
Theory of Computation
(Algorithmically Hard Problems)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

August 10, 2023



Algorithmically unsolvable problems

Problem Running time
Simulate problem ∞
Halting problem ∞
Program correctness ∞
Program equivalence ∞
Integral roots of a polynomial ∞
Goodstein’s theorem ∞
Generalized (3n + 1) problem ∞
Post correspondence problem ∞



Algorithmically solvable problems

Problem Running time
Search in a sorted array O (log n)
Search in an unsorted array O (n)
Integer addition O (n)
Generate primes O (n log log n)
Sorting O (n log n)
Fast Fourier transform O (n log n)
Integer multiplication O

(
n2)

Matrix multiplication O
(
n3)

Linear programming O
(
n3.5)

Primality test O
(
n10)

Satisfiability problem O (2n)
Traveling salesperson problem O ((n− 1)!)
Sudoku, chess, checkers, go expo. class



Polynomial and exponential functions
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Exponential functions

Moore’s law (Doubling of computing power every 18 months)
Compound interest in banks
Coronavirus

Source: https://www.worldometers.info/coronavirus/

https://www.worldometers.info/coronavirus/


Goal

Goal
Our goal is to solve all computational problems efficiently
An efficient/fast algorithm is one that solves a problem in poly-
nomial time



Polynomial-time algorithm

Definition
A polynomial-time algorithm is an algorithm whose worst-case
time complexity is bounded above by a polynomial function in
input size.
If n is the input size, then there exists a polynomial p(n) such
that

T (n) ∈ O (p(n))

Analysis

n log n is not polynomial in n but n log n ∈ O
(
n2)

Hence, algorithm with this complexity is a polynomial-time al-
gorithm



Input and output sizes

Definition
For a given algorithm, the input and output sizes are defined
as the number of characters required to write/encode/specify
the input and output, respectively, using a reasonable encoding
method.
Reasonable encodings: base 2, base 16, base 10, base b ≥ 2
Unreasonable encoding: base 1 (i.e., unary encoding)

Example

Problem: Sort(a[1..n])
Input: n positive integers
Output: n numbers in nondecreasing order. Then
Suppose L = max(a[1..n])
Input size: Θ (n log L)
Output size: Θ (n log L)



Input and output sizes
IsPrime(n)
1. answer ← true
2. for i← 2 to b

√
nc do

3. if n is divisible by i then
4. answer ← false
5. break
6. return answer

Problem
Time complexity of IsPrime(n) is Ω (

√
n).

Is IsPrime(n) a polynomial-time algorithm?

Solution
No!
Input size: s = log2 n bits (to store value n)
Output size: 1 bit (to store Boolean answer)
Time complexity: Ω (

√
n) = Ω

(
2s/2

)
exponential

But this does not prove that the problem cannot have any fast
algorithm.



Input and output sizes

Problem
Time complexity of Fibonacci-DP(n) is Θ

(
n2)

.
Is Fibonacci-DP(n) a polynomial-time algorithm?

Solution
No!
Input size: s = log2 n bits (to store value n)
Output size: Θ (n) bits (as Fn requires Θ (n) bits)
Time complexity: Θ

(
n2)

= Ω (4s) exponential
There cannot be any polynomial-time algorithm for computing
the nth Fibonacci number. Why?
Output size itself is exponential in the size of input.



Problems having exponential-sized output

Problem
Problem: Print all simple paths
Input: Graph G, source vertex x, destination vertex y
Output: Print all simple paths from x to y

Analysis
Output size: Worst-case exponential function of the input size
Hence, polynomial-time algorithms don’t exist
We will not consider problems having exponential-sized output
because no polynomial-time algorithms exist for such problems



Intractable problems

Definition
A problem is intractable if an exponential amount of time is
needed to discover its solution, given that the output size a
polynomial function of the input size.

Example
Problem: Equivalence of two regular expressions
Input: Two regular expressions R1 and R2
Output: Yes/no if R1 is equivalent R2

Analysis
Output size: Polynomial function of input size
There does not exist polynomial-time algorithms



Types of problems

Definitions
A decision problem asks for a yes/no answer.
A search problem asks for arbitrary string(s) as output.
A counting problem asks for the number of solutions to a search
problem.
An optimization problem asks for for the best possible solution
to a search problem.
A function problem asks for a unique output for every input.

Examples

Decision problem: IsPrime(n)
Search problem: FindFactors(n)
Counting problem: CountFactors(n)
Optimization problem: TSP(G, w)
Function problem: TSP(G, w)



Hardness of problems

Types

Hard (or intractable): Problems that can never be solved in
polynomial time.
Easy: Problems that can be solved in polynomial time.
Possibly hard (or possibly intractable): Problems that have no
known polynomial time algorithms.

Examples
Hard: Given two regular expressions R1 and R2, is R1 equiva-
lent to R2?
Easy: Is there a path from x to y with weight ≤M?
Possibly hard: Is there a path from x to y with weight ≥M?



Complexity class P

Definition
The complexity class P denotes the set of all decision problems
that can be solved by deterministic algorithms in polynomial
time.

Examples
Is a given array sorted?
Is a given graph cyclic?
Is a given graph connected?
Does a given set contain a specific element?
Most problems we have seen have a corresponding decision
version.



Complexity class NP

Definition
The complexity class NP denotes the set of all decision problems
that can be solved by nondeterministic algorithms in polynomial
time.

Examples
All problems in P, i.e., P ⊆ NP
Problem: Decision version of TSP(G, w, b)
Input: Graph G, weight function w, length b
Output: Yes if there exists a sequence of vertices (starting from
a vertex and visiting each vertex exactly once) with length at
most b.



Complexity class NP

Analysis
A nondeterministic algorithm has two stages:
(1) (Nondeterministic) Guessing stage:
Make all guesses simultaneously.
(Analogous to parallel algorithm or parallel universe model)
(2) (Deterministic) Verification stage:
Verify/check if the guess is a correct solution or not.
Guessing stage takes O (1) time
Verification stage takes polynomial time



Complexity class NP

Definition
A polynomial-time nondeterministic algorithm is a nondeter-
ministic algorithm whose verification stage is a polynomial-time
algorithm.
The complexity class NP denotes the set of all decision prob-
lems that can be solved by polynomial-time nondeterministic
algorithms.

Source: Jeff Erickson’s Algorithms textbook



Complexity class NP

Definition
The complexity class NP denotes the set of all decision prob-
lems with the following property: If the answer is yes, then
there is a proof of this fact that can be checked in polynomial
time.
Intuitively, the complexity class NP denotes the set of all deci-
sion problems where we can verify a yes answer quickly if we
have the solution in front of us.
The complexity class co-NP denotes the set of all decision prob-
lems with the following property: If the answer is no, then there
is a proof of this fact that can be checked in polynomial time.



Is P = NP?

Problem
Is P = NP?

Analysis
This is the greatest question in theoretical computer science.
That is:
Nobody knows if (deterministic) polynomial-time algorithms
exist for solving all of NP problems.
Nobody knows if there is an NP problem that is not in P.
Nobody knows if NP is the same set as coNP.
Most scientists believe that P 6= NP.
It is most likely that Turing Award (i.e., the Nobel prize of
computer science) will be given to the person who resolves the
P 6= NP problem.



Complexity classes NP-hard and NP-Complete
Definition
NP = Problems solvable in poly time using nondeterminism
= Problems with solutions that can be verified/checked
in polynomial time.
NP-Hard = Problems at least as hard as NP problems.
Formally, a problem X is NP-Hard
if every NP problem Y is polynomial-time reducible to X.
NP-Complete = Hardest problems in NP.
Formally, a problem X is NP-Complete
if (i) X is in NP, and (ii) X is NP-Hard.

Source: Jeff Erickson’s Algorithms textbook



Complexity classes NP-hard and NP-Complete

NP NP-Hard

EXP EXP-Hard

NP-Complete

P

EXP-Complete

More timeLess time



Easy problems and possibly hard problems

Easy problems Possibly hard problems
Shortest path Longest path
Linear programming Integer linear programming
Minimum spanning tree Traveling salesperson
2-Satisfiability 3-Satisfiability
Min cut Max cut
Planar 4-colorability Planar 3-colorability
Independent set on trees Independent set

The problems on the right have escaped efficient algorithms
for decades to centuries. Why?
The problems on the right seem hard for the same reason
– they are all related.
Each pair of those problems can be reduced to each other.



What is polynomial-time reduction?

Definition
Reduction is a fantastic idea to solve one problem using the
solution to another.
Problem Pold poly.-time reduces to problem Pnew, denoted by
Pold ≤p Pnew, if the following transformation happens in poly-
nomial time.
transform any input instance of Pold to an instance of Pnew
solve Pnew
transform output of Pnew to output of Pold
return output of Pold



What is polynomial-time reduction?

Definition
Reduction is a fantastic idea to solve one problem using the
solution to another.
Problem Pold poly.-time reduces to problem Pnew, denoted by
Pold ≤p Pnew, if any instance of problem Pold can be solved
using the following:

(i) poly. number of standard computational steps.
(ii) poly. number of calls to function that solves problem Pnew.

Pold ≤p Pnew means Pnew is at least as hard as Pold.



What is polynomial-time reduction?

Algorithm for P-old

in-old
Algorithm for P-new

out-oldout-newin-new
f g

Problem-old(input-old) B Pold ≤p Pnew

1. input-new ← f(input-old) B poly. time transformation
2. output-new ← Problem-new(input-new)
3. output-old ← g(output-new) B poly. time transformation
4. return output-old

Problem-old poly. time reduces to Problem-new



What is polynomial-time reduction?

Suppose Pold ≤p Pnew

Easy problems
If Pnew can be solved in polynomial time,
then Pold can be solved in polynomial time.

Hard problems
If Pold cannot be solved in polynomial time,
then Pnew cannot be solved in polynomial time.

Same complexity class
If Pnew ≤p Pold, then
Pold can be solved in polynomial time
if and only if Pnew can be solved in polynomial time.



Reduction: Lower and upper bounds

Suppose Pold
O(f(n))−−−−−→ Pnew

Upper bound theorem

If Pnew is solvable is O (g(n)),
then Pold is solvable in O (f(n) + g(n))

Lower bound theorem
If Pold is solvable in Ω (g(n)) and f(n) ∈ o (g(n)),
then Pnew is solvable in Ω (g(n))



Reduction: LCM → GCD

Problem
Problem: Least common multiple (LCM)
Input: Two integers a and b.
Output: Return the smallest integer m such that m is a multiple
of a and m is also a multiple of b.

Problem
Problem: Greatest common divisor (GCD)
Input: Two integers a and b.
Output: Return the largest integer d such that d divides a and
d divides b.



Reduction: LCM → GCD

LCM(a, b)

1. return a×b
GCD(a,b)

GCD is poly. time ⇒ LCM is poly. time



Reduction: DecimalCalculator → BinaryCalculator

Problem
Problem: Arithmetic operations on decimal numbers
Input: Two decimal numbers a and b.
Output: Return the result of an arithmetic operation on a and
b in the decimal system.

Problem
Problem: Arithmetic operations on binary numbers
Input: Two binary numbers a and b.
Output: Return the result of an arithmetic operation on a and
b in the binary system.



Reduction: DecimalCalculator → BinaryCalculator

DecimalCalculator(a, b)
1. abinary ← DecimalToBinary(a)
2. bbinary ← DecimalToBinary(b)
3. cbinary ← BinaryCalculator(abinary, bbinary)
4. c← BinaryToDecimal(cbinary)
5. return c

BinaryCalculator is poly. time
⇒ DecimalCalculator is poly. time



Reduction: ClosestPair → Sort

Problem
Problem: Closest pair
Input: A set S of n numbers, and threshold t.
Output: Is there a pair si, sj ∈ S such that |si − sj | ≤ t?

ClosestPair(S, t)
1. Sort(S)
2. return (mini∈[1,n−1] |si − sj |) ≤ t

Sort is poly. time ⇒ ClosestPair is poly. time



Reduction: LIS → LCS

Problem
Problem: Longest increasing subsequence
Input: An integer or character sequence S.
Output: What is the longest sequence of integer positions
{p1, . . . , pm} such that pi < pi+1 and Spi < Spi+1?

Problem
Problem: Longest common subsequence
Input: Integer or character sequences S and T .
Output: What is the longest subsequence that is common to
both S to T?



Reduction: LIS → LCS

LIS(S)
1. T ← Sort(S)
2. lis← LCS(S, T )
3. return lis

LCS is poly. time
⇒ LIS is poly. time



Is P = NP?

Source: https://en.wikipedia.org/wiki/P_versus_NP_problem

https://en.wikipedia.org/wiki/P_versus_NP_problem


NP-Completeness

P NP-Complete
NP

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

https://en.wikipedia.org/wiki/List_of_NP-complete_problems


If any NP-Hard problem is
solvable in poly-time, then
every NP problem (1000s of
them) is solvable in poly-time.



If any NP-Complete problem
cannot be solved in poly-time,
then every NP-hard problem
(1000s of them) cannot be

solved in poly-time.



Problem: Satisfiability (SAT)

Problem
Given a Boolean formula (or logical expression) in conjunctive
normal form (CNF), find either a satisfying truth assignment or
report that none exists.
Examples.
(i) (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) ∧ (y ∨ y ∨ z)
No solution exists.
(ii) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)
Solution is (x1, x2, x3, x4) = (T,T,F,F)
Applications.
Circuit design, image analysis, software engineering, artificial
intelligence, and automatic theorem proving



Problem: k-Satisfiability (k-SAT)

Problem
The k-SAT problem is a restricted version of the SAT problem.
in which each clause has at most k literals.
Examples of 3-SAT.
(i) (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) ∧ (y ∨ y ∨ z)
No solution exists.
(ii) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)
Solution is (x1, x2, x3, x4) = (T,T,F,F)



Proving a problem NP-Complete

Proving the first problem SAT is NP-Complete
1. Show that SAT is in NP.
2. Reduce (in poly. time) every problem in NP to SAT.

Proving a new problem X is NP-Complete
1. Show that problem X is in NP.
2. Reduce (in poly. time) an existing NP-Complete problem to

X.



3-SAT is in NP-Complete

Problem
Prove that 3-SAT is NP-Complete.

Solution
1. Show that 3-SAT is in NP:

Suppose we are given a solution to the 3-CNF Boolean expres-
sion.
In polynomial time we can verify whether the given truth as-
signment is correct.

2. Show that SAT → 3-SAT:
?



Reduction: SAT → 3-SAT

Let C = (a1 ∨ a2 ∨A) where A = (a3 ∨ · · · ∨ ak)
Let C ′ = (a1 ∨ a2 ∨ y) ∧ (ȳ ∨A)
Proof
[If C is satisfiable, then C ′ is satisfiable.]
[Case a1 = 1 or a2 = 1.] C = 1.
Assign y = 0 to get C ′ = (a1 ∨ a2 ∨ 0) ∧ (1 ∨A) = 1.
[Case A = 1.] C = 1.
Assign y = 1 to get C ′ = (a1 ∨ a2 ∨ 1) ∧ (0 ∨A) = 1.
[If C ′ is satisfiable, then C is satisfiable.]
C ′ = 1 ⇒ (a1 ∨ a2 ∨ y = 1) and (ȳ ∨A) = 1
[Case y = 0.] Then (a1 ∨ a2) = 1 =⇒ C = 1.
[Case y = 1.] Then A = 1 =⇒ C = 1.



Reduction: SAT → 3-SAT

SAT(F )
1. for each clause C in F with k literals do
2. create k − 3 tiny clauses of size 3; using a total of k − 3 new variables;

call this collection of tiny clauses C′

3. let the obtained formula be called F ′

4. return 3-SAT(F ′)

SAT poly. time reduces to 3-SAT



Problem: IndependentSet

An independent set of a graph G is a subset of the vertices such
that no two vertices in the subset represent an edge of G.
Problem
Problem: Independent set (decision version)
Input: G = (V, E) and an integer k.
Output: Is there a subset of vertices S ⊆ V such that |S| ≥ k,
and for each edge at most one of its endpoints is in S?

Source: Wikipedia. Max. independent set size is 4.



IndependentSet is in NP-Complete

Problem
Prove that IndependentSet is NP-Complete.

Solution
1. Show that IndependentSet is in NP:

Suppose we are given a subset S of the vertices in a graph.
In polynomial time we can verify that, for each pair of vertices
in the set S, there is no edge between them.

2. Show that 3-SAT → IndependentSet:
?



Reduction: 3-SAT → IndependentSet

Source: David Mount’s notes

Analysis

A clause (of size at most 3) can be transformed to a clause
cluster (of size at most 3)
Add edges between xi and all its complement vertices x̄i



Reduction: 3-SAT → IndependentSet

(x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3)

Source: David Mount’s notes

Analysis
Given a k, one needs to select at k vertices that satisfy the
independent set property
Select a vertex from each clause without violating the indepen-
dent set property



Reduction: 3-SAT → IndependentSet

3-SAT(F )
[Transform the input: Boolean expression to graph]

1. k ← number of clauses in F
2. for each clause (x1 ∨ x2 ∨ x3) in F do
3. create a clause cluster consisting of three vertices labeled x1, x2, x3
4. create edges (x1, x2), (x2, x3), (x3, x1) between all pairs of vertices in

the cluster
5. for each vertex xi do
6. create edges between xi and all its complement vertices x̄i (conflict links)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[Transform the output: Vertex set to truth assignment]

7. return IndependentSet(G, k)

3-SAT poly. time reduces to IndependentSet



Problem: VertexCover

A vertex cover of a graph G is a subset of the vertices that
touch/cover all edges of G.
Problem
Problem: Minimum vertex cover (decision version)
Input: G = (V, E) and a natural number k.
Output: Check if there exists a set of k vertices that cover all
edges.

Source: Mathworld Wolfram.



VertexCover is in NP-Complete

Problem
Prove that VertexCover is NP-Complete.

Solution
1. Show that VertexCover is in NP:

Suppose we are given a subset S of the vertices in a graph.
In polynomial time we can verify that, for each vertex in the
set S, the edges the vertex covers/touches.

2. Show that IndependentSet → VertexCover:
?



Reduction: IndependentSet → VertexCover

Source: https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html

|V | = 12. Independent set size = 7. Vertex cover size = 5.

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html


Reduction: IndependentSet → VertexCover

In a graph G, S is an independent set ⇔ (V − S) is a vertex cover
Proof
[If S is an independent set, then (V − S) is a vertex cover.]
If S is an independent set, there is no edge e = (u, v) in G,
such that both u, v ∈ S. Hence for any edge e = (u, v), at
least one of u, v must lie in (V − S).
=⇒ (V − S) is a vertex cover in G.
[If (V − S) is a vertex cover, then S is an independent set.]
If (V −S) is a vertex cover, between any pair of vertices (u, v) ∈
S if there exists an edge e, none of the endpoints of e would
exist in (V −S) violating the definition of vertex color. Hence,
no pair of vertices in S can be connected by an edge.
=⇒ S is an independent set in G.



Reduction: IndependentSet → VertexCover

IndependentSet(G, k)
1. return VertexCover(G, |V | − k)

IndependentSet poly. time reduces to VertexCover



TSP is in NP-Complete

Problem
Prove that TSP is in NP-Complete.

Solution
1. Show that TSP is in NP:

Suppose we are given a tour in a graph and a natural number
k.
In polynomial time we can verify if the given solution is really
a tour (covers each vertex exactly once, except the last vertex)
and if the total weight of the tour is less than or equal to k.

2. Show that HamiltonianCycle → TSP:
?



Reduction: HamiltonianCycle → TSP

Problem
Problem: Hamiltonian cycle
Input: G = (V, E).
Output: Check if the graph contains a Hamiltonian cycle, i.e.,
a cycle that passes through all the vertices of the graph exactly
once.

Problem
Problem: TSP
Input: Weighted graph G = (V, E) with nonnegative weights
and a natural number k.
Output: Check if the graph contains a simple cycle of length
≤ k (i.e., total weight cost) that passes through all the vertices
of the graph exactly once.



Reduction: HamiltonianCycle → TSP

Source: https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html

Hamiltonian cycle in first graph ⇔ finding TSP of cost 0 is second graph.

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/index.html


Reduction: HamiltonianCycle → TSP

Transformation
For a given graph G = (V, E), create the graph G′ = (V ′, E′) as
follows:
[vertices.] V ′ = V
[edges.] E′ = {(u, v)} for unique vertices u, v in V ′

[weights.] for each edge e in E′:
w(e) = 0 if e is in E,
w(e) = 1 if e is not in E



Reduction: HamiltonianCycle → TSP

HamiltonianCycle(G)⇔ TSP(G′, 0)
Reduction
[HamiltonianCycle(G)⇒ TSP(G′, 0).]
If G contains a Hamiltonian cycle, it forms a cycle in G′ with
total cost 0 because the weights of all the edges is 0. Hence,
there exists a TSP solution in G′ with total cost ≤ 0.
[TSP(G′, 0)⇒ HamiltonianCycle(G).]
If G′ contains a cycle that passes through all vertices exactly
once, and has length ≤ 0, then the cycle contains only the
edges that were originally present in graph G. Hence, there
exists a Hamiltonian cycle in G.



Reduction: HamiltonianCycle → TSP

HamiltonianCycle(G = (V, E))

1. construct complete graph G′ = (V ′, E′) such that V ′ = V
2. for each edge e in E′ do
3. if e is in E then
4. w(e)← 0
5. else
6. w(e)← 1
7. return TSP(G′, 0)

HamiltonianCycle poly. time reduces to TSP


