Theory of Computation

 (Context-Free Grammars)Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

Contents

Contents

- Context-Free Grammars (CFG)
- Context-Free Languages
- Pushdown Automata (PDA)
- Transformations
- Pumping Lemma

Context-Free Grammars (CFG)

Computer program compilation

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
    {
            cout << "Hi 1";
            else
            cout << "Hi 2";
        }
        return 0;
}
```


C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
        cout << "Hi 1";
        else
            cout << "Hi 2";
    return 0;
}
```


Computer program compilation

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
    {
        cout << "Hi 1";
        else
            cout << "Hi 2";
        }
        return 0;
}
```

Output:
error: expected '\}' before 'else'

C ++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
        cout << "Hi 1";
        else
            cout << "Hi 2";
    return 0;
}
```


Output:

Hi 1

Computer program compilation

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
    {
        cout << "Hi 1";
        else
            cout << "Hi 2";
    }
    return 0;
}
```

Output:
error: expected '\}' before 'else'

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
        cout << "Hi 1";
        else
            cout << "Hi 2";
    return 0;
}
```


Output:

Hi 1

- DFA cannot check the syntax of a computer program.
- We need context-free grammars - a computational model more powerful than finite automata to check the syntax of most structures in a computer program.

Construct CFG for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Construct CFG for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Solution

- Language $L=\{\epsilon, a b, a a b b, a a a b b b, a a a a b b b b, \ldots\}$
- CFG G.

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \epsilon
\end{aligned}
$$

Construct CFG for $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Solution (continued)

- CFG G.

$$
S \rightarrow a S b \mid \epsilon
$$

- Accepting ϵ.
\triangleright 1-step computation

$$
S \Rightarrow \epsilon \quad(\because S \rightarrow \epsilon)
$$

- Accepting $a b$.
\triangleright 2-steps computation

$$
\begin{aligned}
& S \Rightarrow a S b \\
& \Rightarrow a b \\
& \Rightarrow S \rightarrow a S b) \\
& (\because S \rightarrow \epsilon)
\end{aligned}
$$

- Accepting aabb.
\triangleright 3-steps computation

$$
\begin{array}{ll}
S \Rightarrow a S b & (\because S \rightarrow a S b) \\
\Rightarrow a a S b b & (\because S \rightarrow a S b) \\
\Rightarrow a a b b & (\because S \rightarrow \epsilon)
\end{array}
$$

- Accepting aaabbb.

$$
\begin{array}{lc}
S \Rightarrow a S b & (\because S \rightarrow a S b) \\
\Rightarrow a a S b b & (\because S \rightarrow a S b) \\
\Rightarrow a a a S b b b & (\because S \rightarrow a S b) \\
\Rightarrow \text { aaabbb } & (\because S \rightarrow \epsilon)
\end{array}
$$

\triangleright 4-steps computation

Construct CFGs

Problems

Construct CFGs to accept all strings from the following languages:

- $R=a^{*}$
- $R=a^{+}$
- $R=a^{*} b^{*}$
- $R=a^{+} b^{+}$
- $R=a^{*} \cup b^{*}$
- $R=(a \cup b)^{*}$
- $R=a^{*} b^{*} c^{*}$

Construct CFG for palindromes over $\{a, b\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid w=w^{R}\right.$ and $\left.\Sigma=\{a, b\}\right\}$

Construct CFG for palindromes over $\{a, b\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid w=w^{R}\right.$ and $\left.\Sigma=\{a, b\}\right\}$

Solution

- Language $L=\{\epsilon, a, b, a a, b b, a a a, a b a, b a b, b b b$, $a a a a, a b b a, b a a b, b b b b, \ldots\}$
- CFG G.
$S \rightarrow a S a|b S b| a|b| \epsilon$

Construct CFG for palindromes over $\{a, b\}$

Solution (continued)

- CFG $G . S \rightarrow a S a|b S b| a|b| \epsilon$
- Accepting ϵ. $S \Rightarrow \epsilon$
$\triangleright 1$ step
Accepting $a . S \Rightarrow a$
Accepting $b . S \Rightarrow b$
- Accepting $a a$. $S \Rightarrow a S a \Rightarrow a a$
$\triangleright 2$ steps
Accepting $b b . S \Rightarrow b S b \Rightarrow b b$
- Accepting aaa. $S \Rightarrow a S a \Rightarrow a a a$
$\triangleright 2$ steps
Accepting $a b a . S \Rightarrow a S a \Rightarrow a b a$
Accepting bab. $S \Rightarrow b S b \Rightarrow b a b$
Accepting bbb. $S \Rightarrow b S b \Rightarrow b b b$
- Accepting aaaa. $S \Rightarrow a S a \Rightarrow a a S a a \Rightarrow a a a a$
$\triangleright 3$ steps
Accepting $a b b a . S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow a b b a$
Accepting baab. $S \Rightarrow b S b \Rightarrow b a S a b \Rightarrow b a a b$
Accepting bbbb. $S \Rightarrow b S b \Rightarrow b b S b b \Rightarrow b b b b$

Construct CFG for non-palindromes over $\{a, b\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid w \neq w^{R}\right.$ and $\left.\Sigma=\{a, b\}\right\}$

Construct CFG for non-palindromes over $\{a, b\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid w \neq w^{R}\right.$ and $\left.\Sigma=\{a, b\}\right\}$

Solution

- Language $L=\{\epsilon, a b, b a, a a b, a b b, b a a, b b a, \ldots\}$
- CFG G.

$$
\begin{aligned}
& S \rightarrow a S a|b S b| a A b \mid b A a \\
& A \rightarrow A a|A b| \epsilon
\end{aligned}
$$

Construct CFG for non-palindromes over $\{a, b\}$

Solution (continued)

- CFG G.
$S \rightarrow a S a|b S b| a A b \mid b A a$
$A \rightarrow A a|A b| \epsilon$
- Accepting abbbbaaba.
$\triangleright 7$-step derivation
$S \Rightarrow a S a$
$\Rightarrow a b S b a$
$\Rightarrow a b b A a b a$
$\Rightarrow a b b A a a b a$
$\Rightarrow a b b A b a a b a$
$\Rightarrow a b b A b b a a b a$
$\Rightarrow a b b b b a a b a$

What is a context-free grammar (CFG)?

- Grammar $=\mathrm{A}$ set of rules for a language
- Context-free $=$ LHS of productions have only 1 nonterminal

Definition
A context-free grammar (CFG) G is a 4-tuple $G=(N, \Sigma, S, P)$, where,

1. N : A finite set (set of nonterminals/variables).
2. Σ : A finite set (set of terminals).
3. $P:$ A finite set of productions/rules of the form $A \rightarrow \alpha$, $A \in N, \alpha \in(N \cup \Sigma)^{*}$.
\triangleright Time (computation)
\triangleright Space (computer memory)
4. S : The start nonterminal (belongs to N).

Derivation, acceptance, and rejection

Definitions

- Derivation. $\alpha A \gamma \Rightarrow \alpha \beta \gamma \quad(\because A \rightarrow \beta)$
\triangleright 1-step derivation
- Acceptance.
G accepts string w iff
$S \Rightarrow_{G}^{*} w$
- Rejection.
G rejects string w iff
$S \not \nRightarrow_{G}^{*} w$
\triangleright no derivation

What is a context-free language (CFL)?

Definition

- If $G=(N, \Sigma, S, P)$ is a CFG, the language generated by G is $L(G)=\left\{w \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} w\right\}$
- A language L is a context-free language (CFL) if there is a CFG G with $L=L(G)$.

Construct CFG for $L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$

Construct CFG for $L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\}$

Solution

- Language $L=\{\epsilon, a b, b a, b a, a a b b, a b a b, a b b a, b b a a, \ldots\}$
- CFGs.

1. $S \rightarrow S a S b S|S b S a S| \epsilon$
2. $S \rightarrow a S b S|b S a S| \epsilon$
3. $S \rightarrow a S b|b S a| S S \mid \epsilon$

- Derive the following 4-letter strings from G.
$a a b b, a b a b, a b b a, b b a a, b a b a, b a a b$
- Write G as a 4-tuple.
- What is the meaning/interpretation/logic of the grammar?

Construct CFGs

Problem

Construct CFGs that accepts all strings from the following languages

1. $L=\left\{w \mid n_{a}(w)>n_{b}(w)\right\}$
2. $L=\left\{w \mid n_{a}(w)=2 n_{b}(w)\right\}$
3. $L=\left\{w \mid n_{a}(w) \neq n_{b}(w)\right\}$

Construct CFGs

$$
\begin{aligned}
& \text { Problem } \\
& \text { Construct CFGs that accepts all str } \\
& \text { guages } \\
& \text { 1. } L=\left\{w \mid n_{a}(w)>n_{b}(w)\right\} \\
& \text { 2. } L=\left\{w \mid n_{a}(w)=n_{b}(w)\right\} \\
& \text { 3. } L=\left\{w \mid n_{a}(w) \neq n_{b}(w)\right\} \\
& \hline \text { Solutions } \\
& \hline \text { 1. } S \rightarrow a S|b S S| S S b|S b S| a \\
& \text { 2. } S \rightarrow S S|b A A| A b A|A A b| \epsilon \\
& A \rightarrow a S|S a S| S a \mid a \\
& \text { 3. ? }
\end{aligned}
$$

Construct CFGs that accepts all strings from the following lan-

Union, concatenation, and star are closed on CFL's

Properties

- If L_{1} and L_{2} are context-free languages over an alphabet Σ, then $L_{1} \cup L_{2}, L_{1} L_{2}$, and L_{1}^{*} are also CFL's.

Union, concatenation, and star are closed on CFL's

Properties

- If L_{1} and L_{2} are context-free languages over an alphabet Σ, then $L_{1} \cup L_{2}, L_{1} L_{2}$, and L_{1}^{*} are also CFL's.

Construction

Let $G_{1}=\left(N_{1}, \Sigma, S_{1}, P_{1}\right)$ be CFG for L_{1}.
Let $G_{2}=\left(N_{2}, \Sigma, S_{2}, P_{2}\right)$ be CFG for L_{2}.

- Union.

Let $G_{u}=\left(N_{u}, \Sigma, S_{u}, P_{u}\right)$ be CFG for $L_{1} \cup L_{2}$.
$N_{u}=N_{1} \cup N_{2} \cup\left\{S_{u}\right\} ; P_{u}=P_{1} \cup P_{2} \cup\left\{S_{u} \rightarrow S_{1} \mid S_{2}\right\}$

- Concatenation.

Let $G_{c}=\left(N_{c}, \Sigma, S_{c}, P_{c}\right)$ be CFG for $L_{1} L_{2}$.
$N_{u}=N_{1} \cup N_{2} \cup\left\{S_{c}\right\} ; P_{c}=P_{1} \cup P_{2} \cup\left\{S_{c} \rightarrow S_{1} S_{2}\right\}$

- Kleene star.

Let $G_{s}=\left(N_{s}, \Sigma, S_{s}, P_{s}\right)$ be CFG for L_{1}^{*}.
$N_{s}=N_{1} \cup\left\{S_{s}\right\} ; P_{s}=P_{1} \cup\left\{S_{s} \rightarrow S_{s} S_{1} \mid \epsilon\right\}$

Union is closed on CFL's

Problem

- If L_{1} and L_{2} are CFL's then $L_{3}=L_{1} \cup L_{2}$ is a CFL.
- If L_{1} and $L_{3}=L_{1} \cup L_{2}$ are CFL's, is L_{2} a CFL?

Union is closed on CFL's

Problem

- If L_{1} and L_{2} are CFL's then $L_{3}=L_{1} \cup L_{2}$ is a CFL.
- If L_{1} and $L_{3}=L_{1} \cup L_{2}$ are CFL's, is L_{2} a CFL?

Solution

- L_{2} may or may not be a CFL.
$L_{1}=\Sigma^{*} \quad \triangleright$ CFL
$L_{3}=L_{1} \cup L_{2}=\Sigma^{*}$
$L_{2}=\left\{a^{n} \mid n\right.$ is prime $\}$
\triangleright Non-CFL

Property

- If L is a CFL, then L^{R} is a CFL.

Reversal is closed on CFL's

Property

- If L is a CFL, then L^{R} is a CFL.

Construction

- Let $G=(N, \Sigma, S, P)$ be CFG for L. Let $G_{r}=\left(N, \Sigma, S, P_{r}\right)$ be CFG for L^{R}. Then
- Reversal.
$P_{r}=$ productions from P such that all symbols on the right hand side of every production is reversed. i.e., If $A \rightarrow \alpha$ is in P, then $A \rightarrow \alpha^{R}$ is in P_{r}
- Example.

Grammar for accepting L is $S \rightarrow a S b \mid a b$.
Grammar for accepting L^{R} is $S \rightarrow b S a \mid b a$.

Intersection is not closed on CFL's

Problem

- Show that L_{1}, L_{2} are CFL's and $L=L_{1} \cap L_{2}$ is a non-CFL.

$$
\begin{aligned}
L & =\left\{a^{i} b^{j} c^{k} \mid i=j \text { and } j=k\right\} \\
& =\left\{a^{i} b^{i} c^{k} \mid i, k \geq 0\right\} \cap\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\} \\
& L_{1} \cap L_{2}
\end{aligned}
$$

Intersection is not closed on CFL's

Problem

- Show that L_{1}, L_{2} are CFL's and $L=L_{1} \cap L_{2}$ is a non-CFL.

$$
\begin{aligned}
L & =\left\{a^{i} b^{j} c^{k} \mid i=j \text { and } j=k\right\} \\
& =\left\{a^{i} b^{i} c^{k} \mid i, k \geq 0\right\} \cap\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\} \\
& L_{1} \cap L_{2}
\end{aligned}
$$

Solution

- L_{1} is a CFL.

$$
\begin{aligned}
& L_{1}=\left\{a^{i} b^{i} c^{k} \mid i, k \geq 0\right\}=\left\{a^{i} b^{i} \mid i \geq 0\right\}\left\{c^{k} \mid k \geq 0\right\} \\
& =L_{3} L_{4}=\mathrm{CFL} \quad\left(\because L_{3}, L_{4} \text { are CFL's }\right)
\end{aligned}
$$

- L_{2} is a CFL.

$$
\begin{aligned}
& L_{2}=\left\{a^{i} b^{j} c^{j} \mid i, j \geq 0\right\}=\left\{a^{i} \mid i \geq 0\right\}\left\{b^{j} c^{j} \mid j \geq 0\right\} \\
& =L_{5} L_{6}=\mathrm{CFL} \quad\left(\because L_{5}, L_{6} \text { are CFL's }\right)
\end{aligned}
$$

- L is a non-CFL.

Use pumping lemma for CFL's.

Complementation is not closed on CFL's

Problem

- Show that complementation is not closed on CFL's.

Complementation is not closed on CFL's

Problem

- Show that complementation is not closed on CFL's.

Solution
Proof by contradiction.

- Suppose complementation is closed under CFL's.
i.e., if L is a CFL, then \bar{L} is a CFL.
- Consider the equation $L_{1} \cap L_{2}=\left(\overline{L_{1}} \cup \overline{L_{2}}\right)$.

Closure on complementation implies closure on intersection.

- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, complementation is not closed on CFL's.

Complementation is not closed on CFL's

Problem

- Show that \bar{L} is a CFL and L is a non-CFL.

$$
\bar{L}=\Sigma^{*}-\left\{w w \mid w \in \Sigma^{*}\right\}=\Sigma^{*}-L
$$

Complementation is not closed on CFL's

Problem

- Show that \bar{L} is a CFL and L is a non-CFL.

$$
\bar{L}=\Sigma^{*}-\left\{w w \mid w \in \Sigma^{*}\right\}=\Sigma^{*}-L
$$

Solution

- \bar{L} is a CFL.
$S \rightarrow A|B| A B \mid B A$
$A \rightarrow E A E \mid a$
$B \rightarrow E B E \mid b$
$E \rightarrow a \mid b$
Why does this grammar work?
- L is a non-CFL.

Use pumping lemma for CFL's.

Problem

- Show that set difference is not closed on CFL's.

Set difference is not closed on CFL's

Problem

- Show that set difference is not closed on CFL's.

Solution

Proof by contradiction.

- Suppose set difference is closed under CFL's. i.e., if L_{1}, L_{2} are CFL's, then $L_{1}-L_{2}$ is a CFL.
- Consider the equation $L_{1} \cap L_{2}=L_{1}-\left(L_{1}-L_{2}\right)$.

Closure on set difference implies closure on intersection.

- But, intersection is not closed on CFL's.
- Contradiction!
- Hence, set difference is not closed on CFL's.

Summary: Closure properties of CFL's

Operation	Closed on CFL's?
Union $\left(L_{1} \cup L_{2}\right)$	\checkmark
Concatenation $\left(L_{1} L_{2}\right)$	\checkmark
Kleene star $\left(L^{*}\right)$	\checkmark
Reversal $\left(L^{R}\right)$	$\mathbf{\checkmark}$
Intersection $\left(L_{1} \cap L_{2}\right)$	\mathbf{x}
Complementation (\bar{L})	\mathbf{x}
Set difference $\left(L_{1}-L_{2}\right)$	\mathbf{x}

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$

Solution

- Language $L=\left\{\epsilon, a b, b c, a^{2} b^{2}, b^{2} c^{2}, a b^{2} c, \ldots\right\}$
- $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$
$=\left\{a^{i} b^{i+k} c^{k}\right\} \quad(\because$ substitute for $j)$
$=\left\{a^{i} b^{i} b^{k} c^{k}\right\} \quad(\because$ expand $)$
$=\left\{a^{i} b^{i}\right\}\left\{b^{k} c^{k}\right\} \quad(\because$ split the concatenated languages $)$
$=L_{1} L_{2}$
- Solve the problem completely by constructing CFG's for L_{1}, L_{2}, and then $L_{1} L_{2}$.
- Divide-and-conquer. We can solve a complicated problem if we can break the problem into several simpler subproblems and solve those simpler problems.
- Construct CFG for the variant where $j \neq i+k$.

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Problem

- Construct a CFG that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Solution

- Language $L=\left\{\epsilon, a, b, c, a c, a^{2}, b^{2}, c^{2}, \ldots\right\}$
- $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$ $=\left\{a^{i} b^{j} c^{k} \mid j>(i+k)\right\} \cup\left\{a^{i} b^{j} c^{k} \mid j<(i+k)\right\}$
$=L_{1} \cup L_{2}$
- Can we represent L_{1} and L_{2} using simpler languages?

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Solution (continued)

- Case 1. $L_{1}=\left\{a^{i} b^{j} c^{k} \mid j>i+k\right\}$
$=\left\{a^{i} b^{j} c^{k} \mid j=i+m+k\right.$ and $\left.m \geq 1\right\}$
$=\left\{a^{i} b^{i+m+k} c^{k} \mid m \geq 1\right\}$
$=\left\{a^{i} b^{i}\right\} \cdot\left\{b^{m} \mid m \geq 1\right\} \cdot\left\{b^{k} c^{k}\right\}$
$=\left\{a^{i} b^{i}\right\} \cdot\left\{b b^{n}\right\} \cdot\left\{b^{k} c^{k}\right\}$
$=L_{11} \cdot L_{12} \cdot L_{13}$
We know how to construct CFG's for L_{11}, L_{12}, L_{13}
- Case 2. $L_{2}=\left\{a^{i} b^{j} c^{k} \mid j<i+k\right\}$
$=\left\{a^{i} b^{j} c^{k} \mid j<i\right.$ or $\left.i \leq j<i+k\right\}$
$=\left\{a^{i} b^{j} c^{k} \mid j<i\right\} \cup\left\{a^{i} b^{j} c^{k} \mid i \leq j<i+k\right\}$
$=L_{21} \cup L_{22}$
How to proceed?

Construct CFG for $L=\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$

Solution (continued)

- Case 3. $L_{21}=\left\{a^{i} b^{j} c^{k} \mid j<i\right\}$
$=\left\{a^{i} b^{j} c^{k} \mid i=m+j\right.$ and $\left.m \geq 1\right\}$
$=\left\{a^{m+j} b^{j} c^{k} \mid m \geq 1\right\}$
$=\left\{a^{m} \mid m \geq 1\right\} \cdot\left\{a^{j} b^{j}\right\} \cdot\left\{c^{k}\right\}$
$=L_{211} \cdot L_{212} \cdot L_{213}$
We know how to construct CFG's for $L_{211}, L_{212}, L_{213}$
- Case 4. $L_{22}=\left\{a^{i} b^{j} c^{k} \mid i \leq j<i+k\right\}$
$=\left\{a^{i} b^{j} c^{k} \mid j \geq i\right.$ and $\left.k>j-i\right\}$
$=\left\{a^{i} b^{i+(j-i)} c^{(j-i)+m} \mid(j-i) \geq 0\right.$ and $\left.m \geq 1\right\}$
$=\left\{a^{i} b^{i}\right\} \cdot\left\{b^{j-i} c^{j-i} \mid(j-i) \geq 0\right\} \cdot\left\{c^{m} \mid m \geq 1\right\}$
$=\left\{a^{i} b^{i}\right\} \cdot\left\{b^{i} c^{i}\right\} \cdot\left\{c^{m} \mid m \geq 1\right\}$
$=L_{221} \cdot L_{222} \cdot L_{223}$
We know how to construct CFG's for $L_{221}, L_{222}, L_{223}$

Construct CFG for $b b a(a b)^{*} \mid\left(a b \mid b a^{*} b\right)^{*} b a$

Problem

- Construct a CFG that accepts all strings from the language correspending to R.E. $b b a(a b)^{*} \mid\left(a b \mid b a^{*} b\right)^{*} b a$.

Construct CFG for $b b a(a b)^{*} \mid\left(a b \mid b a^{*} b\right)^{*} b a$

Problem

- Construct a CFG that accepts all strings from the language correspending to R.E. $b b a(a b)^{*} \mid\left(a b \mid b a^{*} b\right)^{*} b a$.

Solution

- Language $L=\{b a, b b a, a b b a, b b b a, \ldots\}$

This is a regular language.

- CFG G.
$S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow S_{1} a b \mid b b a \quad \triangleright$ Generates $b b a(a b)^{*}$
$S_{2} \rightarrow T S_{2} \mid b a$
$T \rightarrow a b \mid b U b$
$U \rightarrow a U \mid \epsilon$
\triangleright Generates $\left(a b \mid b a^{*} b\right)^{*} b a$
\triangleright Generates $a b \mid b a^{*} b$
\triangleright Generates a^{*}

Construct CFG for strings of a DFA

Problem

- Construct a CFG that accepts all strings accepted by the following DFA.

Construct CFG for strings of a DFA

Problem

- Construct a CFG that accepts all strings accepted by the following DFA.

Solution

- Language $L=\left\{(a \mid b)^{*} b a\right\}$
\triangleright Strings ending with $b a$
$=\{b a, a b a, b b a, a a b a, a b b a, b a b a, b b b a, \ldots\}$
This is a regular language.
- How to construct CFG for this DFA?

Approach 1: Compute R.E. Construct CFG for the R.E.
Approach 2: Construct CFG from the DFA using transitions.

Construct CFG for strings of a DFA

Solution (continued)

- Idea.

For every transition $\delta(Q, a)=R$, add a production $Q \rightarrow a R$. What does this mean? Why should it work?

Construct CFG for strings of a DFA

Solution (continued)

- Idea.

For every transition $\delta(Q, a)=R$, add a production $Q \rightarrow a R$.
What does this mean? Why should it work?

- CFG.
$\triangleright 3$ states $=3$ nonterminals
$S \rightarrow a S \mid b A$
$A \rightarrow b A \mid a B$
$B \rightarrow b A|a S| \epsilon \quad \triangleright \epsilon$-production for halting state
- Accepting bbaaba.
$S \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{a} B \xrightarrow{a} S \xrightarrow{b} A \xrightarrow{a} B$
$S \Rightarrow b A \Rightarrow b b A \Rightarrow b b a B \Rightarrow b b a a S \Rightarrow b b a a b A \Rightarrow b b a a b a B$
$\Rightarrow b b a a b a$

What is a regular grammar/language?

Definitions

- A context-free grammar $G=(N, \Sigma, S, P)$ is called a regular grammar if every production is of the form $A \rightarrow a B$ or $A \rightarrow \epsilon$, where $A, B \in N$ and $a \in \Sigma$.
- A language $L \in \Sigma^{*}$ is called a regular language iff $L=L(G)$ for some regular grammar G.

Construct CFG for understanding human languages

Problem

－Construct a CFG to understand some structures in the English language．

Solution
－CFG：
〈Sentence〉 \rightarrow 〈NounPhrase〉 〈VerbPhrase〉
〈NounPhrase〉 \rightarrow 〈ComplexNoun〉｜〈ComplexNoun〉〈PrepPhrase〉
\langle VerbPhrase〉 \rightarrow 〈ComplexVerb〉｜〈ComplexVerb〉〈PrepPhrase〉
\langle PrepPhrase〉 \rightarrow 〈Prep〉 〈ComplexNoun〉
\langle ComplexNoun \rightarrow 〈Article〉 〈Noun〉
\langle ComplexVerb〉 $\rightarrow\langle$ Verb〉｜〈Verb〉 〈NounPhrase〉
\langle Article〉 \rightarrow a｜the
\langle Noun $\rangle \rightarrow$ boy \mid girl｜flower
\langle Verb \rightarrow touches｜likes｜sees
\langle Prep〉 \rightarrow with

Construct CFG for understanding human languages

Solution（continued）
－Accepting＂a girl likes＂．
〈Sentence〉 \Rightarrow 〈NounPhrase〉 〈VerbPhrase〉
$\Rightarrow\langle$ ComplexNoun $\rangle\langle$ VerbPhrase \rangle
$\Rightarrow\langle$ Article $\rangle\langle$ Noun $\rangle\langle$ VerbPhrase \rangle
\Rightarrow a 〈Noun〉〈VerbPhrase〉
\Rightarrow a girl 〈VerbPhrase〉
\Rightarrow a girl \langle ComplexVerb〉
\Rightarrow a girl 〈Verb〉
\Rightarrow a girl likes
－Derive＂a girl with a flower likes the boy＂．

Construct CFG for strings with valid parentheses

Problem

- Construct a CFG that accepts all strings from the language $L=\{\epsilon,(),()(),(()),()()(),(()()),()(()),(())(),((())), \ldots\}$

Construct CFG for strings with valid parentheses

Problem

- Construct a CFG that accepts all strings from the language $L=\{\epsilon,(),()(),(()),()()(),(()()),()(()),(())(),((())), \ldots\}$

Solution

- Applications. Compilers check for syntactic correctness in:

1. Computer programs written by you that possibly contain nested code blocks with \{ \}, (), and [].
2. Web pages written by you that contain nested code blocks with <div></div>, <table></table>, and .

- Language $L=\left\{w \mid w \in\{(,)\}^{*}\right.$ such that $n_{(}(w)=n_{)}(w)$ and and in any prefix $p_{i<|w|}$ of $\left.w, n_{(}\left(p_{i}\right) \geq n_{)}\left(p_{i}\right)\right\}$
- What is the CFG?

Construct CFG for strings with valid parentheses

```
Solution (continued)
Multiple correct ways to write the CFG:
1. \(S \rightarrow S(S) S \mid \epsilon\)
2. \(S \rightarrow S S|(S)| \epsilon\)
3. \(S \rightarrow S(S) \mid \epsilon\)
4. \(S \rightarrow(S) S \mid \epsilon\)
5. \(S \rightarrow S R) \mid \epsilon\)
    \(R \rightarrow(\mid R R)\)
6. \(S \rightarrow(R S \mid \epsilon\)
    \(R \rightarrow) \mid(R R\)
- Are some CFG's better than the others? If so, better in what?
```


Construct CFG for valid arithmetic expressions

Problem

- Construct a CFG that accepts all valid arithmetic expressions from $\Sigma=\{(),,+, \times, n\}$, where n represents any integer.

Construct CFG for valid arithmetic expressions

Problem

- Construct a CFG that accepts all valid arithmetic expressions from $\Sigma=\{(),,+, \times, n\}$, where n represents any integer.

Solution

- Language $L=\{15+85,57 \times 3,(27+46) \times 10, \ldots\}$
- Abstraction: Denote n to mean any integer.

Valid expressions: $(n+n)+n \times n$, etc
Invalid expressions: $+n,(n+) n,(), n \times n)$, etc

- Hint: Use some ideas from the parenthesis problem

Construct CFG for valid arithmetic expressions

```
Solution (continued)
Multiple correct ways to write the CFG:
1. \(E \rightarrow E+E|E \times E|(E) \mid n\)
2. \(E \rightarrow E+T \mid T \quad \triangleright\) expression
    \(T \rightarrow T \times F \mid F \quad \triangleright\) term
    \(F \rightarrow(E) \mid n \quad \triangleright\) factor
3. \(E \rightarrow T E^{\prime}\)
    \(E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon\)
    \(T \rightarrow F T^{\prime}\)
    \(T^{\prime} \rightarrow \times F T^{\prime} \mid \epsilon\)
    \(F \rightarrow(E) \mid n\)
- Can you derive \((n \times n)\) ?
- Are some CFG's better than the others? If so, better in what?
```


What is a derivation?

Definition

- A derivation in a context-free grammar is a leftmost derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Example

- CFG: $E \rightarrow E+E|E \times E|(E) \mid n$

Accepting $n+(n)$.
LMD: $E \Rightarrow E+E \Rightarrow n+E \Rightarrow n+(E) \Rightarrow n+(n)$
RMD: $E \Rightarrow E+E \Rightarrow E+(E) \Rightarrow E+(n) \Rightarrow n+(n)$

What is an ambiguous grammar?

Definition

- A context-free grammar G is ambiguous if for at least one $w \in$ $L(G), w$ has more than one derivation tree (or, equivalently, more than one leftmost derivation).
- Intuition: A CFG is ambiguous if it generates a string in several different ways.

Arithmetic expression: Ambiguous grammar

Problem

- Show that the following CFG is ambiguous:
$E \rightarrow E+E|E \times E|(E) \mid n$

Arithmetic expression: Ambiguous grammar

Problem

- Show that the following CFG is ambiguous:

$$
E \rightarrow E+E|E \times E|(E) \mid n
$$

Solution

- Consider the strings $n+n \times n$ or $n+n+n$. There are two derivation trees for each of the strings.
- Accepting $n+n \times n$. LMD 1: $E \Rightarrow E+E \Rightarrow n+E \Rightarrow n+E \times E \Rightarrow n+n \times E$ $\Rightarrow n+n \times n$
LMD 2: $E \Rightarrow E \times E \Rightarrow E+E \times E \Rightarrow n+E \times E \Rightarrow n+n \times E$ $\Rightarrow n+n \times n$
- Accepting $n+n+n$.

LMD 1: $E \Rightarrow E+E \Rightarrow n+E \Rightarrow n+E+E \Rightarrow n+n+E$
$\Rightarrow n+n+n$
LMD 2: $E \Rightarrow E+E \Rightarrow E+E+E \Rightarrow n+E+E \Rightarrow n+n+E$
$\Rightarrow n+n+n$

Arithmetic expression: Ambiguous grammar

Solution (continued)

Two derivation (or parse) trees \Longrightarrow Ambiguity
(Reason 1: The precedence of different operators isn't enforced.)

- LMD 1: $E \Rightarrow E+E \Rightarrow n+E \Rightarrow n+E \times E \Rightarrow n+n \times E$ $\Rightarrow n+n \times n$
- LMD 2: $E \Rightarrow E \times E \Rightarrow E+E \times E \Rightarrow n+E \times E \Rightarrow n+n \times E$ $\Rightarrow n+n \times n$

Arithmetic expression: Ambiguous grammar

Solution (continued)

Two derivation (or parse) trees \Longrightarrow Ambiguity
(Reason 2: Order of operators of same precedence isn't enforced.)

- LMD 1: $E \Rightarrow E+E \Rightarrow n+E \Rightarrow n+E+E \Rightarrow n+n+E$ $\Rightarrow n+n+n$
- LMD 2: $E \Rightarrow E+E \Rightarrow E+E+E \Rightarrow n+E+E \Rightarrow n+n+E$ $\Rightarrow n+n+n$

Arithmetic expression: Ambiguous grammar

Problem

- Consider the following ambiguous grammar:
$E \rightarrow E+E|E \times E|(E) \mid n$
How many different derivations (or LMDs) are possible for the string $n+n+\cdots+n$, where n is repeated k times?

Arithmetic expression: Ambiguous grammar

Problem

- Consider the following ambiguous grammar:
$E \rightarrow E+E|E \times E|(E) \mid n$
How many different derivations (or LMDs) are possible for the string $n+n+\cdots+n$, where n is repeated k times?

Solution

- Let $d(k)=$ number of derivations for k operands. Then $d(1)=1$
$d(2)=1$
$d(3)=2$
$d(4)=5$
How?
- How do you compute $d(k)$?
$d(k)=\sum_{i=1}^{k-1} d(i) d(k-i)$

If-else ladder: Ambiguous grammar

Problem

- Show that the following CFG is ambiguous:
$S \rightarrow$ if $(E) S \mid$ if $(E) S$ else $S \mid O$
where, $S=$ statement, $E=$ expression, $O=$ other statement.

Solution

- Consider the string: if $\left(e_{1}\right)$ if $\left(e_{2}\right) \mathrm{F}()$; else G() ;

There are two derivation trees for the string.

- Can you identify the two derivation trees for the string?

If-else ladder: Ambiguous grammar

What is the output of this program?

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
        if (false)
                ;
    else
        cout << "Hi!";
        return 0;
}
```


What is the output of this program?

C++ program:

```
#include <iostream>
using namespace std;
int main()
{
    if (true)
        if (false)
                ;
    else
        cout << "Hi!";
    return 0;
}
```

Output:
Hi!

If-else ladder: Unambiguous grammar

Problem

- Can you come up with an unambiguous grammar for the language accepted by the following ambiguous grammar?
$S \rightarrow$ if $(E) S \mid$ if $(E) S$ else $S \mid O$
where, $S=$ statement, $E=$ expression, $O=$ other statement.

Solution

- $S \rightarrow S_{1} \mid S_{2}$
$S_{1} \rightarrow$ if $(E) S_{1}$ else $S_{1} \mid O$
$S_{2} \rightarrow$ if $(E) S \mid$ if $(E) S_{1}$ else S_{2}
- How do you prove that the grammar is really unambiguous?

What is an inherently ambiguous language?

Definition

- A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

What is an inherently ambiguous language?

Definition

- A context-free language is called inherently ambiguous if there exists no unambiguous grammar to generate the language.

Examples

Proofs?

- $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$
- $L=\left\{a^{i} b^{i} c^{j} d^{j}\right\} \cup\left\{a^{i} b^{j} c^{j} d^{i}\right\}$

Language generated by a grammar

Problem

- Prove that the following grammar G generates all strings of balanced parentheses and only such strings.
$S \rightarrow(S) S \mid \epsilon$

Language generated by a grammar

Problem

- Prove that the following grammar G generates all strings of balanced parentheses and only such strings.
$S \rightarrow(S) S \mid \epsilon$

Solution

- $L(G)=$ language generated by the grammar G.
$L=$ language of balanced parentheses.
- Show that $L(G)=L$. Two cases.

Case 1. Show that every string derivable from S is balanced. i.e., $L(G) \subseteq L$.

Case 2. Show that every balanced string is derivable from S. i.e., $L \subseteq L(G)$.

Language generated by a grammar

Solution (continued)
Case 1. Show that every string derivable from S is balanced.
Let $n=$ number of steps in derivation.

- Basis.

The only string derivable from S in 1 step is ϵ and ϵ is balanced.

- Induction.

Suppose all strings with derivation fewer than n steps produce balanced parentheses.
Consider a LMD of at most n steps.
That derivation must be of the form
$S \Rightarrow(S) S \Rightarrow^{*}(x) S \Rightarrow^{*}(x) y$
Derivations of x and y take fewer than n steps.
So, x and y are balanced.
Therefore, the string $(x) y$ must be balanced.

Language generated by a grammar

Solution (continued)
Case 2. Show that every balanced string is derivable from S.
Let $2 n=$ length of a balanced string.

- Basis.

A 0-length string is ϵ, which is balanced.

- Induction.

Assume that every balanced string of length less than $2 n$ is derivable from S. Consider a balanced string w of length $2 n$ such that $n \geq 1$. String w must begin with a left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal number of left and right parentheses. Then, w can be written as $w=(x) y$, where, both x and y are balanced. Since x and y are of length less than $2 n$, they are derivable from S. Thus, we can find a derivation of the form
$S \Rightarrow(S) S \Rightarrow^{*}(x) S \Rightarrow^{*}(x) y$
proving that $w=(x) y$ must also be derivable from S.

What is Chomsky normal form (CNF)?

Definition

- A context-free grammar is said to be in Chomsky normal form (CNF) if every production is of one of these three types: $A \rightarrow B C$ (where B, C are nonterminals and they cannot be the start nonterminal S)
$A \rightarrow a$ (where a is a terminal symbol)
$S \rightarrow \epsilon$
- Why should we care for CNF?

For every context-free grammar G, there is another CFG $G_{\text {CNF }}$ in Chomsky normal form such that $L\left(G_{\mathrm{CNF}}\right)=L(G)$.

Example

- $S \rightarrow A A \mid \epsilon$
$A \rightarrow A A \mid a$

Converting a CFG to CNF

Algorithm rule	Before rule	After rule
1. Start nonterminal must	$S \rightarrow A S A B S$	$S_{0} \rightarrow S$
not appear on the RHS		$S \rightarrow A S A B S$
2. Remove productions	$R \rightarrow A R A$	$R \rightarrow A R A$
like $A \rightarrow \epsilon$	$A \rightarrow a \mid \epsilon$	$R \rightarrow A R\|R A\| A$
		$A \rightarrow a$
3. Remove productions	$A \rightarrow B$	$A \rightarrow C D D$
like $A \rightarrow B$	$B \rightarrow C D D$	
4. Convert to CNF	$A \rightarrow B C D$	$A \rightarrow B C^{\prime}$
		$C^{\prime} \rightarrow C D$

CFG-TO-CNF (G)

1. Start nonterminal must not appear on RHS
2. Remove ϵ productions
3. Remove unit productions
4. Convert to CNF

Converting a CFG to CNF

Problem

- Convert the following CFG to CNF.
$S \rightarrow A S A \mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \epsilon$

Converting a CFG to CNF

Problem

- Convert the following CFG to CNF.
$S \rightarrow A S A \mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \epsilon$

Solution

- Start nonterminal must not appear on the right hand side $S_{0} \rightarrow S$
$S \rightarrow A S A \mid a B$
$A \rightarrow B \mid S$
$B \rightarrow b \mid \epsilon$
- Remove $B \rightarrow \epsilon$

$$
S_{0} \rightarrow S
$$

$$
S \rightarrow A S A|a B| a
$$

$$
A \rightarrow B|S| \epsilon
$$

$$
B \rightarrow b
$$

Converting a CFG to CNF

Solution (continued)

- Remove $A \rightarrow \epsilon$
$S_{0} \rightarrow S$
$S \rightarrow A S A|S A| A S|S| a B \mid a$
$A \rightarrow B \mid S$
$B \rightarrow b$
- Remove $A \rightarrow B$
$S_{0} \rightarrow S$
$S \rightarrow A S A|S A| A S|S| a B \mid a$
$A \rightarrow S \mid b$
$B \rightarrow b$
- Remove $S \rightarrow S$
\triangleright Do nothing
$S_{0} \rightarrow S$
$S \rightarrow A S A|S A| A S|a B| a$
$A \rightarrow S \mid b$
$B \rightarrow b$

Converting a CFG to CNF

Solution (continued)

- Remove $A \rightarrow S$
$S_{0} \rightarrow S$
$S \rightarrow A S A|S A| A S|a B| a$
$A \rightarrow A S A|S A| A S|a B| a \mid b$
$B \rightarrow b$
- Remove $S_{0} \rightarrow S$
$S_{0} \rightarrow A S A|S A| A S|a B| a$
$S \rightarrow A S A|S A| A S|a B| a$
$A \rightarrow A S A|S A| A S|a B| a \mid b$
$B \rightarrow b$
- Convert $A S A \rightarrow A A_{1}$
$S_{0} \rightarrow A A_{1}|S A| A S|a B| a$
$S \rightarrow A A_{1}|S A| A S|a B| a$
$A \rightarrow A A_{1}|S A| A S|a B| a \mid b$
$A_{1} \rightarrow S A$
$B \rightarrow b$

Converting a CFG to CNF

Solution (continued)

- Introduce $A_{2} \rightarrow a$
$S_{0} \rightarrow A A_{1}|S A| A S\left|A_{2} B\right| a$
$S \rightarrow A A_{1}|S A| A S\left|A_{2} B\right| a$
$A \rightarrow A A_{1}|S A| A S\left|A_{2} B\right| a \mid b$
$A_{1} \rightarrow S A$
$A_{2} \rightarrow a$
$B \rightarrow b$
- This grammar is now in Chomsky normal form.

What is Griebach normal form (GNF)?

Definition

- A context-free grammar is said to be in Griebach normal form (GNF) if every production is of the following type:
$A \rightarrow a A_{1} A_{2} \ldots A_{d}$ (where a is a terminal symbol and $A_{1}, A_{2}, \ldots, A_{d}$ are nonterminals) $S \rightarrow \epsilon$
(Not always included)
- Why should we care for GNF?

For every context-free grammar G, there is another CFG G_{GNF} in Griebach normal form such that $L\left(G_{\mathrm{GNF}}\right)=L(G)$.
A string of length n has a derivation of exactly n steps.
Example

- $S \rightarrow a A \mid b B$
$B \rightarrow b B \mid b$
$A \rightarrow a A \mid a$

Equivalence of different computation models

Pushdown Automata (PDA)

Source: Wikipedia

- PDA has access to a stack of unlimited memory

What is a pushdown automaton (PDA)?

- Nondetermistic $=$ Events cannot be determined precisely
- Pushdown $=$ Using stack of infinite memory
- Automaton $=$ Computing machine

What is a pushdown automaton (PDA)?

- Nondetermistic $=$ Events cannot be determined precisely
- Pushdown $=$ Using stack of infinite memory
- Automaton $=$ Computing machine

Definition
A pushdown automaton (PDA) P is a 6-tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where,

1. Q : A finite set (set of states).
2. Σ : A finite set (input alphabet).
3. Γ : A finite set (stack alphabet).
4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$ is the transition function.
\triangleright Time (computation)
5. q_{0} : The start state (belongs to Q).
6. F : The set of accepting/final states, where $F \subseteq Q$.

What is a context-free language?

Definition

- A PDA $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ accepts a string $w \in \Sigma^{*}$ iff

$$
\left(q_{0}, w, \$\right) \vdash_{M}^{*}\left(q_{f}, \epsilon, \alpha\right)
$$

for some $\alpha \in \Gamma^{*}$ and some $q_{f} \in F$.
A PDA rejects a string iff it does not accept it.

- We say that a PDA M accepts a language L if $L=\{w \mid M$ accepts $w\}$.
- A language is called a context-free language if some PDA accepts or recognizes it.

Construct PDA for $L=\left\{a^{n} b^{n}\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{a^{n} b^{n}\right\}$

Construct PDA for $L=\left\{a^{n} b^{n}\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{a^{n} b^{n}\right\}$

Solution

PDA()

1. while next input character is a do
2. push a
3. while next input character is b do
4. $\quad \operatorname{pop} a$

Construct PDA for $L=\left\{a^{n} b^{n}\right\}$

Solution (continued)

- Transition $\left(i, s_{1} \rightarrow s_{2}\right)$ means that when you see input character i, replace s_{1} with s_{2} as the top of stack.

Construct PDA for $L=\left\{a^{n} b^{n}\right\}$

Solution (continued)

- PDA P is specified as

Set of states is $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
Set of input symbols is $\Sigma=\{a, b\}$ Set of stack symbols is $\Gamma=\{a, \$\}$
Start state is q_{0}
Set of accept states is $F=\left\{q_{0}, q_{3}\right\}$
Transition function δ is: (Empty cell is ϕ)

Input	a			b			ϵ			
Stack	a	$\$$	ϵ	a	$\$$	ϵ	a	$\$$	ϵ	
q_{0}									$\left\{\left(q_{1}, \$\right)\right\}$	
q_{1}			$\left\{\left(q_{1}, a\right)\right\}$	$\left\{\left(q_{2}, \epsilon\right)\right\}$						
q_{2}				$\left\{\left(q_{2}, \epsilon\right)\right\}$				$\left\{\left(q_{3}, \epsilon\right)\right\}$		
q_{3}										

Construct PDA for $L=\left\{a^{n} b^{n}\right\}$

Solution (continued)

Step	State	Stack	Input	Action
1	q_{0}		$a a a b b b$	push $\$$
2	q_{1}	$\$$	$a a a b b b$	push a
3	q_{1}	$\$ a$	$a a b b b$	push a
4	q_{1}	$\$ a a$	$a b b b$	push a
5	q_{1}	$\$ a a a$	$b b b$	pop a
6	q_{2}	$\$ a a$	$b b$	pop a
7	q_{2}	$\$ a$	b	pop a
8	q_{2}	$\$$		pop $\$$
9	q_{3}			accept
Step	State	Stack	Input	Action
1	q_{0}		$a a b a b b$	push $\$$
2	q_{1}	$\$$	$a a b a b b$	push a
3	q_{1}	$\$ a$	$a b a b b$	push a
4	q_{1}	$\$ a a$	$b a b b$	pop a
5	q_{2}	$\$ a$	$a b b$	crash
6	q_{ϕ}	$\$ a$	$b b$	
7	q_{ϕ}	$\$ a$	b	
8	q_{ϕ}	$\$ a$		reject

Construct PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Construct PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Solution

PDA()

1. while next input character is a or b do
2. push the symbol
3. Nondeterministically guess the mid point of the string
4. while next input character is a or b do
5. pop the symbol

Construct PDA for $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$

Solution (continued)

Construct PDA for $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Construct PDA for $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Problem

- Construct a PDA that accepts all strings from the language $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Solution

PDA()

1. while next input character is a do push a
2. Nondeterministically guess whether a 's $=b$'s or a 's $=c$'s

Case 1. a 's $=b$'s.

1. while next input character is b do pop a
2. while next input character is c do nothing

Case 2. a 's $=c$'s.

1. while next input character is b do nothing
2. while next input character is c do pop a

Construct PDA for $L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$

Solution (continued)
$\epsilon, \epsilon \rightarrow a \quad \epsilon, a \rightarrow \epsilon \quad \epsilon, \epsilon \rightarrow \epsilon$

Non-Context-Free Languages

Pumping lemma for context-free languages

Theorem

Suppose L is a context-free language over alphabet Σ. Then there is a natural number s so that for every long string $w \in L$ satisfying $|w| \geq s$, the string w can be split into five strings $w=u v x y z$ such that the following three conditions are true.

- $|v x y| \leq s$.
- $|v y| \geq 1$.
- For every $i \geq 0$, the string $u v^{i} x y^{i} z$ also belongs to L.

$L=\left\{a^{n} b^{n} c^{n}\right\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} b^{n} c^{n}\right\}$ is not CFL.

$L=\left\{a^{n} b^{n} c^{n}\right\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} b^{n} c^{n}\right\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w=a^{s} b^{s} c^{s}$.
- Let $w=u v x y z$ where $|v x y| \leq s$ and $|v y| \geq 1$.
- Then $u v^{i} x y^{i} z$ must belong to L for all $i \geq 0$.
- We will show that $u x z \notin L$ for all possible cases.
- Three cases:

Case 1. vxy consists of exactly 1 symbol (a 's or b 's or c 's).
Case 2. $v x y$ consist of exactly 2 symbols ($a b$'s or $b c$'s).
Case 3. $v x y$ consist of exactly 3 symbols ($a b c$'s).
This case is impossible. Why?

$L=\left\{a^{n} b^{n} c^{n}\right\}$ is a non-CFL

Solution (continued)
Case 1. vxy consists of exactly 1 symbol (a 's or b 's or c 's).
Three subcases:

- Subcase i. vxy consists only of a 's.

Let $w=u v x y z=a^{s} b^{s} c^{s}$.
$u x z$ is not in L.
Reason: $u x z=a^{s-(|v|+|y|)} b^{s} c^{s} \notin L$ as $(|v|+|y|)>0$. $u x z$ has fewer a 's than b 's or c 's.

- Subcase ii. vxy consists only of b 's. Similar to Subcase i.
- Subcase iii. vxy consists only of c 's.

Similar to Subcase i.

$L=\left\{a^{n} b^{n} c^{n}\right\}$ is a non-CFL

Solution (continued)

Case 2 . $v x y$ consist of exactly 2 symbols ($a b$'s or $b c$'s).
Two subcases:

- Subcase i. vxy consist only of a 's and b 's.

Let $w=u v x y z=a^{s} b^{s} c^{s}$.
$u x z$ is not in L.
Reason: $u x z=a^{k_{1}} b^{k_{2}} c^{s} \notin L$ where $k_{1}+k_{2}=2 s-(|v|+|y|)<2 s$ as $(|v|+|y|)>0$. $u x z$ has either fewer a 's or fewer b 's than c 's.

- Subcase $i i$. $v x y$ consist only of b 's and c 's. Similar to Subcase i.

$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is a non-CFL

Problem

- Prove that $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not CFL.

$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is a non-CFL

Problem

- Prove that $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w=a^{s} b^{s} a^{s} b^{s}$.
- Let $w=u v x y z$ where $|v x y| \leq s$ and $|v y| \geq 1$.
- Then $u v^{i} x y^{i} z$ must belong to L for all $i \geq 0$.
- We will show that $u x z \notin L$ for all possible cases.
- Two cases:

Case 1. vxy consists of exactly 1 symbol (a 's or b 's). Case 2. $v x y$ consist of exactly 2 symbols ($a b$'s or $b a$'s).

$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is a non-CFL

Solution (continued)
Case 1. vxy consists of exactly 1 symbol (a 's or b 's).
Three subcases:

- Subcase i. vxy consists only of a 's.

Let $w=u v x y z=a^{s} b^{s} a^{s} b^{s}$.
$u x z$ is not in L.
Reason: $u x z=a^{s-(|v|+|y|)} b^{s} a^{s} b^{s} \notin L$ as $(|v|+|y|)>0$. $u x z$ has fewer a 's than b 's.

- Subcase $i i$. vxy consists only of b 's. Similar to Subcase i.

$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is a non-CFL

Solution (continued)

Case 2. vxy consist of exactly 2 symbols ($a b$'s or $b a$'s).
Two subcases:

- Subcase i. vxy consist only of a 's and b 's. Let $w=u v x y z=a^{s} b^{s} a^{s} b^{s}$.
$u x z$ is not in L.
Reason: $u x z=a^{k_{1}} b^{k_{2}} a^{s} b^{s} \notin L$ where $k_{1}+k_{2}=2 s-(|v|+|y|)<2 s$ as $(|v|+|y|)>0$. $u x z$ is not in the form of $w w$.
- Subcase $i i . v x y$ consist only of b 's and a 's. Similar to Subcase i.

$L=\left\{a^{n} \mid n\right.$ is a square $\}$ is a non-CFL

Problem
 - Prove that $L=\left\{a^{n} \mid n\right.$ is a square $\}$ is not CFL.

$L=\left\{a^{n} \mid n\right.$ is a square $\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} \mid n\right.$ is a square $\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w=a^{s^{2}}$.
- Let $w=u v x y z$ where $|v x y| \leq s$ and $|v y| \geq 1$.
- Then $u v^{i} x y^{i} z$ must belong to L for all $i \geq 0$.
- But, $u v^{2} x y^{2} z \notin L$.

Reason: Let $|v y|=k$. Then, $k \in[1, s]$.
$u v^{2} x y^{2} z=a^{s^{2}+|v y|}=a^{s^{2}+k} \notin L$.
Because, $s^{2}<s^{2}+k<(s+1)^{2}$ as $k \in[1, s]$.

- Contradiction! Hence, L is not CFL.

$L=\left\{a^{n} \mid n\right.$ is a power of $\left.\mathbf{2}\right\}$ is a non-CFL

Problem
 - Prove that $L=\left\{a^{n} \mid n\right.$ is a power of 2$\}$ is not CFL.

$L=\left\{a^{n} \mid n\right.$ is a power of $\left.\mathbf{2}\right\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} \mid n\right.$ is a power of 2$\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w=a^{2^{s}}$, where s is the pumping length.
- Let $w=u v x y z$ where $|v x y| \leq s$ and $|v y| \geq 1$.
- Then $u v^{i} x y^{i} z$ must belong to L for all $i \geq 0$.
- But, $u v^{2} x y^{2} z \notin L$.

Reason: Let $|v y|=k$, where $k \in[1, s]$.
Then, $u v^{2} x y^{2} z=a^{2^{s}+k} \notin L$.
Because, $2^{s}<2^{s}+k<2^{s+1}$.

- Contradiction! Hence, L is not CFL.

$L=\left\{a^{n} \mid n\right.$ is prime $\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} \mid n\right.$ is prime $\}$ is not CFL.

$L=\left\{a^{n} \mid n\right.$ is prime $\}$ is a non-CFL

Problem

- Prove that $L=\left\{a^{n} \mid n\right.$ is prime $\}$ is not CFL.

Solution

- Suppose L is CFL. Then it must satisfy pumping property.
- Suppose $w=a^{m}$, where m is prime and $m \geq s$.
- Let $w=u v x y z$ where $|v x y| \leq s$ and $|v y| \geq 1$.
- Then $u v^{i} x y^{i} z$ must belong to L for all $i \geq 0$.
- But, $u v^{m+1} x y^{m+1} z \notin L$.

Reason: Let $|v y|=k$. Then, $k \in[1, s]$. $u v^{m+1} x y^{m+1} z=a^{m+m|v y|}=a^{m+m k}=a^{m(k+1)} \notin L$.

- Contradiction! Hence, L is not CFL.

Membership problem: A decision problem on CFL's

Problem

- Given a CFG G and a string w, is $w \in L(G)$?

Membership problem: A decision problem on CFL's

Problem

- Given a CFG G and a string w, is $w \in L(G)$?

Solution

- This is a difficult problem. Why?

Nondeterminism cannot be eliminated unlike in finite automata.

- Algorithmically solvable.

CYK algorithm (for grammars in CNF)
Earley parser
GLR parser

More decision problems involving CFL's

Decision problems
Algorithmically solvable.

- Given a CFG G, is $L(G)$ nonempty?
- Given a CFG G, is $L(G)$ infinite?
- Given a CFG G, is G a regular grammar?
- Given a CFG G, is $L(G)$ a regular language?

Algorithmically unsolvable.

- Given a CFG G, is $L(G)=\Sigma^{*}$?
- Given a CFG G, is G ambiguous?
- Given a CFG G, is $L(G)$ inherently ambiguous?
- Given two CFG's G_{1} and G_{2}, is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- Given two CFG's G_{1} and G_{2}, is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- Given two CFG's G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?

