Σ , then $L_1 \cup L_2$, L_1L_2 , and L_1^* are also CFL's.

Construction

Let
$$G_1 = (N_1, \Sigma, S_1, P_1)$$
 be CFG for L_1 .
Let $G_2 = (N_2, \Sigma, S_2, P_2)$ be CFG for L_2 .

• Union.

Let
$$G_u = (N_u, \Sigma, S_u, P_u)$$
 be CFG for $L_1 \cup L_2$.
 $N_u = N_1 \cup N_2 \cup \{S_u\}$; $P_u = P_1 \cup P_2 \cup \{S_u \rightarrow S_1 \mid S_2\}$

Concatenation.

Let
$$G_c = (N_c, \Sigma, S_c, P_c)$$
 be CFG for L_1L_2 .
 $N_u = N_1 \cup N_2 \cup \{S_c\}; P_c = P_1 \cup P_2 \cup \{S_c \rightarrow S_1S_2\}$

• Kleene star.

Let $G_s = (N_s, \Sigma, S_s, P_s)$ be CFG for L_1^* . $N_s = N_1 \cup \{S_s\}; P_s = P_1 \cup \{S_s \to S_s S_1 \mid \epsilon\}$

Problem

- If L_1 and L_2 are CFL's then $L_3 = L_1 \cup L_2$ is a CFL.
- If L_1 and $L_3 = L_1 \cup L_2$ are CFL's, is L_2 a CFL?

Problem

- If L_1 and L_2 are CFL's then $L_3 = L_1 \cup L_2$ is a CFL.
- If L_1 and $L_3 = L_1 \cup L_2$ are CFL's, is L_2 a CFL?

Solution

• L_2 may or may not be a CFL.	
$L_1 = \Sigma^*$	$\triangleright CFL$
$L_3 = L_1 \cup L_2 = \Sigma^*$	$\triangleright CFL$
$L_2 = \{a^n \mid n \text{ is prime}\}$	▷ Non-CFL

Reversal is closed on CFL's

Property

• If L is a CFL, then L^R is a CFL.

Property

• If L is a CFL, then L^R is a CFL.

Construction

- Let $G = (N, \Sigma, S, P)$ be CFG for L. Let $G_r = (N, \Sigma, S, P_r)$ be CFG for L^R . Then
- Reversal.

 $P_r = {\rm productions} \mbox{ from } P$ such that all symbols on the right hand side of every production is reversed.

i.e., If $A \to \alpha$ is in P, then $A \to \alpha^R$ is in P_r

• Example.

Grammar for accepting L is $S \rightarrow aSb \mid ab$. Grammar for accepting L^R is $S \rightarrow bSa \mid ba$.

Intersection is not closed on CFL's

Problem

• Show that
$$L_1, L_2$$
 are CFL's and $L = L_1 \cap L_2$ is a non-CFL.

$$L = \{a^i b^j c^k \mid i = j \text{ and } j = k\}$$

$$= \{a^i b^i c^k \mid i, k \ge 0\} \cap \{a^i b^j c^j \mid i, j \ge 0\}$$

$$L_1 \cap L_2$$

Intersection is not closed on CFL's

Problem

• Show that L_1, L_2 are CFL's and $L = L_1 \cap L_2$ is a non-CFL. $L = \{a^i b^j c^k \mid i = j \text{ and } j = k\}$ $= \{a^i b^i c^k \mid i, k \ge 0\} \cap \{a^i b^j c^j \mid i, j \ge 0\}$ $L_1 \cap L_2$

Solution

• L_1 is a CFL. $L_1 = \{a^i b^i c^k \mid i, k \ge 0\} = \{a^i b^i \mid i \ge 0\} \{c^k \mid k \ge 0\}$ $= L_3 L_4 = CFL$ (:: L_3, L_4 are CFL's) • L_2 is a CFL

$$\begin{split} \tilde{L_2} &= \{a^i b^j c^j \mid i, j \geq 0\} = \{a^i \mid i \geq 0\} \ \{b^j c^j \mid j \geq 0\} \\ &= L_5 L_6 = \mathsf{CFL} \quad (\because L_5, L_6 \text{ are CFL's}) \end{split}$$

• *L* is a non-CFL. Use pumping lemma for CFL's.

Complementation is not closed on CFL's

Problem

• Show that complementation is not closed on CFL's.

Problem

• Show that complementation is not closed on CFL's.

Solution

Proof by contradiction.

- Suppose complementation is closed under CFL's. i.e., if L is a CFL, then \overline{L} is a CFL.
- Consider the equation $L_1 \cap L_2 = (\overline{L_1} \cup \overline{L_2})$. Closure on complementation implies closure on intersection.
- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, complementation is not closed on CFL's.

Complementation is not closed on CFL's

Complementation is not closed on CFL's

Set difference is not closed on CFL's

Problem

• Show that set difference is not closed on CFL's.
Problem

• Show that set difference is not closed on CFL's.

Solution

Proof by contradiction.

- Suppose set difference is closed under CFL's. i.e., if L_1, L_2 are CFL's, then $L_1 L_2$ is a CFL.
- Consider the equation $L_1 \cap L_2 = L_1 (L_1 L_2)$. Closure on set difference implies closure on intersection.
- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, set difference is not closed on CFL's.

Summary: Closure properties of CFL's

Operation	Closed on CFL's?
Union $(L_1 \cup L_2)$	✓
Concatenation (L_1L_2)	1
Kleene star (L^*)	✓
Reversal (L^R)	✓
Intersection $(L_1 \cap L_2)$	×
Complementation (\overline{L})	×
Set difference $(L_1 - L_2)$	×

Construct CFG for
$$L = \{a^i b^j c^k \mid j = i + k\}$$

Problem

• Construct a CFG that accepts all strings from the language $L = \{a^i b^j c^k \mid j = i+k\}$

Construct CFG for $L = \{a^i b^j c^k \mid j = i + k\}$

Problem

 \bullet Construct a CFG that accepts all strings from the language $L=\{a^ib^jc^k\mid j=i+k\}$

Solution

• Language
$$L = \{\epsilon, ab, bc, a^2b^2, b^2c^2, ab^2c, \ldots\}$$

•
$$L = \{a^i b^j c^k \mid j = i + k\}$$

 $= \{a^i b^{i+k} c^k\}$ (:: substitute for j)
 $= \{a^i b^i b^k c^k\}$ (:: expand)
 $= \{a^i b^i\}\{b^k c^k\}$ (:: split the concatenated languages)
 $= L_1 L_2$

- Solve the problem completely by constructing CFG's for L_1 , L_2 , and then L_1L_2 .
- Divide-and-conquer. We can solve a complicated problem if we can break the problem into several simpler subproblems and solve those simpler problems.
- Construct CFG for the variant where $j \neq i + k$.

Construct CFG for $L = \{a^i b^j c^k \mid j \neq i + k\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{a^i b^j c^k \mid j \neq i+k\}$

Construct CFG for $L = \{a^i b^j c^k \mid j \neq i + k\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{a^i b^j c^k \mid j \neq i+k\}$

Solution

• Language
$$L = \{\epsilon, a, b, c, ac, a^2, b^2, c^2, ...\}$$

• $L = \{a^i b^j c^k \mid j \neq i + k\}$
 $= \{a^i b^j c^k \mid j > (i + k)\} \cup \{a^i b^j c^k \mid j < (i + k)\}$
 $= L_1 \cup L_2$

• Can we represent L_1 and L_2 using simpler languages?

Construct CFG for
$$L = \{a^i b^j c^k \mid j \neq i + k\}$$

Solution (continued)

• Case 1.
$$L_1 = \{a^i b^j c^k \mid j > i + k\}$$

 $= \{a^i b^j c^k \mid j = i + m + k \text{ and } m \ge 1\}$
 $= \{a^i b^{i+m+k} c^k \mid m \ge 1\}$
 $= \{a^i b^i\} \cdot \{b^m \mid m \ge 1\} \cdot \{b^k c^k\}$
 $= \{a^i b^i\} \cdot \{bb^n\} \cdot \{b^k c^k\}$
 $= L_{11} \cdot L_{12} \cdot L_{13}$
We know how to construct CFG's for L_{11}, L_{12}, L_{13}
• Case 2. $L_2 = \{a^i b^j c^k \mid j < i + k\}$
 $= \{a^i b^j c^k \mid j < i \text{ or } i \le j < i + k\}$
 $= \{a^i b^j c^k \mid j < i\} \cup \{a^i b^j c^k \mid i \le j < i + k\}$
 $= L_{21} \cup L_{22}$
How to proceed?

Construct CFG for $L = \{a^i b^j c^k \mid j \neq i + k\}$

Solution (continued)

• Case 3.
$$L_{21} = \{a^i b^j c^k \mid j < i\}$$

= $\{a^i b^j c^k \mid i = m + j \text{ and } m \ge 1\}$
= $\{a^{m+j} b^j c^k \mid m \ge 1\}$
= $\{a^m \mid m \ge 1\} \cdot \{a^j b^j\} \cdot \{c^k\}$
= $L_{211} \cdot L_{212} \cdot L_{213}$
We know how to construct CFG's for $L_{211}, L_{212}, L_{213}$
• Case 4. $L_{22} = \{a^i b^j c^k \mid i \le j < i + k\}$
= $\{a^i b^j c^k \mid j \ge i \text{ and } k > j - i\}$
= $\{a^i b^i (j - i) c^{(j-i)+m} \mid (j - i) \ge 0 \text{ and } m \ge 1\}$
= $\{a^i b^i\} \cdot \{b^{j-i} c^{j-i} \mid (j - i) \ge 0\} \cdot \{c^m \mid m \ge 1\}$
= $\{a^i b^i\} \cdot \{b^i c^i\} \cdot \{c^m \mid m \ge 1\}$
= $L_{221} \cdot L_{222} \cdot L_{223}$
We know how to construct CFG's for $L_{221}, L_{222}, L_{223}$

Construct CFG for $bba(ab)^* | (ab | ba^*b)^*ba$

Problem

• Construct a CFG that accepts all strings from the language corresponding to R.E. $bba(ab)^* \mid (ab \mid ba^*b)^*ba$.

Construct CFG for $bba(ab)^* | (ab | ba^*b)^*ba$

Problem

 Construct a CFG that accepts all strings from the language corresponding to R.E. bba(ab)* | (ab | ba*b)*ba.

Solution

- Language $L = \{ba, bba, abba, bbba, \ldots\}$ This is a regular language.
- CFG G.

$$\begin{array}{l} S \rightarrow S_1 \mid S_2 \\ S_1 \rightarrow S_1 a b \mid b b a \\ S_2 \rightarrow T S_2 \mid b a \\ T \rightarrow a b \mid b U b \\ U \rightarrow a U \mid \epsilon \end{array}$$

 $\rhd \text{ Generates } bba(ab)^*$ $\rhd \text{ Generates } (ab \mid ba^*b)^*ba$ $\rhd \text{ Generates } ab \mid ba^*b$ $\rhd \text{ Generates } a^*$

Construct CFG for strings of a DFA

Problem

• Construct a CFG that accepts all strings accepted by the following DFA.

Construct CFG for strings of a DFA

Problem

• Construct a CFG that accepts all strings accepted by the following DFA.

Solution

- Language $L = \{(a \mid b)^*ba\}$ \triangleright Strings ending with $ba = \{ba, aba, bba, aaba, abba, baba, baba, bbba, ...\}$ This is a regular language.
- How to construct CFG for this DFA? Approach 1: Compute R.E. Construct CFG for the R.E. Approach 2: Construct CFG from the DFA using transitions.

Solution (continued) • Idea For every transition $\delta(Q, a) = R$, add a production $Q \to aR$. What does this mean? Why should it work? • CFG > 3 states = 3 nonterminals $S \to aS \mid bA$ $A \to bA \mid aB$ $B \to bA \mid aS \mid \epsilon$ $\triangleright \epsilon$ -production for halting state Accepting bbaaba. $S \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{a} B \xrightarrow{a} S \xrightarrow{b} A \xrightarrow{a} B$ $S \Rightarrow bA \Rightarrow bbA \Rightarrow bbaB \Rightarrow bbaaS \Rightarrow bbaabA \Rightarrow bbaabaB$ $\Rightarrow bbaaba$

Definitions

- A context-free grammar $G = (N, \Sigma, S, P)$ is called a regular grammar if every production is of the form $A \to aB$ or $A \to \epsilon$, where $A, B \in N$ and $a \in \Sigma$.
- A language $L \in \Sigma^*$ is called a regular language iff L = L(G) for some regular grammar G.

Construct CFG for understanding human languages

Problem

• Construct a CFG to understand some structures in the English language.

Solution

• CFG:

```
\langle \text{Sentence} \rangle \rightarrow \langle \text{NounPhrase} \rangle \langle \text{VerbPhrase} \rangle
\langle NounPhrase \rangle \rightarrow \langle ComplexNoun \rangle | \langle ComplexNoun \rangle \langle PrepPhrase \rangle
\langle VerbPhrase \rangle \rightarrow \langle ComplexVerb \rangle | \langle ComplexVerb \rangle \langle PrepPhrase \rangle
\langle \mathsf{PrepPhrase} \rangle \rightarrow \langle \mathsf{Prep} \rangle \langle \mathsf{ComplexNoun} \rangle
\langle \mathsf{ComplexNoun} \rangle \rightarrow \langle \mathsf{Article} \rangle \langle \mathsf{Noun} \rangle
\langle \mathsf{ComplexVerb} \rangle \rightarrow \langle \mathsf{Verb} \rangle \mid \langle \mathsf{Verb} \rangle \langle \mathsf{NounPhrase} \rangle
\langle Article \rangle \rightarrow a \mid the
(Noun) \rightarrow boy \mid girl \mid flower
\langle Verb \rangle \rightarrow touches \mid likes \mid sees
\langle \mathsf{Prep} \rangle \rightarrow \mathsf{with}
```

Solution (continued)

- Accepting "a girl likes".
 - $\langle \mathsf{Sentence} \rangle \Rightarrow \langle \mathsf{NounPhrase} \rangle \langle \mathsf{VerbPhrase} \rangle$
 - $\Rightarrow \langle \mathsf{ComplexNoun} \rangle \langle \mathsf{VerbPhrase} \rangle$
 - $\Rightarrow \langle \mathsf{Article} \rangle \langle \mathsf{Noun} \rangle \langle \mathsf{VerbPhrase} \rangle$
 - $\Rightarrow \mathsf{a} \ \langle \mathsf{Noun} \rangle \langle \mathsf{VerbPhrase} \rangle$
 - \Rightarrow a girl $\langle \mathsf{VerbPhrase}
 angle$
 - \Rightarrow a girl $\langle \mathsf{ComplexVerb} \rangle$
 - $\Rightarrow \mathsf{a} \mathsf{ girl} \langle \mathsf{Verb} \rangle$
 - \Rightarrow a girl likes
- Derive "a girl with a flower likes the boy".

Construct CFG for strings with valid parentheses

Problem

• Construct a CFG that accepts all strings from the language $L = \{\epsilon, (), ()(), (()), ()()(), (()()), ()()), ()()), (())(), ((())), ())\}$

Problem

• Construct a CFG that accepts all strings from the language $L = \{\epsilon, (), ()(), (()), ()()(), (()()), ()()), ()()), (())(), ((())), ()), ())\}$

Solution

- Applications. Compilers check for syntactic correctness in:
 - 1. Computer programs written by you that possibly contain nested code blocks with { }, (), and [].
 - Web pages written by you that contain nested code blocks with <div></div>, , and .
- Language $L=\{w\mid w\in\{(,)\}^*$ such that $n_((w)=n_)(w)$ and and in any prefix $p_{i<|w|}$ of w, $n_((p_i)\geq n_)(p_i)\}$
- What is the CFG?

Construct CFG for valid arithmetic expressions

Problem

• Construct a CFG that accepts all valid arithmetic expressions from $\Sigma = \{(,), +, \times, n\}$, where n represents any integer.

Problem

• Construct a CFG that accepts all valid arithmetic expressions from $\Sigma = \{(,), +, \times, n\}$, where n represents any integer.

Solution

- Language $L = \{15 + 85, 57 \times 3, (27 + 46) \times 10, \ldots\}$
- Abstraction: Denote n to mean any integer.
 Valid expressions: (n + n) + n × n, etc
 Invalid expressions: +n, (n+)n, (), n × n), etc
- Hint: Use some ideas from the parenthesis problem

Definition

• A derivation in a context-free grammar is a leftmost derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Example

• CFG:
$$E \to E + E \mid E \times E \mid (E) \mid n$$

Accepting n + (n). LMD: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + (E) \Rightarrow n + (n)$ RMD: $E \Rightarrow E + E \Rightarrow E + (E) \Rightarrow E + (n) \Rightarrow n + (n)$

Definition

- A context-free grammar G is ambiguous if for at least one $w \in L(G)$, w has more than one derivation tree (or, equivalently, more than one leftmost derivation).
- Intuition: A CFG is ambiguous if it generates a string in several different ways.

Problem

• Show that the following CFG is ambiguous: $E \rightarrow E + E \mid E \times E \mid (E) \mid n$

Problem

• Show that the following CFG is ambiguous: $E \to E + E ~|~ E \times E ~|~ (~E~) ~|~ n$

Solution

- Consider the strings n + n × n or n + n + n. There are two derivation trees for each of the strings.
- Accepting $n + n \times n$. LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$ LMD 2: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$
- Accepting n + n + n. LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$ LMD 2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$

Solution (continued)

Two derivation (or parse) trees \implies Ambiguity (Reason 1: The precedence of different operators isn't enforced.) • LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E \times E \Rightarrow n + n \times E$ $\Rightarrow n + n \times n$

• LMD 2: $E \Rightarrow E \times E \Rightarrow E + E \times E \Rightarrow n + E \times E \Rightarrow n + n \times E \Rightarrow n + n \times n$

Solution (continued)

Two derivation (or parse) trees \implies Ambiguity (Reason 2: Order of operators of same precedence isn't enforced.) • LMD 1: $E \Rightarrow E + E \Rightarrow n + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$ • LMD 2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow n + E + E \Rightarrow n + n + E$ $\Rightarrow n + n + n$ EEEEEE+ EEEnE+n+nnnn

Problem

Consider the following ambiguous grammar:
 E → E + E | E × E | (E) | n
 How many different derivations (or LMDs) are possible for the string n + n + ··· + n, where n is repeated k times?

Problem

Consider the following ambiguous grammar:
 E → E + E | E × E | (E) | n
 How many different derivations (or LMDs) are possible for the string n + n + ··· + n, where n is repeated k times?

Solution

• Let d(k) = number of derivations for k operands. Then d(1) = 1 d(2) = 1 d(3) = 2 d(4) = 5• How do you compute d(k)? $d(k) = \sum_{i=1}^{k-1} d(i)d(k-i)$

Problem

Show that the following CFG is ambiguous:
 S → if (E) S | if (E) S else S | O
 where, S = statement, E = expression, O = other statement.

Solution

- Consider the string: if (e₁) if (e₂) F(); else G(); There are two derivation trees for the string.
- Can you identify the two derivation trees for the string?

If-else ladder: Ambiguous grammar

What is the output of this program?

C++ program:

```
#include <iostream>
1.
2.
     using namespace std;
3.
    int main()
4.
     ſ
5.
         if (true)
6.
             if (false)
7.
8.
         else
9.
             cout << "Hi!";</pre>
10.
11.
         return 0;
12.
    }
13.
```

What is the output of this program?

C++ program:

```
#include <iostream>
1.
2.
     using namespace std;
3.
    int main()
4.
     ſ
5.
         if (true)
6.
              if (false)
7.
8.
         else
9.
              cout << "Hi!";</pre>
10.
11.
         return 0;
12.
    }
13.
```

Output: Hi!

• Can you come up with an unambiguous grammar for the language accepted by the following ambiguous grammar? $S \rightarrow \text{if} (E) S \mid \text{if} (E) S \text{ else } S \mid O$ where, S = statement, E = expression, O = other statement.

Solution

•
$$S \rightarrow S_1 \mid S_2$$

 $S_1 \rightarrow \text{if} (E) S_1 \text{ else } S_1 \mid O$
 $S_2 \rightarrow \text{if} (E) S \mid \text{if} (E) S_1 \text{ else } S_2$

• How do you prove that the grammar is really unambiguous?
What is an inherently ambiguous language?

Definition

• A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

What is an inherently ambiguous language?

Definition

• A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

Examples

Proofs?

•
$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

• $L = \{a^i b^i c^j d^j\} \cup \{a^i b^j c^j d^i\}$

Problem

• Prove that the following grammar G generates all strings of balanced parentheses and only such strings. $S \to (S)S \mid \epsilon$

Problem

• Prove that the following grammar G generates all strings of balanced parentheses and only such strings. $S \to (S)S \mid \epsilon$

Solution

- L(G) = language generated by the grammar G. L = language of balanced parentheses.
- Show that L(G) = L. Two cases.

Case 1. Show that every string derivable from S is balanced. i.e., $L(G) \subseteq L$. Case 2. Show that every balanced string is derivable from S. i.e., $L \subseteq L(G)$.

Solution (continued)

Case 1. Show that every string derivable from S is balanced. Let n = number of steps in derivation.

• Basis.

The only string derivable from S in 1 step is ϵ and ϵ is balanced.

• Induction.

Suppose all strings with derivation fewer than n steps produce balanced parentheses.

Consider a LMD of at most n steps.

That derivation must be of the form

 $S \Rightarrow (S)S \Rightarrow^* (x)S \Rightarrow^* (x)y$

(LMD)

Derivations of x and y take fewer than n steps.

So, x and y are balanced.

Therefore, the string (x)y must be balanced.

Language generated by a grammar

Solution (continued)

Case 2. Show that every balanced string is derivable from S. Let 2n = length of a balanced string.

• Basis.

A 0-length string is ϵ , which is balanced.

• Induction.

Assume that every balanced string of length less than 2n is derivable from S. Consider a balanced string w of length 2n such that $n \ge 1$. String w must begin with a left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal number of left and right parentheses. Then, w can be written as w = (x)y, where, both x and y are balanced. Since x and y are of length less than 2n, they are derivable from S. Thus, we can find a derivation of the form $S \Rightarrow (S)S \Rightarrow^* (x)S \Rightarrow^* (x)y$ (LMD)

proving that w = (x)y must also be derivable from S.

Definition

• A context-free grammar is said to be in Chomsky normal form (CNF) if every production is of one of these three types: $A \rightarrow BC$ (where B, C are nonterminals and they cannot be the start nonterminal S)

$$A
ightarrow a$$
 (where a is a terminal symbol)

$$S \to \epsilon$$

• Why should we care for CNF?

For every context-free grammar G, there is another CFG G_{CNF} in Chomsky normal form such that $L(G_{CNF}) = L(G)$.

Example

•
$$S \to AA \mid \epsilon$$

 $A \to AA \mid a$

Algorithm rule	Before rule	After rule
1. Start nonterminal must	$S \to ASABS$	$S_0 \to S$
not appear on the RHS		$S \rightarrow ASABS$
2. Remove productions	$R \to ARA$	$R \to ARA$
like $A \to \epsilon$	$A \to a \mid \epsilon$	$R \to AR \mid RA \mid A$
		$A \rightarrow a$
3. Remove productions	$A \rightarrow B$	$A \rightarrow CDD$
like $A \to B$	$B \to CDD$	
4. Convert to CNF	$A \rightarrow BCD$	$A \rightarrow BC'$
		$C' \to CD$

CFG-TO-CNF(G)

- 1. Start nonterminal must not appear on RHS
- 2. Remove ϵ productions
- 3. Remove unit productions
- 4. Convert to CNF

Problem

• Convert the following CFG to CNF. $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \epsilon$

Problem

• Convert the following CFG to CNF. $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \epsilon$

Solution

 $B \rightarrow b$

• Start nonterminal must not appear on the right hand side $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \epsilon$ • Remove $B \rightarrow \epsilon$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid aB \mid a$ $A \rightarrow B \mid S \mid \epsilon$

Solution (continued)

• Remove $A \rightarrow \epsilon$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid SA \mid AS \mid S \mid aB \mid a$ $A \rightarrow B \mid S$ $B \rightarrow b$ • Remove $A \rightarrow B$ $S_0 \rightarrow S$

$$S_{0} \rightarrow S$$

$$S \rightarrow ASA \mid SA \mid AS \mid S \mid aB \mid a$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

• Remove
$$S \rightarrow S$$

$$\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow ASA \mid SA \mid AS \mid aB \mid a \\ A \rightarrow S \mid b \\ B \rightarrow b \end{array}$$

\triangleright Do nothing

Solution (continued)

- Remove $A \rightarrow S$ $S_0 \rightarrow S$ $S \rightarrow ASA \mid SA \mid AS \mid aB \mid a$ $A \rightarrow ASA \mid SA \mid AS \mid aB \mid a \mid b$ $B \rightarrow b$ • Remove $S_0 \rightarrow S$ $S_0 \rightarrow ASA \mid SA \mid AS \mid aB \mid a$ $S \rightarrow ASA \mid SA \mid AS \mid aB \mid a$
 - $\begin{array}{c} A \rightarrow ASA \mid SA \mid AS \mid aB \mid a \mid b \\ B \rightarrow b \end{array}$
- Convert $ASA \rightarrow AA_1$

$$\begin{array}{l} S_0 \rightarrow AA_1 \mid SA \mid AS \mid aB \mid a \\ S \rightarrow AA_1 \mid SA \mid AS \mid aB \mid a \\ A \rightarrow AA_1 \mid SA \mid AS \mid aB \mid a \mid b \\ A_1 \rightarrow SA \\ B \rightarrow b \end{array}$$

Solution (continued)

• Introduce
$$A_2 \rightarrow a$$

 $S_0 \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a$
 $S \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a$
 $A \rightarrow AA_1 \mid SA \mid AS \mid A_2B \mid a \mid b$
 $A_1 \rightarrow SA$
 $A_2 \rightarrow a$
 $B \rightarrow b$

• This grammar is now in Chomsky normal form.

What is Griebach normal form (GNF)?

Definition

- A context-free grammar is said to be in Griebach normal form (GNF) if every production is of the following type: $A \rightarrow aA_1A_2...A_d$ (where a is a terminal symbol and $A_1, A_2, ..., A_d$ are nonterminals) $S \rightarrow \epsilon$ (Not always included)
- Why should we care for GNF?
 For every context-free grammar G, there is another CFG G_{GNF} in Griebach normal form such that L(G_{GNF}) = L(G).
 A string of length n has a derivation of exactly n steps.

Example

•
$$S \to aA \mid bB$$

 $B \to bB \mid b$

$$A \to aA \mid a$$

Equivalence of different computation models

Pushdown Automata (PDA)

Pushdown automaton

• PDA has access to a stack of unlimited memory

What is a pushdown automaton (PDA)?

- Nondetermistic = Events cannot be determined precisely
- Pushdown = Using stack of infinite memory
- Automaton = Computing machine

What is a pushdown automaton (PDA)?

- Nondetermistic = Events cannot be determined precisely
- Pushdown = Using stack of infinite memory
- Automaton = Computing machine

Definition

A pushdown automaton (PDA) P is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where, 1. Q: A finite set (set of states). 2. Σ : A finite set (input alphabet). 3. Γ : A finite set (stack alphabet). 4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function. \triangleright Time (computation) 5. q_0 : The start state (belongs to Q). 6. F: The set of accepting/final states, where $F \subseteq Q$. Stack ▷ Space (computer memory)

Definition

• A PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff

 $(q_0, w, \$) \vdash^*_M (q_f, \epsilon, \alpha)$

for some $\alpha \in \Gamma^*$ and some $q_f \in F$. A PDA rejects a string iff it does not accept it.

- We say that a PDA M accepts a language L if $L = \{w \mid M \text{ accepts } w\}.$
- A language is called a context-free language if some PDA accepts or recognizes it.

Construct PDA for $L = \{a^n b^n\}$

Problem

 \bullet Construct a PDA that accepts all strings from the language $L=\{a^nb^n\}$

Problem

 \bullet Construct a PDA that accepts all strings from the language $L=\{a^nb^n\}$

Solution

PDA()

- 1. while next input character is a do
- 2. push a
- 3. while next input character is b do
- 4. pop *a*

Solution (continued)

• Transition $(i, s_1 \rightarrow s_2)$ means that when you see input character i, replace s_1 with s_2 as the top of stack.

Construct PDA for $L = \{a^n b^n\}$

Solution (continued)

PDA P is specified as Set of states is Q = {q₀, q₁, q₂, q₃} Set of input symbols is Σ = {a, b} Set of stack symbols is Γ = {a, \$} Start state is q₀ Set of accept states is F = {q₀, q₃} Transition function δ is: (Empty cell is φ)

Input		a		b	b			ϵ	
Stack	a	\$	ϵ	a	\$	ϵ	a	\$	ϵ
q_0									$\{(q_1,\$)\}$
q_1			$\{(q_1, a)\}$	$\{(q_2,\epsilon)\}$					
q_2				$\{(q_2,\epsilon)\}$				$\{(q_3,\epsilon)\}$	
q_3									,

Construct PDA for $L = \{a^n b^n\}$

Solution (contin	Solution (continued)				
	Step	State	Stack	Input	Action
	1	q_0		aaabbb	push \$
	2	q_1	\$	aaabbb	$push\ a$
	3	q_1	a	aabbb	$push\ a$
	4	q_1	aa	abbb	$push\ a$
	5	q_1	aaa	bbb	$pop\ a$
	6	q_2	aa	bb	$pop\ a$
	7	q_2	a	b	$pop\ a$
	8	q_2	\$		pop \$
	9	q_3			accept
	Step	State	Stack	Input	Action
	1	q_0		aababb	push \$
	2	q_1	\$	aababb	$push\ a$
	3	q_1	a	ababb	$push\ a$
	4	q_1	aa	babb	$pop\ a$
	5	q_2	a	abb	crash
	6	q_{ϕ}	a	bb	
	7	q_{ϕ}	a	b	
	8	q_{ϕ}	a		reject

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

• Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

• Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Solution

PDA()

- 1. while next input character is a or b do
- 2. push the symbol
- 3. Nondeterministically guess the mid point of the string
- 4. while next input character is a or b do
- 5. pop the symbol

Construct PDA for $L = \{ww^R \mid w \in \{a, b\}^*\}$

Problem

• Construct a PDA that accepts all strings from the language $L = \{ww^R \mid w \in \{a,b\}^*\}$

Solution (continued)

Construct PDA for
$$L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$$

Problem

• Construct a PDA that accepts all strings from the language $L=\{a^ib^jc^k\mid i=j \text{ or } i=k\}$

Construct PDA for $L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$

Problem

• Construct a PDA that accepts all strings from the language $L = \{a^i b^j c^k \mid i=j \text{ or } i=k\}$

Solution

PDA()

- 1. while next input character is a do push a
- 2. Nondeterministically guess whether a's = b's or a's = c's

Case 1. a's = b's.

- 1. while next input character is \boldsymbol{b} do pop \boldsymbol{a}
- 2. while next input character is c do nothing

Case 2. a's = c's.

- 1. while next input character is b do nothing
- 2. while next input character is c do pop a

Construct PDA for
$$L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$$

Non-Context-Free Languages

Theorem

Suppose L is a context-free language over alphabet Σ . Then there is a natural number s so that for every long string $w \in L$ satisfying $|w| \geq s$, the string w can be split into five strings w = uvxyz such that the following three conditions are true.

- $|vxy| \leq s$.
- $|vy| \ge 1$.
- For every $i \ge 0$, the string $uv^i xy^i z$ also belongs to L.

$L = \{a^n b^n c^n\}$ is a non-CFL

Problem

• Prove that $L = \{a^n b^n c^n\}$ is not CFL.

Problem

• Prove that $L = \{a^n b^n c^n\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w = a^s b^s c^s$.
- Let w = uvxyz where $|vxy| \le s$ and $|vy| \ge 1$.
- Then $uv^i xy^i z$ must belong to L for all $i \ge 0$.
- We will show that $uxz \notin L$ for all possible cases.
- Three cases:

```
Case 1. vxy consists of exactly 1 symbol (a's or b's or c's).
Case 2. vxy consist of exactly 2 symbols (ab's or bc's).
Case 3. vxy consist of exactly 3 symbols (abc's).
This case is impossible. Why?
```

Solution (continued)

Case 1. vxy consists of exactly 1 symbol (*a*'s or *b*'s or *c*'s). Three subcases:

> 0.

- Similar to Subcase *i*.
- Subcase *iii*. *vxy* consists only of *c*'s. Similar to Subcase *i*.
Solution (continued)

Case 2. vxy consist of exactly 2 symbols (ab's or bc's). Two subcases: • Subcase i. vxy consist only of a's and b's. Let $w = uvxyz = a^sb^sc^s$. uxz is not in L. Reason: $uxz = a^{k_1}b^{k_2}c^s \notin L$ where $k_1 + k_2 = 2s - (|v| + |y|) < 2s$ as (|v| + |y|) > 0. uxz has either fewer a's or fewer b's than c's. • Subcase ii. vxy consist only of b's and c's. Similar to Subcase i.

$L = \{ww \mid w \in \{a, b\}^*\}$ is a non-CFL

Problem

• Prove that $L = \{ww \mid w \in \{a, b\}^*\}$ is not CFL.

Problem

• Prove that $L = \{ww \mid w \in \{a, b\}^*\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w = a^s b^s a^s b^s$.
- Let w = uvxyz where $|vxy| \le s$ and $|vy| \ge 1$.
- Then $uv^i xy^i z$ must belong to L for all $i \ge 0$.
- We will show that $uxz \notin L$ for all possible cases.
- Two cases:

Case 1. vxy consists of exactly 1 symbol (*a*'s or *b*'s).

Case 2. vxy consist of exactly 2 symbols (ab's or ba's).

Solution (continued)

Case 1. vxy consists of exactly 1 symbol (*a*'s or *b*'s). Three subcases:

Subcase i. vxy consists only of a's. Let w = uvxyz = a^sb^sa^sb^s. uxz is not in L. Reason: uxz = a^{s-(|v|+|y|)}b^sa^sb^s ∉ L as (|v| + |y|) > 0. uxz has fewer a's than b's.
Subcase ii. vxy consists only of b's. Similar to Subcase i.

Solution (continued)

Case 2. vxy consist of exactly 2 symbols (ab's or ba's). Two subcases: • Subcase i. vxy consist only of a's and b's. Let $w = uvxyz = a^{s}b^{s}a^{s}b^{s}$. uxz is not in L. Reason: $uxz = a^{k_{1}}b^{k_{2}}a^{s}b^{s} \notin L$ where $k_{1} + k_{2} = 2s - (|v| + |y|) < 2s$ as (|v| + |y|) > 0. uxz is not in the form of ww. • Subcase ii. vxy consist only of b's and a's. Similar to Subcase i.

$L = \{a^n \mid n \text{ is a square}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a square}\}$ is not CFL.

 $L = \{a^n \mid n \text{ is a square}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a square}\}$ is not CFL.

Solution

 \bullet Suppose L is CFL. Then it must satisfy pumping property.

• Suppose
$$w = a^{s^2}$$

- Let w = uvxyz where $|vxy| \le s$ and $|vy| \ge 1$.
- Then $uv^i xy^i z$ must belong to L for all $i \ge 0$.

• But,
$$uv^2xy^2z \notin L$$
.
Reason: Let $|vy| = k$. Then, $k \in [1, s]$.
 $uv^2xy^2z = a^{s^2+|vy|} = a^{s^2+k} \notin L$.
Because, $s^2 < s^2 + k < (s+1)^2$ as $k \in [1, s]$.
• Contradiction! Hence L is not CEL

$L = \{a^n \mid n \text{ is a power of } 2\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a power of } 2\}$ is not CFL.

$L = \{a^n \mid n \text{ is a power of } 2\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is a power of } 2\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w = a^{2^s}$, where s is the pumping length.
- Let w = uvxyz where $|vxy| \le s$ and $|vy| \ge 1$.
- Then $uv^i xy^i z$ must belong to L for all $i \ge 0$.

• But,
$$uv^2xy^2z \notin L$$
.
Reason: Let $|vy| = k$, where $k \in [1, s]$.
Then, $uv^2xy^2z = a^{2^s+k} \notin L$.
Because, $2^s < 2^s + k < 2^{s+1}$.

• Contradiction! Hence, L is not CFL.

$L = \{a^n \mid n \text{ is prime}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is prime}\}$ is not CFL.

$L = \{a^n \mid n \text{ is prime}\}$ is a non-CFL

Problem

• Prove that $L = \{a^n \mid n \text{ is prime}\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w = a^m$, where m is prime and $m \ge s$.
- Let w = uvxyz where $|vxy| \le s$ and $|vy| \ge 1$.
- Then $uv^i xy^i z$ must belong to L for all $i \ge 0$.

• But,
$$uv^{m+1}xy^{m+1}z \notin L$$
.
Reason: Let $|vy| = k$. Then, $k \in [1, s]$.
 $uv^{m+1}xy^{m+1}z = a^{m+m|vy|} = a^{m+mk} = a^{m(k+1)} \notin L$.

• Contradiction! Hence, L is not CFL.

Membership problem: A decision problem on CFL's

Problem

• Given a CFG G and a string w, is $w \in L(G)?$

Problem

• Given a CFG G and a string w, is $w \in L(G)?$

Solution

- This is a difficult problem. Why? Nondeterminism cannot be eliminated unlike in finite automata.
 Algorithmically solvable. CYK algorithm (for grammars in CNF)
 - Earley parser
 - GLR parser

