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1. INTRODUCTION

Sorting is a computational process of rearranging a
multiset of items in non-descending or non-ascending
order [1]. Sorting is used in real-life scenarios.
Smartphone contacts are sorted based on names;
students’ (resp. employees’ and patients’) profiles are
sorted based on student ID (resp. employee ID and
patient ID); flight (or bus or train) information is sorted
based on time-of-departure; and finally, the importance
given to different jobs/people are sorted based on our
priorities.

Sorting is one of the most fundamental problems in
computer science. Sorting is used as an intermediate
step to solve several computer science problems
[1, 2] such as: bringing all items with the same
identification together, matching items in two or more
files, searching for a specific value, testing if all
elements are unique, deleting duplicates, finding the
kth most frequently occurring element, finding set
union/intersection, finding the closest pair of points,
finding a convex hull, and so on. Even if sorting was
totally useless, it is an exceptionally interesting problem
that leads to several beautiful algorithms and analyses.
For all these reasons, sorting is a well-studied problem
and has a large literature.

Several algorithms have been discovered to sort an
array of size n. More than six decades of research
has yielded over a hundred algorithms to solve the
sorting problem, many of which are either minor or
major variations of tens of standard algorithms. Sorting
algorithms can be classified based on a wide variety
of conditions such as computational complexity, in-
place or not-in-place, stable or unstable, recursive or
non-recursive, comparison-based or not comparison-
based, deterministic or probabilistic, internal-memory

or external-memory, serial or parallel [3, 4], shared-
memory or distributed-memory, adaptive [5] or non-
adaptive, and self-improving [6] or non-self-improving.

Divide-and-Conquer Algorithms for Bubble,
Selection, and Insertion Sorts. Bubble, selection,
and insertion sorts [7] are some of the most
elementary sorting algorithms that are widely taught
to the students of computer science in the lower-
level undergraduate courses on algorithms and/or data
structures. These algorithms are inefficient but popular
majorly because they are arguably simple, intuitive,
easy-to-remember, and easy-to-program. Some of the
fastest sorting algorithms such as merge sort and
quicksort are then introduced to teach the power of the
divide-and-conquer algorithm design technique.

Divide-and-conquer (D&C) is a powerful algo-
rithm design technique used to solve a problem by di-
viding it into two or more subproblems, solving them,
and combining their solutions to solve the original prob-
lem. D&C algorithms have the following important ad-
vantages. (i) They are sometimes efficient [7] in the
sense that they reduce the total number of computa-
tions. (ii) They often are cache-efficient1 [8, 9, 10, 11],
cache-oblivious2 [12], and cache-adaptive3 [13, 14].

There are several other benefits of using the D&C de-
sign technique. (i) The complexities (e.g.: time, space,
and communication) of D&C algorithms can be ana-
lyzed using recurrences [15] as such algorithms are typ-

1Cache-efficient algorithms are those that make efficient use of
caches by bringing in as less data as possible and using them as much
as possible before evicting them.

2Cache-oblivious algorithms are those that don’t need to know
machine parameters such as cache sizes, block sizes, and the number
of levels of memory. Such algorithms are portable across machines
with different cache parameters.

3Cache-adaptive algorithms are those that can adapt well
to computing systems in which the available memory changes
dynamically.
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ically implemented recursively. (ii) They can be par-
allelized easily [16] as the subproblems are typically
independent. (iii) There exist frameworks to auto-
matically or semi-automatically generate D&C algo-
rithms for certain classes of computational problems
[10, 17, 18, 19]. (iv) The D&C algorithms can be
architecture-independent4 [20].

So, a natural question to ask is:

Question

Is it possible to design parallel divide-and-conquer
algorithms for bubble, selection, and insertion sorts
to improve computational complexity and/or data
locality?

In this paper, we answer the question above
affirmatively by designing cache-efficient parallel D&C
algorithms for bubble sort, selection sort, and insertion
sort. Table 1 shows performance comparison of
our algorithms with the existing algorithms. All
our algorithms incur asymptotically fewer cache
misses than those of their iterative counterparts
because they exploit temporal data locality5. Our
algorithms are also highly parallel. Furthermore,
our insertion sort performs O

(
nlog2 3

)
computations,

i.e., polynomially better than that of standard
insertion sort. But, it is also true that asymptotically-
improved bubble, selection, and insertion sorts are
no match to the world’s fastest sorting algorithms.
Nevertheless, the most important usefulness of our
algorithms is not performance but pedagogy. In
addition, designing and analyzing such algorithms is
theoretically interesting. The presented algorithms
serve as good examples or exercises to teach the
design and analysis of parallel divide-and-conquer
algorithms.

A parallel comparison sorting algorithm is work-
optimal if it performs Θ (n log n) computations. Some
parallel D&C sorting algorithms such as 2-way merge
sort [21], 2-way randomized quicksort [21],

√
n-way

randomized sample sort [21], 3
√
n-way funnelsort [12],

and
√
n-way distribution sort [12] are work-optimal and

the computational complexity for randomized quicksort
is whp6. Sorting algorithms such as ours are not work-
optimal.

There are similarities and differences between our
sorting algorithms and parallel merge sort and parallel
randomized quicksort. Our bubble and selection
sorts use algorithm-specific Partition idea similar
to that of quicksort. Likewise, our insertion sort

4Architecture-independent algorithms are those that run on both
shared-memory and distributed-memory machines with almost no
change to their core algorithmic structure.

5An algorithm must have the following two features in order to
make good use of cache. (i) Spatial data locality: Whenever a cache
block is brought into the cache, it contains as much useful data as
possible. (ii) Temporal data locality: Whenever a cache block is
brought into the cache, as much useful work as possible is performed
on this data before removing the block from the cache.

6An event E is said to occur with high probability (whp) if

Probability(E) ≥ 1− α/nβ , where α ≥ 1 and β > 0 are constants.

uses algorithm-specific Merge idea similar to that of
merge sort. Unlike merge sort and quicksort, our
algorithms are not computationally efficient. This is
because of the slow Partition and Merge functions
that our algorithms use, which call themselves four
or three times, respectively. In contrast, the Merge
function of merge sort calls itself twice [21]. Similarly,
the Partition function of quicksort usually uses the
PrefixSum function [21] instead of calling Partition
recursively and the PrefixSum function can be
considered as a 2-way D&C. Some more differences are
as follows. The Merge function in standard merge sort
is not-in-place whereas the Merge function in our D&C
insertion sort is in-place. Quicksort Partition works
on an array and uses a randomized pivot whereas the
Partition function in our D&C bubble and selection
sorts works on two arrays and does not use a pivot.

Our Contributions. The major contributions of this
paper are:
(1) [Theory.] We present parallel recursive divide-
and-conquer algorithms for bubble sort, selection sort,
and insertion sort. We prove their correctness and
analyze their complexities, as shown in Table 1. Our
insertion sort performs O

(
nlog2 3

)
computations, i.e.,

polynomially better than that of standard iterative
insertion sort. Our algorithms are cache-efficient and
highly parallel.
(2) [Practice.] We implement the parallelized and
optimized versions of our algorithms and compare them
with their standard iterative counterparts to achieve
around 20× to 1300× speedup, depending on the
algorithm and the input distribution.

Related Work. Variations of bubble sort [22, 23] exist
such as cocktail sort [1], where the direction of bubbling
alternates between left-to-right and right-to-left, and
odd-even sort [24]. Selection sort variants include bingo
sort [25], which scans the remaining elements to find the
greatest value and shifts all elements with that value to
their final locations.

Insertion sort variants include Shell sort [26], where
elements separated by a distance are compared; binary
insertion sort, which uses binary search to find the
exact location of the new elements to be inserted; heap
sort [27], where insertions and searches are performed
with a sophisticated data structure called a heap; and
library sort [28], where small number of spaces are left
unused to make gaps for the elements to be inserted.
Insertion sort is generally faster than selection sort
which typically is faster than bubble sort.

The cache performance of sorting algorithms have
been studied by LaMarca and Ladner [29]. The lower-
bounds for data transfers for external-memory sorting
algorithms are given by Aggarwal and Vitter [30].

Model of Computation. We analyze the perfor-
mance of a parallel algorithm on a shared-memory mul-
ticore machine in the binary-forking model [31] using
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Existing Algorithm Our Divide-and-Conquer Algorithm

Work Serial cache Span Work Serial cache Span

Problem (T1) complexity (Q1) (T∞) (T1) complexity (Q1) (T∞) Result

Bubble sort [7] Θ
(
n2

)
Θ
(

n2

B

)
Θ
(
n2

)
Θ
(
n2

)
O

(
n2

BM

)
Θ (n) Section 2

Selection sort [7] Θ
(
n2

)
Θ
(

n2

B

)
Θ
(
n2

)
Θ
(
n2

)
O

(
n2

BM

)
Θ (n) Section 3

Insertion sort [7] O
(
n2

)
O

(
n2

B

)
O

(
n2

)
O

(
nlog2 3

)
O

(
nlog2 3

BM log2 3−1

)
O (n) Section 4

TABLE 1. Work (T1), serial cache complexity (Q1), and span (T∞) of iterative and recursive divide-and-conquer algorithms
for bubble sort, selection sort, and insertion sort. The serial cache complexity is given for n = Ω (M), where M ≥ B. All
notations used are described in Table 2.

the work-span performance metrics [32]. The total num-
ber of computations of a parallel algorithm is called
work and denoted by T1(n). It is also the serial running
time of the algorithm. The running time of an algorithm
on a machine with an infinite number of processors is
called span and denoted by T∞(n). The parallel run-
ning time of an algorithm on p processors, denoted by
Tp(n), when scheduled by a greedy scheduler is given
by Tp(n) = O (T1(n)/p+ T∞(n)). The parallelism of
an algorithm is computed by the ratio T1(n)/T∞(n).

We analyze the performance of an algorithm using the
cache-oblivious model (or ideal-cache model) [12]. We
measure the total number of cache misses or page faults,
called cache complexity. Cache complexity captures the
total number of data transfers between adjacent levels
of memory. It is important to reduce data movements
because communication is usually more expensive than
computation. The serial cache complexity, denoted by
Q1(n), is the cache complexity of an algorithm on a
serial machine. On the other hand, the parallel cache
complexity is Qp(n) = O (Q1(n) + p(M/B)T∞(n)) with
high probability when run under the randomized work-
stealing scheduler on a p-processor parallel machine
with private caches. Here, M and B denote the cache
size and the cache line size, respectively, where M ≥ B.

Organization of the Paper. The paper is organized
as follows. In Sections 2, 3, and 4, we present divide-
and-conquer algorithms for bubble sort, selection sort,
and insertion sort, respectively. In Section 5, we present
experimental results of our algorithms. We conclude in
Section 6.

2. BUBBLE SORT

Table 2 summarizes the notations used in the paper.
The array to be sorted is A[0..n− 1]. For simplicity, we
assume that n is a power of 2. In all recursive function
calls, we use notations such as `, h,m, ``, `h, r`, rh, etc,
all of which represent indices in array A. Notations
`,m, h mean low, mid, and high, respectively. Terms ``
and rm mean low in the left subarray and mid in the
right subarray, respectively. Other terms can be defined
in a similar way. When subproblem size (h − ` + 1) or
say (`h− ``+ 1) becomes less than or equal to the base
case size b, then we execute an iterative base case kernel
having an algorithm-dependent logic.

Symbol Meaning

A Array to be sorted

n Number of array elements

b Base case size

`, h,m Low, high, and mid

`` Left subarray’s low index

rh Right subarray’s high index

p Number of processors

M,B Cache size, cache line size

T1 Work or total #computations

T∞ Span or critical-path length

Tp Parallel running time

T1/T∞ Parallelism

Q1 Serial cache complexity

Qp Parallel cache complexity

TABLE 2. Notations used in paper.

A simple iterative algorithm BubbleSort-
Iterative is given in Figure 1. It has n iterations.
In each iteration i (∈ [0, n − 1)), every two adjacent
elements j and j + 1, where j ∈ [0, n − i − 1], are
compared and sorted if they are not already in their
sorted order. The number of comparisons at iteration
i is n − i and at the end of the iteration, the array’s
(i+ 1)th largest element will be in its correct position.

A recursive divide-and-conquer bubble sort algorithm
BubbleSort is shown in Figure 1. The aim
is to sort the entire array A[0..n − 1]. The
function BubbleSort(A[`..h]) sorts the subarray
A[`..h]. The initial invocation to the algorithm is
BubbleSort(A[0..n − 1]). The function in turn calls
the Partition function. The Partition function
brings the smallest n/2 elements to the left half and
the largest n/2 elements to the right half of array A.
Once the array A is partitioned, then BubbleSort
is recursively called onto the left and right halves in
parallel to sort the two halves. After the two halves are
sorted recursively, the entire array A[0..n − 1] will be
sorted. When a subproblem reaches the base case, it is
sorted using the standard iterative bubble sort logic.

The partition function Partition(A[``..`h],
A[r`..rh]) partitions the elements such that after
the partition, the largest element in A[``..`h] will be
less than or equal to the smallest element in A[r`..rh].
The function works as follows.
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BubbleSort-Iterative(A[0..n− 1])

1. for i← 0 to n− 1 do
2. for j ← 0 to n− i− 1 do
3. if A[j] > A[j + 1] then
4. Swap(A[j], A[j + 1])

BubbleSort(A[`..h])

Sorts a given array by parallel divide-and-
conquer bubble sort
Input: Subarray A[`..h] of orderable elements
Output: A[`..h] sorted in nondecreasing order

1. if (h− `+ 1) ≤ b then
2. for i← ` to h− 1 do
3. for j ← ` to `+ h− i− 1 do
4. if A[j] > A[j + 1] then
5. Swap(A[j], A[j + 1])
6. else
7. m← (`+ h)/2
8. Partition(A[`..m], A[m+ 1..h])
9. par: BubbleSort(A[`..m]),

BubbleSort(A[m+ 1..h])

Partition(A[``..`h], A[r`..rh])

Partitions elements between two subarrays with-
out using a pivot
Input: Two equal sized non-overlapping subar-
rays A[``..`h] and A[r`..rh]
Output: Partition the elements such that all el-
ements in A[``..`h] are less than or equal to all
elements in A[r`..rh]

1. if (`h− ``+ 1) ≤ b then
2. for i← r` to rh do
3. for j ← `` to `h− 1 do
4. if A[j] > A[j + 1] then
5. Swap(A[j], A[j + 1])
6. if A[`h] > A[i] then
7. Swap(A[`h], A[i])
8. else
9. `m← (``+ `h)/2; rm← (r`+ rh)/2

10. par: Partition(A[``..`m], A[r`..rm]),
Partition(A[`m+1..`h], A[rm+1..rh])

11. par: Partition(A[``..`m], A[rm+ 1..rh]),
Partition(A[`m+ 1..`h], A[r`..rm])

FIGURE 1. A recursive divide-and-conquer bubble
sort algorithm. Initial call to the recursive algorithm is
BubbleSort(A[0..n − 1]), where A[0..n − 1] is the array
to be sorted.

In the base case, we use two loops: the outer-loop
ranging over the right subarray and the inner-loop
ranging over the left subarray. Using a logic similar
to that of iterative bubble sort, the largest elements in
the left subarray are pushed to the right subarray after
every iteration.

In the recursion case, the Partition calls itself
four times. The reason for requiring four function
calls is simple. Let `m and rm be the midpoints

of the left and right subarray, respectively. The left
subarray A[``..`h] can be divided into two subarrays
A[``..`m] and A[(`m + 1)..`h] and the right subarray
A[r`..rh] can be divided into two subarrays A[r`..rm]
and A[(rm+1)..rh]. This means there are a total of four
possible combinations of left and right subarrays. In the
first parallel step, the Partition function invokes two
Partition functions in parallel that work on different
regions of the array. In the second parallel step, two
more Partition functions are invoked in parallel that
work on disjoint regions. After the four self-invocations,
the larger elements of the entire array would have moved
to the right subarray leaving the smaller elements in the
left subarray.

The proof of correctness and complexity analysis
of BubbleSort are given in Theorems 2.1 and 2.2,
respectively.

Theorem 2.1 (Bubble Sort Correctness).
BubbleSort correctly sorts an unsorted array.

Proof. We use mathematical induction to prove the
theorem. First we prove the correctness of Partition
function. Then we prove BubbleSort correct. We
assume that n and b are powers of 2 such that n ≥ b.
We say A[``..`h] and A[r`..rh] as left and right input
subarrays, respectively.

(1) [Correctness of Partition.]
Basis. The base case logic when the input subarray is
of size b is straightforward. The external loop runs b
times and in each iteration, an element that is greater
than or equal to b number of elements moves to the
right subarray.
Induction. We assume that Partition works correctly
when the input subarrays are of size 2k for some k, such
that 2k ≥ b. We need to prove that Partition works
for subarrays of size 2k+1.

Let Q1, Q2, Q3, and Q4, where Q stands for
“quarter”, represent the subarrays A[``..`m], A[(`m +
1)..`h], A[r`..rm], and A[(rm + 1)..rh], respectively,
where each subarray is of size 2k. Let W,X, Y , and
Z be the initial sets (not lists) of numbers present at
Q1, Q2, Q3, and Q4, respectively. Let Small(S1, S2)
(resp. Large(S1, S2)) of two equal-sized sets S1 and
S2 of numbers represent a set consisting of the smallest
half (resp. largest half) of the numbers from sets S1

and S2. Also, let S1 ≤ S2 denote that all elements of
S1 are less than or equal to all elements of S2.

Consider the Partition function in Figure 1. After
execution of line 9, the states of the four quarters of
the array A are Q1 = W , Q2 = X, Q3 = Y , and
Q4 = Z. After execution of line 10, the states of the
four quarters of the array A are: Q1 = Small(W,Y ),
Q2 = Small(X,Z), Q3 = Large(W,Y ), and Q4 =
Large(X,Z). After execution of line 11, the states of
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the four quarters of the array A are:

Q1 = Small(Small(W,Y ),Large(X,Z))

Q2 = Small(Small(X,Z),Large(W,Y ))

Q3 = Large(Small(X,Z),Large(W,Y ))

Q4 = Large(Small(W,Y ),Large(X,Z))

It is easy to see that

Q1 ≤ Q4 and Q1 ≤ Small(W,Y ) ≤ Large(W,Y ) ≤ Q3

Q2 ≤ Q3 and Q2 ≤ Small(X,Z) ≤ Large(X,Z) ≤ Q4

As Q1 ≤ Q3, Q1 ≤ Q4, Q2 ≤ Q3, and Q2 ≤ Q4, the
input subarrays of size 2k+1 have been partitioned.

(2) [Correctness of BubbleSort.]
Basis. The base case when the input subarray is of size
b is exactly the same as the standard iterative bubble
sort.
Induction. We assume that BubbleSort works
correctly when the input subarrays are of size 2k for
some k, such that 2k ≥ b. We need to prove that
BubbleSort works for input subarrays of size 2k+1.
We know that the Partition function is correct and
hence after line 8, the left subarray (A[`..m]) and the
right subarray (A[(m+1)..h]) would be partitioned such
that the largest element in the left subarray will not be
greater than the smallest element in the right subarray.
Then after line 9, we recursively sort the subarrays
without affecting the partition constraint and hence the
total subarray will be sorted.

Theorem 2.2 (Bubble Sort Complexity).
BubbleSort incurs O(n2/(BM) + n/B + 1) cache
misses and has Θ (n) span.

Proof. Let Qf1 (n) and T f∞(n) denote the number of
serial cache misses and span of algorithm f , respec-
tively. Let BS-I, BS, and Part denote BubbleSort-
Iterative, BubbleSort, and Partition, respec-
tively. Then,

QBS-I
1 (n) =

∑n−1
i=0 Θ (((n− i)/B) + 1) = Θ

(
n2/B + n

)
.

QBS
1 (n) = QPart

1 (n) = O (n/B + 1) if n ≤ γM ,
QBS

1 (n) = 2QBS
1 (n/2) +QPart

1 (n/2) +O (1) if n > γM ,
QPart

1 (n) = 4QPart
1 (n/2) +O (1) if n > γM .

TBS
∞ (n) = TPart

∞ (n) = O (1) if n = 1,
TBS
∞ (n) = TBS

∞ (n/2) + TPart
∞ (n/2) +O (1) if n > 1,

TPart
∞ (n) = 2TPart

∞ (n/2) +O (1) if n > 1.

where, γ is a constant. The cache complexity of a
subproblem of size n when it fits cache i.e., n ≤ γM , is
Θ (n/B + 1) = O (M/B + 1). The cache complexity
of a subproblem when it does not fit into cache is
recursively computed using its subproblems. The cache
complexity recurrence can be solved using an approach
similar to the one given in the proof of Theorem 4.2 and
by replacing log 3 with log 4. The span recurrence can
be solved by using the master theorem [33, 32] first on
the Partition function and then on BubbleSort.

SelectionSort-Iterative(A[0..n− 1])

1. for i← 0 to n− 2 do
2. min← i
3. for j ← i+ 1 to n− 1 do
4. if A[j] < A[min] then
5. min← j
6. Swap(A[i], A[min])

SelectionSort(A[`..h])

Sorts a given array by parallel divide-and-
conquer selection sort
Input: Subarray A[`..h] of orderable elements
Output: A[`..h] sorted in nondecreasing order

1. if (h− `+ 1) ≤ b then
2. for i← ` to h− 1 do
3. min← i
4. for j ← i+ 1 to h do
5. if A[j] < A[min] then
6. min← j
7. if min 6= i then
8. Swap(A[i], A[min])
9. else

10. m← (`+ h)/2
11. Partition(A[`..m], A[m+ 1..h])
12. par: SelectionSort(A[`..m]),

SelectionSort(A[m+ 1..h])

Partition(A[``..`h], A[r`..rh])

Partitions elements between two subarrays with-
out using a pivot
Input: Two equal sized non-overlapping subar-
rays A[``..`h] and A[r`..rh]
Output: Partition the elements such that all el-
ements in A[``..`h] are less than or equal to all
elements in A[r`..rh]

1. if (`h− ``+ 1) ≤ b then
2. for i← `` to `h do
3. min← i
4. for j ← r` to rh do
5. if A[j] < A[min] then
6. min← j
7. if min 6= i then
8. Swap(A[i], A[min])
9. else

10. `m← (``+ `h)/2; rm← (r`+ rh)/2
11. par: Partition(A[``..`m], A[r`..rm]),

Partition(A[`m+1..`h], A[rm+1..rh])
12. par: Partition(A[``..`m], A[rm+ 1..rh]),

Partition(A[`m+ 1..`h], A[r`..rm])

FIGURE 2. A recursive divide-and-conquer selection
sort algorithm. Initial call to the recursive algorithm is
SelectionSort(A[0..n− 1]), where A[0..n− 1] is the array
to be sorted.

3. SELECTION SORT

Selection sort is another slow running sorting algorithm
that sorts n numbers in O

(
n2
)

time.
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An iterative algorithm SelectionSort-Iterative
is given in Figure 2. The algorithm has n iterations.
In each iteration i ∈ [0, n − 1], the position of the
minimum element, denoted by min is found in the range
A[i..n − 1]. Then the elements A[min] and A[i] are
swapped. The algorithm makes sure that after iteration
i, the ith smallest element is in its correct position.

A recursive divide-and-conquer selection sort algo-
rithm SelectionSort is shown in Figure 2. The initial
invocation to the algorithm is SelectionSort(A[0..n−
1]). The recursive structure of the algorithm is exactly
the same as that of bubble sort. The SelectionSort
function invokes the Partition function to partition
the array A into two halves where the largest element
in the first half is lesser than or equal to the small-
est element in the second half. After the partition,
the SelectionSort functions are invoked on the two
halves to sort them recursively. The partition function
Partition calls itself four times in two parallel steps.
The only difference between the bubble sort and se-
lection sort divide-and-conquer algorithms are the base
cases of SelectionSort and Partition functions.

The base case kernel of SelectionSort function is
equivalent to SelectionSort-Iterative. In the base
case kernel of the Partition function, in each iteration,
an element that is lesser than or equal to b elements is
pushed to the left subarray. After several iterations, the
elements in the two subarrays would be partitioned in
such a way that the largest element in the left subarray
A[``..`h] would be lesser than or equal to the smallest
element in the right subarray A[r`..rh].

The proof of correctness and complexity analysis of
SelectionSort are given in Theorems 3.1 and 3.2,
respectively.

Theorem 3.1 (Selection Sort Correctness).
SelectionSort correctly sorts an unsorted array.

Proof. We use mathematical induction to prove the
theorem. First we prove the correctness of Partition
function. Then we prove SelectionSort correct. We
assume that n and b are powers of 2 such that n ≥ b.
We say A[``..`h] and A[r`..rh] as left and right input
subarrays, respectively.

(1) [Correctness of Partition.]
Basis. The logic of the base case when the input
subarray is of size b is straightforward. The external
loop runs b times. In each iteration, we find the index
of the smallest element in the right subarray and if that
element is less than an element in the left subarray, then
we swap the two elements. In this way, the smallest b
elements will move to the left subarray.
Induction. The argument is similar to that given in
Theorem 2.2.

(2) [Correctness of SelectionSort.]
Basis. The base case when the subarray is of size b is
exactly same as the standard iterative selection sort.
Induction. The argument is similar to the one in

Theorem 2.2.

Theorem 3.2 (Selection Sort Complexity).
SelectionSort incurs O(n2/(BM) + n/B + 1) cache
misses and has Θ (n) span.

Proof. Let Qf1 (n) and T f∞(n) denote the number
of serial cache misses and span of algorithm f ,
respectively. Let SS-I, SS, and Part denote
SelectionSort-Iterative, SelectionSort, and
Partition, respectively. Then,

QSS-I
1 (n) =

∑n−1
i=0 Θ (((n− i)/B) + 1) = Θ

(
n2/B + n

)
.

QSS
1 (n) = QPart

1 (n) = O (n/B + 1) if n ≤ γM ,
QSS

1 (n) = 2QSS
1 (n/2) +QPart

1 (n/2) +O (1) if n > γM ,
QPart

1 (n) = 4QPart
1 (n/2) +O (1) if n > γM .

T SS
∞ (n) = TPart

∞ (n) = O (1) if n = 1,
T SS
∞ (n) = T SS

∞ (n/2) + TPart
∞ (n/2) +O (1) if n > 1,

TPart
∞ (n) = 2TPart

∞ (n/2) +O (1) if n > 1.

where, γ is a suitable constant. The cache complexity
recurrence can be solved using an approach similar to
the one given in the proof of Theorem 4.2 and by
replacing log 3 with log 4. The span recurrence can be
solved by using the master theorem [33, 32] first on the
Partition function and then on SelectionSort.

4. INSERTION SORT

Insertion sort is a pretty fast algorithm compared with
other elementary sorting algorithms, which sorts a set
of n elements in O

(
n2
)

worst and average case time.
An iterative algorithm InsertionSort-Iterative is

given in Figure 3. The algorithm has n − 1 iterations.
In iteration i ∈ [1, n − 1), the array element A[i] will
be inserted in a sorted position in the range A[0..i− 1].
After each iteration i, the subarrayA[0..i] will be sorted.
The runtime complexity is data-sensitive.

A recursive divide-and-conquer insertion sort algo-
rithm InsertionSort is shown in Figure 3. The initial
invocation to the algorithm is InsertionSort(A[0..n−
1]). The recursive structure of the algorithm is dif-
ferent from that of bubble and selection sorts. The
InsertionSort function calls itself twice to sort the
left and right halves separately and simultaneously.
Then it invokes the Merge function to merge the ele-
ments from the two halves using the logic of the iterative
insertion sort. After the merge, the entire array would
be sorted.

The merge function Merge calls itself a total of three
times: the first two calls in parallel and then a third
serial call. The first call Merge(A[``..`m], A[r`..rm])
brings the smallest elements to A[``..`m] in sorted
order. The second call Merge(A[`m + 1..`h], A[rm +
1..rh]) brings the largest elements to A[rm + 1..rh]
in sorted order. The third call Merge(A[`m +
1..`h], A[r`..rm]) brings the remaining elements to
A[`m+ 1..rm] in the sorted order.
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InsertionSort-Iterative(A[0..n− 1])

1. for i← 1 to n− 1 do
2. key ← A[i]
3. j ← i− 1
4. while j ≥ 0 and A[j] > key do
5. A[j + 1]← A[j]
6. j ← j − 1
7. A[j + 1]← key

InsertionSort(A[`..h])

Sorts a given array by parallel divide-and-
conquer insertion sort
Input: Subarray A[`..h] of orderable elements
Output: A[`..h] sorted in nondecreasing order

1. if (h− `+ 1) ≤ b then
2. for i← `+ 1 to h do
3. key ← A[i]
4. j ← i− 1
5. while j ≥ ` and A[j] > key do
6. A[j + 1]← A[j]
7. j ← j − 1
8. A[j + 1]← key
9. else

10. m← (`+ h)/2
11. par: InsertionSort(A[`..m]),

InsertionSort(A[m+ 1..h])
12. Merge(A[`..m], A[m+ 1..h])

Merge(A[``..`h], A[r`..rh])

Merges two sorted arrays into a sorted list
Input: Two equal sized non-overlapping subar-
rays A[``..`h] and A[r`..rh] both sorted
Output: Sorted list of the elements from the
two input subarrays A[``..`h] and A[r`..rh];
Merge is performed in-place

1. if (`h− ``+ 1) ≤ b then
2. if A[`h] > A[r`] then
3. for i← r` to rh do
4. key ← A[i]; j ← i− 1
5. while j ≥ r` and A[j] > key do
6. A[j + 1]← A[j]; j ← j − 1
7. if A[`h] > key then
8. A[r`]← A[`h]; j ← lh− 1
9. while j ≥ `` and A[j] > key do

10. A[j + 1]← A[j]; j ← j − 1
11. A[j + 1]← key
12. else
13. `m← (``+ `h)/2; rm← (r`+ rh)/2
14. par: Merge(A[``..`m], A[r`..rm]),

Merge(A[`m+ 1..`h], A[rm+ 1..rh])
15. Merge(A[`m+ 1..`h], A[r`..rm])

FIGURE 3. A recursive divide-and-conquer insertion
sort algorithm. Initial call to the recursive algorithm is
InsertionSort(A[0..n− 1]), where A[0..n− 1] is the array
to be sorted.

The base case kernel of InsertionSort function is

equivalent to InsertionSort-Iterative. The base
case kernel of the Merge function merges two sorted
subarrays to a sorted array. In iteration k, the kth
element of the right subarray gets merged with its
previous elements in the right subarray and with the
elements of the left subarray. After rh−r`+1 iterations,
the elements in the two subarrays would be merged into
a sorted array – the left subarray will be sorted, the
right subarray will be sorted, and the last element of
the left subarray will be less than or equal to the first
element of the right subarray.

The proof of correctness and complexity analysis of
InsertionSort are given in Theorems 4.1 and 4.2,
respectively.

Theorem 4.1 (Insertion Sort Correctness).
InsertionSort correctly sorts an unsorted array.

Proof. We use mathematical induction to prove the
theorem. First we prove the correctness of the Merge
function. Then we prove InsertionSort correct. We
assume that n and b are powers of 2 such that n ≥ b.
We say A[``..`h] and A[r`..rh] as left and right input
subarrays, respectively.

(1) [Correctness of Merge.]
Basis. The logic of the base case when the input
subarray is of size b is straightforward. The external
loop runs for all elements in the right subarray i.e., b
times. In each iteration, the element from the right
subarray is inserted into its correct position towards its
left by shifting elements.
Induction. We assume that Merge works correctly
when the input subarrays are of size 2k for some k,
such that 2k ≥ b. We need to prove that Merge works
for input subarrays of size 2k+1.

Let Q1, Q2, Q3, and Q4, where Q stands for
“quarter”, represent the subarrays A[``..`m], A[(`m +
1)..`h], A[r`..rm], and A[(rm + 1)..rh], respectively,
where each subarray is of size 2k. Let W,X, Y , and
Z be the initial sets (not lists) of numbers present at
Q1, Q2, Q3, and Q4, respectively. Let Small(S1, S2)
(resp. Large(S1, S2)) of two equal-sized sets S1 and
S2 of numbers represent a set consisting of the smallest
half (resp. largest half) of the numbers from sets S1

and S2. Also, let S1 ≤ S2 denote that all elements of
S1 is less than or equal to all elements of S2. As the
input subarrays are sorted we have W ≤ X. Hence, we
can write W = Small(W,X) and X = Large(W,X).
Similarly, Y ≤ Z. Therefore, we can write Y =
Small(Y,Z) and Z = Large(Y,Z).

Consider the Merge function in Figure 3. After
execution of line 13, the states of the four quarters of
the array A are Q1 = W , Q2 = X, Q3 = Y , and
Q4 = Z. After execution of line 14, the states of the
four quarters of the array A are: Q1 = Small(W,Y ),
Q2 = Small(X,Z), Q3 = Large(W,Y ), and Q4 =
Large(X,Z). After execution of line 15, the states of
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the four quarters of the array A are:

Q1 = Small(W,Y )

Q2 = Small(Small(X,Z),Large(W,Y ))

Q3 = Large(Small(X,Z),Large(W,Y ))

Q4 = Large(X,Z)

It is easy to see that

Q1 = Small(Small(W,X),Small(Y,Z))

= Small(Small(W,Y ),Small(X,Z)) ≤ Q2

Q2 ≤ Q3

Q3 ≤ Large(Large(X,Z),Large(W,Y ))

= Large(Large(W,X),Large(Y, Z)) = Q4

As Q1 ≤ Q2 ≤ Q3 ≤ Q4, the input subarrays of size
2k+1 have been merged.

(2) [Correctness of InsertionSort.]
Basis. The base case when the input subarray is of size
b is exactly same as the standard iterative insertion sort.
Induction. We assume that InsertionSort works
correctly when the input subarrays are of size 2k for
some k, such that 2k ≥ b. We need to prove that
InsertionSort works for input subarrays of size 2k+1.
We know that the InsertionSort function is correct.
Hence, after line 11, the left subarray (A[`..m]) would be
sorted and the right subarray (A[(m+ 1)..h]) would be
sorted. Then after line 12, we merge the two subarrays.
As we have shown that the merge function Merge
is correct, the entire subarray of size 2k+1 would be
merged and sorted.

Theorem 4.2 (Insertion Sort Complexity).
InsertionSort performs O

(
nlog2 3

)
work, incurs

O(nlog2 3/(BM (log2 3)−1) + n/B + 1) cache misses, and
has O (n) span.

Proof. Let T f1 (n), Qf1 (n), and T f∞(n) denote the
work, the number of serial cache misses, and span of
algorithm f , respectively. Let IS-I, IS, and Merge
denote InsertionSort-Iterative, InsertionSort,
and Merge, respectively. Then,

QIS-I
1 (n) =

∑n−1
i=0 O (((n− i)/B) + 1) = O

(
n2/B + n

)
.

T IS
1 (n) = TMerge

1 (n) = O (1) if n = 1,
T IS

1 (n) = 2T IS
1 (n/2) + TMerge

1 (n/2) + Θ (1) if n > 1,
TMerge

1 (n) = 3TMerge
1 (n/2) + Θ (1) if n > 1.

QIS
1 (n) = QMerge

1 (n) = O (n/B + 1) if n ≤ γM ,
QIS

1 (n) = 2QIS
1 (n/2) +QMerge

1 (n/2) +O (1) if n > γM ,
QMerge

1 (n) = 3QMerge
1 (n/2) +O (1) if n > γM .

T IS
∞(n) = TMerge

∞ (n) = O (1) if n = 1,
T IS
∞(n) = T IS

∞ (n/2) + TMerge
∞ (n/2) +O (1) if n > 1,

TMerge
∞ (n) = 2TMerge

∞ (n/2) +O (1) if n > 1.

where, γ is a suitable constant. The span recurrence
can be solved by using the master theorem [33, 32] first
on the Merge function and then on InsertionSort.

The derivation of the serial cache complexity of IS
is given as follows. We initially find QMerge

1 and then
use it to compute QIS

1 . We assume that n/2k = γM for
some γ and all logarithms are taken to the base 2.

QMerge
1 (n) = 3QMerge

1

(n
2

)
+ Θ (1)

= 3kQMerge
1

( n
2k

)
+ Θ (1)

(
3k−1 + · · ·+ 30

)
= 3k

(
QMerge

1

( n
2k

)
+ Θ (1)

)
= O

(( n
M

)log 3
(
M

B

))
= O

(
nlog 3

BM log 3−1

)
Plugging QMerge

1 into the recurrence of QIS
1 , we get

QIS
1 (n) = 2QIS

1

(n
2

)
+QMerge

1

(n
2

)
+ Θ (1)

= 2k
(
QIS

1

( n
2k

)
+ Θ (1)

)
+ Θ (1) ·

( n
M

)log 3
(
M

B

)
·
k∑
i=1

(
1

2(i−1)(log 3−1)

)
= O

(
n

M

(
M

B

)
+
( n
M

)log 3
(
M

B

))
= O

(
nlog 3

BM log 3−1
+
n

B
+ 1

)
Solving the recurrences we get the theorem.

5. EXPERIMENTS

This section presents empirical results showing perfor-
mance improvements of the divide-and-conquer sorting
algorithms from high parallelism and better cache
complexity over their iterative counterparts.

Setup. Our experiments were performed on a mul-
ticore machine with dual-socket 8-core 2.7 GHz Intel
Sandy Bridge processors (2 × 8 = 16 cores in total)
and 32 GB RAM. Each core was linked to a 32 KB
private L1 cache and a 256 KB private L2 cache. All
cores in a processor shared a 20 MB L3 cache. With
hyper-threading, we can simulate a total of 32 threads
from 16 cores. The algorithms were implemented in
C++. Intel Cilk Plus extension was used to parallelize
the programs. Intel C++ Compiler v13.0 (icc) was
used to compile the implementations with parameters
-O3 -ipo -parallel -AVX -xhost. Apart from these
parameters no optimizations were used.

Implementations. The three standard itera-
tive sorting algorithms: BubbleSort-Iterative,
SelectionSort-Iterative, and
InsertionSort-Iterative were implemented with-
out any optimization and the implementations were
inherently serial.
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FIGURE 4. Speedup of the divide-and-conquer bubble, selection, and insertion sorts for (i) random input (left column) and
(ii) descending order input (right column). The definition of speedup is given in Equation 1.

The divide-and-conquer algorithms: BubbleSort,
SelectionSort, and InsertionSort were also
implemented without optimizations. When the
subproblem size (h−`+1 or `h−``+1) became less than
or equal to a base case size b = 28 = 256, we switched to
an iterative kernel having an algorithm-dependent logic.
The recursive algorithms were run with 32 threads. We
define speedup as follows:

Speedup =
Runtime of iterative algorithm

Runtime of recursive algo. with 32 threads
(1)

In our experiments, we used two types of input: (i)
random input (using rand function), and (ii) descend-

ing order input. The input size n was varied from
28 = 256 to 219 = 524288 and the speedup was com-
puted for different algorithms based on Equation 1.

Results. Table 4 shows the speedup graphs for the
three sorting algorithms.

The speedup of the BubbleSort program increased
from 0.7× to 76× for the random input when n
increased. The super-linear speedup is due to cache-
optimality. For the descending order input, the speedup
increased from 0.6× to 30.6×. The good speedup is
majorly due to parallelism and to some extent by the
cache performance.

The SelectionSort program speedup increased
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from ≈ 1× to 23.9× for the random input when n
increased. When the input was in decreasing order, the
speedup increased from ≈ 1× to 19.8×. Compared to
bubble sort, the speedup is less for selection sort. The
reason is that SelectionSort does more number of
comparisons than SelectionSort-Iterative.

For the random input, the speedup of the
InsertionSort program increased from 1.1× to 280×.
For the decreasing order input, the speedup increased
from 1.1× to 1314.7×. Note that such a large speedup
is not possible from parallelism and cache performance
alone. The factor that is increasing the speedup is the
asymptotic less work that the InsertionSort performs
compared to InsertionSort-Iterative as shown in
Theorem 4.2.

6. CONCLUSION

We presented parallel divide-and-conquer algorithms
for bubble sort, selection sort, and insertion sort. The
algorithms are fast (i.e., cache-efficient and parallel) and
portable (i.e., cache-oblivious). The implementations
of our algorithms run significantly faster than their
iterative counterparts. It would be interesting to know
if we can design parallel divide-and-conquer algorithms
related to more sorting techniques.
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