
Theory of Computation
(Algorithmic Solvability)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

January 24, 2021

How do we compute?

Problem
What is an algorithm?

Solution
An algorithm is an effective/systematic/mechanical method for
achieving the desired result for a given problem.

Problem
What are the properties of an algorithm?

Solution
It has a finite number of instructions.
If carried out without error, it produces the desired result in a
finite number of steps.
It can be carried out by a human with only paper and pen.
It requires no insight, intuition, or ingenuity, on the part of the
human carrying out the method.

How do we compute?

Problem
What is an algorithm?

Solution
An algorithm is an effective/systematic/mechanical method for
achieving the desired result for a given problem.

Problem
What are the properties of an algorithm?

Solution
It has a finite number of instructions.
If carried out without error, it produces the desired result in a
finite number of steps.
It can be carried out by a human with only paper and pen.
It requires no insight, intuition, or ingenuity, on the part of the
human carrying out the method.

How do we compute?

Problem
What is an algorithm?

Solution
An algorithm is an effective/systematic/mechanical method for
achieving the desired result for a given problem.

Problem
What are the properties of an algorithm?

Solution
It has a finite number of instructions.
If carried out without error, it produces the desired result in a
finite number of steps.
It can be carried out by a human with only paper and pen.
It requires no insight, intuition, or ingenuity, on the part of the
human carrying out the method.

One big question

Problem
Are Turing machines powerful enough to model any conceivable
algorithm?

Approach
To solve this problem, we need to formally define algorithm.
Before attempting to define algorithm, we need to understand
the capabilities and limitations of Turing machines.

What are the types of computational problems?

Types
Decision problems:
Problems with input w and output “yes” or “no” answer.
(“yes”: w ∈ L. “no”: w /∈ L.)
e.g.: Given a specific chess configuration and it is your turn,
can you win the chess game?

Deciderw yes/no

Semideciderw yes/no/loop

Function computation:
Problems with input w and output f(w).
e.g.: Given the Facebook graph, what is the minimum number
of people connected between you and your role model?

Functionw f(w)

What are Turing-decidable languages?

Definitions
A Turing machine M accepts (or rejects) a given input string
w iff the initial configuration yields the accepting (or rejecting)
configuration for the given string w.
A Turing machine M decides a language L ∈ Σ∗ iff
for all strings w ∈ Σ∗,{

M accepts w, if w ∈ L,
M rejects w, if w /∈ L.

A language is called Turing-decidable or recursive iff there exists
a TM that decides it.

Does this mean that a Turing machine that decides a language
never enters an infinite loop?

What are Turing-decidable languages?

Σ∗ 3,7

w1 ∈ L 3
w2 /∈ L 7
w3 /∈ L 7
w4 ∈ L 3
w5 ∈ L 3

...
...

...
wn /∈ L 7

...
...

...

N IsPrime? 3,7

2 3
3 3
4 7
5 3
6 7
...

...
...

97 3
...

...
...

What are Turing-decidable languages?

Examples
All regular languages
All context-free languages
Several non-context-free languages such as:
L = {anbncn | n ≥ 0}
L = {w | w = wR and w ∈ {a, b}∗}
L = {ww | w ∈ {a, b}∗}
L = {p | p is a prime}

What languages are Turing-undecidable languages?

What are Turing-computable functions?

Definitions
The output of a TM for input string w is string w′ iff

(q0, .w) `∗ (qacc, .w
′)

Let function f : Σ∗ → Σ∗
A Turing machine computes a function f iff
for all strings w ∈ Σ∗,

M outputs f(w), i.e.,
(q0, .w) `∗ (qacc, .f(w))

A function f : Σ∗ → Σ∗ is called Turing-computable or recur-
sive iff there exists a TM that computes it.

Why do we use the term recursive to describe both the languages
decided by and the functions computed by Turing machines?

What are Turing-computable functions?

Σ∗ f Σ∗

w1 f(w1)
w2 f(w2)
w3 f(w3)
w4 f(w4)
w5 f(w5)
...

...
...

wn f(wn)
...

...
...

N Cube N

1 1
2 8
3 27
4 64
5 125
...

...
...

10 1000
...

...
...

What are Turing-semidecidable languages?

Definitions
A Turing machine M semidecides a language L ∈ Σ∗ iff
for all strings w ∈ Σ∗,{

M accepts w, if w ∈ L,
M rejects w or runs forever, if w /∈ L.

A language is called Turing-semidecidable or recursively enu-
merable iff there exists a TM that semidecides it.

Does this mean that a Turing machine that semidecides a
language can enter an infinite loop?

What are Turing-semidecidable languages?

Σ∗ 3, 7, run forever

w1 ∈ L 3
w2 /∈ L 7, run forever
w3 /∈ L 7, run forever
w4 ∈ L 3
w5 ∈ L 3

...
...

...
wn /∈ L 7, run forever
Programs Correctness? 3, 7, run forever

P1 7
P2 3
P3 run forever
P4 run forever
P5 7
...

...
...

Pn run forever

Types of computational problems solved by TM’s

Types
The three types of computational problems solved by TM’s are:
Turing-decidable languages
Turing-computable functions
Turing-semidecidable languages

Can we formalize the notion of an algorithm using the
computation ideas described above?

What might be algorithms?

Properties of algorithms
Intuitively, an algorithm has the following properties:
1. It is a sequence of steps that gives the correct result to a

computational problem.
2. It should work for all input instances from a given domain.

Describing algorithms
The properties imply that an algorithm always halts.

Type of computation Always halt?
TM’s for decidable languages 3

TM’s for computable functions 3

TM’s for semidecidable languages 7

A TM for a Turing-decidable language or a Turing-computable
function formalizes the intuitive notion of an algorithm.

What might be algorithms?

Properties of algorithms
Intuitively, an algorithm has the following properties:
1. It is a sequence of steps that gives the correct result to a

computational problem.
2. It should work for all input instances from a given domain.

Describing algorithms
The properties imply that an algorithm always halts.

Type of computation Always halt?
TM’s for decidable languages 3

TM’s for computable functions 3

TM’s for semidecidable languages 7

A TM for a Turing-decidable language or a Turing-computable
function formalizes the intuitive notion of an algorithm.

What are algorithms?

Definitions
Algorithm:
Turing machine for a Turing-decidable language or Turing ma-
chine for a Turing-computable function.
Algorithmic solvability:
Turing-decidability or Turing-computability
Algorithmic unsolvability:
Turing-undecidability or Turing-noncomputability i.e.,
Turing-semidecidability and not Turing-semidecidability

Examples of algorithms?

Examples
Thousands of algorithms taught in the courses such as algo-
rithms, data structures, programming, operating systems, net-
working, security, operations research, computer graphics, com-
puter vision, etc
The notion of algorithm is extended to include randomized al-
gorithms, parallel algorithms, distributed algorithms, machine
learning (or self-learning) algorithms, self-improving algorithms,
quantum algorithms, etc

Are Turing machines powerful enough to model any conceivable
algorithm?

What is Church-Turing thesis?

Hypothesis
Any algorithm can be executed by a Turing machine.
Anything that can be computed can be computed by a Turing
machine.
A function on the natural numbers can be calculated by an
effective method iff it is computable by a Turing machine.
Turing machines can do anything that could be described as
“purely mechanical”.

Some questions about algorithmic unsolvability

Some questions
Why do we call Turing-decidable and Turing-semidecidable lan-
guages as recursive and recursively enumerable, respectively?
What is the intuition behind algorithmic unsolvability?
What is the relationship between recursive and recursively enu-
merable languages?
What are the techniques to prove algorithmic unsolvability?
What are some real-world problems that cannot be solved by
human minds or real computers (from past, present, future)?

Chomsky hierarchy

Regular

Context-free

Context-sensitive

Turing-decidable

Turing-semidecidable

Algorithmically solvable

Algorithmically unsolvable

(finite time)

(infinite time)

co
-T

u
ri

n
g
-s

em
id

ec
id

a
b

le

Chomsky hierarchy

RL

CFL

CSL

DL

NSDL

SDL

Some properties of languages

Properties

If L is a Turing-decidable language, then L is a Turing-decidable
language, too.
If L is both Turing-semidecidable and Turing-undecidable (al-
gorithmically unsolvable), then L is not Turing-semidecidable.

How can we prove algorithmic unsolvability?

Problem
How can we prove that there are some computational problems
that are algorithmically unsolvable?

Directions
A. Show that there are languages that are Turing-semidecidable

but not Turing-decidable:
B. Show that there are languages that are not Turing semidecid-

able:

Approach A B
Show hypothetical examples 3 3

Prove that the set of decision problems/languages is bigger than
the set of computer programs/TM’s using uncountability

− 3

Prove that the set of decision problems/languages is bigger than
the set of computer programs/TM’s using diagonalization

− 3

Show real-world practical examples 3 3

Simple Turing machines that run forever

Problem
Let’s construct three non-halting Turing machines for Σ = {a}
and Γ = Σ ∪ {.,�} with the following transition tables.
Explain the working of these non-halting TM’s M1, M2, and
M3.

Current symbol (Γ)
Current state . a �

q0 (q0,→) (q0,→) (q0,→)

Current symbol (Γ)
Current state . a �

q0 (q0,→) (q0, a) (q0,�)

Current symbol (Γ)
Current state . a �

q0 (q0,→) (q0,←) (q0,←)

Simple Turing machines that run forever

Solution for M1

q0start

({., a,�},→)

Time State Tape
0 q0 . a a a � � · · ·
1 q0 . a a a � � · · ·
2 q0 . a a a � � · · ·
3 q0 . a a a � � · · ·
4 q0 . a a a � � · · ·
5 q0 . a a a � � · · ·

The TM’s tape head keeps moving right on the tape that has
an infinite amount of memory.
The TM never halts for any input string.

Simple Turing machines that run forever

Solution for M2

q0start

(.,→), (a, a), (�,�)

Time State Tape
0 q0 . a a a � � · · ·
1 q0 . a a a � � · · ·
2 q0 . a a a � � · · ·
3 q0 . a a a � � · · ·
4 q0 . a a a � � · · ·
5 q0 . a a a � � · · ·

The TM’s tape head does not move, replaces the first character
by itself, and stays in the same state.
The TM never halts for any input string.

Simple Turing machines that run forever

Solution for M3

q0start

(.,→), (a,←), (�,←)

Time State Tape
0 q0 . a a a � � · · ·
1 q0 . a a a � � · · ·
2 q0 . a a a � � · · ·
3 q0 . a a a � � · · ·
4 q0 . a a a � � · · ·
5 q0 . a a a � � · · ·

The TM’s tape head oscillates between the left end symbol and
the first character.
The TM never halts for any input string.

Most problems are algorithmically unsolvable

Problem
Prove that the set of all decision problems or languages is bigger
than the set of Turing machines or computer programs using
countability/uncountability.

Solution
Prerequisite: Learn from
https://www3.cs.stonybrook.edu/~pramod.ganapathi/
doc/discrete-mathematics/Functions.pdf
1. Prove that the set of decision problems is uncountable.
2. Prove that the number of Turing machines is countable.
This proves that most decision problems or languages are not
Turing-semidecidable.

https://www3.cs.stonybrook.edu/~pramod.ganapathi/doc/discrete-mathematics/Functions.pdf
https://www3.cs.stonybrook.edu/~pramod.ganapathi/doc/discrete-mathematics/Functions.pdf

Most problems are algorithmically unsolvable
Solution (continued)

Part 1. Prove that the set of decision problems is uncountable.
A decision problem can be represented as a number in [0, 1].
E.g.: The function below represents 0.0110001

Strings {0, 1}

ε 0
0 1
1 1
00 0
01 0
10 0
11 1
...

...
Set of all decision problems (or functions Σ∗ → {0, 1}) can be
represented by the set of all real problems in [0, 1].
The set of all real numbers in [0, 1] is uncountable.
Hence, the set of all decision problems is uncountable.

Most problems are algorithmically unsolvable

Solution (continued)

Part 2. Prove that the set of all Turing machines is countable.
A TM can be represented as a finite string.
A finite string in ASCII can be represented as a binary string.
The set of all TM’s represents the set of all binary strings.
The set of all binary strings is countable.
Hence, the set of all TM’s is countable.

Most problems are algorithmically unsolvable

Problem
Prove that the set of all decision problems or languages is bigger
than the set of Turing machines or computer programs using
diagonalization.

Solution
Suppose M1,M2,M3, . . . are the TM’s.
Suppose w1, w2, w3, . . . are strings in Σ∗.
Construct a table with TM’s as rows and strings as columns.

Strings
TM w1 w2 w3 w4 w5 · · ·
M1 1 0 0 1 0 · · ·
M2 0 0 1 0 0 · · ·
M3 0 1 1 1 1 · · ·
M4 1 1 0 1 0 · · ·
M5 0 1 0 0 0 · · ·
...

...
...

...
...

... . . .

Most problems are algorithmically unsolvable

Problem
Prove that the set of all decision problems or languages is bigger
than the set of Turing machines or computer programs using
diagonalization.

Solution
Suppose M1,M2,M3, . . . are the TM’s.
Suppose w1, w2, w3, . . . are strings in Σ∗.
Construct a table with TM’s as rows and strings as columns.

Strings
TM w1 w2 w3 w4 w5 · · ·
M1 1 0 0 1 0 · · ·
M2 0 0 1 0 0 · · ·
M3 0 1 1 1 1 · · ·
M4 1 1 0 1 0 · · ·
M5 0 1 0 0 0 · · ·
...

...
...

...
...

... . . .

Most problems are algorithmically unsolvable

Solution (continued)

Construct a TM that accepts language
Ld = {wi | wi 6∈ L(Mi)} i.e., Ld = d1d2d3 . . ., where

di =
{

1 if tableii = 0,
0 if tableii = 1.

For the example below, Ld = 01001 . . .
Strings

TM w1 w2 w3 w4 w5 · · ·
M1 1 0 0 1 0 · · ·
M2 0 0 1 0 0 · · ·
M3 0 1 1 1 1 · · ·
M4 1 1 0 1 0 · · ·
M5 0 1 0 0 0 · · ·
...

...
...

...
...

... . . .
Md 0 1 0 0 1 · · ·

Most problems are algorithmically unsolvable

Solution (continued)

Proof by contradiction.
Suppose Ld is Turing-semidecidable. Then
there exists TM Mk such that Ld = L(Mk).
Case 1. Mk accepts wk.
=⇒ wk 6∈ Ld (∵ defn. of Ld)
=⇒ wk 6∈ L(Mk) (∵ Ld = L(Mk))
=⇒ Mk does not accept wk (∵ defn. of L(Mk))
Case 2. Mk does not accept wk.
=⇒ wk ∈ Ld (∵ defn. of Ld)
=⇒ wk ∈ L(Mk) (∵ Ld = L(Mk))
=⇒ Mk accepts wk (∵ defn. of L(Mk))
Contradiction! Hence, Ld is not Turing-semidecidable.
There is a decision problem or language that is not Turing-
semidecidable.

Simulate program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to simulate
the working of a given computer program on a given input
string.

Solution
Language = {〈M,w〉 | TM M accepts input string w}
Let’s call the hypothetical method as Simulate.
1. Prove that Simulate is Turing-semidecidable.
2. Prove that Simulate is algorithmically impossible.

Simulate program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to simulate
the working of a given computer program on a given input
string.

Solution
Language = {〈M,w〉 | TM M accepts input string w}
Let’s call the hypothetical method as Simulate.
1. Prove that Simulate is Turing-semidecidable.
2. Prove that Simulate is algorithmically impossible.

Simulate program is algorithmically impossible

Solution (continued)

Part 1. Prove that Simulate is Turing-semidecidable.
Consider the following generic procedure.

Simulate(〈M, w〉)
1. Simulate TM M on input string w
2. if M accepts w then
3. accept
4. elseif M rejects w then
5. reject

Case 1: If M accepts w, then Simulate accepts.
Case 2: If M rejects w, then Simulate rejects.
Case 3: If M runs forever on w, then Simulate runs forever.
So, Simulate is Turing-semidecidable.

Simulate program is algorithmically impossible
Solution (continued)

Part 2. Prove that Simulate is algorithmically impossible.
Proof by contradiction.
Let’s assume that Simulate is algorithmically possible
i.e., Simulate always halts giving a correct answer.
Then, we construct the Paradox algorithm as follows.

Paradox(〈M〉)
1. result← Simulate(〈M, 〈M〉〉)
2. if result = accept then reject
3. elseif result = reject then accept

〈M, 〈M〉〉
Simulate

Paradox

accept

acceptreject

reject

〈M〉

Simulate program is algorithmically impossible

Solution (continued)

Part 2. Prove that Simulate is algorithmically impossible.
Paradox(〈M〉)
Input: Source code of a computer program
Output: Accept or reject
Require: Invoke Paradox(〈Paradox〉)
1. result← Simulate(〈M, 〈M〉〉)
2. if result = accept then reject
3. elseif result = reject then accept

Case 1. Paradox accepts 〈Paradox〉
=⇒ Simulate rejects 〈Paradox, 〈Paradox〉〉
=⇒ Paradox rejects 〈Paradox〉.
Case 2. Paradox rejects 〈Paradox〉
=⇒ Simulate accepts 〈Paradox, 〈Paradox〉〉
=⇒ Paradox accepts 〈Paradox〉.
Contradiction! Hence, Simulate is algorithmically impossible.

Halt program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to check if a
given computer program halts on a given input string.

Solution
Language = {〈M,w〉 | TM M halts on input string w}
Let’s call the hypothetical method as Halt.
1. Prove that Halt is Turing-semidecidable.
2. Prove that Halt is algorithmically impossible.

Halt program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to check if a
given computer program halts on a given input string.

Solution
Language = {〈M,w〉 | TM M halts on input string w}
Let’s call the hypothetical method as Halt.
1. Prove that Halt is Turing-semidecidable.
2. Prove that Halt is algorithmically impossible.

Halt program is algorithmically impossible

Solution (continued)

Part 1. Prove that Halt is Turing-semidecidable.
Consider the following generic procedure.

Halt(〈M, w〉)
1. Simulate TM M on input string w
2. if M accepts w or M rejects w then
3. accept
4. else if M runs forever then
5. reject

Case 1: If M accepts w, then Halt accepts.
Case 2: If M rejects w, then Halt accepts.
Case 3: If M runs forever on w, then Halt runs forever.
So, Halt is Turing-semidecidable.

Halt program is algorithmically impossible
Solution (continued)

Part 2. Prove that Halt is algorithmically impossible.
Proof by contradiction.
Let’s assume that Halt is algorithmically possible
i.e., Halt always halts giving a correct answer.
Then, we construct the Paradox algorithm as follows.

Paradox(〈M〉)
1. result← Halt(〈M, 〈M〉〉)
2. if result = accept then run forever
3. elseif result = reject then accept

〈M, 〈M〉〉
Halt

Paradox

accept

acceptreject

run forever

〈M〉

Halt program is algorithmically impossible

Solution (continued)

Part 2. Prove that Halt is algorithmically impossible.
Paradox(〈M〉)
Input: Source code of a computer program
Output: Accept or reject
Require: Invoke Paradox(〈Paradox〉)
1. result← Halt(〈M, 〈M〉〉)
2. if result = accept then run forever
3. elseif result = reject then accept

Case 1. Paradox accepts 〈Paradox〉
=⇒ Halt rejects 〈Paradox, 〈Paradox〉〉
=⇒ Paradox runs forever on 〈Paradox〉.
Case 2. Paradox runs forever on 〈Paradox〉
=⇒ Halt accepts 〈Paradox, 〈Paradox〉〉
=⇒ Paradox accepts 〈Paradox〉.
Contradiction! Hence, Halt is algorithmically impossible.

What is reduction?

Definition
Given two languages Lold, Lnew ∈ Σ∗, we say that Lold reduces
to Lnew, meaning Lnew is at least as hard as Lold, denoted as
Lold ≤m Lnew if there exists a computable function f such that
for all x ∈ Σ∗

x ∈ Lold ⇐⇒ f(x) ∈ Lnew

Lold

Lold

Lnew

Lnew

fΣ∗ Σ∗

⊆ Lnew

⊆ Lnew

What is reduction?

Properties
Notation. In Lold ≤m Lnew,
the ‘m’ letter in ≤m represents many-to-one function.
Meaning. If Lold ≤m Lnew, then
Lnew is at least as hard as Lold.
Intuition. If Lold ≤m Lnew, then
the reduction should turn:
- Instance of Lold with yes to instance of Lnew with yes.
- Instance of Lold with no to instance of Lnew with no.
Consequences. If Lold ≤m Lnew, then
If Lold is undecidable, then so is Lnew.
If Lold is not Turing-semidecidable, then so is Lnew.
If Lnew is decidable, then so is Lold.

Halt program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to check if
a given computer program halts on a given input string, using
reduction.

Solution
Lsim = {〈M,w〉 | TM M accepts input string w}
Lhalt = {〈M,w〉 | TM M halts on input string w}
Proof by contradiction and proof by reduction.
Let’s call the hypothetical method as Halt.
We show that if Halt is algorithmically possible,
then Simulate is algorithmically possible, too.

Halt program is algorithmically impossible

Problem
Prove that it is impossible to design an algorithm to check if
a given computer program halts on a given input string, using
reduction.

Solution
Lsim = {〈M,w〉 | TM M accepts input string w}
Lhalt = {〈M,w〉 | TM M halts on input string w}
Proof by contradiction and proof by reduction.
Let’s call the hypothetical method as Halt.
We show that if Halt is algorithmically possible,
then Simulate is algorithmically possible, too.

Halt program is algorithmically impossible

Solution (continued)

Prove that Halt is algorithmically impossible.
Let’s assume that Halt is algorithmically possible.
Then, we construct the Simulate algorithm as follows.

Simulate(〈M, w〉)
1. result← Halt(〈M, w〉)
2. if result = reject then reject B M runs forever on w
3. elseif result = accept then
4. Simulate M on w
5. if M accepts w then accept B M accepts w
6. elseif M rejects w then reject B M rejects w

If Halt is an algorithm, then Simulate is an algorithm too,
which terminates in all cases.
We know that Simulate is algorithmically impossible. Hence,
Halt is algorithmically impossible, too.

Hofstadter’s ac puzzle

Problem
Starting with the string ab, can you derive ac, using the following
productions?
1. Add a c to the end of any string ending in b.

i.e., xb→ xbc
2. Double the string after the first character a.

i.e., ax→ axx
3. Replace any bbb with a c.

i.e., xbbby → xcy
4. Remove any cc.

i.e., xccy → xy

Hofstadter’s ac puzzle

Solution (core idea)

The problem cannot be solved.
Invariant: n = (#b’s in a string) is not divisible by 3.
The invariant is true for the starting string ab.
The invariant is true for all strings derivable from ab.
The invariant is false for ac.
Hence, the string ac cannot be derived from the string ab.

Hofstadter’s ac puzzle

Solution (continued)

[Starting string.] For the starting string ab, n = 1.
Hence, the invariant is true.
[Rules 1 and 4.] The rules do not change #b’s.
Hence, the invariant is true.
[Rule 2.] Doubling a number that is not divisible by 3 does not
make it divisible by 3. Hence, the invariant is true.
[Rule 3.] Subtracting 3 from a number that is not divisible by
3 does not make it divisible by 3. Hence, the invariant is true.
The desired string ac cannot be derived because n = 0.
And 0 is divisble by 3.

Reference: https://en.wikipedia.org/wiki/MU_puzzle

https://en.wikipedia.org/wiki/MU_puzzle

Decision problems involving TM’s

Decision problems
Algorithmically solvable.
Given a TM M , does M have at least 481 states?
Given a TM M , does M take more than 481 steps on input ε?
Given a TM M , does M take more than 481 steps on some
input?
Given a TMM , doesM take more than 481 steps on all inputs?
Given a TM M , does M ever move its head more than 481
tape cells away from the left endmarker on input ε?

Decision problems involving TM’s

Decision problems
Algorithmically unsolvable.
Given a TM M and an input string w, is w ∈ L(M)?
Given a TM M , is L(M) nonempty?
Given a TM M , is L(M) = Σ∗?
Given a TM M , is L(M) a regular language?
Given a TM M , is L(M) a CFL?
Given a TM M , is L(M) a recursive language?
Given a TM M , is L(M) recursively enumerable?
Given two TM’s M1 and M2, is L(M1) = L(M2)?
Given two TM’s M1 and M2, is L(M1) ⊆ L(M2)?
Given two TM’s M1 and M2, is L(M1) ∩ L(M2) nonempty?
Given a TM M and an input string w, does M use a finite
amount of tape?

Post correspondence problem (PCP)

Problem
Given the set of dominos, is it possible to list these dominos
(repetitions permitted) so that the string of symbols on top is
the same as the string of symbols on the bottom?
(D1, D2, D3, D4) =

(
b
ca ,

a
ab ,

ca
a ,

abc
c

)

Solution
Yes!
A solution: [D2D1D3D2D4].
a
ab

b
ca

ca
a

a
ab

abc
c = abcaaabc

abcaaabc = match

Post correspondence problem (PCP)

Problem
Given the set of dominos, is it possible to list these dominos
(repetitions permitted) so that the string of symbols on top is
the same as the string of symbols on the bottom?
(D1, D2, D3, D4) =

(
b
ca ,

a
ab ,

ca
a ,

abc
c

)
Solution
Yes!
A solution: [D2D1D3D2D4].
a
ab

b
ca

ca
a

a
ab

abc
c = abcaaabc

abcaaabc = match

Post correspondence problem (PCP)

Problem
Given the set of dominos, is it possible to list these dominos
(repetitions permitted) so that the string of symbols on top is
the same as the string of symbols on the bottom?
(D1, D2, D3) =

(
abc
ab ,

ca
a ,

acc
ba

)

Solution
No!
Every top string is greater than its bottom string.

Post correspondence problem (PCP)

Problem
Given the set of dominos, is it possible to list these dominos
(repetitions permitted) so that the string of symbols on top is
the same as the string of symbols on the bottom?
(D1, D2, D3) =

(
abc
ab ,

ca
a ,

acc
ba

)
Solution
No!
Every top string is greater than its bottom string.

Post correspondence problem (PCP)

Problem
Given the set of dominos, is there a match?

(D1, D2, D3) =
(

a
baa ,

ab
aa ,

bba
bb

)
(D1, D2, D3, D4) =

(
b
bab ,

abb
b ,

aba
a ,

bbaaa
babaaa

)
(D1, D2, D3) =

(
bb
b ,

ab
ba ,

c
bc

)
(D1, D2, D3) =

(
bbab
b ,

abba
bb ,

b
bba

)

Solution
Yes! Infinite solutions: [D3D2D3D1]+.
Yes! Infinite solutions: [D1D2D3D1]+
Yes! Infinite solutions: [D1D

+
2 D3]+.

Yes! Shortest solution has length 252.

Post correspondence problem (PCP)

Problem
Given the set of dominos, is there a match?

(D1, D2, D3) =
(

a
baa ,

ab
aa ,

bba
bb

)
(D1, D2, D3, D4) =

(
b
bab ,

abb
b ,

aba
a ,

bbaaa
babaaa

)
(D1, D2, D3) =

(
bb
b ,

ab
ba ,

c
bc

)
(D1, D2, D3) =

(
bbab
b ,

abba
bb ,

b
bba

)
Solution
Yes! Infinite solutions: [D3D2D3D1]+.
Yes! Infinite solutions: [D1D2D3D1]+
Yes! Infinite solutions: [D1D

+
2 D3]+.

Yes! Shortest solution has length 252.

Post correspondence problem (PCP)

Problem
Given the set of dominos, is there a match?

(D1, D2, D3) =
(

bb
abb ,

ab
a ,

aab
bba

)

Solution
No! Start

index = 1
bb

abb
7

index = 1
ab
a

index = 2
bb

abb
7

index = 2
ab
a
7

index = 2
aab
bba
7

index = 1
aab
bba
7

Post correspondence problem (PCP)

Problem
Given the set of dominos, is there a match?

(D1, D2, D3) =
(

bb
abb ,

ab
a ,

aab
bba

)
Solution
No! Start

index = 1
bb

abb
7

index = 1
ab
a

index = 2
bb

abb
7

index = 2
ab
a
7

index = 2
aab
bba
7

index = 1
aab
bba
7

Post correspondence problem (PCP)

Problem
Discovered by Emil Post in 1940’s.
You are given the set P of dominos(

t1
b1

,
t2
b2

, . . . ,
tk
bk

)
A match is a sequence i1i2 . . . i`, where
ti1ti2 · · · ti`

= bi1bi2 · · · bi`
.

Is there an algorithm to determine if P has a match?

Solution
No! The problem is algorithmically unsolvable.
Let PCP = {〈P 〉 | P is a domino set that has a match}.
PCP is not Turing-decidable.

Post correspondence problem (PCP)

Problem
Discovered by Emil Post in 1940’s.
You are given the set P of dominos(

t1
b1

,
t2
b2

, . . . ,
tk
bk

)
A match is a sequence i1i2 . . . i`, where
ti1ti2 · · · ti`

= bi1bi2 · · · bi`
.

Is there an algorithm to determine if P has a match?

Solution
No! The problem is algorithmically unsolvable.
Let PCP = {〈P 〉 | P is a domino set that has a match}.
PCP is not Turing-decidable.

