
Toward Efficient
Architecture-Independent Algorithms

for Dynamic Programs

Mohammad Mahdi Javanmard1, Pramod Ganapathi2, Rathish Das1,
Zafar Ahmad1, Stephen Tschudi3, and Rezaul Chowdhury1(B)

1 Computer Science, Stony Brook University, Stony Brook, NY, USA
rezaul@cs.stonybrook.edu

2 Computer Science and Engineering, Indian Institute of Technology, Indore, India
3 Google Inc., Mountain View, CA, USA

Abstract. We argue that the recursive divide-and-conquer paradigm
is highly suited for designing algorithms to run efficiently under both
shared-memory (multi- and manycores) and distributed-memory set-
tings. The depth-first recursive decomposition of tasks and data is known
to allow computations with potentially high temporal locality, and auto-
matic adaptivity when resource availability (e.g., available space in
shared caches) changes during runtime. Higher data locality leads to bet-
ter intra-node I/O and cache performance and lower inter-node commu-
nication complexity, which in turn can reduce running times and energy
consumption. Indeed, we show that a class of grid-based parallel recur-
sive divide-and-conquer algorithms (for dynamic programs) can be run
with provably optimal or near-optimal performance bounds on fat cores
(cache complexity), thin cores (data movements), and purely distributed-
memory machines (communication complexity) without changing the
algorithm’s basic structure.

Two-way recursive divide-and-conquer algorithms are known for solv-
ing dynamic programming (DP) problems on shared-memory multicore
machines. In this paper, we show how to extend them to run efficiently
also on manycore GPUs and distributed-memory machines.

Our GPU algorithms work efficiently even when the data is too large
to fit into the host RAM. These are external-memory algorithms based
on recursive r-way divide and conquer, where r (≥ 2) varies based on the
current depth of the recursion. Our distributed-memory algorithms are
also based on multi-way recursive divide and conquer that extends natu-
rally inside each shared-memory multicore/manycore compute node. We
show that these algorithms are work-optimal and have low latency and
bandwidth bounds.

We also report empirical results for our GPU and distribute memory
algorithms.

Keywords: GPU · Recursive divide & conquer ·
Dynamic programming · Exascale · Distributed memory ·
Shared memory · I/O efficiency · Communication efficiency

c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC High Performance 2019, LNCS 11501, pp. 143–164, 2019.
https://doi.org/10.1007/978-3-030-20656-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20656-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-20656-7_8

144 M. M. Javanmard et al.

1 Introduction

Many of the world’s current fastest supercomputers are networks of distributed-
memory hybrid compute nodes where each node houses both latency optimized
multicores (a.k.a. fat cores) and throughput optimized manycores (a.k.a. thin
cores, e.g., GPU cores) connected through a multilevel memory hierarchy [4]1
which is also what an exascale supercomputer is expected to look like in the
near future [41,54]. In addition to allowing various types of parallelism, e.g,
distributed-memory, shared-memory, task (on multicores) and data (on many-
cores), a program running on these supercomputers must exploit data locality
at various levels of computation for efficiency. Indeed, higher data locality leads
to better intra-node I/O and cache performance and lower inter-node commu-
nication complexity, which in turn can reduce running times and lower energy
consumption.

We argue in this paper that the recursive divide-and-conquer paradigm is
highly suited for designing efficient algorithms for both shared-memory and
distributed-memory architectures. The depth-first recursive decomposition of
tasks and data is known to allow computations with potentially high tempo-
ral locality, and automatic adaptivity when resource availability (e.g., avail-
able space in shared caches [13,19]) changes during runtime. Indeed, we show
that a class of grid-based parallel recursive divide-and-conquer algorithms for
solving dynamic programming problems can be run with provably optimal or
near-optimal performance bounds on fat cores (cache complexity), thin cores
(data movements), and purely distributed-memory machines (communication
complexity) without any change in the algorithm’s basic structure.

Dynamic programming (DP) [12,22] is a widely used algorithm design tech-
nique for solving optimization problems that can be decomposed into overlap-
ping subproblems whose optimal solutions can be combined to obtain an optimal
solution to the original problem. DP is extensively used in computational biol-
ogy [32,73], and in many other application areas including operations research,
compilers, sports, economics, finance, and agriculture (see DP refs in [19]).

Dynamic programs are typically implemented using nested loops that fill out
the cells of a DP table using already computed values for other cells. However,
such a looping code is usually not suitable for high performance on a modern
computer with a memory hierarchy as without any temporal locality2 in its data
access pattern it often spends significantly more time in data transfers than in
actual computations.

Tiled looping codes reduce the number of data transfers between two spe-
cific (adjacent) levels of the memory hierarchy by tiling the DP table so that a

1 As of November 2018, the supercomputers ranked 1 (Summit), 2 (Sierra), 6 (ABCI),
7 (Piz Daint), and 8 (Titan) in order of Rpeak (TFlop/s) are networks of hybrid
CPU+GPU nodes [4].

2 Temporal locality — whenever a block of data is brought into a faster level of
cache/memory from a slower level, as much useful work as possible is performed
on this data before removing the block from the faster level.

Architecture-Independent Dynamic Programming Algorithms 145

constant number of such tiles completely fit in the smaller3 of the two levels.
Whenever a tile is brought into the smaller memory level, as much computation
as possible is done with it before replacing it with another tile. In this approach,
the code must know the size of the smaller memory level. The tiled code often
differs significantly from the standard looping code both in structure and in
complexity. Multilevel iterative tiling is possible, but at the expense of signif-
icantly increasing the complexity of the code with each additional level. Fixed
tile sizes can be problematic when the program shares the smaller memory level
with multiple other concurrently running programs because it can adapt neither
automatically nor efficiently as the memory space available to it keeps changing
during running time [13,19].

Recursive parallel 2-way divide-and-conquer DP algorithms perform an
asymptotically optimal number of data transfers between every two adjacent
levels of [19,69]. They do not need to know the sizes of the memories in the hier-
archy, can passively self-adapt to cache sharing [13,19], and the complexity of the
code is independent of the depth of the memory hierarchy. For any given pair of
adjacent memory/cache levels the bounds hold under the ideal cache model [29]
with a fully automatic optimal offline cache replacement policy. LRU replace-
ment policy also works. It has been shown very recently that for a large class of
DP problems these recursive parallel algorithms can be generated automatically
[19,37].

Recursive 2-way divide-and-conquer algorithms are not suitable for GPUs
as those devices have very limited support for recursion and require the pro-
grammer to explicitly transfer data between memory levels (e.g., between global
and shared memories). Explicit communications among compute nodes are also
required during distributed-memory computations. Moreover, these algorithms
may lose parallelism because of artificial dependencies among subtasks [18].

Our Contributions. In this paper, we show how to extend 2-way recursive
divide-and-conquer algorithms designed to solve DP problems efficiently on
shared-memory multicore machines to run efficiently also on manycore GPUs
and distributed-memory machines. The same algorithm without any changes in
its basic structure runs with provable efficiency on all three platforms. Our app-
roach works for the wide fractal DP class [19] that includes Floyd-Warshall’s
APSP, the parenthesis problem, pairwise sequence alignment, and the gap prob-
lem among many others.
(i) [GPU Algorithms]. We design I/O-optimal algorithms for the fractal DP
class [19].

3 I.e., faster and closer to the processing core(s).

146 M. M. Javanmard et al.

Fig. 1. Memory hierarchy
assumed by our GPU algo-
rithms.

Our approach works for arbitrarily deep mem-
ory hierarchies. But in this paper, we target the
one shown in Fig. 1. We assume that the input DP
table is stored either in the RAM or in the disk. Our
algorithms are based on r-way recursive divide-and-
conquer, where r varies based on the level of recur-
sion (i.e., different levels can have different r values).
We use r = 2 at every level of recursion until the
input size drops below the size of the GPU global
memory. At that level we choose r large enough so
that the input is decomposed into chunks that are
small enough to fit in the GPU shared memory. We
do not use the knowledge of the CPU RAM size as

the RAM can be maintained as a fully associative memory with an automatic
LRU page replacement policy (through STXXL [1]). Through the choice of r we
basically resort to iterative tiling once we reach inside the GPU as the device
provides only limited support for recursion.

We prove theoretical bounds showing that we perform an asymptotically opti-
mal number of data transfers between every two adjacent levels of the memory
hierarchy.

We have implemented our GPU algorithms for four DP/DP-like problems:
Floyd-Warshall’s APSP, parenthesis problem, gap problem, and Gaussian elimi-
nation without pivoting. Our programs run significantly faster than all internal-
memory multicore CPU implementations and almost all existing tiled GPU
implementations.
(ii) [Distributed-memory Algorithms]. Our distributed-memory algorithms
are also based on r-way recursive divide and conquer that extends naturally
inside each shared-memory multicore/manycore compute node. Thus these algo-
rithms are, indeed, hybrid distributed-shared-memory algorithms. We show that
they are work-optimal and have latency and bandwidth bounds that are within
log p factor of optimal, where p is the number of compute nodes.

We include empirical performance results for Floyd-Warshall’s APSP, the
parenthesis problem and the gap problem.

Organization. Section 2 presents our approach for designing r-way algorithms.
We describe our GPU results in Sect. 3 with the computing model, related work,
algorithm design, I/O complexities, and experimental results in Sects. 3.1, 3.2,
3.3, 3.4 and 3.5, respectively. Our distributed-memory results are presented in
Sect. 4 with the algorithm design, communication lower bounds, related work,
and experimental results in Sects. 4.1, 4.2, 4.3, and 4.4, respectively. Finally, we
conclude in Sect. 5.

Architecture-Independent Dynamic Programming Algorithms 147

2 Multi-way Recursive Divide and Conquer

In this section, we describe our methodology for designing multi-way (i.e., r-way)
recursive divide-and-conquer algorithms for DP problems in the fractal-DP class
[19]. The 2-way and r-way algorithms will be called 2-way and r-way R-DPs,
respectively.

We will explain our methodology using the parenthesis DP [17,31] which fills
out a 2D table C[0 : n, 0 : n] based on the following recurrence:

C[i, j] = min
i≤k≤j

{C[i, k] + C[k, j] + w(i, j, k)} for 0 ≤ i < j − 1 < n;

assuming C[i, j] = ∞ for 0 ≤ i = j ≤ n and C[i, j] = xj for 0 ≤ i = j − 1 < n,
where, xj ’s are given constants and w(i, j, k) does not incur any I/Os.

The class of problems defined by the recurrence above includes optimal chain
matrix multiplication, RNA secondary structure prediction, optimal polygon
triangulation, string parsing for context-free grammar, and optimal database
joins among others. A 2-way R-DP for the problem can be found in [19].

2.1 r-way R-DP Design

We first use either Autogen [19] or Bellmania [37] to automatically derive the
standard 2-way R-DP for the given DP problem. We then derive an r-way R-
DP from the 2-way R-DP. Indeed, assuming r = 2t for some positive integer t,
each level of recursion of an r-way R-DP can be obtained by unrolling t levels of
recursion of the corresponding 2-way R-DP.The resulting r-way R-DPs typically
have more parallelism than their 2-way counterparts (see Figure 3 in [64] for an
example).

To obtain a multi-way R-DP from a 2-way R-DP, we start with t = 1 and
keep applying the following two refinement steps until we can identify the pattern
in which the recursive functions are called in the resulting unrolled R-DP.

Step 1. Take the 2t-way R-DP, and unroll each recursive function call by one
level (of recursion) based on the 2-way R-DP version of that function.
Step 2. To execute the recursive function calls in the unrolled version from
step 1 in as few stages as possible, we move each such function call to the lowest
possible stage without violating dependency constraints. We follow the following
rules where by W(F) we denote the DP subtable function F writes to and by
R(F) we denote the set of DP subtables F reads from. We say that F is flexible
provided W(F) /∈ R(F), and inflexible otherwise. By F1 → F2 we mean that F1

is executed before F2, F1 ↔ F2 means that order does not matter, and F1||F2

indicates parallel execution.

#1: If W(F1) �= W(F2) and W(F1) ∈ R(F2), then F1 → F2.
#2: If W(F1) = W(F2) and only F1 flexible, then F1 → F2.
#3: If W(F1) = W(F2) and both F1 and F2 are flexible, then F1 ↔ F2.
#4: If F1 and F2 satisfy none of the rules above, then F1||F2.

The new 2t+1-way R-DP has potentially more parallelism than its 2t-way
version.

148 M. M. Javanmard et al.

Fig. 2. An r-way R-DP for parenthesis problem [20].
Here, X, U and V are m × m tables.

Based on the dimension
m of the DP (sub-)table(s)
at any given level of recur-
sion of an r-way R-DP, r
can be set to a constant
or a function of either m
or both m and a particu-
lar cache or memory size
such that the resulting tile
exactly fits into that mem-
ory. When a subproblem
fits into a memory of the
smallest size, we execute an
iterative kernel. Given the
original DP table dimen-
sion n we precompute the
value of r at each recur-
sion level d and store that
in tilesize[d].

In Fig. 2 we show an r-
way R-DP for the paren-
thesis problem with func-
tions Apar, Bpar, and Cpar.
The initial function call is
Apar(C,C,C, 1), where C
is the input DP table. The
term m in all the func-
tions represents the dimen-
sion length at a particular

recursion level. The keyword parallel means that the functions can be invoked
in parallel (Fig. 3).

2.2 Additional r-way R-DP Algorithms

In this work, we have designed and implemented r-way R-DP algorithms for the
following three additional problems.

Gaussian Elimination w/o Pivoting. This DP-like algorithm is used for
solving systems of linear equations and LU decomposition of symmetric positive-
definite or diagonally dominant real matrices [22].

Floyd-Warshall’s APSP. This all-pairs shortest path algorithm [22] uses the
recurrence below. Let D[i, j, k] be the length of the shortest path from vertex vi
to vertex vj with no intermediate vertex higher than vk. Let �(i, j) be the distance
between vi and vj . Then D[i, j, k] = 1 if k = 0 and i = j; D[i, j, k] = �(vi, vj) if
k = 0 and i �= j; and D[i, j, k] = min(D[i, j, k−1],D[i, k, k−1]+D[k, j, k−1]) if

Architecture-Independent Dynamic Programming Algorithms 149

Fig. 3. Reducing the number of parallel stages in Apar after unrolling the recursive
function calls by one level.

k > 0. The third dimension of D can be dropped to solve the problem in space
quadratic in the number of vertices in the graph.

Sequence Alignment with Gap Penalty (Gap Problem). In this problem
[30,31,73], a sequence of consecutive deletes or inserts corresponds to a gap and
they are handled with generic cost functions w and w′. The optimal alignment
cost for strings X = x1x2 . . . xm and Y = y1y2 . . . yn is defined by the following
recurrence: G[i, j] = 0 if i = j = 0, G[i, j] = w(0, j) if i = 0 ∧ j ∈ [1, n],
G[i, j] = w′(i, 0) if j = 0 ∧ i ∈ [1,m], and G[i, j] = min{G[i−1, j−1]+S(xi, yj),
min

0≤q<j
{G[i, q] + w(q, j)}, min

0≤p<i
{G[p, j] + w′(p, i)}} otherwise; where, w and w′

do not incur any I/Os.

3 External-Memory GPU Algorithms

3.1 GPU Computing Model

We give a brief overview of the GPU architecture, its programming model, and
GPU programming challenges.

General Purpose Computing on GPUs. GPUs are attached to CPUs
through PCI bus as hardware accelerators. They have a manycore architecture
with hundreds to thousands of cores, and are designed to have thousands of
light-weight threads, perform highly data-parallel and compute-intensive tasks,
and maximize the throughput of the parallel programs. GPUs support multi-
threading, SIMD, and instruction-level parallelism.

150 M. M. Javanmard et al.

Fig. 4. Organization of an NVIDIA GPU.

An NVIDIA GPU is a set
of Streaming Multiprocessors (SMs)
employing an SIMT computational
architecture. Each SM consists of
many processing cores connected to
a shared memory/L1 cache. The
SMs are connected to the device
(global) memory through an L2
cache. Figure 4 shows this memory
organization.

The most commonly used APIs for general purpose computing on GPUs
include OpenCL, NVIDIA CUDA, Microsoft DirectCompute, OpenACC, and
AMD’s APP SDK.

GPU Programming Challenges. Recursion and divide-and-conquer are pow-
erful tools for designing efficient (I/O-efficient, energy-efficient, and highly paral-
lel), portable (cache- and processor-oblivious) and robust (cache- and processor-
adaptive) algorithms. However, these design techniques involve complicated con-
trol logic and hence they are either unsupported or have very limited support
in GPUs.

Optimizing a GPU program is hard as many factors have big influence on its
performance: thread organization (in blocks of different dimensions with differ-
ent dimension lengths), warp size (the granularity at which the SMs can execute
computations), memory coalescing (consecutive numbered threads access consec-
utive memory locations), and streams and events (overlapping compute kernel
execution and data transfers).

3.2 Related Work (GPU)

Several GPU algorithms exist that solve DP problems: Floyd-Warshall’s APSP
[14,26,27,34,40,47,49,58,71], parenthesis problem family [51–53,56,61,74], and
sequence alignment [45,46,48,62,75]. Most of them are loops tiled for GPU
global and shared memories to exploit temporal locality. Some are based on
tiling derived from recursive divide-and-conquer algorithms that use only matrix-
matrix multiplications on a semiring, e.g., R-Kleene’s algorithm [14,23,55] for
Floyd-Warshall’s APSP. Major limitations of existing results are as follows. First,
almost all existing GPU algorithms assume that the entire DP table fits into the
GPU global memory, and none of them work when the table is too large for the
host RAM. Thus, the size of the problem they can handle is limited by the size of
one of those two levels of memory. Second, no general methodology is known that
work for a large class of DP problems. Third, theoretical performance guarantees
for data transfers and parallelism are often missing.

3.3 GPU Algorithm Design

We will explain how to port the r-way R-DP given in Fig. 2 to a GPU system.
The approach works for all fractal-DP problems. For simplicity, we assume the

Architecture-Independent Dynamic Programming Algorithms 151

4-level memory hierarchy shown in Fig. 1. Handling deeper hierarchies, multiple
GPUs, and multiple shared memories connected to a global memory are not
difficult.

Let us first assume that we know the sizes of the CPU RAM and both
GPU memories, and let the input DP table be present in the external mem-
ory. Hence, the data from the DP table will pass through CPU RAM, GPU
global memory, and GPU shared memory. We define functions host_disk_Apar,
host_RAM_Fpar, device_global_Fpar, and device_shared_Fpar, where F ∈
{A,B,C}. The suffixes Apar, Bpar, and Cpar correspond to the three recursive
functions. Functions with keywords host and device run on the CPU and GPU,
respectively. Input and the output matrices accessed by functions with keywords
disk, RAM, global, and shared reside on CPU disk, CPU RAM, GPU global mem-
ory, and GPU shared memory, respectively.

Initially, host_disk_Apar is invoked with the entire DP table as input. The
function splits the n × n DP table into rd × rd subtables each of size (n/rd) ×
(n/rd), assuming rd divides n for simplicity. The value of rd is chosen such that
the input subtables for the function exactly fit in the RAM. The function invokes
host_RAM_Fpar, where F ∈ {A,B,C}, as per the r-way R-DP algorithm, after
copying the subtables required by that child function to RAM. We do not define
host_disk_Bpar and host_disk_Cpar as they will never be invoked.

Function host_RAM_Fpar splits each of its (n/rd) × (n/rd) sized
input/output tables into rm×rm subtables each of size (n/(rdrm))×(n/(rdrm)),
assuming rm divides (n/rd) for simplicity. It invokes appropriate functions
device_global_Fpar after copying the relevant subtables to the GPU global mem-
ory. This process continues till the functions device_shared_Fpar are reached.
Inside these functions we execute the looping kernels using GPU cores.

Now let’s assume that we do not know the size of the CPU RAM, but it is
maintained as a fully associative memory with an automatic LRU page replace-
ment policy. Then instead of host_disk_Apar and host_RAM_Apar we will only
have host_Apar, and similarly host_Bpar and host_Cpar. Initially, the function
host_Apar is invoked with the entire DP table as input. The function splits the
entire n×n DP table into 2×2 subtables each of size (n/2)× (n/2), assuming n
is divisible by 2 for simplicity. Now if a (n/2)× (n/2) subtable fits into the GPU
global memory we invoke device_global_Fpar, otherwise we recursively invoke
host_Fpar.

3.4 I/O Complexities

We present theoretical bounds on the I/O’s performed by our GPU algorithms.
Let Mm, Mg, and Ms be the sizes of the CPU main memory, GPU global

memory, and GPU shared memory, respectively, and suppose these sizes are
known to the algorithm. So there will be exactly three levels of recursion, and
in each level the algorithm will choose the largest tile size (i.e., the smallest
possible value of r) such that the required number (a constant) of tiles fit in
the next smaller level of memory. Let B, Bm, Bg, and Bs denote the block sizes

152 M. M. Javanmard et al.

between disk and RAM, RAM and global memory, global memory and shared
memory, and shared memory and processor, respectively. All M ’s, n’s, and B’s
are natural numbers.

Theorem 1 (I/O complexity of GPU algorithms). When run on
the GPU memory hierarchy of Fig. 1, the number of data blocks trans-
ferred by the external-memory GPU algorithm (i.e., I/O complexity) between:
(a) disk & RAM: Θ

(
nw

BM
w/d−1
m

+ nw

M
(w+1)/d−1
m

)
, (b) RAM & global mem-

ory: Θ

(
nw

BmM
w/d−1
g

+ nw

M
(w+1)/d−1
g

)
, and (c) global & shared memories:

Θ
(

nw

BgM
w/d−1
s

+ nw

M
(w+1)/d−1
s

)
; where, Θ (nw) is the total work (i.e., time spent

in computation only) performed by the GPU algorithm, and nd is the size of the
original input DP table.

Proof. We assume that the number of submatrices accessed by each recursive
function is upper bounded by a constant. Let nq be the largest tile dimension
a function can use while still making sure that the required number of tiles fit
into a memory of size Mq. Then nd

m = Θ (Mm), nd
g = Θ (Mg) and nd

s = Θ (Ms).
Let ML and MS be the sizes of two adjacent levels of memory and ML ≥ MS .

Let BL be the block transfer size between the two levels. Then the I/O-
complexity of filling the smaller memory once is O (

nd−1
S (nS/BL + 1)

)
. The

smaller memory will be filled Θ ((nL/nS)w) times. Hence, the I/O-complexity
between the two memories is O (

(nL/nS)wnd−1
S (nS/BL + 1)

)
.

We now apply the result above to prove the theorem. The I/O-
complexity between disk and RAM is O((n/nm)wnd−1

m (nm/B + 1)). The I/O-
complexity between RAM and global memory to work on all data present in
RAM is O((nm/ng)wnd−1

g (ng/Bm + 1)). However, the RAM will be filled
Θ ((n/nm)w) times. Hence, the total I/O-complexity between RAM and global is
O((n/ng)wnd−1

g (ng/Bm + 1)). We use a similar reasoning to compute the total
I/O-complexity between global and shared memories. Putting nd

m = Θ (Mm),
nd
g = Θ (Mg) and nd

s = Θ (Ms) we obtain the claimed bounds.

I/O Optimality. The optimality of the I/O bounds presented in Theorem 1 for
any given r-way R-DP follows from the known optimality of the corresponding
2-way R-DP proved under the ideal cache model [29]. We compute the I/O
complexity of an r-way R-DP as the product of the number of subproblems that
exactly fit into the memory and the number of block transfers required to scan
the input and output matrices for a subproblem. Say r = 2t for some t ∈ N.
Then, to compare the I/O complexities of the two algorithms, the r-way R-DP

can be viewed as the 2-way R-DP unrolled t times. The number of subproblems
that exactly fit in the memory will be asymptotically same for both 2-way and
r-way R-DPs. Also, the I/Os required to scan the matrices that exactly fit in
the memory will also be asymptotically the same for both R-DPs. Hence, the
I/O complexities of the two R-DPs will match.

Architecture-Independent Dynamic Programming Algorithms 153

3.5 GPU Experimental Results

We present empirical results showing the performance benefits of our GPU
algorithms.

Setup. All our experiments were performed on a heterogeneous node of the
Stampede supercomputer [2,70]. The multicore machine had a dual-socket 8-
core 2.7GHz Intel Sandy Bridge processors (2×8 = 16 cores in total) and 32GB
RAM. Each core was connected to a 32KB private L1 cache and a 256KB
private L2 cache. All cores in a processor shared a 20MB L3 cache. The node
was attached to a single NVIDIA K20 GPU. The GPU had an on-board GDDR5
memory of 5GB, and 2496 CUDA cores.

All our algorithms were implemented in C++. We used Intel Cilk Plus exten-
sion to parallelize and Intel R© C++ Compiler v13.0 to compile the CPU imple-
mentations with optimization parameters -O3 -ipo -parallel -AVX -xhost. Our
GPU programs were written in CUDA. The programs were compiled with nvcc
compiler with parameters -O3 -gencode arch=compute_35,code=sm_35.

Implementations. We focus on four DP/DP-like problems: Floyd-Warshall’s
APSP (FW-APSP), Gaussian elimination without pivoting [21], parenthesis
problem [17,31], and sequence alignment with gap penalty (gap problem) [30,31].

For all problems we consider the following two implementations where cpu
and gpu prefixes are used to indicate programs written for CPUs and GPUs,
respectively:

For FW-APSP, we also consider: (iii) gpu-tidp-harish: Harish and
Narayanan’s [34] tiled-iterative code, (iv) gpu-tidp-lund: Lund and Smith’s [47]
tiled-iterative code, (v) gpu-tidp-katz: Katz and Kider’s [40] tiled-iterative code,
(vi) gpu-rec-buluc: Buluc et al.’s implementation of the 2-way R-Kleene algo-
rithm with Volkov and Demmel’s optimization [72] for the matrix multiplication
(MM) kernel, and (vii) gpu-rdp-opt: r-way R-DP replaced with Buluc et al.’s
MM-like kernel for MM-like functions (i.e., functions reading from and writing
to disjoint matrices).

For the other three problems (i.e., parenthesis, Gaussian elimination w/o
pivoting, and gap) we could not find any publicly available GPU codes for
comparison.

Optimizations. We list below the optimizations we applied on various programs
in addition to the compiler optimizations enabled by the optimization flags we
used.

Major optimizations applied on gpu-rdp and gpu-rdp-opt are as follows.

(i) We used GPU shared memory by setting BLOCK_SIZE = 32 so that 1024
threads could work on matrices of size 32 × 32 simultaneously. Also, two
blocks with 1024 threads each were run in parallel. But since NVIDIA
K20 can run up to 2496 hardware threads at a time, 448 threads remained
unused. Use of more than 2048 threads required dropping to 16×16 or some
non-power-of-2 size, and then either run into extra overhead for launch-
ing jobs or be way under the 48KB shared memory limit per block. This

154 M. M. Javanmard et al.

ended up being the bigger bottleneck on the system and our preliminary
experiments showed that even with 256 more threads 16 × 16 was worse
than 32 × 32.

(ii) All our DP applications have very predictable data access patterns, and
so a user-managed shared-memory seems more appropriate for them than
an L1 cache. But we tried both Shared Memory/L1 cache configurations
and also tried varying threads, and the best configuration was 48KB shared
memory with 2048 threads. Our most memory-hungry computations access
three disjoint matrices. Hence, a block with BLOCK_SIZE = 32 and single
precision floats uses 3 × 32×32×4

1024 = 12KB of the shared memory and with
double precision floats uses 24KB. Though BLOCK_SIZE = 64 with single
precision floats will fill up the 48KB shared memory, we won’t have enough
threads to compute all 64×64 = 4096 output cells in parallel. Our prelim-
inary experiments showed that 32 was a better choice for BLOCK_SIZE
than 64.

(iii) If a function kernel reads only from submatrices it is not writing to, then
we do not synchronize inside it.

(iv) Row-major order was used for all submatrices. Flipping a submatrix to
column-major degrades performance. Row-major was used for the grid
and inside each block.

(v) GRID_SIZE was set to min {n, 16384}, where 16384 was the maximum size
such that our subproblems can exactly fit in the 5GB of global memory.

(vi) Allocating memory using gpuMalloc() on GPU global memory is slow.
Instead we simply malloc once and then copy the submatrices to the respec-
tive regions.

(vii) We allocate directly in the host’s pinned memory using cudaMallocHost().
This reduces the block transfers between pageable host memory and pinned
memory.

With more aggressive optimizations gpu-rdp and gpu-rdp-opt are likely to
perform even better than what we report in this paper. However, we want to
show that GPU algorithms designed based on recursive divide-and-conquer are
I/O-efficient and remain compute-bound for modern GPUs even when the data
is in external-memory. Once that goal is reached, additional optimizations will
only improve the results.

Additional optimizations used for cpu-rdp include:

(i) #pragma parallel, #pragma ivdep, and min loop count(B),
(ii) 64 byte-aligned matrices,
(iii) write optimization in the basecase – if an innermost loop updates the same

DP table cell repeatedly we apply all of them on a register instead of the
DP cell, and update that cell only once at the end of the loop using the
value in the updated register,

(iv) copy optimization in the basecase – copying the transpose of a column-
major input matrix to a local array in order to access it in unit stride
during computation,

Architecture-Independent Dynamic Programming Algorithms 155

(v) pointer arithmetic, and
(vi) Z-morton layout (only for the gap problem). Each of our DP applications in

this paper runs in Θ
(
n3

)
time which asymptotically dominates the Θ

(
n2

)
time needed for layout conversion of the input matrix. Indeed, we have found
that the layout conversion time has very little impact on the actual running
times.

The three tiled-iterative implementations of FW APSP used 32 × 32 tiles.

Internal-Memory Results. Figure 5 shows the speedup of various programs
w.r.t. cpu-rdp for four DP problems. For each program, the DP table dimension
n is varied from 210 to 215. For single precision floats n = 215 is the largest power
of 2 for which an n × n DP table (using 4GB space) completely fits inside the
5GB GPU global memory.

For FW-APSP, gpu-rdp-opt was the second fastest running program with
gpu-rec-buluc running 1.5 times faster for n = 215. This is because unlike gpu-
rec-buluc, all kernels of gpu-rdp-opt were not MM-like and hence it ran slower
than Buluc et al.’s implementation. While our gpu-rdp and gpu-rdp-opt continued
to run for n = 216 and beyond, none of the other GPU implementations did as
they did not have mechanisms to expand beyond the GPU global memory.

When n = 215, our gpu-rdp programs for the Gaussian elimination, paren-
thesis and gap problems ran 1.3×, 11×, and 2.8× faster, respectively, than their
cpu-rdp counterparts. The speedup factors achieved by the GPU algorithms for
the parenthesis and gap problems are higher than that for FW-APSP/Gaussian
elimination because gpu-rdp for the former two problems have higher parallelism
than the latter two.

External-Memory Results. It is easy to extend our algorithms to work for
DP tables that are too large to fit in the CPU RAM and hence must be stored
in external-memory (or disks). We can use either a 2-way or an r-way R-DP for
external-memory until a subproblem fits in the GPU global memory, after which
we use an r-way R-DP between GPU global memory and GPU shared memory.
When an r-way R-DP is used between two levels of memory, r is chosen as the
smallest integer such that if an m×m DP (sub-)table is stored in the larger mem-
ory dividing it into tiles of size (m/r) × (m/r) each will make sure that 1 + s
such tiles completely fit in the smaller memory, where s is the maximum number
of additional tiles one must read from to update one tile. Using a 2-way R-DP

between the external-memory and the GPU global memory makes our algorithm
oblivious of the CPU RAM size provided an appropriate automatic page replace-
ment protocol is functional between the external-memory and the CPU RAM.

We use Standard Template Library for Extra Large Data Sets (STXXL)
[1] 1.4.1 to implement our algorithms for external-memory. STXXL is a C++
library for implementing containers and algorithms that process vast amounts
of disk data. In STXXL, we set the external block size as 4MB, #pages as
1024, and #blocks per page as 1. This gives us a RAM of size 4GB. STXXL
maintains the CPU RAM as a fully associative memory with an automatic LRU
page replacement policy.

156 M. M. Javanmard et al.

Fig. 5. Speedup of gpu-rdp programs over cpu-rdp for various dynamic programs. For
FW-APSP, gpu-buluc-rec and gpu-rdp-opt are also included.

For each of the four DP problems we compare: (a) cpu-rdp-1: serial R-DP

running on CPU, (b) cpu-rdp-128: parallel R-DP running on a CPU with 128
cores (details will follow), and (c) gpu-rdp: parallel R-DP running on a GPU
machine.

For gpu-rdp we store the input DP table in Z-Morton layout in the external-
memory until we reach a submatrix size that fits in the GPU global memory at
which point it is stored in row-major order. While the input problem accesses a
single matrix in external-memory, a subproblem may access multiple submatrices
of the DP table and they all have to fit in the GPU global memory. Once we
compute a submatrix, we write the output to the same location in the DP table
in the external-memory.

For cpu-rdp-1 and cpu-rdp-128, the base case dimension length is set to 256
and we run iterative kernels inside each base case. Since these two programs
take too long to run, we approximate their running times as follows (instead of
measuring time during real runs). The DP table is stored as a grid of blocks of
size 16K × 16K each and it is stored in Z-Morton order. We use r-way R-DP in
external-memory and whenever a subproblem is brought to RAM, we use 2-way
R-DP to execute it on CPU. Observe that unlike our GPU program gpu-rdp,
the two CPU programs are kept aware of the CPU RAM size in order to get
faster running times. Let nbase, n128

base, nchunk, tbase, and tchunk represent the
number of invocations of base case kernels, number of parallel steps of execution
of the base case kernels when we assume 128 cores, number of times RAM (of
size 16K × 16K) is loaded/unloaded, minimum time taken (among several runs)
to execute a base case kernel, and time taken to copy data between external-
memory and RAM as given in STXXL I/O statistics, respectively. Then the

Architecture-Independent Dynamic Programming Algorithms 157

running time of cpu-rdp-1 is (nbase · tbase + nchunk · tchunk), and that of cpu-rdp-
128 is (n128

base · tbase + nchunk · tchunk).
When n = 217, in our experiments for FW-APSP, Gaussian elimination,

parenthesis and gap problems gpu-rdp ran 3.1×, 1×, 3.5×, and 1.6× faster,
respectively, than cpu-rdp-128.

4 Distributed-Memory Algorithms

4.1 Distributed-Memory r-way R-DP

Table 1. Our distributed-memory r-way R-DP algo-
rithms.
DP Work Latency Bandwidth

LCS/Edit distance O
(

n2
p

)
O (√

p
) O (n)

Parenthesis,
Floyd-Warshall’s APSP,
Gaussian elimination w/o
pivoting, Gap, Protein
accordion folding

O
(

n3
p

)
O (√

p log p
) O

(
n2√

p
log p

)

Our r-way R-DP algorithms
can be easily modified to run
efficiently on distributed-
memory machines. We mod-
ify the top level of the recur-
sion by setting r to an appro-
priate value based on the
number of compute nodes
available and adding appropriate communication instructions. Only the first level
of recursion under function A (e.g., Apar) will have a distributed-memory imple-
mentation. Every other function and every other level of recursion of A will run
completely inside a compute node and thus will have either a multicore or a
manycore implementation.

Fig. 6. Distributed-memory implementation of Apar from
Fig. 2. Here, X is an n × n DP table and p is the number
of compute nodes.

We explain our
approach by apply-
ing it to Apar from
Fig. 2. The modified
function is shown
in Fig. 6. We map
the given p compute
nodes onto the nodes
of a √

p×√
p grid P .

We set r to √
p, and

split the n × n input
matrix X into r ×
r submatrices of size
n
r × n

r each. The sub-
matrix of X (resp.
compute node of P)
at the i-th position
from the top and the
j-th position from
the left is denoted
by Xi,j (resp. Pi,j),
where i, j ∈ [1, r].
For 1 ≤ i, j ≤ r, ini-
tially only Pi,j holds

158 M. M. Javanmard et al.

Xi,j . Only Pi,j updates Xi,j , and all other submatrices needed for the purpose
are brought to Pi,j through either broadcasts or direct sends. Steps 1, 2.1, 2.2
and 2.3 of distributed-Apar in Fig. 6 correspond respectively to lines 4, 6, 7 and
8 of Apar.

We use the following three cost metrics [60] computed along the critical
path to evaluate our algorithms: (i) computational cost (F): #flops executed,
(ii) latency cost (S): #messages transferred, and (iii) bandwidth cost (W):
#words transferred. For example, for Fig. 6, F = O

((
n/

√
p
)3) (Step 1) +

O
(√

p × (
n/

√
p
)3) (Step 2) = O (

n3/p
)
. The latency cost is dominated by

the cost of broadcasts in the loop of Step 2 which iterates √
p times, and

hence S = O (√
p log p

)
. Since each message is of size O (

n2/p
)

the bandwidth
cost of each broadcast is O ((

n2/p
)
log p

)
. Taking into account that the loop

in Step 2 iterates √
p times, the overall bandwidth cost of distributed-Apar is

W = O (√
p

(
n2/p

)
log p

)
= O ((

n2/
√

p
)
log p

)
. Table 1 lists these cost metrics

for a number of distributed-memory r-way R-DP algorithms.
We have designed distributed-memory r-way R-DPs for Floyd-Warshall’s

APSP, Gaussian elimination w/o pivoting and the gap problem, too.

4.2 Bandwidth and Latency Lower Bounds

Fig. 7. Critical path in the (a) parenthesis DP evalu-
ation, (b) GAP DP evaluation, and (c) APSP/GE DP
evaluation.

In the parenthesis problem,
we need to compute the cells
in the triangle as shown in
Fig. 7(a). The sequence of
blocks 〈B0, B1, B2, .., Bd−1〉
form a critical path as the
values of the cells in a block
depend on the cells of the
block preceding it. Hence,
unless Bi’s values are com-

puted, they can’t be used for Bi+1. Let’s assume that each block is computed by a
single processor and there is no re-computation. As there are d blocks on the criti-
cal path, its latency is d. Let the block dimensions be k0, k1, ..., kd−1, respectively.
Then W =

∑d−1
i=0 Ω(k2

i) and F =
∑d−1

i=0 Ω
(
k3
i

)
. We also know that

∑d−1
i=0 ki = n.

Hence, to minimize bandwidth and computation cost, we make each ki = k for
some k. Thus d = n/k which gives us F =

∑d−1
i=0 Ω

(
k3
i

)
= Ω

(
nk2

)
.

If F = O (
n3/p

)
, then combining with F = Ω

(
nk2

)
, we get k = O (

n/
√

p
)
.

Latency, S = d = Ω
(√

p
)
, and bandwidth, W =

∑d−1
i=0 Ω

(
k2
i

)
= Ω

(
n2/

√
p
)
.

For other problems such as the Gaussian elimination without pivoting and
the gap problem, similar arguments hold.

4.3 Related Work (Distributed Memory)

Communication lower bounds have been established for several linear algebra
algorithms, including QR and LU decomposition [10,11,16,25,28,57,59,65–67].

Architecture-Independent Dynamic Programming Algorithms 159

Classical 2D distributed-memory matrix multiplication (MM) algorithms use
only one copy of the input/output matrix which is distributed across all p pro-
cessors (by making a √

p ×√
p processor grid [15]). They have Θ

(
n2/

√
p
)

band-
width cost and Θ

(√
p
)

latency cost, while they balance the load (F = Θ
(
n3/p

)
)

[8,10,36]. Our distributed-memory R-DP algorithms also use only one copy of
the input, and the ones that access n × n matrices also distribute them evenly
across processors arranged in a √

p × √
p processor grid. While our algorithms

also balance load they are a log p factor away from the bandwidth and latency
costs of the best 2D MM algorithm.

There is a class of distributed-memory MM algorithms, called 3D, where
p

1
3 copies of the input matrix are spread across processors which make a 3D

processor grid of p
1
3 × p

1
3 × p

1
3 [5,6,24,39]. These algorithms also load balance

(F = Θ
(
n3/p

)
) as well as minimize the communication, with Θ (log(p)) latency

and Θ
(
n2/p

2
3

)
bandwidth [10,36,60]. The third class of MM algorithms interpo-

late between the two classes where they take advantage of having c copies of the
input matrix (c ∈ {1, 2, ..., p1/3}) to build a (p/c)1/2×(p/c)1/2×c processor grid,
and hence they are called 2.5D. These algorithms have Θ

(
n2/

√
cp

)
bandwidth

and O
(√

p/c3 + log(c)
)

latency. The same technique can be used for Gaussian-

elimination style LU algorithm to obtain bandwidth cost of Θ
(
n2/

√
cp

)
and a

latency cost of O (√
cp log p

)
which is asymptotically optimal for any choice of c

(modulo log(p) factor for latency). Ballard et al. [9] have extended the commu-
nication cost analysis of distributed memory algorithms to fast MM algorithms

Fig. 8. Strong and weak scaling of our distributed-memory FW-APSP and parenthesis
DP.

160 M. M. Javanmard et al.

(Strassen’s) and have proved that Communication-Avoiding Parallel Strassen
(CAPS), running on a distributed-memory parallel machine meets the lower
bounds on bandwidth and latency costs.

Distributed-memory graph algorithms [43,50] and DP algorithms also exist
[33,35,38,42–44,63,68]. Solomonik et al. [58] presented a FW-APSP algorithm
based on a block-cyclic approach which performs O (

n3/p
)

work and has
O (

n2/
√

p
)

bandwidth and O (√
p log2 p

)
latency. The 2.5D APSP algorithm

given in [60] which builds on a recursive divide-and-conquer FW-APSP (Kleene)
algorithm [7] has O (

n2/
√

cp
)

bandwidth and O (√
cp log2 p

)
latency and per-

forms O (
n3/p

)
work, where c ∈ {1, 2, ..., p1/3}.

4.4 Distributed Memory Experimental Results

In this section, we present empirical results showing the performance benefits of
our distributed memory algorithms that are based on r-way R-DP.

Setup. All experiments were performed on the SKX nodes of Stampede2 [3,70].
Each SKX node has dual-socket 24-core 2.1GHz Intel Skylake processors (2 ×
24 = 48 cores in total) and 192GB of DDR4 RAM. Each core is connected to
a 32KB L1 and a 1MB L2 private caches. All 24 cores on a socket share one
33MB L3 cache. Our Stampede2 allocation allowed us to use up to 128 SKX
nodes simultaneously. We ran each MPI task on a separate socket, enabling us
to run up to 256 MPI task for our experiments.

Implementations and Optimizations. All our algorithms (FW-APSP, paren-
thesis, gap) were implemented in C++. For distributed memory, we used intel
MPI. Inside each process, we used Intel Cilk Plus extension to parallelize and
Intel R© C++ Compiler version 17.0.4 to compile the CPU implementations with
optimization parameters -O3 -ipo -parallel -AVX -xhost. Additional intra-node
CPU optimizations were the same as the ones explained in Sect. 3.5.

Distributed-Memory Results. Figure 8 shows the strong and weak scaling for
FW-APSP and the parenthesis problem. Both algorithms show good scalability
properties.

5 Conclusion

We have shown that 2-way recursive divide-and-conquer algorithms for a wide
class of DP problems can be generalized so that they run with provable efficiency
on shared-memory multicores and manycores (GPUs) as well as on distributed-
memory machines without any changes in their basic structure. We have proved
bounds on I/O and communication costs of these algorithms.

We believe that “Architecture-Independent Algorithms” holds promise for
harnessing the full power of networks of hybrid compute nodes with both mul-
ticores and manycores because of their ability to run efficiently under multi-
core, manycore, shared-memory and distributed-memory settings. Many mod-
ern supercomputers already have such heterogeneous structures and exascale
supercomputers in the near future are expected to look similar.

Architecture-Independent Dynamic Programming Algorithms 161

Acknowledgements. This work is supported in part by NSF grants CCF-1439084,
CNS-1553510 and CCF-1725428. Part of this work used the Extreme Science and
Engineering Discovery Environment (XSEDE) which is supported by NSF grant ACI-
1053575. The authors would like to thank anonymous reviewers for valuable comments
and suggestions that have significantly improved the paper.

References

1. Standard Template Library for Extra Large Data Sets (STXXL). http://stxxl.
sourceforge.net/

2. The Stampede Supercomputing Cluster. https://www.tacc.utexas.edu/stampede/
3. The Stampede2 Supercomputing Cluster. https://www.tacc.utexas.edu/systems/

stampede2/
4. Top 500 Supercomputers of the World. https://www.top500.org/lists/2018/06/
5. Agarwal, R.C., Balle, S.M., Gustavson, F.G., Joshi, M., Palkar, P.: A three-

dimensional approach to parallel matrix multiplication. IBM J. Res. Dev. 39(5),
575–582 (1995)

6. Aggarwal, A., Chandra, A.K., Snir, M.: Communication complexity of PRAMs.
Theor. Comput. Sci. 71(1), 3–28 (1990)

7. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education India, Noida (1974)

8. Ballard, G., Carson, E., Demmel, J., Hoemmen, M., Knight, N., Schwartz, O.:
Communication lower bounds and optimal algorithms for numerical linear algebra.
Acta Numer. 23, 1–155 (2014)

9. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Communication-
optimal parallel algorithm for strassen’s matrix multiplication. In: Proceedings of
the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 193–204. ACM (2012)

10. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in
numerical linear algebra. SIAM J. Matrix Anal. Appl. 32(3), 866–901 (2011)

11. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communi-
cation costs of fast matrix multiplication. J. ACM (JACM) 59(6), 32 (2012)

12. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
13. Bender, M., Ebrahimi, R., Fineman, J., Ghasemiesfeh, G., Johnson, R., McCauley,

S.: Cache-adaptive algorithms. In: SODA (2014)
14. Buluç, A., Gilbert, J.R., Budak, C.: Solving path problems on the GPU. Parallel

Comput. 36(5), 241–253 (2010)
15. Cannon, L.E.: A cellular computer to implement the Kalman filter algorithm.

Technical report, Montana State University. Bozeman Engineering Research Labs
(1969)

16. Carson, E., Knight, N., Demmel, J.: Avoiding communication in two-sided Krylov
subspace methods. Technical report, EECS, UC Berkeley (2011)

17. Cherng, C., Ladner, R.: Cache efficient simple dynamic programming. In: AofA,
pp. 49–58 (2005)

18. Chowdhury, R., Ganapathi, P., Tang, Y., Tithi, J.J.: Provably efficient scheduling
of cache-oblivious wavefront algorithms. In: Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures, pp. 339–350. ACM, July
2017

http://stxxl.sourceforge.net/
http://stxxl.sourceforge.net/
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/systems/stampede2/
https://www.tacc.utexas.edu/systems/stampede2/
https://www.top500.org/lists/2018/06/

162 M. M. Javanmard et al.

19. Chowdhury, R., et al.: AUTOGEN: automatic discovery of efficient recursive
divide-&-conquer algorithms for solving dynamic programming problems. ACM
Trans. Parallel Comput. 4(1), 4 (2017). https://doi.org/10.1145/3125632

20. Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming algo-
rithms for multicores. In: SPAA, pp. 207–216 (2008)

21. Chowdhury, R.A., Ramachandran, V.: The cache-oblivious Gaussian elimination
paradigm: theoretical framework, parallelization and experimental evaluation. The-
ory Comput. Syst. 47(4), 878–919 (2010)

22. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

23. D’Alberto, P., Nicolau, A.: R-Kleene: a high-performance divide-and-conquer algo-
rithm for the all-pair shortest path for densely connected networks. Algorithmica
47(2), 203–213 (2007)

24. Dekel, E., Nassimi, D., Sahni, S.: Parallel matrix and graph algorithms. SIAM J.
Comput. 10(4), 657–675 (1981)

25. Demmel, J., Grigori, L., Hoemmen, M., Langou, J.: Communication-optimal par-
allel and sequential QR and LU factorizations. SIAM J. Sci. Comput. 34(1), A206–
A239 (2012)

26. Diament, B., Ferencz, A.: Comparison of parallel APSP algorithms (1999)
27. Djidjev, H., Thulasidasan, S., Chapuis, G., Andonov, R., Lavenier, D.: Efficient

multi-GPU computation of all-pairs shortest paths. In: IPDPS, pp. 360–369 (2014)
28. Driscoll, M., Georganas, E., Koanantakool, P., Solomonik, E., Yelick, K.: A

communication-optimal n-body algorithm for direct interactions. In: IPDPS, pp.
1075–1084. IEEE (2013)

29. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: FOCS, pp. 285–297 (1999)

30. Galil, Z., Giancarlo, R.: Speeding up dynamic programming with applications to
molecular biology. TCS 64(1), 107–118 (1989)

31. Galil, Z., Park, K.: Parallel algorithms for dynamic programming recurrences with
more than O(1) dependency. JPDC 21(2), 213–222 (1994)

32. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York (1997)

33. Habbal, M.B., Koutsopoulos, H.N., Lerman, S.R.: A decomposition algorithm for
the all-pairs shortest path problem on massively parallel computer architectures.
Transp. Sci. 28(4), 292–308 (1994)

34. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using
CUDA. In: HiPC, pp. 197–208 (2007)

35. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: PODC, pp. 355–364. ACM (2012)

36. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026
(2004)

37. Itzhaky, S., et al.: Deriving divide-and-conquer dynamic programming algorithms
using solver-aided transformations. In: OOPSLA, pp. 145–164. ACM (2016)

38. Jenq, J.F., Sahni, S.: All pairs shortest paths on a hypercube multiprocessor (1987)
39. Johnsson, S.L.: Minimizing the communication time for matrix multiplication on

multiprocessors. Parallel Comput. 19(11), 1235–1257 (1993)
40. Katz, G.J., Kider Jr., J.T.: All-pairs shortest-paths for large graphs on the GPU.

In: ACM SIGGRAPH/EUROGRAPHICS, pp. 47–55 (2008)
41. Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “new normal” for

computer architecture. Comput. Sci. Eng. 15(6), 16–26 (2013)

https://doi.org/10.1145/3125632

Architecture-Independent Dynamic Programming Algorithms 163

42. Krusche, P., Tiskin, A.: Efficient longest common subsequence computation using
bulk-synchronous parallelism. In: Gavrilova, M.L., et al. (eds.) ICCSA 2006.
LNCS, vol. 3984, pp. 165–174. Springer, Heidelberg (2006). https://doi.org/10.
1007/11751649_18

43. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms, vol. 400. Benjamin/Cummings, Redwood
City (1994)

44. Kumar, V., Singh, V.: Scalability of parallel algorithms for the all-pairs shortest-
path problem. J. Parallel Distrib. Comput. 13(2), 124–138 (1991)

45. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Streaming algorithms for bio-
logical sequence alignment on GPUs. TPDS 18(9), 1270–1281 (2007)

46. Liu, W., Schmidt, B., Voss, G., Schroder, A., Muller-Wittig, W.: Bio-sequence
database scanning on a GPU. In: IPDPS, 8 pp. (2006)

47. Lund, B., Smith, J.W.: A multi-stage CUDA kernel for Floyd-Warshall. arXiv
preprint arXiv:1001.4108 (2010)

48. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinform. 9(2), 1
(2008)

49. Matsumoto, K., Nakasato, N., Sedukhin, S.G.: Blocked all-pairs shortest paths
algorithm for hybrid CPU-GPU system. In: HPCC, pp. 145–152 (2011)

50. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. IEEE Trans. Parallel Distrib. Syst. 28(9), 2625–2638 (2017)

51. Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
matrix chain product on the GPU. In: ICNC, pp. 320–326 (2011)

52. Nishida, K., Nakano, K., Ito, Y.: Accelerating the dynamic programming for
the optimal polygon triangulation on the GPU. In: Xiang, Y., Stojmenovic, I.,
Apduhan, B.O., Wang, G., Nakano, K., Zomaya, A. (eds.) ICA3PP 2012. LNCS,
vol. 7439, pp. 1–15. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33078-0_1

53. Rizk, G., Lavenier, D.: GPU accelerated RNA folding algorithm. In: Allen, G.,
Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009. LNCS, vol. 5544, pp. 1004–1013. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01970-8_101

54. Schulte, M.J., et al.: Achieving exascale capabilities through heterogeneous com-
puting. IEEE Micro 35(4), 26–36 (2015)

55. Sibeyn, J.F.: External matrix multiplication and all-pairs shortest path. IPL 91(2),
99–106 (2004)

56. Solomon, S., Thulasiraman, P.: Performance study of mapping irregular computa-
tions on GPUs. In: IPDPS Workshops and PhD Forum, pp. 1–8 (2010)

57. Solomonik, E., Ballard, G., Demmel, J., Hoefler, T.: A communication-avoiding
parallel algorithm for the symmetric eigenvalue problem. In: SPAA, pp. 111–121.
ACM (2017)

58. Solomonik, E., Buluc, A., Demmel, J.: Minimizing communication in all-pairs
shortest paths. In: IPDPS, pp. 548–559 (2013)

59. Solomonik, E., Carson, E., Knight, N., Demmel, J.: Trade-offs between synchro-
nization, communication, and computation in parallel linear algebra computations.
TOPC 3(1), 3 (2016)

60. Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 90–109. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23397-5_10

https://doi.org/10.1007/11751649_18
https://doi.org/10.1007/11751649_18
http://arxiv.org/abs/1001.4108
https://doi.org/10.1007/978-3-642-33078-0_1
https://doi.org/10.1007/978-3-642-33078-0_1
https://doi.org/10.1007/978-3-642-01970-8_101
https://doi.org/10.1007/978-3-642-01970-8_101
https://doi.org/10.1007/978-3-642-23397-5_10

164 M. M. Javanmard et al.

61. Steffen, P., Giegerich, R., Giraud, M.: GPU parallelization of algebraic dynamic
programming. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J.
(eds.) PPAM 2009. LNCS, vol. 6068, pp. 290–299. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14403-5_31

62. Striemer, G.M., Akoglu, A.: Sequence alignment with GPU: performance and
design challenges. In: IPDPS, pp. 1–10 (2009)

63. Tan, G., Sun, N., Gao, G.R.: A parallel dynamic programming algorithm on a
multi-core architecture. In: SPAA, pp. 135–144. ACM (2007)

64. Tang, Y., You, R., Kan, H., Tithi, J., Ganapathi, P., Chowdhury, R.: Improving
parallelism of recursive stencil computations without sacrificing cache performance.
In: WOSC, pp. 1–7 (2014)

65. Tiskin, A.: Bulk-synchronous parallel Gaussian elimination. J. Math. Sci. 108(6),
977–991 (2002)

66. Tiskin, A.: Communication-efficient parallel gaussian elimination. In: Malyshkin,
V.E. (ed.) PaCT 2003. LNCS, vol. 2763, pp. 369–383. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45145-7_35

67. Tiskin, A.: Communication-efficient parallel generic pairwise elimination. Future
Gener. Comput. Syst. 23(2), 179–188 (2007)

68. Tiskin, A.: All-pairs shortest paths computation in the BSP model. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 178–189.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5_15

69. Tithi, J.J., Ganapathi, P., Talati, A., Aggarwal, S., Chowdhury, R.: High-
performance energy-efficient recursive dynamic programming with matrix-
multiplication-like flexible kernels. In: IPDPS, pp. 303–312 (2015)

70. Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5),
62–74 (2014)

71. Venkataraman, G., Sahni, S., Mukhopadhyaya, S.: A blocked all-pairs shortest-
paths algorithm. JEA 8, 2–2 (2003)

72. Volkov, V., Demmel, J.: LU, QR and Cholesky factorizations using vector capa-
bilities of GPUs. EECS, UC Berkeley, Technical report UCB/EECS-2008-49, May
2008

73. Waterman, M.S.: Introduction to Computational Biology: Maps. Sequences and
Genomes. Chapman & Hall Ltd., New York (1995)

74. Wu, C.C., Wei, K.C., Lin, T.H.: Optimizing dynamic programming on graphics
processing units via data reuse and data prefetch with inter-block barrier synchro-
nization. In: ICPADS, pp. 45–52 (2012)

75. Xiao, S., Aji, A.M., Feng, W.c.: On the robust mapping of dynamic programming
onto a graphics processing unit. In: ICPADS, pp. 26–33 (2009)

https://doi.org/10.1007/978-3-642-14403-5_31
https://doi.org/10.1007/978-3-540-45145-7_35
https://doi.org/10.1007/3-540-48224-5_15

	Toward Efficient Architecture-Independent Algorithms for Dynamic Programs
	1 Introduction
	2 Multi-way Recursive Divide and Conquer
	2.1 r-way R-DP Design
	2.2 Additional r-way R-DP Algorithms

	3 External-Memory GPU Algorithms
	3.1 GPU Computing Model
	3.2 Related Work (GPU)
	3.3 GPU Algorithm Design
	3.4 I/O Complexities
	3.5 GPU Experimental Results

	4 Distributed-Memory Algorithms
	4.1 Distributed-Memory r-way R-DP
	4.2 Bandwidth and Latency Lower Bounds
	4.3 Related Work (Distributed Memory)
	4.4 Distributed Memory Experimental Results

	5 Conclusion
	References

