Theory of Computation

(Context-Free Grammars)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

o‘m 52
%

%

S

5
39

<S

Contents

Contents

Context-Free Grammars (CFG)
Context-Free Languages
Pushdown Automata (PDA)
Transformations

Pumping Lemma

Context-Free Grammars (CFG)

Computer program compilation

= e
L

C++ program:

C++ program:

© N oG AW N

#include <iostream>
using namespace std;
int main()
{
if (true)
{
cout << "Hi 1";
else
cout << "Hi 2";
¥

return 0O;

=
= o

-
N}

© 0 NOo O wN e

#include <iostream>
using namespace std;

int main()

{
if (true)
cout << "Hi 1";
else
cout << "Hi 2";
return 0;
}

Computer program compilation

= e
L

C++ program:

C++ program:

© N oG AW N

#include <iostream> 1. |#include <iostream>
using namespace std; 2. |using namespace std;
int main() 3
{ 4. | int main()
if (true) 5. 14
{ 6 if (true)
cout << "Hi 1"; 7. cout << "Hi 1";
else 8 else
cout << "Hi 2"; 9. cout << "Hi 2";
¥ 10
return 0O; 11. return 0;
} 2|}
Output: Output:
error: expected ‘}’ before ‘else’ Hi 1

Computer program compilation

C++ program:

C++ program:

#include <iostream> 1. |#include <iostream>
using namespace std; 2. |using namespace std;
int main() 3
{ 4. | int main()
if (true) 5. 14
{ 6 if (true)
cout << "Hi 1"; 7. cout << "Hi 1";
else 8 else
cout << "Hi 2"; 9. cout << "Hi 2";
¥ 10
return 0O; 11 return 0;
} 12|}
Output: Output:
error: expected ‘}’ before ‘else’ Hi 1

@ DFA cannot check the syntax of a computer program.

@ We need context-free grammars — a computational model more

powerful than finite automata to check the syntax of most

structures in a computer program.

Construct CFG for L = {a"b" | n > 0}

[Problem)

@ Construct a CFG that accepts all strings from the language
L={a"" | n>0}

Construct CFG for L = {a"b" | n > 0}

Problem

@ Construct a CFG that accepts all strings from the language
L={a"" | n>0}

Solution

o Language L = {¢, ab, aabb, aaabbb, aaaabbbb, . . .}
o CFG G.

S — aSb

S — e

Construct CFG for L = {a"b" | n > 0}

Solution (continued)

o CFG @G.
S —aSb | e

® Accepting €. > 1-step computation
S=e (S —e)

® Accepting ab. > 2-steps computation

S = aSb (.S — aSh)
= ab (S —e)
@ Accepting aabb. > 3-steps computation
S = aSh (.- S — aSb)
= aaSbb (.S — aSh)
= aabb (S —e)
® Accepting aaabbb. > 4-steps computation
S = aSb (.S — aSh)
= aaSbb (.S — aSh)
= aaaSbbb (S — aSh)
= aaabbb (.S —e

Construct CFGs

[Problems
Construct CFGs to accept all strings from the following languages:
® R=a"
e R=a"
° R=2a"b"
o R=a'b"
® R=a"Ub*
® R=(aUb)*
e R=a"b*c*

Construct CFG for palindromes over {a,b}

| Problem]

@ Construct a CFG that accepts all strings from the language
L={w|w=w?®and ¥ = {a,b}}

Construct CFG for palindromes over {a,b}

Problem

@ Construct a CFG that accepts all strings from the language
L={w|w=w?®and ¥ = {a,b}}

Solution

o Language L = {¢,a,b, aa, bb, aaa, aba, bab, bbb,
aaaa, abba, baab, bbbb, . . .}

o CFG G.
S—aSa|bSb|a|b|e

Construct CFG for palindromes over {a,b}

Solution (continued)

o CFGG. S —aSa|bSb|al|b]e

@ Accepting e. S =€
Accepting a. S = a
Accepting b. S =10

® Accepting aa. S = aSa = aa
Accepting bb. S = bSb = bb

@ Accepting aaa. S = aSa = aaa
Accepting aba. S = aSa = aba
Accepting bab. S = bSb = bab
Accepting bbb. S = bSb = bbb

@ Accepting aaaa. S = aSa = aaSaa = aaaa
Accepting abba. S = aSa = abSba = abba
Accepting baab. S = bSb = baSab = baab
Accepting bbbb. S = bSb = bbSbb = bbbb

> 1 step

> 2 steps

> 2 steps

> 3 steps

Construct CFG for non-palindromes over {a, b}

| Problem]

@ Construct a CFG that accepts all strings from the language
L={w|w#w?®and ¥ = {a,b}}

Construct CFG for non-palindromes over {a, b}

Problem

@ Construct a CFG that accepts all strings from the language
L={w|w#w?®and ¥ = {a,b}}

Solution

o Language L = {e, ab, ba, aab, abb, baa, bba, . . .}
o CFG G.

S — aSa | bSb | aAb | bAa

A— Aa | Ab | €

Construct CFG for non-palindromes over {a, b}

Solution (continued)

o CFG @G.
S — aSa | bSb | aAb | bAa
A— Aa| Ab| e
@ Accepting abbbbaaba. > 7-step derivation
S = aSa
= abSba
= abbAaba
= abbAaaba
= abbAbaaba
= abbAbbaaba
= abbbbaaba

What is a context-free grammar (CFG)?

e Grammar = A set of rules for a language
e Context-free = LHS of productions have only 1 nonterminal

Definition

A context-free grammar (CFG) G is a 4-tuple
G = (N,%, S, P), where,
1. N: A finite set (set of nonterminals/variables).
2. X: Afinite set (set of terminals).
3. P : A finite set of productions/rules of the form A — «a,
Ae N,ae (NUD). > Time (computation)
> Space (computer memory)
4. S: The start nonterminal (belongs to IV).

Derivation, acceptance, and rejection

Definitions

@ Derivation.
aAy = affy (-A—pB)
@ Acceptance.
G accepts string w iff
S=qw
@ Rejection.
G rejects string w iff

S AL w

> 1-step derivation

> multistep derivation

> no derivation

What is a context-free language (CFL)?

Definition

o If G=(N,%,S,P)is a CFG, the language generated by G is
L(G)={weX | S=F5w}

o Alanguage L is a context-free language (CFL) if there is a CFG
G with L = L(G).

Construct CFG for L = {w | n,(w) = ny(w)}

| Problem |

@ Construct a CFG that accepts all strings from the language
L =A{w [ne(w) = np(w)}

Construct CFG for L = {w | n,(w) = ny(w)}

Problem

@ Construct a CFG that accepts all strings from the language
L =A{w [ne(w) = np(w)}

Solution

Language L = {e, ab, ba, ba, aabb, abab, abba, bbaa, . . .}
CFGs.

1. S — SaSbS | SbSaS | e

2. S — aSbS | bSaS | e

3. S —>aSb | bSa | SS | e

Derive the following 4-letter strings from G.

aabb, abab, abba, bbaa, baba, baab

Write G as a 4-tuple.

What is the meaning/interpretation/logic of the grammar?

Construct CFGs

Problem

Construct CFGs that accepts all strings from the following lan-
guages

1. L=Aw | ng(w) > np(w)}

2. L =Aw | ng(w) =2np(w)}

3. L=Aw [na(w) # np(w)}

Construct CFGs

Problem

Construct CFGs that accepts all strings from the following lan-
guages

1. L=Aw | ng(w) > np(w)}

2. L =Aw | ng(w) =2np(w)}

3. L=Aw [na(w) # np(w)}

Solutions

1. S—aS|bSS|SSb| SbS | a

2. 85— 5SS |bAA | AbA | AAb | €
A—aS|SaS| Sala

3.7

Union, concatenation, and star are closed on CFL'’s

‘ Properties 1

o If Ly and Lo are context-free languages over an alphabet X,
then Ly U Lo, L1Ls, and L] are also CFL's.

Union, concatenation, and star are closed on CFL'’s

Properties

o If Ly and Lo are context-free languages over an alphabet X,
then Ly U Lo, L1Ls, and L] are also CFL's.

Construction

Let G1 = (Nl,E,Sl,Pl) be CFG for L;.
Let Gy = (NQ, >, SQ,PQ) be CFG for L.
o Union.
Let G, = (N, X, Sy, P,) be CFG for Ly U Ls.
Nu:NlLJNQU{Su}; Pu=P1UP2U{Su — 51 ‘ SQ}
@ Concatenation.
Let G, = (N, X, S., P.) be CFG for L; L.
N, = N1 UNyU {SC}; P.=PUPU {SC — 5152}
o Kleene star.
Let Gs = (Ns, X, Ss, Ps) be CFG for L7.
Ny, = N1 U {Ss}; P, =P U {Ss — S.51 | 6}

Union is closed on CFL'’s

| Problem

o If L1 and Ly are CFL's then Ly = L; U Ly is a CFL.
o If Ly and Ly = Ly U Ly are CFL's, is Ly a CFL?

Union is closed on CFL'’s

Problem

o If L1 and Ly are CFL's then Ly = L; U Ly is a CFL.
o If Ly and Ly = Ly U Ly are CFL's, is Ly a CFL?

Solution

® [5 may or may not be a CFL.
Ly =%* > CFL
L3=L1ULy=%* > CFL

Ly = {a™ | n is prime} > Non-CFL

Reversal is closed on CFL'’s

‘ Property

o If L is a CFL, then L¥ is a CFL.

Reversal is closed on CFL'’s

Property

o If L is a CFL, then L¥ is a CFL.

Construction

° Let G=(N,%,S,P) be CFG for L.
Let G, = (N, %, S, P.) be CFG for L¥. Then
@ Reversal.
P, = productions from P such that all symbols on the right
hand side of every production is reversed.
ie., If A= aisin P, then A — aff isin P,
e Example.
Grammar for accepting L is S — aSb | ab.
Grammar for accepting L? is S — bSa | ba.

Intersection is not closed on CFL’s

Problem

@ Show that Ly, Ly are CFL's and L = L1 N Ly is a non-CFL.
L={a'¥c* |i=jand j =k}
= {a'bic* | i,k >0} n{a't’ | i,5 >0}
LN Ly

Intersection is not closed on CFL’s

Problem

@ Show that Ly, Ly are CFL's and L = L1 N Ly is a non-CFL.
L={a'¥c* |i=jand j =k}
= {a'bic* | i,k >0} n{a't’ | i,5 >0}
LN Ly

Solution

o [isa CFL.
Ly = {a'b'c* | i,k >0} = {a'b’ | i > 0}{c" | k >0}
= L3L4 = CFL (" L3, Ly are CFL's)

® [isa CFL.
Ly ={a'bc |i,5 >0} ={a' | i >0} {¥'¢/ | j >0}
= LsLg = CFL (. Ls, Lg are CFL's)

e [is a non-CFL.
Use pumping lemma for CFL's.

Complementation is not closed on CFL’s

| Problem

@ Show that complementation is not closed on CFL's.

Complementation is not closed on CFL’s

Problem

@ Show that complementation is not closed on CFL's.

Solution

Proof by contradiction.

@ Suppose complementation is closed under CFL's.

i.e., if Lis a CFL, then L is a CFL.

Consider the equation Ly N Ly = (L1 U Ly).

Closure on complementation implies closure on intersection.
But, intersection is not closed on CFL's.

Contradiction!

Hence, complementation is not closed on CFL's.

Complementation is not closed on CFL’s

| Problem

o Show that L is a CFL and L is a non-CFL.
L= —{ww|weX*}=%*-L

Complementation is not closed on CFL’s

Problem

o Show that L is a CFL and L is a non-CFL.
L= —{ww|weX*}=%*-L

Solution

e L isa CFL.

S—A|B|AB| BA

A— FAE | a

B — EBE |b

E—=alb

Why does this grammar work?
@ [is a non-CFL.

Use pumping lemma for CFL's.

Set difference is not closed on CFL'’s

| Problem

‘ @ Show that set difference is not closed on CFL's.

Set difference is not closed on CFL'’s

Problem

@ Show that set difference is not closed on CFL's.

Solution

Proof by contradiction.

@ Suppose set difference is closed under CFL's.

i.e., if L1, Lo are CFL's, then L1 — Lo is a CFL.
Consider the equation Ly N Ly = Ly — (L1 — Lo).
Closure on set difference implies closure on intersection.
But, intersection is not closed on CFL's.

Contradiction!

Hence, set difference is not closed on CFL's.

Summary: Closure properties of CFL’s

Operation Closed on CFL's?

Union (L1 U Lg)
Concatenation (L1 Ls)
Kleene star (L*)
Reversal (L)

Intersection (L1 N Lg)
Complementation (L)
Set difference (L — L2)

x X %X|INN NS

Construct CFG for L = {a't/cF | j =i+ k}

(Problem W

@ Construct a CFG that accepts all strings from the language
L= {atick|j=1i+k}

Construct CFG for L = {a't/cF | j =i+ k}

Problem

@ Construct a CFG that accepts all strings from the language
L={abc*|j=1i+k}

Solution
o Language L = {¢,ab, be, a®b?, b*c?, ab’c, ...}
o L={a'tcF|j=1i+k}

= {a'b™tkcF} (- substitute for 7)

= {a'b'bF k) (". expand)

= {a'b’}{bFck} (. split the concatenated languages)
=LiLo

Solve the problem completely by constructing CFG's for Ly,
Lo, and then LiLs.

Divide-and-conquer. We can solve a complicated problem if
we can break the problem into several simpler subproblems and
solve those simpler problems.

Construct CFG for the variant where j # i + k.

Construct CFG for L = {a't/cF | j # i+ k}

| Problem |

@ Construct a CFG that accepts all strings from the language
L={dVck|j#i+k}

Construct CFG for L = {a't/cF | j # i+ k}

Problem

@ Construct a CFG that accepts all strings from the language
L={dVck|j#i+k}

Solution

o Language L = {¢,a,b,c,ac,a®,b?, c?,...}

o L ={a'cF|j+#i+k}
={a'vcF | j> G+ k)}u{aticd | j<(i+k)}
=L ULy

@ Can we represent L1 and Lo using simpler languages?

Construct CFG for L = {a't/cF | j # i+ k}

Solution (continued)

@ Case 1. Ly = {a'b/cF | j > i+ K}
={a'¥c* | j=i+m+kand m>1}
_ {az‘bi+m+kck | m > 1}
= {a'v'} - {0 | m > 1} - {bc}
— {at} - (b - {Dhet}
=Ly -Li2- L3
We know how to construct CFG's for Lq1, L1, L3
o Case 2. Ly = {a'bick | j <i+k}
={a'bcF|j<iori<j<i+k}
={a'bcF|j<i}u{abcF|i<j<i+k}
= Lo1 U Lo
How to proceed?

Construct CFG for L = {a't/cF | j # i+ k}

Solution (continued)

o Case 3. Ly = {a'b/cl | j < i}

={a'bck |i=m+jand m > 1}

= {a™Hbick | m > 1}

—{a™ | m > 1} {alb} - {c*}

= Lo11 - Lo12 - Lo13

We know how to construct CFG's for Loy1, La1o, Lo
o Case 4. Lyo = {a'b/cF |i<j<i+k}

={a'ick | j>iand k> j—i}

= {a’b =)=+ | (5 —4) >0 and m > 1}

={a'’} VI (j—i) 20} {c™ | m > 1}

— {a'b} - {pic'} - {em | m > 1}

= Loo1 - Laoo - Laos

We know how to construct CFG's for Losq, Lo, Loog

Construct CFG for bba(ab)* | (ab | ba*b)*ba

| Problem |

@ Construct a CFG that accepts all strings from the language
correspending to R.E. bba(ab)* | (ab | ba*b)*ba.

Construct CFG for bba(ab)* | (ab | ba*b)*ba

Problem

@ Construct a CFG that accepts all strings from the language
correspending to R.E. bba(ab)* | (ab | ba*b)*ba.

Solution

o Language L = {ba, bba, abba,bbba, . ..}
This is a regular language.

e CFG G.
S — Sl | SQ
S1 — Siab | bba > Generates bba(ab)*
So — TSy | ba > Generates (ab | ba*b)*ba
T —ab | bUb > Generates ab | ba*b

U—aU |e > Generates a*

Construct CFG for strings of a DFA

Problem

@ Construct a CFG that accepts all strings accepted by the fol-
lowing DFA.

a b

a
b
start ‘@’,
b
a

Construct CFG for strings of a DFA

Problem

@ Construct a CFG that accepts all strings accepted by the fol-
lowing DFA.

Solution

o Language L = {(a | b)*ba} > Strings ending with ba
= {ba, aba, bba, aaba, abba, baba, bbba, . . .}
This is a regular language.

@ How to construct CFG for this DFA?
Approach 1: Compute R.E. Construct CFG for the R.E.
Approach 2: Construct CFG from the DFA using transitions.

Construct CFG for strings of a DFA

Solution (continued)

o |dea.
For every transition 6(Q,a) = R, add a production Q — aR.
What does this mean? Why should it work?

Construct CFG for strings of a DFA

Solution (continued)

o |dea.
For every transition 6(Q,a) = R, add a production Q — aR.
What does this mean? Why should it work?

o CFG. > 3 states = 3 nonterminals
S —aS | bA
A—DbA | aB
B —bA|aS e > e-production for halting state

® Accepting bbaaba.
shabasptsglatp
S = bA = bbA = bbaB = bbaaS = bbaabA = bbaabaB
= bbaaba

What is a regular grammar/language?

Definitions

® A context-free grammar G = (N,X, S, P) is called a regular
grammar if every production is of the form A — aB or A — ¢,
where A,B € N and a € X.

o A language L € ¥* is called a regular language iff L = L(G)
for some regular grammar G.

Construct CFG for understanding human languages

Problem

@ Construct a CFG to understand some structures in the English
language.

Solution

o CFG:
(Sentence) — (NounPhrase) (VerbPhrase)
(NounPhrase) — (ComplexNoun)|{ComplexNoun)(PrepPhrase)
(VerbPhrase) — (ComplexVerb)|(ComplexVerb)(PrepPhrase)
(PrepPhrase) — (Prep) (ComplexNoun)
(ComplexNoun) — (Article) (Noun)

(ComplexVerb) — (Verb) | (Verb) (NounPhrase)

(

(

{

(

Article) — a | the

Noun) — boy | girl | flower
Verb) — touches | likes | sees
Prep) — with

Construct CFG for understanding human languages

Solution (continued)

® Accepting “a girl likes".
(Sentence) = (NounPhrase)(VerbPhrase)
= (ComplexNoun)(VerbPhrase)
= (Article) (Noun)(VerbPhrase)
= a (Noun)(VerbPhrase)
= a girl (VerbPhrase)
= a girl (ComplexVerb)
= a girl (Verb)
= a girl likes
@ Derive “a girl with a flower likes the boy".

Construct CFG for strings with valid parentheses

[Problem)
@ Construct a CFG that accepts all strings from the language

L={0,00,(0),000,00), 00 (D0, (€0 -}

Construct CFG for strings with valid parentheses

Problem

@ Construct a CFG that accepts all strings from the language

L={0,00,(0),000,00), 00 (D0, (€0 -}

Solution

@ Applications. Compilers check for syntactic correctness in:
1. Computer programs written by you that possibly contain
nested code blocks with { }, (), and [].
2. Web pages written by you that contain nested code blocks
with <div></div>, <table></table>, and .
° Language L = {w | w € {(,)}" such that n((w) = ny(w) and
and in any prefix p; |, of w, n((p;) > ny(p:)}
@ What is the CFG?

Construct CFG for strings with valid parentheses

Solution (continued)

Multiple correct ways to write the CFG:
1. S— S(9)S | e

2.5—-5851(9) | e
3. S = 5(9) | €
4. S —(9)S | e
5. S—= SR) | €
R — (| RR)
6.S%(RS]
—) | (RR

o Are some CFG's better than the others?
If so, better in what?

Construct CFG for valid arithmetic expressions

| Problem

@ Construct a CFG that accepts all valid arithmetic expressions
from X = {(,),+, x,n}, where n represents any integer.

Construct CFG for valid arithmetic expressions

Problem

@ Construct a CFG that accepts all valid arithmetic expressions
from X = {(,),+, x,n}, where n represents any integer.

Solution

o Language L = {15+ 85,57 x 3, (27 + 46) x 10,...}
@ Abstraction: Denote n to mean any integer.

Valid expressions: (n+n) +mn x n, etc

Invalid expressions: +n, (n+)n, (), n X n), etc
@ Hint: Use some ideas from the parenthesis problem

Construct CFG for valid arithmetic expressions

Solution (continued)

Multiple correct ways to write the CFG:
1. EE+FE|EXE|(E)]|n
2 E-E+T|T > expression
T—-TxF|F > term
F—(FE)|n > factor
3. E—>TFE
E' - +TFE' | e
T — FT'
T — xFT' | e
F—(E)|n
o Can you derive (n x n)?
o Are some CFG's better than the others? If so, better in what?

What is a derivation?

Definition

@ A derivation in a context-free grammar is a leftmost derivation
(LMD) if, at each step, a production is applied to the leftmost
variable-occurrence in the current string. A rightmost deriva-
tion (RMD) is defined similarly.

Example

o CFG:E—-E+E|EXE|(E)|n
Accepting n + (n).
IMD: E=E+FE=n+E=n+(E)=n+(n)
RMD: E=FE+E=E+(E)=E+(n)=n+(n)

What is an ambiguous grammar?

Definition

@ A context-free grammar G is ambiguous if for at least one w €
L(G), w has more than one derivation tree (or, equivalently,
more than one leftmost derivation).

@ Intuition: A CFG is ambiguous if it generates a string in several
different ways.

Arithmetic expression: Ambiguous grammar

| Problem

@ Show that the following CFG is ambiguous:
E—-FE+E|ExXE|(E)|n

Arithmetic expression: Ambiguous grammar

Problem

@ Show that the following CFG is ambiguous:
E—-FE+E|ExXE|(E)|n

Solution

o Consider the strings n+n xn or n+n+ n.
There are two derivation trees for each of the strings.

® Accepting n +n X n.
IMDl: FE=E+E=n+E=>n+ExE=n+nxk
=>n+nxn
LMD2: E=ExXxE=E+ExXE=n+EXE=n+nxk
=n+nxn

® Accepting n +n + n.
LMDl F=FEF+FE=n+FE=n+F+FE=n+n+FE
=>n+n+n
IMD2: F=FE+E=E+E+E=n+E+E=n+n+FE
=n+n+n

Arithmetic expression: Ambiguous grammar

Solution (continued)

Two derivation (or parse) trees = Ambiguity

(Reason 1: The precedence of different operators isn't enforced.)

o IMD1: E=E+E=n+E=n+EXE=n+nxk
=>n+nxn

o IMD2: E=ExXxE=FE+EXE=>n+ExXE=n+nxFE
=>n+nxn

E E
/1N /TN
E [¥] E E [x] E
/N JIN
] E [Xx] E [+] E [1]
| | |

E

Arithmetic expression: Ambiguous grammar

Solution (continued)
Two derivation (or parse) trees —> Ambiguity
(Reason 2: Order of operators of same precedence isn't enforced.)
o IMD1: E=E+FE==n+E=n+E+E=n+n+FE
=n+n+n
o IMD2: E=FE+E=FE+E+E=n+FE+FE=n+n+FE
=n+n+n
E E
/1N /1N
E E E E
/N SN
E E E E
| | | |

Arithmetic expression: Ambiguous grammar

Problem

@ Consider the following ambiguous grammar:
E—-FE+E|ExXE|(E)|n
How many different derivations (or LMDs) are possible for the
string n +n + --- + n, where n is repeated k times?

Arithmetic expression: Ambiguous grammar

Problem

@ Consider the following ambiguous grammar:
E—-FE+E|ExXE|(E)|n
How many different derivations (or LMDs) are possible for the
string n +n + --- + n, where n is repeated k times?

Solution

° Let d(k) = number of derivations for k£ operands. Then

d(1) =

d(2) = 1

d(3) =2

d(4) =5 How?
e How do you compute d(k)?

d(k) = 37 d(i)d(k — i)

If-else ladder: Ambiguous grammar

Problem

@ Show that the following CFG is ambiguous:
S—if (E)S|if(E)SelseS|O
where, S = statement, F = expression, O = other statement.

Solution

e Consider the string: if (e1) if (e2) F(); else G();
There are two derivation trees for the string.
@ Can you identify the two derivation trees for the string?

If-else ladder: Ambiguous grammar

Solution (continued)

//\\
| S
| I !
//\\\\
//l\\

What is the output of this program?

e
® N e o e

C++ program:

© N oo s w N

#include <iostream>
using namespace std;

int main()
{
if (true)
if (false)
else
cout << "Hil!";

return 0;

What is the output of this program?

—
= O ©

_ e
AN

C++ program:

® N oUW N R

#include <iostream>
using namespace std;

int main()

{
if (true)
if (false)
else
cout << "Hil!";
return 0;
}
Output:

Hi!

If-else ladder: Unambiguous grammar

Problem

@ Can you come up with an unambiguous grammar for the lan-
guage accepted by the following ambiguous grammar?
S—if (E)S|if(E)SelseS|O
where, S = statement, E = expression, O = other statement.

Solution

°S—>S1|SQ
Sy —if (E) Sy else S1 |0
SQ—>if(E)S|if(E)Sle|SeSQ

@ How do you prove that the grammar is really unambiguous?

What is an inherently ambiguous language?

| Definition

@ A context-free language is called inherently ambiguous if there
exists no unambiguous grammar to generate the language.

What is an inherently ambiguous language?

Definition

@ A context-free language is called inherently ambiguous if there
exists no unambiguous grammar to generate the language.

Examples

Proofs?
o L={at/cF|i=jorj=k}
o L ={a'bdd}U{a't/cId'}

Language generated by a grammar

| Problem |

@ Prove that the following grammar G generates all strings of
balanced parentheses and only such strings.
S — (9)S | e

Language generated by a grammar

Problem

@ Prove that the following grammar G generates all strings of
balanced parentheses and only such strings.
S — (9)S | e

Solution

e L(G) = language generated by the grammar G.
L = language of balanced parentheses.

® Show that L(G) = L. Two cases.
Case 1. Show that every string derivable from S is balanced.
ie., L(G) C L.
Case 2. Show that every balanced string is derivable from S.
ie., L C L(G).

Language generated by a grammar

Solution (continued)

Case 1. Show that every string derivable from S is balanced.
Let n = number of steps in derivation.
@ Basis.
The only string derivable from S in 1 step is € and ¢ is balanced.
® [nduction.
Suppose all strings with derivation fewer than n steps produce
balanced parentheses.
Consider a LMD of at most n steps.
That derivation must be of the form
S = (9)S = (2)S =" (2)y (LMD)
Derivations of x and y take fewer than n steps.
So, x and y are balanced.
Therefore, the string (x)y must be balanced.

Language generated by a grammar

Solution (continued)

Case 2. Show that every balanced string is derivable from S.

Let 2n = length of a balanced string.

@ Basis.
A 0-length string is €, which is balanced.

® |nduction.
Assume that every balanced string of length less than 2n is
derivable from S. Consider a balanced string w of length 2n
such that n > 1. String w must begin with a left parenthesis.
Let (x) be the shortest nonempty prefix of w having an equal
number of left and right parentheses. Then, w can be written
as w = (x)y, where, both = and y are balanced. Since x and
y are of length less than 2n, they are derivable from S. Thus,
we can find a derivation of the form
S=(9)S=*(z)S =" (x)y (LMD)
proving that w = (x)y must also be derivable from S.

What is Chomsky normal form (CNF)?

Definition

@ A context-free grammar is said to be in Chomsky normal form
(CNF) if every production is of one of these three types:
A — BC (where B,C are nonterminals and they cannot be
the start nonterminal \S)
A — a (where a is a terminal symbol)
S —e

@ Why should we care for CNF?
For every context-free grammar G, there is another CFG G¢cng
in Chomsky normal form such that L(Gcne) = L(G).

Example

oS AA | e
A= AA|a

Converting a CFG to CNF

Algorithm rule Before rule After rule

1. Start nonterminal must S — ASABS So— S

not appear on the RHS S — ASABS

2. Remove productions R — ARA R — ARA

like A — € A—ale R—AR|RA| A
A—=a

3. Remove productions A—B A—CDD

like A— B B—CDD

4. Convert to CNF A — BCD A — BC'
C'— CD

| CFG-To-CNF(G)

1. Start nonterminal must not appear on RHS

2. Remove € productions

3. Remove unit productions

4. Convert to CNF

Converting a CFG to CNF

Problem

@ Convert the following CFG to CNF.
S — ASA | aB
A—B|S
B—b|e

Converting a CFG to CNF

Problem

@ Convert the following CFG to CNF.
S — ASA | aB
A—B|S
B—b|e

Solution

@ Start nonterminal must not appear on the right hand side
So — S
S — ASA | aB
A—B|S
B—ble
@ Remove B — ¢
S() — S
S— ASA|aB|a
A—B|S|e
B—b

Converting a CFG to CNF

Solution (continued)

® Remove A — ¢
So—)S
S—ASA|SA|AS|S|aB|a
A—B|S
B—b

® Remove A — B
So—>S
S— ASA| SA| AS|S|aB|a
A—S|b
B—b

® Remove S — S
So*)S
S— ASA|SA|AS|aB|a
A—=S|b
B—b

> Do nothing

Converting a CFG to CNF

Solution (continued)

@ Remove A — S
So—>S
S— ASA| SA| AS |aB|a
A— ASA|SA|AS |aBlalb
B—b

® Remove Sy — S
So— ASA | SA| AS |aB | a
S— ASA|SA| AS|aB|a
A— ASA|SA|AS |aBlalb
B—b

o Convert ASA — AA,
So— AA1 | SA| AS | aB | a
S—AA | SA| AS | aB | a
A— AA | SA| AS|aB|a|b
A — SA
B—b

Converting a CFG to CNF

Solution (continued)

® Introduce Ay — a
So*)AA1|SA|AS‘A2B|a
A— AA | SA|AS | AsB |a|b
A1 — SA
AQ —a
B—=b
@ This grammar is now in Chomsky normal form.

What is Griebach normal form (GNF)?

Definition

® A context-free grammar is said to be in Griebach normal form
(GNF) if every production is of the following type:
A — aAjAs... Ay (where a is a terminal symbol and
Ay, Ay, ..., Ay are nonterminals)
S —e (Not always included)
@ Why should we care for GNF?
For every context-free grammar G, there is another CFG Ggnr
in Griebach normal form such that L(Ggnr) = L(G).
A string of length n has a derivation of exactly n steps.

Example
o S—aA|bB
B—bB|b

A—aAla

Equivalence of different computation models

CFG

Context-Free Recursive
Languages automata

PDA

Pushdown Automata (PDA)

Pushdown automaton

finite top

1)
control P
'3\ state .

a

input tape
stack

Source: Wikipedia

@ PDA has access to a stack of unlimited memory

What is a pushdown automaton (PDA)?

@ Nondetermistic = Events cannot be determined precisely
@ Pushdown = Using stack of infinite memory
@ Automaton = Computing machine

What is a pushdown automaton (PDA)?

@ Nondetermistic = Events cannot be determined precisely
@ Pushdown = Using stack of infinite memory
@ Automaton = Computing machine

Definition

A pushdown automaton (PDA) P is a 6-tuple
M =(Q,%,T,0,q, F), where,
. Q: A finite set (set of states).
. 2 A finite set (input alphabet).
. I': A finite set (stack alphabet).
L0 Q x X xTe =» P(Q xTy) is the transition function.
> Time (computation)

W=

5. qo: The start state (belongs to Q).
6. F: The set of accepting/final states, where F' C Q.

Stack > Space (computer memory)

What is a context-free language?

Definition

e APDA M =(Q,%,T,6,q0, F) accepts a string w € 3* iff

(QO7 w, $) '_?\/I (qfa €, Ot)

for some a € I'* and some ¢y € F'.
A PDA rejects a string iff it does not accept it.
@ We say that a PDA M accepts a language L if
L ={w | M accepts w}.
@ A language is called a context-free language if some PDA ac-
cepts or recognizes it.

Construct PDA for L = {a"b"}

| Problem)

@ Construct a PDA that accepts all strings from the language
L ={a"b"}

Construct PDA for L = {a"b"}

Problem

@ Construct a PDA that accepts all strings from the language
L ={a"b"}

Solution

‘ PDA()

1. while next input character is a do
2. push a
3. while next input character is b do
4. popa

Construct PDA for L = {a"b"}

Solution (continued)

e Transition (4,51 — S2) means that when you see input charac-
ter 4, replace s; with so as the top of stack.

Construct PDA for L = {a"b"}

Solution (continued)

@ PDA P is specified as
Set of states is @ = {qo0,q1, 92,493}
Set of input symbols is ¥ = {a, b}
Set of stack symbols is I' = {a, $}
Start state is qq
Set of accept states is F' = {qo, q3}
Transition function § is: (Empty cell is ¢)

Input a b €
Stack [a | $ € a $le|a $ €
90 (a1, 8)}
! {(a,a0)} | {(g,6)}
% {(a2.6)} {(g3.6)}
a3

Construct PDA for L = {a"b"}

Solution (continued)

Step | State | Stack Input | Action
1 qo0 aaabbb | push $
2 Q1 $ aaabbb | push a
3 Q1 $a aabbb | push a
4 q $aa abbb | push a
5 Q1 $aaa bbb | pop a
6 q2 $aa bb | pop a
7 q2 $a b | popa
8 q2 $ pop $
9 q3 accept

Step | State | Stack Input | Action
1 qo aababb | push $
2 Q1 $ aababb | push a
3 Q $a ababb | push a
4 Q1 $aa babb | pop a
5 q2 $Sa abb | crash
6 q6 $a bb
7 q¢ $a b
8 qe $a reject

Construct PDA for L = {wwR | w € {a,b}*}

[Problem]

@ Construct a PDA that accepts all strings from the language
L = {ww? | w € {a,b}*}

Construct PDA for L = {wwR | w € {a,b}*}

Problem

@ Construct a PDA that accepts all strings from the language
L = {ww? | w € {a,b}*}

Solution

\ PDA()

1. while next input character is a or b do

2. push the symbol

3. Nondeterministically guess the mid point of the string
4

5

. while next input character is a or b do
pop the symbol

Construct PDA for L = {wwR | w € {a,b}*}

Problem

@ Construct a PDA that accepts all strings from the language
L = {ww? | w € {a,b}*}

Solution (continued)

a,e —a a,a — €
b,e > b b,b — €

‘)@e,e%$@e,e—>eée,$—>e @

Construct PDA for L = {a'b’cF | i = j or i = k}

| Problem |

@ Construct a PDA that accepts all strings from the language
L={ab¥cF|i=jori=k}

Construct PDA for L = {a'b’cF | i = j or i = k}

Problem

@ Construct a PDA that accepts all strings from the language
L={abcF|i=jori=k}

Solution

PDA()

1. while next input character is a do push a
2. Nondeterministically guess whether a's = b’s or a's = ¢'s

Case 1. a’'s = b's.
1. while next input character is b do pop a
2. while next input character is ¢ do nothing

Case 2. a's = C's.
1. while next input character is b do nothing
2. while next input character is ¢ do pop a

Construct PDA for L = {a'b’cF | i = j or i = k}

Solution (continued)

a, e —a b,a — € C,€ — €
€,e—$ 6,6%6A€,$—>6
() a () ()
€,€— €

Non-Context-Free Languages

Pumping lemma for context-free languages

Theorem

Suppose L is a context-free language over alphabet X. Then
there is a natural number s so that for every long string w € L
satisfying |w| > s, the string w can be split into five strings
w = uwvxyz such that the following three conditions are true.

o |vxy| < s.

° |uy| > 1.

e For every i > 0, the string uv'zy’z also belongs to L.

L ={a"b"c"} is a non-CFL

| Problem

® Prove that L = {a"b"c"} is not CFL.

L ={a"b"c"} is a non-CFL

Problem

e Prove that L = {a"b"c"} is not CFL.

Solution

@ Suppose L is CFL. Then it must satisfy pumping property.
® Suppose w = a®b’c®.

o Let w = uvzyz where |vxy| < s and |vy| > 1.

® Then uv'zy’z must belong to L for all i > 0.

e We will show that uzz ¢ L for all possible cases.

® Three cases:

Case 1. vy consists of exactly 1 symbol (a's or b's or ¢'s).
Case 2. vxy consist of exactly 2 symbols (ab's or bc's).
Case 3. vxy consist of exactly 3 symbols (abc's).

This case is impossible. Why?

L ={a"b"c"} is a non-CFL

Solution (continued)

Case 1. vzy consists of exactly 1 symbol (a's or b's or ¢'s).
Three subcases:
@ Subcase i. vxy consists only of a's.
Let w = uvzyz = a®b*c®.
uxz is not in L.
Reason: uzz = a®~MHWDbscs & I as (|v| + |y|) > 0.
uxz has fewer a's than b's or ¢'s.
@ Subcase ii. vy consists only of b's.
Similar to Subcase i.
@ Subcase iii. vry consists only of ¢'s.
Similar to Subcase i.

L ={a"b"c"} is a non-CFL

Solution (continued)

Case 2. vy consist of exactly 2 symbols (ab's or bc's).
Two subcases:
@ Subcase i. vry consist only of a's and b's.
Let w = uwvzyz = a’b’c’.
uxz is not in L.
Reason: uzz = a*1b*¢* ¢ L
where ki + ko = 2s — (Jv| + |y|) < 2s as (Jv| + |y|) > 0.
uxz has either fewer a's or fewer b's than c's.
@ Subcase ii. vy consist only of b's and ¢'s.
Similar to Subcase i.

L ={ww | we {a,b}*} is a non-CFL

| Problem

e Prove that L = {ww | w € {a,b}*} is not CFL.

L ={ww | we {a,b}*} is a non-CFL

Problem

e Prove that L = {ww | w € {a,b}*} is not CFL.

Solution

@ Suppose L is CFL. Then it must satisfy pumping property.
@ Suppose w = a*b*a’b®.

o Let w = uvayz where [vzy| < s and |vy| > 1.

e Then uv'zy'z must belong to L for all i > 0.

o We will show that uzz ¢ L for all possible cases.

® Two cases:

Case 1. vy consists of exactly 1 symbol (a's or b's).
Case 2. vy consist of exactly 2 symbols (ab's or ba's).

L ={ww | we {a,b}*} is a non-CFL

Solution (continued)

Case 1. vxy consists of exactly 1 symbol (a's or b's).
Three subcases:
@ Subcase i. vzy consists only of a’s.
Let w = wvzyz = a®b°a®b°.
uxz is not in L.
Reason: uzz = a*~ PHWDB365b* & L as (Jv| + |y|) > 0.
uxz has fewer a's than b's.
@ Subcase ii. vy consists only of b's.
Similar to Subcase i.

L ={ww | we {a,b}*} is a non-CFL

Solution (continued)

Case 2. vxy consist of exactly 2 symbols (ab's or ba's).
Two subcases:
@ Subcase i. vry consist only of a's and b's.
Let w = wvzyz = a®b*a®b°.
uxz is not in L.
Reason: uxz = a*b*2a*b® & L
where ki + ko = 2s — (Jv| + |y|) < 2s as (Jv| + |y|) > 0.
uxz is not in the form of ww.
@ Subcase ii. vy consist only of b's and a's.
Similar to Subcase i.

L ={a" | nis a square} is a non-CFL

| Problem

® Prove that L = {a" | n is a square} is not CFL.

L ={a" | nis a square} is a non-CFL

Problem

® Prove that L = {a" | n is a square} is not CFL.

Solution

@ Suppose L is CFL. Then it must satisfy pumping property.
@ Suppose w = as’.
o Let w = uvzryz where |vzy| < s and |vy| > 1.
o Then uv'zy’z must belong to L for all i > 0.
o But, w’zy’z & L.

Reason: Let |vy| = k. Then, k € [1, 5].

wlzy?z = Tl = ¢tk ¢ L.

Because, s2 < s +k < (s+1)2ask€[l,s].
@ Contradiction! Hence, L is not CFL.

L ={a" | nis a power of 2} is a non-CFL

| Problem

® Prove that L = {a" | n is a power of 2} is not CFL.

|

L ={a" | nis a power of 2} is a non-CFL

Problem

® Prove that L = {a" | n is a power of 2} is not CFL.

Solution

Suppose L is CFL. Then it must satisfy pumping property.
Suppose w = a®, where s is the pumping length.

Let w = wvzyz where |vzy| < s and |vy| > 1.

Then uv’zy’z must belong to L for all i > 0.

But, uv’xy®z & L.

Reason: Let |vy| = k, where k € [1, s].

Then, uv?zy?z = o> % ¢ L.

Because, 2° < 2° 4 k < 251,

Contradiction! Hence, L is not CFL.

L ={a" | nis prime} is a non-CFL

(Problem

o Prove that L = {a” | n is prime} is not CFL.

L ={a" | nis prime} is a non-CFL

Problem

o Prove that L = {a” | n is prime} is not CFL.

Solution

@ Suppose L is CFL. Then it must satisfy pumping property.

® Suppose w = a™, where m is prime and m > s.
® Let w = uvzyz where |vzy| < s and |vy| > 1.
o Then uv'xy'z must belong to L for all i > 0.
o But, wv™Hay™tl2 & L.
Reason: Let |vy| = k. Then, k € [1, s].
uvm+1$ym+lz — gmtmlvy| — gmAmk _ m(k+1) ¢ L.
@ Contradiction! Hence, L is not CFL.

Membership problem: A decision problem on CFL’s

| Problem |
o Given a CFG G and a string w, is w € L(G)? ’

Membership problem: A decision problem on CFL’s

Problem
o Given a CFG G and a string w, is w € L(G)?

Solution

@ This is a difficult problem. Why?

Nondeterminism cannot be eliminated unlike in finite automata.
@ Algorithmically solvable.

CYK algorithm (for grammars in CNF)

Earley parser

GLR parser

More decision problems involving CFL’s

Decision problems

Algorithmically solvable.

e Given a CFG G, is L(G) nonempty?

o Given a CFG G, is L(G) infinite?

e Given a CFG G, is G a regular grammar?

e Given a CFG G, is L(G) a regular language?
Algorithmically unsolvable.

Given a CFG G, is L(G) = ¥*7?

Given a CFG G, is G ambiguous?

Given a CFG G, is L(G) inherently ambiguous?
Given two CFG's G and Go, is L(G1) = L(G2)?
Given two CFG's G and Gy, is L(G1) € L(G2)?
Given two CFG's G and Go, is L(G1) N L(G2) nonempty?

