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We define the range 1 query (R1Q) problem as follows. Given a d-dimensional (d ≥ 1)

input bit matrix A (consisting of 0’s and 1’s), preprocess A so that for any given region 
R of A, efficiently answer queries asking if R contains a 1 or not. We consider both 
orthogonal and non-orthogonal shapes for R including rectangles, axis-parallel right-
triangles, certain types of polygons, axis-parallel right simplices and spheres. We provide 
space-efficient deterministic and randomized algorithms with constant query times (in 
constant dimensions) for solving the problem in the word-RAM model. The space usage 
in bits is sublinear, linear, or near linear in the size of A, depending on the algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Range searching is one of the most fundamental problems in computational geometry. Many geometric problems can be 
modeled as range searching problems. It arises in application areas including geographical information systems, computer 
graphics, computer aided design, spatial databases, and time series databases. Range searching encompasses different types 
of problems, such as range counting, range reporting, emptiness queries, and optimization queries. This problem has been 
extensively studied in literature [1–5].

The range 1 query (R1Q) problem is defined as follows. Given a d-dimensional (d ≥ 1) input bit matrix A (consisting of 
0’s and 1’s), preprocess A to efficiently answer queries asking if any given range R of A is empty (does not contain a 1) 
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or not, denoted by R1QA(R) or simply R1Q(R). For example, in 2-D, the range R can be a rectangle, a right triangle, a 
polygon, a circle, or any other shape.

In this paper, we investigate solutions to the R1Q problem in the word-RAM model. If N is the input size in bits, the 
machine word is assumed to be of size � (log N) bits. We assume that accesses to memory cells, arithmetic operations 
(+, −, ×, ÷, mod), comparisons (<, >, =, ≤, ≥), bitwise operations (bitwise-AND, OR, XOR), and shifting a word left or 
right a specific number of bits each take � (1) time. Almost all our solutions can be easily implemented to use only bit 
shifts, bitwise ORs, comparisons, and memory accesses in the query execution algorithms. Our solutions are amenable 
to hardware that do not use complicated arithmetic operations i.e., additions, subtractions, multiplications, divisions, and 
mod.

The solutions we investigate share the following characteristics, if possible. First of all, we want queries to run in con-
stant time (assuming d is fixed), even for d ≥ 2 dimensions. Second, we are interested in solutions that have space linear 
or sublinear in the number of bits in the input grid. Depending on the algorithm, we give solutions in one of the two 
models [6]: (a) indexing model (or systematic scheme), in which we retain the input matrix to be accessed by the query 
execution algorithms, and space generally refers to the additional space for the index data structure; or (b) encoding model 
(or non-systematic scheme), in which we discard the input matrix and access only the preprocessed data; Here, space 
refers to the total space. Note that while our sublinear bounds are parameterized by the number of 1’s in the grid, this is 
still larger than the information-theoretic lower bounds. For our motivating applications, information-theoretically optimal 
space is less important than constant query time. Third, we are interested in grid inputs [7,8], where the input is a matrix 
consisting of 0’s and 1’s. Hence we view the problem in terms of pixels/voxels rather than as a set of spatial points. We 
take advantage of this grid perspective in our algorithms using table lookups and hashing to achieve constant-time queries. 
Finally, we are interested in both orthogonal and non-orthogonal queries, and we require solutions that are simple enough 
to be implementable.

1.1. Previous results

The R1Q problem can be solved using data structures such as balanced binary search trees, kd-trees, quad trees, range 
trees, partition trees, and cutting trees (see [1]), which take the positions of the 1-bits as input. It can also be solved using a 
data structure proposed by Overmars [7], which uses priority search trees, y-fast tries, and q-fast tries and takes the entire 
grid as input. However, in d-D (d ≥ 2), in the worst case, these data structures have a query time at least polylogarithmic in 
the number of 1’s in the grid and occupy a near-linear number of bits w.r.t. the number of 1’s.

The R1Q problem can also be solved via the solutions of the range partial sum [9,10] and the range minimum query 
(RMQ) [11–21] problems. Though several efficient algorithms have been developed to solve the problem in 1-D and 2-D, 
their generalizations to 3-D and higher dimensions (while occupying a linear number of bits) are not known yet. Also, 
there is little work on space-efficient constant-time RMQ solutions for non-orthogonal ranges. Also, some of the above data 
structures that use trees and partial sum use semigroup arithmetic model, which is more restrictive than our model and 
hence the results cannot be compared fairly.

The R1Q problem can also be solved using rank queries. The data structures to answer rank queries in [22–31] either 
do not generalize to 2-D and higher dimensions or they take super-constant time for answering queries. Farzan et al. [32,
33] present space-efficient data structures to answer orthogonal rank queries in constant time for all dimensions. They 
present simple linear-space structures as well as more complicated structures occupying entropy-bounded space. Their data 
structures are more space-efficient than our orthogonal deterministic structures and answer the more general problem of 
rank queries.

There are two major differences between our solution and Farzan et al.’s method to solve the R1Q problem. First and 
foremost, the powers-of-2 approach that we use to answer orthogonal R1Q deterministically can be easily extended to 
answer orthogonal R1Q probabilistically using randomized algorithms in the encoding model. If we allow some errors, we 
can reduce the space to significantly sublinear size when the number of 1-bits is asymptotically smaller than the total 
number of bits, while answering the queries in constant time. The powers-of-2 approach can also be used to answer 
right-triangular R1Q (which forms the basis for some polygonal queries) in constant time, occupying near-linear space in 
bits, which is significantly less for right-triangular queries compared to the space consumption of standard approaches. On 
the other hand, it is not clear how Farzan et al.’s method can be extended to answer orthogonal R1Q probabilistically using 
sublinear space or to answer right-triangular R1Q. Second, almost all our query execution algorithms can be made to use the 
following four simple operations only: comparisons, bit shifts, bitwise ORs, and memory accesses (see Section 2) without 
asymptotic increase in space and time bounds. Hence they can be implemented on a simpler hardware without complicated 
arithmetic operations. However, Farzan et al.’s method uses additions, subtractions, and more expensive operations such as 
multiplications on the values. It is not straightforward to replace all those arithmetic operations that work on values with 
simpler non-arithmetic operations while retaining the linear-space and constant-time bounds.

1.2. Motivation

We encountered the R1Q and R0Q (whether a range contains a 0) problems while trying to optimize stencil computations 
[34] in the Pochoir stencil compiler [35,36], where we had to answer octagonal R1Q and octagonal R0Q on a static 2-D 
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Fig. 1. Examples of the procedures in Pochoir that make use of R1Q and R0Q.

property grid. Stencil computations have applications in physics, computational biology, computational finance, mechanical 
engineering, adaptive statistical design, weather forecasting, clinical medicine, image processing, quantum dynamics, oceanic 
circulation modeling, electromagnetics, multigrid solvers, and many other areas (see the references in [35]).

In Fig. 1, we provide a simplified exposition of the problem encountered in Pochoir. There are two grids of the same 
size: a static property grid and a dynamic value grid. Each property grid cell is set to 1 if it satisfies some property 
P and 0 otherwise. When Pochoir needs to update a range R in the value grid (see UpdateRange), its runtime system 
checks whether all or none of the points in R satisfy P in the property grid, and based on the query result it uses an 
appropriate precompiled optimized version of the original code (see PUpdatePoint, NUpdatePoint) to update the range in 
the value grid. To check if all points in R satisfy P , Pochoir uses R0Q(R), and to check if no points in R satisfy P , it uses 
R1Q(R).

Pochoir needs time-, space-, and cache-efficient data structures to answer R1Q. The solutions should achieve constant 
query time and work in all dimensions. Although it is worth trading off space to achieve constant query times, space is still 
a scarce resource.

1.3. Our contributions

We solve the R1Q problem for orthogonal and non-orthogonal ranges in the word-RAM model. Our major contributions 
as shown in Table 1 are as follows:

1. [Orthogonal deterministic.] We present two deterministic data structures to answer R1Q for orthogonal ranges in all 
dimensions and for any data distribution. They occupy linear space in bits and answer queries in constant time for any 
constant dimension.

2. [Orthogonal randomized.] We present randomized data structures to answer R1Q for orthogonal ranges. The structures 
occupy sublinear space in bits and provide a tradeoff between query time and error probability.

3. [Non-orthogonal deterministic.] We present deterministic data structures to answer R1Q for non-orthogonal shapes, 
such as axis-parallel right-triangles, certain simple polygons, axis-parallel right simplices, and spheres, for all dimen-
sions. The structures occupy linear, near-linear, or subquadratic space in bits and answer queries efficiently.

We use techniques such as power hyperrectangles, power right triangles, sketches, sampling, the four Russians trick, 
and compression in our data structures. A careful combination of these techniques allows us to solve a large class of R1Q 
problems. Techniques such as power hyperrectangles, table lookup, and the four Russians trick are already common in 
RMQ-style operations, while sketches, power right-triangles, and compression are not. Our algorithms make use of only bit 
shifts, bitwise ORs, comparisons, and memory accesses and hence are amenable to be implemented on a simpler hardware 
which does not support arithmetic operations.

1.4. Organization of the paper

The paper is organized as follows. Section 2 presents deterministic and randomized algorithms to answer orthogonal 
R1Qs on a grid in constant time for constant dimensions. Section 3 presents deterministic algorithms to answer non-
orthogonal R1Qs on a grid, for axis-parallel right triangles, some polygons, axis-parallel right simplices, and spheres.

2. Orthogonal range 1 queries

In this section, we present deterministic and randomized algorithms/data structures for answering orthogonal R1Qs in 
constant time and which occupy linear space in bits. Table 2 lists a few of the existing algorithms and/or data structures to 
solve the orthogonal R1Q problem.
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Table 1
R1Q algorithms in this paper. Here, N = nd = total #bits, N1 = #nonzero bits, and N0 = #zero bits in the input hypercubic bit matrix A, and 
d = #dimensions. In the indexing model, space refers to the additional space apart from the read-only input matrix.

Shape Space (in bits) Time Comments

Orthogonal (Deterministic)

d-D O
(

(d + 1)!
(

2
ln 2

)d
N

)
O

(
4dd

)
for d dimensions; encoding model

d-D O
(

d!
(

2
ln 2

)d
N

)
O

(
4dd!) for d dimensions; indexing model

Orthogonal (Randomized)

1-D (sketch) O
(√

N N1 log N log 1
δ

)
O

(
ln 1

δ

)
δ ∈

(
0, 1

4

)
; correct for range size ≥ √

N/N1, otherwise correct with prob ≥ 1 − 4δ; 
extendible to ≥ 2-D; encoding model

1-D (sketch) O
((

N1 log3 N log1+γ
1
δ

+ N
1
c log log N

))
O

(
log c

δ

)
γ , δ ∈

(
0, 1

4

)
, integer c > 1; with prob ≥ 1 − 4δ at most 4γ fraction of all query 

results will be wrong; extendible to ≥ 2-D; encoding model

1-D (sampling) O (s) O
(

1
ε ln 1

δ

)
ε, δ ∈ (0,1), s = � (log N); always correct for range size ≥ (N log N)/s, otherwise 
correct with prob ≥ 1 − δ when ≥ ε fraction of all range entries are 1; extendible to 
≥ 2-D; indexing model

Non-Orthogonal (Deterministic)

Right triangles O
(

N log N + N0 log2 N
)

O (1) not extendible to ≥ 3-D; encoding model

Right simplices O
(
N2−1/d log N

)
O

(
d2

)
for d dimensions; encoding model

Spheres O (N) O (d) for d dimensions; encoding model

Table 2
A few algorithms and/or data structures that could be used to solve the orthogonal R1Q problem. Here, N = nd =
total #bits and N1 = #nonzero bits, d = #dimensions, α(a,b) is the inverse Ackermann function, and ∗ represents 
amortized time. The term Hk represents the k-th order entropy and σ the alphabet size of the array. The last column 
represents the domain, which can be a grid (Zd) or real space (Rd). Please refer to Table 1 for more details on the 
randomized variants.

Data structure Space (in bits) Time Dim

Trivial O (N log N) O
(
2d

) ≥ 1-D Z
d

Range trees [37,38] O
(

N1 logd N1

)
O

(
logd−1 N1

)
≥ 2-D R

d

Chazelle’s range trees [28] O
(

N1
logd N1

logd−1 log N1

)
O

(
logd−1 N1

)
≥ 2-D R

d

Overmars structure [7] O
(

N1 logd−1 N1
√

log N
)

O
(

logd−1 N1

)
≥ 3-D Z

d

Yuan Atallah RMQ [11] O
(
2dd!N log N

)
O

(
3d

) ≥ 2-D Z
d

Range partial sum [9] O (N log N) O
(
α (kN, N)d

)
∗ ≥ 2-D Z

d

Rank queries [22] O
(

N log log N
log N

)
O (1) 1-D Z

d

Dominance queries [39] O
(

N1
logd−1 N1

logd−2 log N1

)
O

((
log N1

log log N1

)d−1
)

≥ 3-D R
d

Bit vectors [31] O (nHk + o (N logσ)) o
(
(log logσ)3

)
1-D Z

d

Rank queries [33] N + o (N) O
(
4dd

) ≥ 2-D Z
d

Rank queries [33] H + o (N) O
(
4dd

) ≥ 2-D Z
d

Our algorithm 1 O
(

(d + 1)!
(

2
ln 2

)d
N

)
O

(
4dd

) ≥ 2-D Z
d

Randomized variant 1 O
(√

N N1 log N log 1
δ

)
O

(
ln 1

δ

)
1-D Z

d

Randomized variant 2 O
((

N1 log3 N log1+γ
1
δ

+ N
1
c log log N

)
O

(
log c

δ

)
1-D Z

d

Our algorithm 2 O
(

d!
(

2
ln 2

)d
N

)
O

(
4dd!) ≥ 2-D Z

d

Almost all our solutions use only the following four simple operations: bit shifts, bitwise ORs, comparisons, and mem-
ory accesses. For simplicity of exposition, we occasionally use the arithmetic operations to explain our algorithms. But, the 
arithmetic operations in all our query algorithms can be replaced with constant number of bit shifts, bitwise ORs, compar-
isons, and memory accesses without asymptotic increase in the space and time bounds using a very simple data structure 
constructed as follows. In d-dimensions, where d ≥ 3, the arithmetic operation i ⊕ j, where ⊕ ∈ {+, −, ×, ÷, mod} and the 
values i, j, and i ⊕ j are from the domain and range [1, O

(
N1/d

)], can be answered in O (1) by storing all possible values 
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of i, j, and i ⊕ j. Note that the maximum value of an input or a result of an arithmetic operation is O
(

N1/d
)
. The space 

required to store all input and results is O
(
(1/d)N2/d log N

)
bits and for d ≥ 3 it is sublinear with respect to the size of the 

input matrix to the R1Q algorithm.
The algorithms in this paper rely on finding the most significant bit (MSB) of positive integers less than O

(
N1/d

)
in 

constant time without using arithmetic operations. Several classical solutions can be used to compute the MSB of a positive 
integer using space independent of N in constant time [40–44]. However, the previous approaches are quite complicated 
and make use of several arithmetic operations. As we would like to avoid arithmetic operations, here we give a lemma 
that is relatively simple and uses only three simple operations in the query execution: bit shifts, comparisons, and memory 
accesses using space sublinear in the size of the input matrix to the R1Q algorithm for d ≥ 3.

Lemma 1. Given integers M ∈ [1, 2w) and r, where r is a constant and a power of 2 in [2, w), in the word-RAM model with w-bit 
words, one can construct a table occupying O

(
M1/r log log M

)
bits of space to answer MSB queries for integers in [1, M] in O (r) time 

requiring only bit shifts, comparisons, and memory accesses.

Proof. We need to find the MSB of a �log M	-bit integer m ∈ [1, M]. The procedure is as follows.

Preprocessing. Compute and store the value of �log M	 using brute force. Divide the �log M	 bits into r ∈ [2, w) blocks, 
each of size ��log M	/r	 bits. Division (resp. multiplication) by a power of 2 can be implemented using bit shifts. At most 
2��log M	/r	 = O

(
M1/r

)
different numbers are possible using ��log M	/r	 bits. Store the MSB location for each of these 

O
(
M1/r

)
numbers in a table. The total space requirement is O

(
M1/r log log M

)
bits. We make use of the constant r during 

query execution.

Query execution. There are two stages in finding the MSB of m represented using �log M	 bits: (a) Find the block: Using bit 
shifts, we can find the exact block of size ��log M	/r	 bits in which the MSB is present in O (r) time. (b) Find the bit: Once 
the block that has the MSB is found, we simply use the bits in that block as an index to the already stored table that gives 
us the actual MSB. �
2.1. Preliminaries: deterministic 1-D algorithm

The input is a bit vector A[0 . . . N − 1], where N ∈ [1, 2w) and w is the word size. The query R1QA (i, j), where i ≤ j, 
asks if there exists a 1 in the subarray A[i . . . j]. For simplicity, assume N to be an even power of 2.

Preprocessing
Array A has M = � N

w 	 words. For each p ∈ [0, log M], we construct arrays Lp and R p of size M
2p words each. Let W (i)

denote the ith (i ∈ [0, M − 1]) word in A. Then, Lp is defined as follows: L0[i] is 0, if W (i) has a 1, and 1 if W (i) does not 
contain a 1.

Lp(≥1)[i] =
{

Lp−1[2i] if Lp−1[2i] < 2p−1,

2p−1 + Lp−1[2i + 1] otherwise.

The R p array can be computed similarly. The array element Lp[i] (and R p[i]) stores the distance of the leftmost (respectively, 
rightmost) word that contains a 1 in the ith block of 2p contiguous words of A, measured from the start (and end) of the 
block. The value Lp[i] = 2p (R p[i] = 2p ) means that the ith block of 2p contiguous words of A does not contain a 1.

Query execution
To answer R1QA(i, j), we consider two cases: (1) Intra-word queries: If (i, j) lies inside one word, we answer R1Q using 

bit shifts. (2) Inter-word queries: If (i, j) spans multiple words, then the query gets split into three subqueries: (a) R1Q from 
i to the end of its word, (b) R1Q of the words between i’s and j’s word (both exclusive), and (c) R1Q from the start of j’s 
word to j.

The answer to an inter-word query is 1 if and only if the R1Q for at least one of the three subqueries is 1. The first 
and third subqueries are intra-word queries and can be answered using bit shifts. Let the indices of the words containing 
indices i and j be I and J , respectively. Then, the second subquery, denoted by R1QL0(I + 1, J − 1), is answered as follows. 
Using the MSB of J − I − 1, we find the largest integer p such that 2p ≤ J − I − 1. The query R1QL0(I + 1, J − 1) is then 
decomposed into the following two overlapping queries of size 2p each: R1QL0(I + 1, I + 2p) and R1QL0( J − 2p, J − 1). If 
either of those two ranges contains a 1 then the answer to the original query will be 1, and 0 otherwise. We show below 
how to answer R1QL0(I + 1, I + 2p). Query R1QL0( J − 2p, J − 1) is answered similarly.

Split L0 into blocks of size 2p . Then, the range R1QL0(I + 1, I + 2p) can be covered by one or two consecutive blocks. 
Let’s say that the word with index I + 1 is in the kth block. If the range lies in one block, we find whether a 1 exists in that 
block by checking whether Lp[k] < 2p is true. If the range is split across two consecutive blocks, we find whether a 1 exists 
in at least one of the two blocks by checking whether at least one of R p [k] ≤ (k + 1)2p − I and Lp[k + 1] ≤ I + 2p − (k + 1)2p

is true.
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Fig. 2. Rectangles: (a) Query rectangle split into four possibly overlapping power rectangles. (b) Power rectangle divided into four regions by four split 
rectangles.

Complexity analysis
We analyze the time, space, and query complexities below.

Extra space. Space is given in bits unless stated otherwise. We store L p and R p arrays. Let M = � N
w 	. For each p ∈ [0, log M], 

the Lp (resp. R p) array stores M
2p entries occupying p + 1 bits each. Hence, the total space occupied by all L p (resp. R p) 

arrays is � 
(∑log M

p=0
M
2p (p + 1)

)
= � (M) = O (N/ log N). We use O

(√
N log log N

)
bits for the MSB table to support MSB 

queries in constant time (see Lemma 1). Thus the space complexity is O (N/ log N) bits.

Preprocessing time. Preprocessing the Lp and R p tables for p = 0 takes O (N/ log N) time as we scan A once. For each of 
p ∈ [1, log M], constructing the two tables using dynamic programming takes � 

( M
2p

)
time. Hence, the total time to construct 

the two tables is � 
(

M + ∑log M
p=1

M
2p

)
= � (M) =O (N/ log N) which dominates the cost of constructing the MSB table.

Query time. The query time is dominated by finding the largest power of two less than or equal to a particular integer, 
which takes � (1) time using the MSB table of size O

(√
N log log N

)
. The remainder of the query is performed using � (1)

comparisons and table lookups.

2.2. Deterministic d-D algorithm

For d-D (d ≥ 2) R1Q, the input is a hypercubic bit matrix A of size N = nd . Here we present an algorithm for a 2-D 
matrix of size N = n × n, but the algorithm extends to higher dimensions. For simplicity, we assume n to be a power of 2. 
The query R1Q([i1, j1][i2, j2]) asks if there exists a 1 in the submatrix A[i1 . . . j1][i2 . . . j2].

Preprocessing
For each p, q ∈ [0, log n], we partition A into n

2p × n
2q blocks, each of size 2p × 2q . We call these (p, q)-blocks. For each 

(p, q) pair, we construct four tables of size N
2p+q × min(2p, 2q) each:

(i) TLp,q: if p ≤ q, TLp,q[i, j][k] indicates that any rectangle of height k ∈ [0, 2p) starting from the top-left corner of the 
current block must have width at least TLp,q[i, j][k] in order to include at least one 1-bit.

(ii) BL, TR, BR: similar to TL but starts from the bottom-left, top-right and bottom-right corners, respectively.

In all cases, a stored value of max(2p, 2q) indicates that the block has no 1.

Query execution
Given a query [i1, j1][i2, j2], we find the largest integers p and q such that 2p ≤ j1 − i1 + 1 and 2q ≤ j2 − i2 + 1. The 

original query range can then be decomposed into four overlapping (p, q)-blocks, which we call power rectangles, each 
with a corner at one of the four corners of the original rectangle, as shown in Fig. 2(a). If any of these four rectangles 
contains a 1, the answer to the original query will be 1, and 0 otherwise. We show below how to answer an R1Q for a 
power rectangle.

We consider the partition of A into preprocessed (p, q)-blocks. It is easy to see that each of the four power rectangles 
of size 2p × 2q will intersect at most four preprocessed (p, q)-blocks. We call each rectangle contained in both the power 
rectangle and a (p, q)-block a split rectangle (see Fig. 2(b)). The R1Q for a split rectangle can be answered using a table 
lookup, checking if the table values of the appropriate (p, q)-blocks are inside the power rectangle boundary, as shown in 
Fig. 2(b).

Complexity analysis
We analyze the time, space, and query complexities below.

Space complexity. In 2-D, for p, q ∈ [0, log n], the number of blocks of size 2p · 2q is N
2p+q . For each block, there are four 

tables that stores 2min(p,q) entries each, and each entry occupies max(p, q) + 1 bits of space. The space occupied by the four 
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tables for all blocks of size 2p ·2q is S(p, q) =
(

4N
2p+q

)
2min(p,q) (max(p,q) + 1). Hence, the total space is 

∑
p,q S(p,q) = � (N)

bits. In d-D, the total space required for the algorithm for a given input matrix of size N = nd with n ∈ Z
+ is computed as 

follows. The space occupied by 2d tables for all blocks of size 2p1 · 2p2 · · ·2pd , where pi ∈ [0, log n] is

S(p1, p2, . . . , pd) = 2d · n

2p1
· n

2p2
· · · n

2pd
· 2p1+p2+···+pd

2max(p1,p2,...,pd)
· (max(p1, p2, . . . , pd) + 1)

as the number of bits of information stored per block, per table, for different heights of different dimensions in a block is 
the logarithm of the largest dimension of a block plus one i.e., max(p1, p2, . . . , pd) + 1. So,

Total space =
log n∑
p1=0

log n∑
p2=0

· · ·
log n∑
pd=0

2dnd · max(p1, p2, . . . , pd)

2max(p1,p2,...,pd)

We know that max(p1, p2, . . . , pd) can be any value from 0 to log n. With this observation, the expression above with d
summations can be written as an expression with a single summation by grouping all d-tuples having a maximum value of 
i, for i ∈ [0, log n]. Thus,

Total space = 2d N ·
log n∑
i=0

i

2i
· frequency of i being the max in d-tuple

= 2d N ·
log n∑
i=0

i

2i
·
(

d(i + 1)d−1
)

< 2d · dN ·
log n∑
i=0

(i + 1)d

2i

= 2d+1 · dN ·
log n+1∑

i=1

id

2i
< 2d+1 · dN ·

∞∑
i=1

id

2i
(OEIS A000629 [45])

= 2d+1 · dN ·O
(

d!
lnd+1 2

)
= O

(
(d + 1)!

(
2

ln 2

)d

N

)
bits.

Preprocessing time. In 2-D, for each p, q ∈ [0, logn], constructing the four tables using dynamic programming takes 

� 
( N

2p+q · 2min (p,q)
) = � (N) time. In d-D, the total preprocessing time to construct the data structure for a hypercubic matrix 

of size N = n × n × · · · × n is given below.

Prep. time =
log n∑
p1=0

log n∑
p2=0

· · ·
log n∑
pd=0

2d · nd

2max(p1,p2,...,pd)

= 2d N ·
log n∑
i=0

1

2i
· frequency of i being the max in d-tuple

= 2d N ·
log n∑
i=0

1

2i
·
(

d(i + 1)d−1
)

< 2d+1 · dN ·
∞∑

i=1

id−1

2i
(OEIS A000629)

= O
(

d!
(

2

ln 2

)d

N

)
.

We use dynamic programming to compute the information for all tables for all blocks. The expression above can be simpli-

fied using the analysis of the total space. After simplification, the total preprocessing time is O
(

d!
(

2
ln 2

)d
N

)
.

Query time. In 2-D, we access the tables at most 42 times. Hence, the query time is O(1). For d-D, there are at most 2d

power hyperrectangles, each power hyperrectangle can have at most 2d split hyperrectangles, and accessing each coordinate 
takes � (d) time. Hence, the query time is O(4dd).

Overall, we have the following theorem.

Theorem 1. Given a d-D input hypercubic grid of size N = nd, each orthogonal R1Q on the grid can be answered deterministically 
in O

(
4dd

)
time after preprocessing the grid in O

(
d! (2/ ln 2)d N

)
time using O

(
(d + 1)! (2/ ln 2)d N

)
bits of space in the encoding 

model. In 1-D, in the indexing model, the space can be reduced to O (N/ log N) bits.
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Fig. 3. A query rectangle split into constant number of query rectangles.

2.3. Recursive deterministic d-D algorithm

For d-D (d ≥ 2) R1Q, the input is a bit matrix A of size N = n1 × n2 × · · · × nd . Here we give a recursive algorithm for a 
2-D matrix of size N = n × n, but the algorithm extends to higher dimensions. For simplicity, we assume n to be a power 
of 2. The query R1Q([i1, j1][i2, j2]) asks if there exists a 1 in the submatrix A[i1 . . . j1][i2 . . . j2].

Preprocessing
We create three separate structures:

(1) Let 	 = �√(log N)/2	. We partition A into �n/		 × �n/		 blocks, each of size 	 × 	; if a block is not of size 	 × 	 (e.g., 
some of the boundary blocks) then it is padded with 0’s to make it an 	 × 	 block. A block with its top-left corner at 
(i	, j	), where i, j ∈ {0, . . . , �n/		}, is called an (i, j)-block. Create a matrix B such that B[i][ j] denotes if there exists a 
1-bit in the (i, j)-block.

(2) Let I = i	, I ′ = I + 	 − 1, J = j	, and J ′ = J + 	 − 1. We create four �n/		 × �n/		 × 	 matrices SL, S R , ST , and S B as 
follows.

SL[i, j][k] = R1QA([I, J + k], [I ′, J ′]), S R [i, j][k] = R1QA([I, J ], [I ′, J + k])
ST [i, j][k] = R1QA([I + k, J ], [I ′, J ′]), S B [i, j][k] = R1QA([I, J ], [I + k, J ′])

where i, j ∈ [0, �n/		 − 1] and k ∈ [0, 	 − 1].
(3) Every block of A is denoted by a sequence of 	2 bits of information. The total number of unique blocks of A is 2	2 ≤

N3/4. For each such unique block we store an 	 × 	 lookup table to answer R1Q queries in that particular block.

Query execution
We want to answer the query R1Q([i1, j1][i2, j2]). The range query is depicted in Fig. 3. The corners of the query 

rectangle are P (i1, i2), Q ( j1, i2), R( j1, j2), and S(i1, j2). The bottom-right, top-right, top-left, and bottom-left corners of the 
blocks containing P , Q , R , and S are denoted by P ′′′, Q ′′′, R ′′′ , and S ′′′ , respectively. The query rectangle PQRS is divided 
into queries R, SL, SR , ST , SB , CTL, CBL, CTR, CBR . The region R is the rectangle P ′′′ S ′′′R ′′′ Q ′′′ , the region ST is the rectangle 
P ′′ S ′ S ′′′ P ′′′ , the region CTL is the rectangle PP′′ P ′′′ P ′ , and other regions can be defined similarly. The R1Q for query R can 
be answered using the matrix B in constant time using the data structures presented in Section 2.2. Let

PX = �i1/	, QX = � j1/	, RX = � j1/	, SX = �i1/	
PY = �i2/	, QY = �i2/	, RY = � j2/	, SY = � j2/	
LK = i2 mod 	, RK = j2 mod 	, TK = i1 mod 	, BK = j1 mod 	

where (PX, PY), (QX, QY), (RX, RY), and (SX, SY) are the coordinates of the blocks that contain points P , Q , R , and S , re-
spectively. Then, the R1Q for queries SL, SR , ST , SB can be answered recursively in constant time using 1-D range queries 
R1Q(SL([(PX + 1) . . . (QX − 1), PY][LK])), R1Q(S R([(SX + 1) . . . (RX − 1), RY][RK])), R1Q(ST ([PX, (PY + 1) . . . (SY − 1)][TK])), and 
R1Q(S B([QX, (QY + 1) · · · (RY − 1)][BK])), respectively. We use our algorithm described in Section 2.1 to solve the 1-D range 
queries.

The R1Q for queries CTL, CBL, CTR, CBR can be answered by O (1) lookups in the lookup table for the blocks containing 
P , Q , R , and S . Each block in the matrix A is of size 	 and hence there are only 2	2 ≤ N3/4 unique blocks and each block 
contains a lookup table to answer orthogonal queries inside it.

Complexity analysis
The space and time complexities of the algorithm are given below.
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Space complexity. Let S(n, d) be the total space complexity for d-D matrix of size N = nd . To answer the intra-block queries 
we make use of the four Russians trick, requiring linear (i.e. � 

(
nd

)
) bits of space. The analysis of the space required 

for matrix B is given in Section 2.2. The d-D query range depends on at most 2d query ranges in (d − 1) dimensions 
as there are 2d faces in a d-D hypercube and they are preprocessed from different directions. We need to maintain n such 
(d −1)-dimensional data structures for different heights. Also, as we saw in the preprocessing stage, the (d −1)-dimensional 
structures are used for inter-block queries (each block is of size 	d , where 	 = �((log N)/2)1/d	) and they reduce the param-
eter n in d-D to n

((log N)/2)1/d in (d − 1)-dimension by taking the bitwise OR of the bits in a single dimension i.e., storing a 1 
if any bit along that dimension is 1. Therefore, the recurrence for S(n, d) is

S(n,d) =
⎧⎨
⎩
O (n) if d = 1.

�
(
nd

) +O
(

d!
(

2
ln 2

)d
nd

1
2 log nd

)
+ 2dn · S

(
n

( 1
2 log nd)1/d ,d − 1

)
if d > 1.

We use induction to prove that S(n, d) = O
(
d!(2/ ln 2)dnd

)
. Base case: When d = 1, S(n, 1) = O (n), which is true 

by definition. Induction: Assume that S(n′, d − 1) = O
(
(d − 1)!(2/ ln 2)d−1nd−1

)
. We would like to show that S(n, d) =

O
(
d!(2/ ln 2)dnd

)
. Let c1 and c2 be constants that upper bound the asymptotic terms in the recurrence; thus the first term 

is upper bounded by c1nd and the second is upper bounded by 2c2d!(2n/ ln 2)d/ log nd . Let c3 parameterize the solution to 
our recurrence; we will prove that S(n, d) ≤ c3d!(2/ ln 2)dnd .

S(n,d) ≤ c1nd + c2d!
(

2

ln 2

)d nd

1
2 log nd

+ 2dn · S

(
n

( 1
2 log nd)1/d

,d − 1

)

≤ c1nd + 2c2
d!

lognd

(
2

ln 2

)d

nd + 2dnc3

⎛
⎝(d − 1)!

(
2

ln 2

)d−1
(

n

( 1
2 log nd)1/d

)d−1
⎞
⎠

= c1nd + 2c2

d logn
d!

(
2

ln 2

)d

nd + c3 ln 2(
d
2 log n

) d−1
d

d!
(

2

ln 2

)d

nd

≤

⎛
⎜⎜⎝

(
1 + 2c2

d log n

)
+

⎛
⎜⎜⎝ c3 ln 2(

d
2 log n

) d−1
d

⎞
⎟⎟⎠

⎞
⎟⎟⎠d!

(
2

ln 2

)d

nd

≤ ((1 + c2) + (c3 ln 2))d!
(

2

ln 2

)d

nd (for n ≥ 2,d ≥ 2)

≤ (c3 (1 − ln 2) + c3 ln 2)d!
(

2

ln 2

)d

nd
(

for c3 ≥ 1 + c2

1 − ln 2

)

≤ c3d!
(

2

ln 2

)d

nd = O
(

d!
(

2

ln 2

)d

nd

)

Thus, if we choose c3 such that c3 ≥ (1 + c2)/(1 − ln 2), we have S(n, d) = O
(

d!
(

2
ln 2

)d
nd

)
and the recurrence is 

satisfied.

Preprocessing time. The matrices B, SL, S R , ST , and S B can be built in � (N) time using dynamic programming. The lookup 

tables for the unique blocks can be built in O
(

N3/4
(√

(log N)/2
)2

)
=O

(
N3/4 log N

)
time.

Query time. The d-dimensional query range depends on at most 2d query ranges in (d − 1) dimensions, as the number of 
faces in a d-D hypercube is 2d. Also, at every dimension, the time required to answer the query ranges for the blocks at the 
corners of a hypercube should be considered and there are 2d corners for a hypercube. Answering the region R of a query 
range using the structures of Section 2.2 requires O

(
4dd

)
time. Hence, the query time T (d) for d-D can be computed using 

the recurrence

T (d) =
{

�(1) if d = 1,

O
(
2dd

) +O
(
4dd

) + 2d · T (d − 1) if d > 1.

We use induction to prove that T (d) = O
(
4dd!). Basis: When d = 1, T (1) = O (1), which is true by definition. Induction: 

Assume that T (d − 1) =O
(
4d−1(d − 1)!) for some d > 1. We like to prove that T (d) = O

(
4dd!). From the recurrence,
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T (d) ≤ c14dd + 2d · T (d − 1) (for some constant c1)

≤ c14dd + 2dc2 · 4d−1(d − 1)! (for some constant c2)

= c14dd + (c2/2) · 4dd! = O
(

4dd!
)

.

Theorem 2. Given a d-D input hypercubic bit matrix of size N = n × n × · · · × n, each orthogonal R1Q on the grid can be answered 
deterministically in O

(
4dd!) time after preprocessing the grid in linear time (in the size of the input matrix) in the indexing model 

using � 
(
d!(2/ ln 2)d N

)
bits of space.

2.4. Randomized algorithms

In this section, we present randomized algorithms that build on the deterministic algorithms given in Sections 2.1 and 
2.2. We describe the algorithms for one dimension only. Extensions to higher dimensions are straightforward.

2.4.1. Sketch-based algorithms
Our algorithms provide probabilistic guarantees based on the Count-Min (CM) sketch data structure proposed in [46]. Let 

N1 be the number of 1-bits in the input bit array A[0 . . . N − 1] for any data distribution. Then, the preprocessing time and 
space complexities depend on N1 while the query time remains constant.

A CM sketch with parameters ε ∈ (0, 1] and δ ∈ (0, 1) can store a summary of any given vector �a = 〈a0, a1, . . . , an−1〉
with ai ≥ 0 in only � e

ε 	�ln 1
δ
	 log ||�a||1 bits of space (where e = 2.7182 . . . is the Euler’s number and ||�a||1 (or ||�a||) =∑n−1

i=0 ai ), and can provide an estimate âi of any ai with the following guarantees: ai ≤ âi , and with probability at least 
1 − δ, âi ≤ ai + ε||�a||1. It uses t = �ln 1

δ
	 hash functions h1 . . .ht : {0 . . .n − 1} → {1 . . .b} chosen uniformly at random from a 

pairwise-independent family, where bucket size b = � e
ε 	. These hash functions are used to update a 2-D matrix c[1 : t][1 : b]

of bt counters initialized to 0. For each i ∈ [0, n − 1] and each j ∈ [1, t] one then updates c[ j][h j(i)] to c[ j][h j(i)] + ai . After 
the updates, an estimate âi for any given query point ai is obtained as min1≤ j≤t c[ j][h j(i)].

Preprocessing
In the deterministic algorithms we first compressed the input array by converting each word into a single bit, and 

then constructed L0 and R0 arrays from the compressed array. In the current algorithm we build the L0 and R0 arrays 
directly from the uncompressed input. For p ∈

[
0, 1

2 log (N/N1)
]

, the Lp and R p arrays are stored as CM sketches while for 

p ∈
[

1
2 log (N/N1) + 1, log N

]
, the arrays are stored directly as in the deterministic case. Each L p[i] is added as 

(
Lp[i] + 1

)
mod

(
2p + 1

)
to the CM sketch (similarly for R p[i]). Thus a nonzero entry (of value at most 2p) is added to the CM sketch 

provided the corresponding block contains a 1, otherwise nothing is added. As a result for any given L p summation of all 
entries added to the CM sketch is at most N1 × 2p , and we set ε = 1

2×N1×2p for that sketch.

Query execution
Given a query R1QA(i, j), we use the MSB of j − i + 1 to find the largest value of p with 2p ≤ j − i + 1, and then 

follow the approach for answering case (b) of inter-word queries described in Section 2.1. If 2p >
√

N/N1, we use Lp and 
R p arrays to answer the query correctly, otherwise we use the Lp and R p values obtained from the corresponding CM 
sketches.

Complexity analysis
We compute space usage, preprocessing time and query time below.

Total space. Recall that a CM sketch with parameters ε and δ occupies O
(

1
ε ln 1

δ
log ||�a||

)
bits of space. For p ∈[

0, 1
2 log (N/N1)

]
, we store the Lp and R p arrays as CM sketches with ε = 1

2×N1×2p . Hence, the CM sketches occupy 

O
(∑� 1

2 log (N/N1)
p=0

(
2N1 · 2p ln

(
1
δ

)
log

(
N1 · 2p

)))
=O

(√
N N1 log N log

(
1
δ

))
bits of space. For p ∈

[
1
2 log (N/N1) + 1, log N

]
, 

we store the Lp and R p arrays directly using a total of O
(∑log N

p=� 1
2 log (N/N1)+1

( N
2p (p + 1)

)) = O
(√

N N1 log N
)

bits. Even if 

we use an MSB table of size O
(
N1/2 log log N

)
, the total space complexity remains O

(√
N N1 log N log

(
1
δ

))
bits. Observe 

that the input array A can be discarded.

Preprocessing time. The preprocessing time can be shown to be O
(

N + √
N N1 log N log

(
1
δ

))
.

Query time. Since extracting the estimated value of each entry of the L p and R p arrays takes O (t) time, the overall query 
time is also O (t) =O

(
ln 1

)
.

δ
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Error bound
If the query range is larger than 

√
N/N1, the answer is always correct. For smaller queries we use CM sketches. Recall 

that for p ∈
[

0, 1
2 ln(N/N1)

]
, we store each Lp (and R p ) as a CM sketch with parameter ε = 1

2×N1×2p . Hence, the estimated 

value L̂ p[i] of an entry Lp[i] returned by the CM sketch is between Lp[i] and Lp[i] + ε||Lp || ≤ Lp[i] + 0.5 with probability 
at least 1 − δ. In other words, with probability at least 1 − δ, the CM sketch returns the correct value. In order to answer an 
R1Q we need to access at most four CM sketches. Hence, with probability at least (1 − δ)4 ≥ 1 − 4δ, the query will return 
the correct answer.

We summarize the result.

Theorem 3. Given a 1-D bit array of length N containing N1 nonzero entries, and a parameter δ ∈
(

0, 1
4

)
, one can construct a data 

structure occupying O
(√

N N1 log N log
(

1
δ

))
bits in the encoding model to answer each R1Q correctly in O

(
ln 1

δ

)
worst-case time 

with probability at least 1 − 4δ. For query ranges larger than 
√

N/N1 the query result is always correct.

By tweaking the algorithm described above slightly, we can reduce the space complexity even further at the cost of 
providing a weaker correctness guarantee. We assume that we are given an additional parameter γ ∈

(
0, 1

4

)
.

For each p ∈ [0, log N], we store the Lp and R p arrays as CM sketches. However, instead of adding a value v directly 
to a CM sketch, we now add a (1 + γ ) approximation of v . More precisely, we add �log1+γ (1 + v)	 instead of v . Hence, 
for a given Lp , the summation of all entries added to its CM sketch is at most N1�log1+γ

(
1 + 2p

)	, and so we set the 
parameter ε to 1/ 

(
2N1�log1+γ

(
1 + 2p

)	) for that sketch. The total space used by all CM sketches can be shown to be 

O
(

N1 log3 N log1+γ (1/δ)
)

. We store a lookup table of size O
(

log2 N
)

for conversions from �log1+γ (1 + v)	 to v , and an 

MSB table of size O
(
N1/c log log N

)
for some given integer constant c > 1.

We first show that for any given p ∈ [0, log N] at most 2γ fraction of the queries of size 2p can return incorrect answers. 
Consider any two consecutive blocks of size 2p , say, blocks i ∈ [0, N

2p − 1) and i + 1. Exactly 2p different queries of size 2p

will cross the boundary between these two blocks. The answer to each of these queries will depend on the estimates of R p [i]
and Lp[i + 1] obtained from the CM sketches. Under our construction the estimates are R̂ p[i] ≤ (1 +γ )R p[i] ≤ R p[i] +γ · 2p

and L̂ p[i + 1] ≤ (1 + γ )Lp[i + 1] ≤ Lp[i + 1] + γ · 2p . Hence, at most γ · 2p of those 2p queries will produce incorrect 
results due to the error in estimating R p[i], and at most γ · 2p more because of the error in estimating Lp[i + 1]. Thus with 
probability at least (1 − δ)2, at most 2γ fraction of those 2p queries will return wrong results. Recall from Section 2.1 that 
we answer given queries by decomposing the query range into two overlapping query ranges. Hence, with probability at 
least (1 − δ)4 ≥ 1 − 4δ, at most 2γ + 2γ = 4γ fraction of all queries can produce wrong answers.

Theorem 4. Given a 1-D bit array of length N containing N1 nonzero entries, and two parameters γ ∈
(

0, 1
4

)
and δ ∈

(
0, 1

4

)
, and an 

integer constant c > 1, one can construct a data structure occupying O
(

N1 log3 N log1+γ

(
1
δ

)
+ N1/c log log N

)
bits in the encoding 

model to answer each R1Q in O
(
log c

δ

)
worst-case time such that with probability at least 1 − 4δ at most 4γ fraction of all query 

results will be wrong.

2.4.2. Sampling-based algorithm
Suppose we are allowed to use only O (s) bits of space (in addition to the input array A), and s = � (log2 N). We are 

also given two constants ε ∈ (0, 1) and δ ∈ (0, 1). We build Lp and R p arrays for each p ∈ [
log N

s + log log N, log N
]
, and 

an MSB lookup table to support constant time MSB queries for integers in [1, s/ log N]. Consider the query R1QA(i, j). If 
j − i + 1 ≤ w , we answer the query correctly in constant time by reading at most 2 words from A and using bit shifts. 
If j − i + 1 ≥ 2log N

s +log log N = N log N
s , we use the Lp and R p arrays to correctly answer the query in constant time. If 

w < j − i + 1 < N log N
s , we sample � 1

ε ln
(

1
δ

)
	 entries uniformly at random from A[i . . . j], and return their bitwise OR. It is 

easy to show that the Lp and R p tables use O (s) bits in total, and the MSB table uses o (s) bits of space. The query time is 
clearly O

(
1
ε ln

(
1
δ

))
.

Error bound
If at least an ε fraction of the entries in A[i . . . j] are nonzero then the probability that a sample of size � 1

ε ln
(

1
δ

)
	

chosen uniformly at random from the range will pick at least one nonzero entry is ≥ 1 − (1 − ε)
1
ε ln

(
1
δ

)
≈ 1 − δ.

Theorem 5. Given a 1-D bit array of length N, a space bound s = � (log N), and two parameters ε ∈ (0,1) and δ ∈ (0,1), one 
can construct a data structure occupying only O (s) bits of space in the indexing model that in O

(
1 ln

(
1
))

time can answer each 
ε δ
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Fig. 4. Right triangular R1Q. (a) Preprocessing. (b) Query execution. Each black grid point contains a 1 while each white grid point contains a 0.

R1QA(i, j) correctly with probability at least 1 −δ provided at least an ε fraction of the entries in A[i . . . j] are nonzero. If j − i +1 ≤ w
or j − i + 1 ≥ N log N

s , the query result is always correct.

3. Non-orthogonal range 1 queries

In this section, we show how to answer R1Q for non-orthogonal ranges, such as axis-parallel right triangles, certain type 
of polygons, axis-parallel right simplices, and spheres given an input matrix of size N = n × n × · · · × n.

3.1. Right triangular R1Q

A right triangular query R1Q(ABC) asks if there exists a 1 in an axis-parallel right triangle ABC defined by three grid 
points A, B , and C . In the rest of the paper, right triangles will mean axis-aligned right triangles.

Preprocessing
For every grid point (x, y) containing a 0, for each p ∈ [0, (log N)/2], we store the coordinates of 8 other grid points 

for 8 different orientations. For example, consider Fig. 4(a) in which each black grid point corresponds to a 1, and each 
white point corresponds to a 0. In the figure, for the grid point P = (x, y) and p = 2, we show the eight black grid points 
(i.e., LC , LCC , RC , RCC , UC , UCC , DC and DCC which are present on the arrows) that we store. For example, UC is a black 
grid point (present on an arrow) that lies to the right of PU such that P UC makes the smallest angle θUC in the clockwise 
direction with PU. The significance of UC is that no right triangle with a vertical base of length 2p that has one endpoint at 
P , another endpoint to the right of P , and whose hypotenuse makes a smaller nonnegative angle than θUC in the clockwise 
direction with the vertical line can contain a 1. The black grid points Uc, Ucc, Dc, Dcc (present on the arrows) are defined 
with respect to the angle with the vertical axis of P and Lc, Lcc, Rc, Rcc are defined w.r.t. the horizontal axis of P . The 
subscripts c and cc represent the angles that are computed in clockwise and anti-clockwise direction, respectively.

Query execution
We show how to answer a right triangular R1Q in � (1) time. Say, we want to answer R1Q(ABC) (see Fig. 4(b)). Let 2p

be the largest power of 2 not larger than |AB|, and 2q be the largest power of 2 not larger than |CB|. Find grid points D and 
E on AB and CB, respectively, such that |AD| = 2p and |CE| = 2q . Suppose the horizontal line passing through D intersects 
BC at G , and the vertical line passing through E intersects BC at H . Observe that G and H are not necessarily grid points. 
We assume w.l.o.g. that none of the vertices A, B , and C contains a 1 (as otherwise we can answer the query trivially in 
constant time). Observe that we can answer R1Q(ABC) if we can answer R1Q for triangles ADG and CEH, and the rectangle 
BDFE. R1Q for the rectangle can be answered using our deterministic algorithm described in Section 2.2. R1Q for a right 
triangle of a particular orientation with height or base length equal to a power of two can be answered in constant time. 
This is done by checking whether the point stored (from preprocessing) with the appropriate endpoint of the hypotenuse 
for that specific orientation is inside the triangle or not.

Complexity analysis
The input bit matrix is of size N = n × n. The query time is clearly � (1), and the extra space requirement is 

O
(

N log N + N0 log2 N
)

bits, where N0 is the number of 0 bits. We analyze the preprocessing time as follows. For each 
grid point, we find the distance to the nearest black point in all four directions: top, bottom, left, and right, in O (N)

time using dynamic programming with O (N log N) bits of space and use this intermediate data structure for preprocessing. 
Assume that for each grid point P , we have stored information on 8 points in 8 different orientations θ as explained in 
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Fig. 5. (a) An example 3-D simplex. (b) Remaining solid when three 3-D simplices are removed from the three corners of the given simplex.

the preprocessing stage, for triangle of base length 2i . For simplicity of exposition, we describe here the preprocessing for 
a single orientation where the stored point, denoted by SPP′ , is below and to the right of P and the line segment PP′ is 
a vertical line containing 2i grid points. Let � P ′PSPP′ be denoted by α. Then, for a vertical line PP′′ of size 2i+1 passing 
through P ′ , SPP′′ for the same orientation is computed using dynamic programming as follows. For all 2i points between 
P ′ (exclusive) and P ′′ (inclusive), the nearest 1-bits to their right are found from the intermediate data structure. Let the 
angles made by them with the line PP′′ at the point P be α1, . . . , α2i . Then, SPP′′ is that point that makes the least angle, 
i.e., min (α,α1, . . . ,α2i ) with PP′′ . After computing all such stored points, the intermediate data structure can be discarded. 
Thus, the total preprocessing time is O

(
n2 · ∑�log n

i=0 (2i + 1)
)

=O
(
n2 · n

) =O
(
N1.5

)
.

Overall, we obtain the following result.

Theorem 6. Given a 2-D bit matrix of size N = n × n containing N0 zero bits, one can construct a data structure occupying 
O

(
N log N + N0 log2 N

)
bits in O

(
N1.5

)
time in the encoding model to answer each axis-aligned right triangular R1Q with the 

three vertices on the grid points in O (1) time.

3.2. Right simplicial R1Q

A d-simplex is defined as the generalization of a triangle in d (≥ 3) dimensions. We define a right d-simplex as a solid 
obtained by the intersection of the coordinate hyperplanes and an arbitrary hyperplane in d-dimensional Cartesian space. 
Note that as per our definition, a right d-simplex is always axis-parallel.

It is not clear how to generalize the right triangular R1Q algorithm described above to answer R1Q in d (≥ 3) dimensions. 
For example, the straightforward generalization of the algorithm does not work for the following reason. A given right 
triangle (2-D simplex) can be split into two right triangles and a rectangle but a right d-simplex (d ≥ 3) may not be split 
into d right d-simplices with sides powers of 2 and an orthotope. Consider a 3-D simplex ABCD as shown in Fig. 5(a). Define 
three new points E, F , G as the midpoints of AB, AD, AC, respectively. Remove the three 3-D simplices AEFG, CHIG, and DIFJ
from the given simplex ABCD. The solid that remains as depicted in Fig. 5(b) is not a cuboid (or an orthotope) and hence 
we cannot use an orthogonal R1Q algorithm for the solid.

Here, we describe a method to answer right simplicial R1Q for a hypercubic grid of size N = N1/d × N1/d × · · · × N1/d , 
which works for all dimensions greater than 1.

Preprocessing
Let P = (x1, x2, . . . , xd) be a grid point. We define grid points P1, P2, . . . , Pd−1 as P1 = (p1, x2, . . . , xd), P2 =

(x1, p2, . . . , xd), and so on till Pd−1 = (x1, x2, . . . , pd−1, xd), where p1, p2, . . . , pd−1 ∈ [0, N1/d − 1]. For every grid point 
P and each value of p1, p2, . . . , pd−1 ∈ [0, N1/d − 1], we store the coordinates of two 1-bits Q and R (if present) satisfying 
the following. The hyperplane H Q (resp. H R ) passing through {P1, P2, . . . , Pd−1, Q } (resp. {P1, P2, . . . , Pd−1, R}) minimizes 
the distance (P Q [d] − P [d]) (resp. (P [d] − P R [d])) while keeping it positive, where P Q (resp. P R ) is the point of intersection 
of H Q (resp. H R ) and the dth coordinate axis; and P [d] represents the dth coordinate value of the point P .

Query execution
We describe how to answer a right simplicial R1Q in � 

(
d2

)
query time. Given a right d-simplex AB1 B2 . . . Bd , where 

interior angles at corner A are right angles and point Bi differs from point A only in the ith dimension, then we can find 
R1Q(AB1 B2 . . . Bd) as follows. Given B1, . . . , Bd−1, we store for point A two points Q and R (that differ only in the dth 
coordinate) such that given a grid point Bd , (i) if Bd = P Q or Bd = P R , then the query returns a 1, (ii) if Bd is neither P Q
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Fig. 6. Black grid points contain 1’s and white grid points contain 0’s. Polygon in (a) satisfies Proposition 1. Polygons in (b) and (c) do not satisfy Proposi-
tion 1. Still, R1Q can be answered for (c).

nor P R but lies on the line segment P Q P R then the query returns a 0, and (iii) if Bd is not on the line segment P Q P R , then 
the query returns a 1.

Complexity analysis
The query time is � 

(
d2

)
as there are d + 1 corners for a d-simplex, each grid point has d coordinates. Reading the input 

and query execution (reading the stored point and computing) both take � 
(
d2

)
for the same reason. The total space is 

computed as follows. There are N grid points and for every grid point P and d − 1 points P1, P2, . . . , Pd−1 (as described in 
the preprocessing stage), we store two points Q and R , which takes � (log N) bits of space. Hence, the total space required 
is � 

(
N2−1/d log N

)
bits. The preprocessing time is O

(
N3−1/d

)
if the preprocessing is done naively. Finding a point Q and R

takes O (N) time. Therefore, the total preprocessing time is O
(
N2−1/d × N

) =O
(
N3−1/d

)
.

Thus, we have the following theorem.

Theorem 7. Given a d-D (d ≥ 2) hypercubic bit matrix of size N = N1/d × N1/d × · · · × N1/d, one can construct a data structure 
occupying O

(
N2−1/d log N

)
bits in the encoding model in O

(
N3−1/d

)
time to answer each axis-aligned right simplicial R1Q with 

d + 1 vertices on the grid points in � 
(
d2

)
time.

3.3. Polygonal R1Q

Consider a simple polygon with its vertices on grid points satisfying the following property.

Property 1. For every two adjacent vertices (a, b) and (c, d), one of the two right triangles with the third vertex being either (a, d) or 
(c, b) is completely inside the polygon.

It can be shown that such a polygon can be decomposed into a set of possibly overlapping right triangles and rectangles 
with only grid points as vertices that completely covers the polygon (see Fig. 6(a)). Examples of polygons that do not satisfy 
the constraint are given in Fig. 6(b, c), but we can still answer R1Q for the polygon in Fig. 6(c).

Theorem 8. A simple polygon with k vertices satisfying Property 1 can be decomposed into O (k) right triangles and rectangles and 
hence the polygonal query can be answered in O (k) time in the encoding model using the space as given in Theorem 6.

Proof. Every two adjacent vertices, (a, b) and (c, d), of the polygon makes an axis-parallel right triangle with either (a, d)

or (c, b) such that the triangle is completely inside the polygon. For a given simple polygon of k vertices, it is easy to 
see that the number of right triangles that satisfy Property 1 for which R1Q has to be answered is O (k). When a right 
triangle with its hypotenuse as one of the polygon edges is removed, it adds atmost two edges, vertical and/or horizontal, 
to the modified polygon. Removing the k right triangles of the polygon leaves a possibly disjoint set of rectilinear polygons 
with O (k) vertices or edges. If we answer R1Q for all such right triangles, we will be left with a disjoint set of rectilinear 
polygons.

Adding a vertical line passing through a vertex of a rectilinear polygon (see Fig. 7(a)) that strictly passes inside the rec-
tilinear polygon splits the rectilinear polygon into two rectilinear polygons with reduced number of vertices. Following the 
process for other vertices, we end up in a collection of rectangles, for which R1Q can be answered using our deterministic 
orthogonal algorithms or any other good orthogonal R1Q algorithms.

We need to show that the number of rectangles that are created after we split the rectilinear polygons will be O(k). 
We assume that the O (k) vertices of each rectilinear polygon are sorted with respect to x-coordinate. In each rectilinear 
polygon, for each vertex considered in sorted order, we draw a vertical line passing strictly inside the polygon. This vertical 
line will touch exactly one horizontal line either above or below the vertex creating a rectangle as shown in Fig. 7(b). Each 
vertex can create at most one other rectangle. Hence, the number of rectangles created after the split will be O(k).

As the simple polygon with k vertices satisfying Property 1 can be split into O (k) right triangles and O (k) rectangles 
and answering R1Q for each such shape takes constant time, the theorem follows. �
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Fig. 7. (a) A rectilinear polygon. (b) A rectilinear polygon with O (k) vertices can be split into a collection of O (k) rectangles in O (k) time.

3.4. Spherical R1Q

In this section we present a spherical variant of the R1Q problem. Our result works for all dimensions. We state our 
result for spheres based on Euclidean distances, but our approach can be used for balls under any distance metric.

The spherical R1Q problem is defined as follows. Given a d-dimensional input hypercubic bit matrix A of size N =
N1/d × N1/d × · · · × N1/d , preprocess A such that given any grid point p in A and a radius r ∈ N, find efficiently if there 
exists a 1 at most distance r away from p. Here, we present the algorithm for 2-D. The approach can be extended to d (≥ 3)

dimensions.
Our method for spherical queries is to, for each point p, store the ceiling of the distance to the closest 1, called the

nearest neighbor, to p. Then a spherical query centered at p does not contain a 1 if and only if the radius r is strictly 
less than this stored distance. We compress this distance matrix to linear space (in bits) while retaining the � (d) query 
time.

Preprocessing
To preprocess, we begin by computing the distance to the nearest neighbor of each point. We can do this using standard 

Voronoi diagram techniques: first compute the Voronoi diagram for all 1’s in the matrix in � (N log N) time, then locate 
each grid point within the diagram in � (log N) time (see [1] for details). This takes � (N log N) time in total. We can also 
find the NN distances of all grid points using multi-source breadth-first search (BFS). Starting from all 1-bits in parallel, we 
can find the NN distances of their adjacent cells in the next step. Continuing the process using the BFS traversal method, 
we can compute the NN distances of all cells in � (N) preprocessing time.

We divide the array into d-dimensional blocks with all sides of length ((log N)/4)1/d . If the array cannot be evenly 
divided, we pad it with 0’s so all blocks are the same size.

Initially, at each point we store the ceiling of the distance to the nearest neighbor. Note that by the triangle inequality, 
the entry of two neighboring points can only differ by 1.

Lemma 2. Let p and q be adjacent cells on a grid, and p′ and q′ be the nearest neighbors (closest 1’s) to p and q respectively. Let d(a, b)

be the distance between two grid points a and b. For any distance metric such that d(p, q) = 1, then |�d(p, p′)	 − �d(q, q′)	| ≤ 1.

Proof. Let the distance between two points a and b be denoted by dab = d(a, b).
If p′ = q′ , we have dpp′ ≤ dpq +dp′q = 1 +dp′q by the triangle inequality. Similarly, we can find dp′q ≤ 1 +dpp′ . Since both 

of these are true simultaneously, we get |dpp′ − dqq′ | ≤ 1, and then |�dpp′ 	 − �dqq′ 	| ≤ 1.
If p′ �= q′ , without loss of generality, dpp′ < dpq′ and dqq′ ≤ dp′q . Then dpp′ < dpq′ ≤ dpq + dqq′ = 1 + dqq′ by the triangle 

inequality. We also have dqq′ ≤ dp′q ≤ dpq + dpp′ = 1 + dpp′ . To satisfy these simultaneously, |dpp′ − dqq′ | ≤ 1, and again the 
lemma follows. �

We order the points within each block so that subsequent points in the ordering are adjacent. In every block, we store 
the exact ceiling of the distance to the nearest neighbor1 for the first grid point. For the remaining points, we store a +, 
−, or = symbol if the value is greater than, less than, or equal to the previous point respectively. We call the list of +, −, 
or = symbols for each point in a block in order the type of the block. An example 2-D block and the symbols used in it is 
shown in Fig. 8.

By storing distances relative to the previous distance in the ordering, we can achieve � (N) bits of space with � (d)

query time. Since each point can only have one of three possible values (+, −, =), and there are (log N)/4 points in each 
blocks, there can only be 3(log N)/4 ≤ √

N types of block. For each block we only store the type of block, and the ceiling 
of the distance to the nearest neighbor for the first element. There are � (N/ log N) blocks, so this requires � (N) bits. For 
each block type, we store for every point in the block the offset between the original distance stored and the distance of 
the first point. For example, if the first point in some block has a distance 3 to its nearest neighbor, and another point p
in the same block has a distance 1 to its nearest neighbor, then an offset of −2 will be stored at grid point p. The list of 
offsets is unique for a given block type.

1 Theorem 7 in the conference version [47] of this paper is incorrect as it assumes that the nearest neighbor of a point p on the interior of a block must 
either be inside the block, or must also be the nearest neighbor of a point on the boundary of a block, which might not be true for some inputs.
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Fig. 8. An example 2-D block containing numbers [5 4 4 3 3 2 1 2 3].

Query execution
To answer R1Q for a sphere of integer radius r centered at point p, we add the distance value stored at the block b

containing p to the offset stored in the block type. The sphere does not contain a 1 if and only if the result is strictly 
greater than the query radius.

It is important to note that our results only apply for integer radii. This allows us to store an integer distance at each 
point. If we use the squared Euclidean distances to answer spherical queries for real radii, Lemma 2 cannot be used to 
guarantee that neighboring grid points have a (squared) nearest neighbor distance at most 1 apart. However we still can 
answer R1Q for some spherical queries centered at a point p for real radius r′ in two of the three cases as follows. If the 
NN distance stored at point p is (a) lesser than or equal to �r′, then the sphere contains a 1, (b) greater than �r′	, then 
the sphere does not contain a 1, and (c) exactly equal to �r′	, then we cannot answer the R1Q.

The spherical R1Q algorithm presented in this section can be applied to several distance metrics. To extend to arbitrary 
distance metrics, note that in Lemma 2 we only used the triangle inequality in the proof. Similarly, the ceiling of the NN 
distance can only change by 1 between adjacent points in any metric. Thus the above techniques extend to any distance 
metric. Let p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) be two points in the d-dimensional real vector space. Then, the Li

(i ∈ [1, ∞) distance between the two points p and q, denoted by ||p − q||i is defined as ||p − q||i =
(∑d

j=1(q j − p j)
i
)1/i

. 
For simplicity, consider a 2-D grid. The L1 distance is also called Manhattan distance and the points that have the same 
Manhattan distance from a point p will be on a rhombus centered at p. The L2 distance is also called Euclidean distance 
and the points that have the same Euclidean distance from a point p will be on a circle centered at p. Similarly, the points 
that have the same L∞ distance from a point p will be on a square centered at p. As all distance metrics from L1 to L∞
satisfy Lemma 2, we can use the method presented above to answer rhombus R1Q (for L1 distances), hypercube R1Q (for 
L∞ distances), and other queries defined by the Li distances.

Complexity analysis
We analyze the above algorithm to prove our bounds. The query time is � (d), as we require a constant number of table 

lookups and additions.
Finding the NN distances of all grid points takes � (N) preprocessing time using the multi-source BFS traversal method. 

To add the pointers to each block type, assume we store the block types in an array in lexicographic order. Then the pointer 
can be computed for each block type using a linear scan. Computing the offsets can also be done using a linear scan, 
starting at the first element for each block type. For each subsequent element we add 1, subtract 1, or leave the previous 
offset unchanged for a +, −, or = respectively. The total time for preprocessing is � (N).

For space, we store � (N/ log N) blocks. For each block we store the block type and the distance to the nearest neighbor 
of the first element in the block; this takes � (log N) space. Each block type requires an offset stored for each element, with 
� (log N log log N) space. Thus the total space is � 

(
(N/ log N) · log N + √

N log N log log N
)

= � (N) bits.

Theorem 9. Given a d-dimensional hypercubic bit matrix of size N = N1/d × N1/d × · · · × N1/d, one can construct a data structure 
occupying � (N) bits in the encoding model in � (N) time to answer each spherical R1Q for integer radius in � (d) time.

4. Concluding remarks

In this paper, we have presented deterministic and randomized algorithms for orthogonal R1Q having constant query 
time. The algorithms occupy linear/sublinear space (in bits) in the size of the input matrix. We also presented fast algorithms 
for non-orthogonal shapes such as axis-parallel right-triangles, certain simple polygons, axis-parallel right simplices, and 
spheres. We can also answer R1Q for a complex shape if the shape can be expressed as a union of the basic shapes that 
can be individually answered by R1Q.

A few interesting problems on grids that one could aim to solve in future are

� How can we efficiently answer R1Q when the bits are changing dynamically?� How can we efficiently answer triangular R1Q (any triangle)?� How can we efficiently answer R1Q for a polytope (generalization of a polygon in higher dimensions)?
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� What are the tight lower bounds to answer the R1Q problem for different shapes?� How can we efficiently find the existence of an element in a given query range (orthogonal and non-orthogonal) in a 
general matrix?� How can we efficiently answer R1Q for complicated shapes in triangular and hexagonal grids?� How can we efficiently count the number of 1’s for non-orthogonal ranges?� How can we efficiently count the number of times an element occurs for orthogonal and non-orthogonal ranges in a 
general matrix?� How can we efficiently solve RMQ and the range partial sum problems for non-orthogonal ranges?
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