
Automatic Discovery of Efficient
Divide-&-Conquer Algorithms for
Dynamic Programming Problems

Pramod Ganapathi
(Stony Brook University)

Rezaul Chowdhury, Pramod Ganapathi, Stephen Tschudi, Jesmin Jahan Tithi,
Charles Bachmeier, Charles E Leiserson, Armando Solar-Lezama,
Bradley C Kuszmaul, and Yuan Tang.
ACM Transactions on Parallel Computing (TOPC), 2017

Vision

Problem

specifications

Automatic discovery of

efficient algorithms

Algorithms

Automation

Vending
machines Ticket machines

e-commerce

Manufacturing
House appliances

Self-driving cars Robots

ATMs

Automation in CS

IBM Watson Mathematica
E-mail

Navigation Automated
testing

Text-to-speech
converter

Automatic programming

Problem
specification

Efficient
algorithm

High-performing
implementation

Automatic code generation

Problem
specification

Efficient
algorithm

High-performing
implementation

Automatic algorithm design

Problem
specification

Efficient
algorithm

High-performing
implementation

Aim: Automatic algorithm design

Problem
specification

Efficient
algorithm

Automatic algorithm design
is inevitable

Programming
is hard Machine

architectures
are changing

Problems are
increasing

State-of-the-art in
automatic programming

• Automated parameter tuning
• Automatic parallelizer and locality optimizer
• Program synthesis
• Machine learning
• Self-improving algorithms

No algorithms that can discover
nontrivial (in structure) D&C algorithms

We focus on dynamic
programming (DP) problems

DP recurrence Efficient DP
algorithm

Dynamic programs are important

RNA/protein
folding

All-pairs
shortest path

Viterbi algorithm Word wrapping

Chain matrix
multiplication

Edit distance
Knapsack
problem

Function
approximation

D&C is the best way to
implement dynamic programs

I-DP = iterative algorithms
Tiled I-DP = blocked iterative algorithms
R-DP = recursive divide-and-conquer algorithms

Feature I-DP Tiled I-DP R-DP

Cache-efficiency

Cache-obliviousness

Cache-adaptivity

High parallelism

Highly optimizable kernels

Energy efficiency

Bandwidth efficiency

Currently, D&C algorithms
are designed manually

Sequence alignment

Parenthesis problem
Gap problem

Floyd Warshall’s APSP

Multi-instance Viterbi

Spoken word recog.

Function approx.

I-DP

I-DP

I-DP

I-DP

I-DP

I-DP

I-DP

R-DP

R-DP

R-DP

R-DP

R-DP

R-DP

R-DP

Computational scientists need
efficient dynamic programs

How can I efficiently evaluate my
heat diffusion DP recurrence?

Physicist

Economist

Biologist

How can I efficiently evaluate my
asset pricing DP recurrence?

How can I efficiently evaluate my
protein folding DP recurrence?

We want to automatically discover
efficient and portable DP algorithms

Blackbox
implementation

of a DP
recurrence

Efficient,
portable, &

robust algorithm

Parallelism and cache locality are the
key factors to improve performance

Parallelism

RAM Disk
Block

Block

Cache locality

Communication is more expensive
than computation

Feature L1 L2 L3 RAM Disk

Access time 0.5ns 7ns 20ns 100ns 1 ms

Size 32KB 256KB 20MB 32GB 2TB

Cost - - - $150 $150

Technology SRAM SRAM SRAM DRAM Magnetic

I-DP -> Autogen -> R-DP

I-DP R-DP

Autogen

Example: Parenthesis problem

• Parenthesization that minimizes the cost

• Applications:
• Optimal chain matrix multiplication
• RNA secondary structure prediction
• Optimal binary search trees
• Optimal polygon triangulation
• String parsing for context-free grammar - CYK algorithm
• Optimal natural join of database tables - Selinger algorithm
• Maximum perimeter inscribed polygon
• Offline job scheduling minimizing flow time of jobs

Parenthesis problem recurrence

Input: A string 𝑠1𝑠2…𝑠𝑛
𝐶 𝑖, 𝑗 = cost of parenthesization from 𝑠𝑖 to 𝑠𝑗

Output: 𝐶 1, 𝑛

𝐶[𝑖, 𝑗] = ൞

∞
𝑣𝑗

min
𝑘∈[𝑖,𝑗]

{𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 + 𝑤(𝑖, 𝑘, 𝑗)}

Dependency structure for the
parenthesis problem

Not computed

Computed

Write cell

Read cell

Slow loop DP algorithms (I-DPs)

Loop-Parenthesis(𝐶, 𝑛)
1. for 𝑖 ← 𝑛 − 1 downto 1 do
2. for 𝑗 ← 𝑖 + 2 to 𝑛 do
3. for 𝑘 ← 𝑖 to 𝑗 do

4. 𝐶[𝑖, 𝑗] ← min
𝐶 𝑖,𝑘 +𝐶 𝑘,𝑗
+𝑤 𝑖,𝑘,𝑗 ,𝐶[𝑖,𝑗]

Serial I-DP Parallel I-DP

Fast D&C DP algorithm (R-DP)

Fast D&C DP algorithm (R-DP)

I-DP -> Autogen -> R-DP

Loop-Parenthesis(𝐶, 𝑛)
1. for 𝑖 ← 𝑛 − 1 downto 1 do
2. for 𝑗 ← 𝑖 + 2 to 𝑛 do
3. for 𝑘 ← 𝑖 to 𝑗 do

4. 𝐶[𝑖, 𝑗] ← min
𝐶 𝑖,𝑘 +𝐶 𝑘,𝑗
+𝑤 𝑖,𝑘,𝑗 ,𝐶[𝑖,𝑗]

I-DP

R-DP

Autogen

Autogen works on Fractal-DP
class of DP problems

One-way sweep property: If a cell 𝑥 depends on another cell
𝑦, then 𝑦 is fully updated before 𝑥 reads from 𝑦

Fractal property:

2𝑛 × 2𝑛

𝑛 × 𝑛

Autogen works on Fractal-DP
class of DP problems

One-way sweep property: If a cell 𝑥 depends on another cell
𝑦, then 𝑦 is fully updated before 𝑥 reads from 𝑦

Fractal property:

Fractal property satisfied for:
75% of 16 DP problems in CLRS book
60% of 40 DP problems in Lew and Mauch’s book

2𝑛 × 2𝑛

𝑛 × 𝑛

shrink

𝑛 × 𝑛

Core idea: Find recursive patterns
from DP table updates

Generate DP table accesses for a small DP table. Find
recursive patterns in DP table accesses. Build a recursive

algorithm around these recursive access patterns.

Step 1. Generate a set of
DP table updates

Cellset-Generation(64)
1. for 𝑖 ← 64 − 1 downto 1 do
2. for 𝑗 ← 𝑖 + 2 to 64 do
3. for 𝑘 ← 𝑖 to 𝑗 do
4. Output 𝑖, 𝑗 , 𝑖, 𝑘 , (𝑘, 𝑗)

Loop-Parenthesis(𝐶, 𝑛)
1. for 𝑖 ← 𝑛 − 1 downto 1 do
2. for 𝑗 ← 𝑖 + 2 to 𝑛 do
3. for 𝑘 ← 𝑖 to 𝑗 do

4. 𝐶[𝑖, 𝑗] ← min
𝐶 𝑖,𝑘 +𝐶 𝑘,𝑗
+𝑤 𝑖,𝑘,𝑗 ,𝐶[𝑖,𝑗]

Cell-set

Step 1. Generate a set of
DP table updates

Small problem, say, 𝑛 = 64

Generate cell-dependencies in the form below
writecell, readcell1, … , readcell𝑠

Cell-set = set of all cell dependencies

Step 2. Construct an algorithm-tree

Step 2. Distribute the DP table
updates into buckets

Bucketing: Distribute the cell-dependencies into
4 × 4 × 4 = 64 possible buckets

Step 2. Distribute the DP table
updates into buckets

Step 2. Combine buckets that write-
to and read-from the same regions

Step 2. Combine buckets that write-
to and read-from the same regions

Step 2. After combining buckets

Step 3. Give function names to
nodes of the algorithm-tree

Steps 2&3. Recursively expand
new functions

Steps 2&3. Recursively expand
new functions

A

A A B

B B B B C C C C

C C C C C C C C

Steps 2&3. Labeled algorithm-tree

Step 4. Construct algorithm-DAG

Limitations with algorithm-tree:

- Order of execution

- Parallelism

Solution: Algorithm-DAGs for each function

Four rules to construct algorithm-DAGs

Step 4. Four rules to construct
algorithm-DAGs

Step 4. Algorithm-DAGs for
different recursive functions

Step 4. The DAGs represent an R-DP

Loop-Parenthesis(𝐶, 𝑛)
1. for 𝑖 ← 𝑛 − 1 downto 1 do
2. for 𝑗 ← 𝑖 + 2 to 𝑛 do
3. for 𝑘 ← 𝑖 to 𝑗 do

4. 𝐶[𝑖, 𝑗] ← min
𝐶 𝑖,𝑘 +𝐶 𝑘,𝑗
+𝑤 𝑖,𝑘,𝑗 ,𝐶[𝑖,𝑗]

I-DP

R-DP

Autogen

I-DP -> Autogen -> R-DP

Performance analysis

Theory
Parallelism Work-span model

Cache locality Cache-oblivious model

Practice

Processor Intel Sandy Bridge

#Cores 16

L1, L2, L3, RAM 32KB, 256KB, 20MB, 32GB

Compiler Intel C++ Compiler

Parallelization Intel Cilk Plus

Count cache misses PAPI

I-DP Parallel + nontrivial opt.

Tiled I-DP Pluto-generated + nontrivial opt.

R-DP Simple impl. + trivial opt.

R-DPs are efficient in theory

Problem
I-DP R-DP

Cache comp. Parallelism Cache comp. Parallelism
Parenthesis problem

Θ 𝑛3 Θ 𝑛

Θ 𝑛3/ 𝐵 𝑀

Θ 𝑛3−log 3
Gap problem
Floyd-Warshall's APSP

Θ 𝑛3/𝐵

Θ 𝑛2/ log 𝑛 Θ 𝑛2/log2𝑛
Protein folding

Θ 𝑛
Θ 𝑛2/ log 𝑛

Function approx. Θ 𝑛3−log 3

Matrix multiplication*
Θ 𝑛2 Θ 𝑛2

Multi-instance Viterbi Θ 𝑛3𝑡/𝐵 Θ 𝑛3𝑡/ 𝐵 𝑀

LCS / edit distance

Θ 𝑛2/𝐵

Θ 𝑛

Θ 𝑛2/ 𝐵𝑀

Θ 𝑛2−log 3
Spoken word recog.
Binomial coefficient
Bitonic TSP
Bubble sort*

Θ 1
Θ 𝑛

Selection sort*
Insertion sort* Θ 𝑛2−log 3

R-DPs are efficient in practice

Problem Speedup

Parenthesis 18x

Gap 17x

Floyd-Warshall’s APSP 6x

R-DPs are efficient in practice

Autogen

R-DP

Automatic
discovery of

D&C DP
[TOPC 2017]

[PPoPP 2016]

AutogenWave

Wave R-DP

DP with near-
optimal parallelism

[SPAA 2017]

AutogenFractile

Tiled R-DP

Comm.-optimal
arch.-independent DP

[ICS 2019]

AutogenTradeoff

Hybrid R-DP

Space-adaptive
cache-efficient DP

Viterbi algorithm

Efficient, portable
algo. for irregular DP

[Euro-Par 2016]

Overview of our work

D&C

Automation Performance

Machine-independent
algorithms

Machine-dependent
algorithms

Complete
Partial

Cache locality
Parallelism

Cache-aware
Processor-aware

Space-aware
CPUs, GPUs, Clusters

Cache-oblivious
Processor-oblivious

Cache-adaptive
Processor-adaptive

Problem-solving technique

