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We present two simple, intuitive, and general algorithmic frameworks that can
be used to design a wide variety of permutation generation algorithms. The
frameworks can be used to produce 19 existing permutation algorithms, including
the well-known algorithms of Heap, Wells, Langdon, Zaks, Tompkins, and Lipski.
We use the frameworks to design two new sorting-based permutation generation

algorithms, one of which is optimal.
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1. INTRODUCTION

Permutations is one of the most important topics in
both combinatorics and computer science. Combina-
torialists are interested in enumeration and analysis
of combinatorial objects such as permutations and
combinations. On the other hand, computer scientists
are more interested in generation of such objects. Per-
mutation generation is one beautiful problem that has
attracted the attention of many scientists for decades.
In over fifty years, more than fifty algorithms have
been developed to generate permutations. The search
for more algorithms continues primarily due to the
sheer interest in solving this problem.

Applications of Permutation Generation. There
are many practical applications that require permuta-
tion generation. A few potential applications include:
(i) Software testing [1]: to test the performance of an
operating system by executing all permutations of a
set of tasks; (ii) Communication networks, cryptogra-
phy, and network security [2]: in error detection and
correction codes that enable reliable delivery of digital
data over unreliable communication channels; (iii)
Randomized algorithms: to generate random permuta-
tions in coding theory and simulations; (iv) Operations
research: in problems such as traveling salesperson
problem (TSP); and (v) Computer security : to unlock
a password using the brute-force attack.

Existing Permutation Algorithms. We consider
algorithms that can generate all distinct n! arrange-
ments/permutations of a set of n distinct elements. Per-
mutation generation algorithms can be classified into
different categories based on how they generate the next
permutation. Permutations are generated based on: (i)
Swaps [3, 4, 5, 6, 7, 8]: where two elements are in-
terchanged; (ii) Adjacent swaps [9, 10, 11, 12]: where

two adjacent elements are interchanged; (iii) Reversals
[13]: where a certain prefix or suffix of a permutation
is reversed; (iv) Counters [14]: where counts of the ele-
ments are decremented and incremented; (v) Rotations
[15, 2]: where a certain prefix or suffix of a permutation
is left- or right-rotated; (vi) Unranking [13, 16]: where
a number from 1 to n! is mapped on to a permutation;
and (vii) Additions [17]: where a number in the base-
n system that represents a permutation is added with
another number in the same base.

Some of the algorithms mentioned above are sur-
veyed in [18, 1, 19, 20, 21]. In the recent three decades,
the focus has been towards developing parallel algo-
rithms to generate permutations [22, 23, 24, 25, 26] as
well as coming up with permutation algorithms for a
multiset [27, 28, 2].

Our Permutation Frameworks. Different permuta-
tion generation algorithms use different techniques to
solve the problem. So, a natural question to ask is:

Question

Is it possible to design a unified framework that can
be used to produce a wide variety of permutation
generation algorithms?

A unified algorithmic framework relates different
permutation algorithms. The generality of a unified
framework helps in the deeper understanding of
the similarities between various seemingly unrelated
permutation algorithms. Furthermore, unification
aids in the design of algorithms (see [29, 30]), both
quantitatively and qualitatively.

In this paper, we present two unified algorith-
mic frameworks to design 19 existing permutation
algorithms. The unified frameworks are based on two
permutation sequences. We use the frameworks to
design two new sorting-based permutation algorithms.
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Existing Permutation Frameworks. Sedgewick [1],
in his classic survey, analyzes different permutation
algorithms and identifies two permutation sequences to
generate permutations. He observes that the control
structure of many permutation algorithms are similar
([1], Section 1) and calls it “factorial counting”, which
is the basis of our first framework. However, the
paper does not give any explicit framework based
on permutation sequences to discover permutation
algorithms. Lipski [8] gives the first explicit scheme
to produce a class of permutation algorithms based on
swaps or interchanges. He gives 16 different algorithms
based on swaps, that includes well-known algorithms
of Heap [4] and Wells [3]. Knuth [31] gives an
explicit framework or generic permutation generator
([31], Algorithm G in Section 7.2.1.2) to discover
permutation algorithms. The framework, which is
slightly complicated, uses the same idea as factorial
counting. Both Sedgewick and Knuth arrive at their
frameworks from the core idea that permutations of
p1, . . . , pi−1 must be generated before the increment
of pi for all i ∈ [2, n]. Frameworks that are used to
generate a variety of combinatoral objects exist [14, 32]
but it is unlikely that they can be used to generate a
wide variety of permutation algorithms.

In our paper, we construct frameworks from the
permutation sequences and not from the constraints
of which elements will be permuted. Though the
underlying idea between Sedgewick and Knuth’s
framework and our first framework is the same, the
approach of constructing the frameworks is fundamen-
tally different. Hence, our frameworks are simpler and
more intuitive. Also, to the best of our knowledge, our
second framework has not been studied in the literature.

Our Contributions. Our contributions are as follows:

(1) [Permutation Frameworks (Section 3).] We
present two simple and unified algorithmic frame-
works based on permutation sequences, which can
be used to design a class of permutation algorithms.
Using the frameworks we are able to produce 21
permutation algorithms including the well-known
algorithms of Wells, Langdon, Zaks, Tompkins,
Lipski, and Heap (probably the fastest permuta-
tion algorithm in practice).

(2) [Permutation Algorithms (Section 4).] We
use the existing permutation sequences to discover
two new permutation generation algorithms that
are based on sorting. We prove their correctness.
We show that the running time of one of the two
algorithms is optimal (i.e., asymptotically fastest).

Organization of the Paper. The paper is organized
as follows. In Section 2, we describe two existing
permutation sequences that are used to generate

n Ln Rn

2 2 2

3 23232 33233

4 23232423232423232423232 44434443444244434443444

TABLE 1. A few initial values of permutation sequences
Ln and Rn.

permutations of a distinct set of elements and give both
recursive and iterative algorithms to generate these
permutation sequences. In Section 3, we present two
generic algorithmic frameworks that use permutation
sequences to produce a class of permutation algorithms.
In Section 4, we present two new algorithms produced
from the frameworks that use sorting to generate
permutations of a set of distinct elements. We conclude
in Section 5.

2. PERMUTATION SEQUENCES

In this section, we define two existing permutation
sequences, describe their properties, present recursive
and iterative algorithms to generate these sequences,
and prove the correctness of algorithms.

2.1. Definitions

A permutation sequence, for a set of n distinct
elements, is a sequence of n! − 1 integers (in the range
[2, n]) that is used to generate all n! permutations of the
set. The recurrence relations of the two permutation
sequences called left and right sequences, denoted by
Ln and Rn, respectively, are:

Ln =

{
2 if n = 2,

Ln−1(nLn−1)n−1 if n > 2.

}

Rn =

{
2 if n = 2,

nn−1u1u2 . . . u(n−1)!−1 if n > 2.

}

where ui = Rn−1[i]nn−1 for i ∈ [1, (n − 1)! − 1]
and Rn−1[i] denotes the ith element of Rn−1. We use
the term ab to mean that a is repeated b times. The
first few values of Ln and Rn are shown in Table 1.
The sequences Ln and Rn are of size n! − 1. These
permutation sequences are not new. They have been
known for decades [12, 1, 13, 18, 33].

2.2. Properties

We give bounds for the average value of the natural
numbers in the two permutation sequences. Theorem
2.1 is due to Zaks. The two following theorems are
helpful in analyzing the computational complexities of
the permutation generation algorithms that use the
corresponding permutation sequences.

Theorem 2.1 (Zaks [13]: Ln average). The average
value of Ln is upper bounded by the Euler’s number, e.
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Proof. Let c(n, i) be the number of times the integer i
occurs in Ln. It is easy to see that c(n, i) = n!(i−1)/i!.
The average value of Ln as n tends to infinity is

lim
n→∞

1

n!− 1

n∑
i=2

i · c(n, i)

= lim
n→∞

1

n!− 1

n∑
i=2

n!

(i− 2)!
=

∞∑
i=2

1

(i− 2)!
= e

Theorem 2.2 (Rn average). The average value of
Rn is lower bounded by n− 1/(n− 2) for n ≥ 3.

Proof. Let an be the average value of Rn. From the
definition of Rn, we have an = (an−1 · ((n− 1)!− 1) +
n · ((n!− 1)− ((n− 1)!− 1)))/(n! − 1). This leads to
an = n+xn(an−1−n), where xn = ((n−1)!−1)/(n!−1).

We use mathematical induction to prove the theorem.
Let ln = n−1/(n−2) and S(n) represent the predicate
an > ln. (a) Basis: For n = 3, a3 = 2.8 > l3 = 2.
Hence, S(3) is true. (b) Induction: Assume S(n− 1) is
true. We need to prove S(n). Consider an−1 > ln−1,
which implies an−1 − n > −(n− 2)/(n− 3).

If p, q < 0 and p > q, then pp′ > qq′, where
q′ > p′ > 0. As LHS and RHS are negative and
1/n > xn > 0, we can multiply xn on LHS and 1/n
on RHS retaining the inequality.

xn(an−1 − n) > − 1

n

(
n− 2

n− 3

)
=⇒ n + xn(an−1 − n) > n− 1

n

(
n− 2

n− 3

)
=⇒ an > n− 1

n

(
n− 2

n− 3

)
=⇒ an > n− 1

n− 2

(
(n− 2)2

n(n− 3)

)
=⇒ an > n− 1

n− 2

(
1− n− 4

n2 − 3n

)
=⇒ an > n− 1

n− 2
+

1

n− 2

(
n− 4

n2 − 3n

)
The term (n − 4)/((n − 2)(n2 − 3n)) ≥ 0 for n ≥ 4.
Therefore, the inequality becomes an > n − 1/(n − 2),
which implies an > ln. Thus, S(n) is true.

2.3. Algorithms

The recursive and iterative algorithms to generate
the two permutation sequences are given in Figure
1. Algorithm ISequenceL and Theorem 2.1 are due
to Zaks [13] and have been incorporated here for
completeness. We use the two recursive algorithms
given in Figure 1 to construct two algorithmic
frameworks in Section 3.

2.4. Proofs of Correctness

We give correctness proofs for the four algorithms to
generate the two permutation sequences.

Theorem 2.3 (SequenceL correctness). Algorithm
SequenceL generates Ln.

Proof. We use mathematical induction to prove the
theorem. Let S(n) represent the statement that the
algorithm generates Ln.
Basis. For n = 2, L2 = 2. Hence, S(2) is true.
Induction. Assume S(n) is true. We need to prove
S(n + 1). The algorithm starts by the invocation
SequenceL(n + 1). We see that the function
SequenceL(n) is called n+ 1 times and between every
two successive calls the integer n+ 1 is generated once.
Clearly, the permutation sequence generation follows
the rule of Ln+1 = Ln((n + 1)Ln)n. Thus, S(n + 1)
is true.

Theorem 2.4 (SequenceR correctness). Algorithm
SequenceR generates Rn.

Proof. We use mathematical induction to prove the
theorem. Let S(n) represent the statement that the
algorithm generates Rn.
Basis. For n = 2, R2 = 2. Hence, S(2) is true.
Induction. Assume S(n) is true. We need
to prove S(n + 1). The algorithm starts by
the invocation SequenceR(2), which in turn calls
SequenceR(3) and the process continues. The
function SequenceR(n) calls SequenceR(n + 1) n
times. In every call of SequenceR(n + 1), the integer
n + 1 will be printed n times. Also, by the assumption
of S(n), an integer of Rn will be printed between every
two successive calls of SequenceR(n + 1). Clearly,
the permutation sequence generation follows the rule of
Rn+1 = (n+1)nu1u2 . . . un!−1, where ui = Rn[i](n+1)n

for i ∈ [1, n! − 1] and Rn[i] is the ith element of Rn.
Thus, S(n + 1) is true.

Theorem 2.5 (Zaks [13]: ISequenceL correctness).
Algorithm ISequenceL generates Ln.

Proof. (simplified from Zaks [13].) We use mathemat-
ical induction to prove the theorem. Let S(n) rep-
resent the statement that the algorithm generates Ln

and when it stops, the configuration will be k = n + 1,
next[i] = i+1 for i ∈ [2, n−1], count[i] = 0 for i ∈ [3, n],
and count[n + 1] = 1.
Basis. For n = 2, L2 = 2 and final configuration is fine.
Hence, S(2) is true.
Induction. Assume S(n) is true. We prove S(n + 1)
explaining the steps from Algorithm ISequenceL and
Table 2 (top).

Step 0: Initially, the count array will be empty.
Step 1: The algorithm generates Ln and configuration
will be k = n + 1, and count[n + 1] = 1.
Step 2: The algorithm generates Ln(n + 1)Ln and
configuration becomes k = n+ 1, and count[n+ 1] = 2.
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SequenceL(k)

Input: k; Output: Ln

Invocation: SequenceL(n)

1. if k = 2 then
2. visit k
3. return
4. SequenceL(k − 1)
5. for i← k to 2 do
6. visit k
7. SequenceL(k − 1)

ISequenceL()

Output: Ln

1. for i← 1 to n + 1 do
2. count[i]← 0
3. next[i]← i + 1
4. k ← 2
5. while k ≤ n do
6. visit k
7. if k 6= 2 then
8. k ← 2
9. else
10. k ← next[2]
11. next[2]← 3
12. count[k]← count[k] + 1
13. if count[k] = k − 1 then
14. count[k]← 0
15. next[k − 1]← next[k]
16. next[k]← k + 1

SequenceR(k)

Input: k; Output: Rn

Invocation: SequenceR(2)

1. if k = n then
2. for i← k to 2 do
3. visit k; return
4. SequenceR(k + 1)
5. for i← k to 2 do
6. visit k
7. SequenceR(k + 1)

ISequenceR()

Output: Rn

1. for i← 1 to n + 1 do
2. count[i]← 0
3. next[i]← i− 1
4. k ← n
5. while k ≤ 2 do
6. if k 6= n then
7. visit k; k ← n
8. else
9. for i← k to 2 do visit k
10. k ← next[n]
11. next[n]← n− 1
12. count[k]← count[k] + 1
13. if count[k] = k − 1 then
14. count[k]← 0
15. next[k + 1]← next[k]
16. next[k]← k − 1

FIGURE 1. Recursive and iterative algorithms to generate the two permutation sequences: Ln and Rn.

Step Output k count[n+1] count[n+2]

0 2 0 0

1 Ln n + 1 1 0

2 Ln(n + 1)Ln n + 1 2 0
...

...
...

...
...

n-1 Ln((n + 1)Ln)n−2 n + 1 n− 1 0

n Ln((n + 1)Ln)n−1 n + 1 0 0

n+1 Ln((n + 1)Ln)n n + 2 0 1

Step Output k count[1]

0 n + 1 0

1 (n + 1)n Rn[1] 0

2 (n + 1)nu1 Rn[2] 0
...

...
...

...

n!-1 (n + 1)nu1u2 . . . un!−2 Rn[n!− 1] 0

n! (n + 1)nu1u2 . . . un!−1 1 1

TABLE 2. Top: Steps in the proof of Theorem 2.5. Bottom: Steps in the proof of Theorem 2.6. Here, ui = Rn[i](n + 1)n

for i ∈ [1, n!− 1].

The process continues.
Step n: The algorithm generates Ln((n+1)Ln)n−1 and
when count[n+1] = n, due to line 13, the configuration
will be count[n + 1] = 0, and next[n] = n + 2.
Step n+ 1: The algorithm outputs Ln((n+ 1)Ln)n and
when n is generated for the last time, the configuration
will be count[n + 2] = 1 and next[n] = n + 1. Thus,
S(n + 1) is true.

Theorem 2.6 (ISequenceR correctness). Algo-
rithm ISequenceR generates Rn.

Proof. We use mathematical induction to prove the
theorem. Let S(n) represent the statement that
the algorithm generates Rn and when it stops, the
configuration will be k = 1, next[i] = i−1 for i ∈ [1, n],
count[i] = 0 for i ∈ [2, n], and count[1] = 1.
Basis. For n = 2, R2 = 2 and final configuration is fine.
Hence, S(2) is true.
Induction. Assume S(n) is true. We prove S(n + 1)
explaining the steps from Algorithm ISequenceR and
Table 2 (bottom).

Step 0: Initially, the count array will be empty.
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Step 1: The algorithm generates (n + 1)n and
configuration will be k = Rn[1] = n and count[k] will
be incremented by 1.
Step 2: The algorithm generates (n+1)nRn[1](n+1)n.
The configuration will be k = Rn[2] with an increment
on count[k]. The algorithm continuously generates the
integers of Rn between consecutive chunks of (n + 1)n.
The process continues.
Step n!: The algorithm outputs (n + 1)nu1u2 . . . un!−1,
where ui = Rn[i](n + 1)n for i ∈ [1, n! − 1] and Rn[i]
is the ith element of Rn. Due to our assumption that
S(n) is true the configuration becomes k = 1 from line
10, next[n+ 1] = n from line 11, and count[1] = 1 from
line 12. As k = 1, the control exits from the while loop
and the algorithm stops. Thus, S(n + 1) is true.

3. PERMUTATION FRAMEWORKS

In this section, we present two generic algorithmic
frameworks that can be used to produce several
permutation generation algorithms.

A permutation framework is a generic algorithmic
structure that can be used to obtain a class of
permutation generation algorithms. Figure 2 shows our
two frameworks with an empty function Func. Both
the frameworks invoke the Func function with the two
parameters: k and i. The aim of the Func function
is to give a meaning to the input parameters k and i
and generate the next permutation from the current
permutation and store it in the global n-sized array
P = [p1, p2, . . . , pn]. We initialize P to [1, 2, . . . , n] and
visit this permutation. It is important to note that
most real-world applications do not require printing
permutations. Hence, in all our pseudocodes, we visit
P which means that we generate or populate P without
actually printing it.

Figure 2 gives 7 definitions of the Func function
that lead to 8 different permutation algorithms. Figure
3 gives 16 definitions used by Lipski, which include
definitions for producing Heap’s (definition 9) and
Wells’s (definition 8) algorithms. By defining the
function Func differently i.e., by giving different
meanings to the natural number k and the loop
parameter i, we end up with 21 different permutation
generation algorithms.

Table 3 gives a summary of the permutation
algorithms produced from the algorithmic frameworks
using various Func functions. We can produce
Zaks’s algorithm [13] from FrameworkL by using
Zaks’s function i.e., Reverse to reverse the last k
elements of the current permutation. We can produce
Langdon’s algorithm [1, 15] from FrameworkR by
using Langdon’s function i.e., a sequence of Rotates
to right rotate the last j (j ← n to k) elements of
the current permutation. We can produce Tompkins-
Paige’s algorithm [1, 34] from FrameworkL by using
Tompkins-Paige’s function i.e., a sequence of Rotate’s
to right rotate the last j (j ← 2 to k) elements of

the current permutation. Tompkins-Paige’s function
presented in this paper is different from that of the
original algorithm but has the same core idea. The
function definitions mentioned above do not make use
of the parameter i. They can be easily modified to work
on the first k (or j) elements of the current permutation
rather of the last k (or j) elements due to symmetry.

We can produce Heap’s [1, 8, 4] and Wells’s
algorithms [1, 8, 3] from FrameworkL by using
functions that in turn use the Swap procedure to
interchange two elements of the current permutation,
one of them being the kth element of P. Similar
to Heap’s and Wells’s algorithms, we can produce 14
more permutation algorithms designed by Lipski [8]
from FrameworkL using the Swap procedure. Refer
to Figure 3 for Lipski’s 16 definitions, which include
definitions for producing Heap’s and Wells’s algorithms.

We show the versatility of the algorithmic frameworks
by designing two new permutation algorithms: Per-
mutationL and PermutationR using the two frame-
works FrameworkL and FrameworkR, respectively.
The Func function used by the frameworks is based
on sorting and in turn uses the SortedNext function
on the last k elements of the current permutation in
P to get a new permutation. It is important to ob-
serve that the SortedNext function is the first func-
tion that works for both frameworks: FrameworkL
and FrameworkR. The two permutation algorithms
PermutationL and PermutationR and their Sort-
edNext function are presented in Section 4.

4. PERMUTATION ALGORITHMS

In this section, we present two permutation generation
algorithms based on permutation sequences and prove
their correctness.

A permutation P = [p1, p2, . . . , pn] is an arrangement
of n distinct elements. For simplicity we assume that
the set of elements for which we want to generate
permutations is the set of natural numbers from 1 to
n. The algorithms we are going to present in the
subsequent sections uses a global array P to store
permutations, which is initialized to [1, 2, . . . , n]. Any
new permutation generated is stored in P.

4.1. Algorithms

We present two permutation generation algorithms
called PermutationL and PermutationR. The two
algorithms are based on left and right permutation se-
quences: Ln and Rn, respectively. This implies that
they are based on FrameworkL and FrameworkR,
respectively. The recursive algorithms for Permuta-
tionL and PermutationR are given in Figure 4. The
iterative algorithms for PermutationL and Permu-
tationR can be easily obtained from the iterative al-
gorithms for generating Ln and Rn, but for simplicity
we consider only recursive algorithms.
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FrameworkL(k)

Input: k, global: n, P ← [1, 2, . . . , n]
Output: Permutations of P
Invocation: FrameworkL(n)

1. if k = 2 then
2. Func(k, k)
3. visit P
4. else
5. FrameworkL(k − 1)
6. for i← k to 2 do
7. Func(k, i); visit P
8. FrameworkL(k − 1)

FrameworkR(k)

Input: k, global: n, P ← [1, 2, . . . , n]
Output: Permutations of P
Invocation: FrameworkR(2)

1. if k = n then
2. for i← k to 2 do
3. Func(k, i); visit P
4. else
5. FrameworkR(k + 1)
6. for i← k to 2 do
7. Func(k, i); visit P
8. FrameworkR(k + 1)

Func(k, i)

Input: k, i, global: n, P
Output: Next permutation of P
{ Any function that works }

Func(k, i) B Our function for FL and FR

1. SortedNext([pn−k+1, pn−k+2, . . . , pn])

Func(k, i) B Langdon’s function for FR

1. for j ← n to k do
2. Rotate([pn−j+1, pn−j+2, . . . , pn])

Func(k, i) B Heap’s function for FL

1. j ← k − i + 1
2. if k % 2 = 0 then Swap(pk, pj)
3. else Swap(pk, p1)

Func(k, i) B Zaks’s function for FL

1. Reverse([pn−k+1, pn−k+2, . . . , pn])

Func(k, i) B Tompkins’s function for FL

1. for j ← 2 to k do
2. Rotate([pn−j+1, pn−j+2, . . . , pn])

Func(k, i) B Wells’s function for FL

1. j ← k − i + 1
2. if k % 2 = 0 and j > 2 then Swap(pk, pk−j)
3. else Swap(pk, pk−1)

FIGURE 2. (Top part) Our two unified algorithmic frameworks to design permutation generation algorithms using
permutation sequences. (Remaining part) Definitions of the Func function used to produce several permutation generation
algorithms. Here, FL = FrameworkL and FR = FrameworkR.

Algorithms Func FrameworkL FrameworkR Reference

Heap Swap 3 − [1, 8, 4]

Wells Swap 3 − [1, 8, 3]

Lipski’s 14 algorithms Swap 3 − [8]

Zaks Reverse 3 − [13]

Tompkins Rotate 3 − [1, 34] -

Langdon Rotate − 3 [1, 15]

Our algorithms SortedNext 3 3 -

TABLE 3. Func functions for 21 permutation algorithms for the two frameworks: FrameworkL and FrameworkR,
respectively. - represents this paper.

The algorithm PermutationL basically generates
the left permutation sequence Ln, which is a sequence of
n!− 1 natural numbers and sends each of these natural
numbers, k, as an argument to the function Func.
Each time the function Func is called it generates the
next permutation from the current permutation using
a special technique and stores the new permutation in
P. Thus, the algorithm PermutationL generates all
the n! permutations of [1, 2, . . . , n]. In a similar way,
PermutationR, too, generates all the n! permutations
of [1, 2, . . . , n] using the right permutation sequenceRn.

The PermutationR algorithm was designed by Anil
Bhandary and the first author.

Both the algorithms PermutationL and Permuta-
tionR call the function Func with a parameter k that
uses a special technique to generate the next permu-
tation by reordering the last k elements of the current
permutation P and not affecting the first n−k elements
of P. The technique is called SortedNext, which is
defined as follows.

Definition 4.1 (SortedNext). Let [a1, a2, . . . , am]
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Func(k, i) B Lipski’s function 1

1. j ← k − i + 1
2. if (k % 2 = 0 and j < k − 1) or k = 2 then
3. Swap(pk, pj)
4. else Swap(pk, p2)

Func(k, i) B Lipski’s function 2

1. j ← k − i + 1
2. if k % 2 = 0 and k > 2 then
3. if j < k − 1 then Swap(pk, pj)
4. else Swap(pk, pk−2)
5. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 3

1. j ← k − i + 1
2. if k % 2 = 0 and k > 2 then
3. if j > 1 then Swap(pk, pk−j)
4. else Swap(pk, pk−2)
5. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 4

1. j ← k − i + 1
2. if k % 2 = 0 then
3. if j < k − 3 or k = 2 then Swap(pk, pj)
4. else Swap(pk, p2k−4−j)
5. else Swap(pk, pk−2)

Func(k, i) B Lipski’s function 5

1. j ← k − i + 1
2. if k % 2 = 0 then
3. if j > 3 or k = 2 then Swap(pk, pk−j)
4. else Swap(pk, pk−4+j)
5. else Swap(pk, pk−2)

Func(k, i) B Lipski’s function 6

1. j ← k − i + 1
2. if k % 2 = 0 then
3. if j = 1 or j = k − 1 then Swap(pk, pk−j)
4. else Swap(pk, pj)
5. else Swap(pk, p1)

Func(k, i) B Lipski’s function 7

1. j ← k − i + 1
2. if k % 2 = 0 then
3. if j = 1 or j = k − 1 then Swap(pk, pj)
4. else Swap(pk, pk−j)
5. else Swap(pk, p1)

Func(k, i) B Lipski’s function 8

1. j ← k − i + 1
2. if k % 2 = 0 and j > 2 then Swap(pk, pk−j)
3. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 9

1. j ← k − i + 1
2. if k % 2 = 0 then Swap(pk, pj)
3. else Swap(pk, p1)

Func(k, i) B Lipski’s function 10

1. j ← k − i + 1
2. if k % 2 = 0 then Swap(pk, pj)
3. else Swap(pk, pk−2)

Func(k, i) B Lipski’s function 11

1. j ← k − i + 1
2. if k % 2 = 0 then
3. Swap(pk, p(k−3+j) % (k−1)+1)
4. else Swap(pk, p1)

Func(k, i) B Lipski’s function 12

1. j ← k − i + 1
2. if k % 2 = 0 then
3. Swap(pk, p(2k−j−3) % (k−1)+1)
4. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 13

1. j ← k − i + 1
2. if k % 2 = 0 and j < k − 2 then Swap(pk, pj)
3. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 14

1. j ← k − i + 1
2. if k % 2 = 0 and j > 2 then Swap(pk, pj−1)
3. else Swap(pk, p1)

Func(k, i) B Lipski’s function 15

1. j ← k − i + 1
2. if k % 2 = 0 and j > 1 then Swap(pk, pj−1)
3. else Swap(pk, pk−1)

Func(k, i) B Lipski’s function 16

1. j ← k − i + 1
2. if k % 2 = 0 then Swap(pk, pk−j)
3. else Swap(pk, p1)

FIGURE 3. FrameworkL can be used to produce Swap-based permutation algorithms using the definitions of Lipski [8].

be a list of m distinct positive integers, and let S =
[s1, s2, . . . , sm] be those m elements in sorted order. Let
Rank(ai), where i ∈ [1,m], represent the position of
the element ai in S i.e., Rank(ai) = j ∈ [1,m] such
that ai = sj. Then, SortedNext for [a1, a2, . . . , am]

is defined as

SortedNext([a1, a2, . . . , am]) = [x1, x2, . . . , xm]

such that xi = s1+(Rank(ai) mod m) ∀i ∈ [1,m]

The recursion trees (or permutation trees) for
generating permutations, are illustrated in Figure 5.
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PermutationL(k)

Input: k, global: n, P ← [1, 2, . . . , n]
Output: Permutations of P
Invocation: PermutationL(n)

1. if k = 2 then
2. Func(k)
3. visit P
4. else
5. PermutationL(k − 1)
6. for i← k to 2 do
7. Func(k); visit P
8. PermutationL(k − 1)

PermutationR(k)

Input: k, global: n, P ← [1, 2, . . . , n]
Output: Permutations of P
Invocation: PermutationR(2)

1. if k = n then
2. for i← k to 2 do
3. Func(k); visit P
4. else
5. PermutationR(k + 1)
6. for i← k to 2 do
7. Func(k); visit P
8. PermutationR(k + 1)

Func(k)

Input: k, global: n, P
Output: Next permutation of P

1. { Apply SortedNext for the last k elements of P }
2. [pn−k+1, . . . , pn]← SortedNext([pn−k+1, . . . , pn])

FIGURE 4. Recursive permutation algorithms PermutationL and PermutationR to generate permutations of P =
[1, 2, . . . , n].

The leaf nodes of the trees represent the permutations.
The nonleaf nodes of the trees represent the elements
in the Ln and Rn permutation sequences. In the
permutation tree corresponding to Ln sequence, when
we go from bottom to top, the nonleaf nodes’ values
increase from 2 to n and the branch factor increases. In
contrast, in the permutation tree corresponding to Rn

sequence, when we go from bottom to top, the nonleaf
nodes’ values decrease from n to 2 and the branch factor
decreases.

The process of generating the next permutation
B from the current permutation A is as follows.
Nodes A and B represent two consecutive leaves
(or permutations) in the inorder traversal of the
recursion tree. Let the node value of the least
common ancestor (LCA) of consecutive leaves A and
B be `. Let Func(k) in Figure 4 be denoted by
Fk. Then, F` is applied on permutation A to
obtain permutation B. Figure 5 depicts the recursion
trees showing the permutations of P = [1, 2, 3] for
PermutationL and PermutationR. Permutations
of P = [1, 2, 3, 4] generated by PermutationL,
PermutationR, Heap’s, Wells’s, Zaks’s, Langdon’s,
and Tompkins’s algorithms are shown in Figure 6.

4.2. Proofs of Correctness

We give correctness proofs for the two permutation
generation algorithms. In our proofs we denote
Func(k) by Fk. Our algorithms work for any initial
permutation of [1, 2, . . . , n].

Theorem 4.1 (PermutationL correctness). Per-
mutationL generates all n! unique permutations of
[1, 2, . . . , n].

Proof. We use induction to prove the theorem. Let S(n)
represent the predicate that PermutationL generates
all n! unique permutations of n elements using Ln.
Basis. For n = 2, L2 = 2. Applying F2 on [1, 2], we get
[2, 1]. Hence, S(2) is true.
Induction. Assume S(n) is true. We need to prove
S(n + 1). The initial permutation is [1, 2, . . . , n + 1].
We know that Ln+1 = Ln((n + 1)Ln)n. By the
assumption of S(n), the algorithm generates all n!
unique permutations starting with 1 by permuting the
last n elements of [1, 2, . . . , n + 1]. Now, Fn+1 is
applied on the last permutation that starts with 1 to
get a permutation starting with 2 because 2 is the
next element of 1 in the sorted set {1, 2, . . . , n + 1}.
The algorithm generates all n! unique permutations
starting with 2 by permuting the remaining n elements.
Again, Fn+1 is applied on the last permutation to get a
permutation that starts with 3 as 3 is the next element
of 2 among all n+1 elements. This process continues for
all n+ 1 elements. At the end, the algorithm generates
a total of (n + 1)n! = (n + 1)! unique permutations.
Thus, S(n + 1) is true.

Theorem 4.2 (PermutationR correctness). Per-
mutationR generates all n! unique permutations of
[1, 2, . . . , n].
Proof. We use induction to prove the theorem. Let S(n)
represent the predicate that PermutationR generates
all n! unique permutations of n elements using Rn.
Basis. For n = 2, R2 = 2. Applying F2 on [1, 2], we
get [2, 1]. Hence, S(2) is true.
Induction. Assume S(n) is true. We need to prove
S(n + 1). The initial permutation is [1, 2, . . . , n + 1].
We know that Rn+1 = (n + 1)nu1u2 . . . un!−1, where
ui = Rn[i](n + 1)n for i ∈ [1, n! − 1] and Rn[i] is the
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3

2 2 2

[1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]

[1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]
F2 F3 F2 F3 F2

2

3 3

[1, 2, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1] [1, 3, 2] [2, 1, 3]

[1, 2, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1] [1, 3, 2] [2, 1, 3]
F3 F3 F2 F3 F3

FIGURE 5. Permutation trees for PermutationL and PermutationR for P = [1, 2, 3].

ith element of Rn. Divide the (n + 1)! permutations
into n! blocks, each block containing n + 1 consecutive
permutations. The first permutation of the first block
is [1, 2, . . . , n + 1]. The algorithm applies Fn+1 for n
times to generate n new permutations. The second
permutation starts with 2 as 2 is the next element of
1 among these n + 1 elements, the third permutation
starts with 3 as 3 is the next element of 2 and this
continues. The first element of all n + 1 permutations
in the first block will be distinct. Similarly, the first
element of all n+ 1 permutations in every block will be
distinct. This implies that there will be a total of n!
permutations starting with 1 (one in every block), n!
permutations starting with 2, so on till element n + 1.

Here we prove that the n! permutations starting
with an element i are distinct. Let Ai and Bi denote
permutations starting with element i in some block k
(∈ [1, n! − 1]) and k + 1, respectively. Permutation Bi
is obtained from Ai on successive applications of Fn+1

for a times, then Fj (j ≤ n is in Rn), and again Fn+1

for b times such that a + b = n + 1. But, applying
Fn+1 a total of n+ 1 times is the same as not applying
anything. This means we would have ended up with the
same permutation Bi had we applied only Fj on Ai.

Ai Bi
Fa

n+1 Fj Fn+1−a
n+1

⇐⇒ Ai Bi
Fj

With this argument along with the assumption of
S(n) being true we see that the n! permutations starting
with an element i are indeed distinct. Hence, the
algorithm generates a total of (n+1)n! = (n+1)! unique
permutations. Thus, S(n + 1) is true.

4.3. Complexity Analysis

The complexity analysis remains the same for both
recursive and iterative permutation algorithms. The
space complexity of each of the two algorithms is
Θ(n). The time complexity to print the permutations
is Ω (n!n) for any permutation algorithm. However,
most real-world applications don’t require printing the
permutations. They need to generate the permutations.
Hence, we will only consider the time complexities (refer
to [35], Section 1.7) to simply compute/generate/visit
all the permutations, which are as follows:

(1) [PermutationL.] The algorithm uses the Ln

permutation sequence. In the sequence Ln, an element
i occurs c(n, i) = n!(i − 1)/i! times. We can use
any optimal comparison-sorting algorithm to compute
SortedNext of a set of i elements. The total time
required for all comparisons to generate permutations
is computed as follows:

Time = Θ

(
n∑

i=2

(
#occurrences of i in Ln
× time for sorting i-sized array

))

= Θ

(
n∑

i=2

(c(n, i) · i log i)

)
= Θ

(
n!

n∑
i=2

log i

(i− 2)!

)

= O

(
n!

∞∑
i=2

log i

(i− 2)!

)
= Θ (n!) (convergence due to ratio test)

The algorithm is optimal as the amortized cost of
computing the next permutation is O (1).

What if we use hashing for SortedNext? Using
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PL PR Heap Wells Zaks Lang. Tom.

[1234] [1234] [1234] [1234] [1234] [1234] [1234]

[1243] [2341] [2134] [2134] [1243] [2341] [1243]

[1324] [3412] [3124] [2314] [1342] [3412] [1342]

[1342] [4123] [1324] [3214] [1324] [4123] [1324]

[1423] [4231] [2314] [3124] [1423] [1342] [1423]

[1432] [1342] [3214] [1324] [1432] [3421] [1432]

[2143] [2413] [4213] [1342] [2341] [4213] [2341]

[2134] [3124] [2413] [3142] [2314] [2134] [2314]

[2341] [3241] [1423] [3412] [2413] [1423] [2413]

[2314] [4312] [4123] [4312] [2431] [4231] [2431]

[2431] [1423] [2143] [4132] [2134] [2314] [2134]

[2413] [2134] [1243] [1432] [2143] [3142] [2143]

[3124] [2143] [1342] [1423] [3412] [1243] [3412]

[3142] [3214] [3142] [4123] [3421] [2431] [3421]

[3214] [4321] [4132] [4213] [3124] [4312] [3124]

[3241] [1432] [1432] [2413] [3142] [3124] [3142]

[3412] [1243] [3412] [2143] [3241] [1432] [3241]

[3421] [2314] [4312] [1243] [3214] [4321] [3214]

[4132] [3421] [4321] [3241] [4123] [3214] [4123]

[4123] [4132] [3421] [2341] [4132] [2143] [4132]

[4231] [4213] [2431] [2431] [4231] [1324] [4231]

[4213] [1324] [4231] [4231] [4213] [3241] [4213]

[4321] [2431] [3241] [4321] [4312] [2413] [4312]

[4312] [3142] [2341] [3421] [4321] [4132] [4321]

FIGURE 6. Permutations of P = [1, 2, 3, 4] using different
algorithms. The PermutationL and PermutationR
algorithms are denoted by PL and PR, respectively.

most standard implementations of hashing to sort items
in the PermutationL algorithm increases the running
time to Θ (n!n) thereby making the algorithm non-
optimal. Hence, it is better to not use hashing with
the PermutationL algorithm as shown in Figure 7.

(2) [PermutationR.] The algorithm uses the Rn

permutation sequence. We use perfect hashing to
compute SortedNext of a set of i elements. Using
indexing (a perfect hashing technique) and consuming
an extra space of Θ(n), these i elements can be sorted
with Θ(n) comparisons. This implies that the total time
required for all comparisons to generate permutations
is Θ(n!n). Hence, the algorithm is non-optimal.

What if we use sorting for SortedNext? Using
optimal comparison-sorting algorithm to sort items in
the PermutationR algorithm increases the running
time of the algorithm to Θ(n!n log n). Hence, it is better
to not use sorting with the PermutationR algorithm
as shown in Figure 7.

Algorithm Hashing Sorting Th.

PermutationL Θ (n!n) Θ (n!) 2.1

PermutationR Θ (n!n) Θ (n!n log n) 2.2

FIGURE 7. Complexities of PermutationL and
PermutationR algorithms. The complexity is affected
by the average value of Ln and Rn sequences and the

data structures and/or algorithms used to implement
SortedNext.

5. CONCLUSION AND FUTURE WORK

We presented two simple, intuitive, and unified algorith-
mic frameworks — FrameworkL and FrameworkR,
that was used to design 21 permutation generation al-
gorithms, including the well-known algorithms of Wells,
Langdon, Zaks, Tompkins, Lipski, and Heap. The two
frameworks are based on two permutation sequences.
We used the permutation frameworks to discover two
new sorting-based permutation generation algorithms
— PermutationL and PermutationR. We proved
that the PermutationL algorithm is optimal.

Here are a few directions for future research:

1. Design the most efficient implementations of
different permutation algorithms derivable from
the two frameworks. (As an example, we strongly
believe that the Johnson-Trotter’s algorithm [10,
11] can be derived from FrameworkR [1]. We
plan to investigate if it is possible to derive
this algorithm from FrameworkR using multiple
approaches such as näıve approach [9], Heap-like
function (Algorithm 3a in [1]), inverse permutation
[36], and loopless algorithms ([36, 12], Algorithm
3b in [1]).)

2. Are all permutation algorithms that use the
sequence Ln (or Rn) derivable from the two
frameworks?

3. Are there permutation sequences other than Ln

and Rn?
4. Are there more permutation generation algorithms

that can be designed using the frameworks?
5. Does there exist a unified permutation framework

from which all permutation algorithms can be
derived?

6. Are there patterns/sequences and algorithmic
frameworks to design several other important
combinatorial objects?
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