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ABSTRACT

Iterative wavefront algorithms for evaluating dynamic program-

ming recurrences exploit optimal parallelism but show poor cache

performance. Tiled-iterative wavefront algorithms achieve optimal

cache complexity and high parallelism but are cache-aware and

hence are not portable and not cache-adaptive. On the other hand,

standard cache-oblivious recursive divide-and-conquer algorithms

have optimal serial cache complexity but o�en have low parallelism

due to arti�cial dependencies among subtasks.

Recently, we introduced cache-oblivious recursive wavefront

(COW) algorithms, which do not have any arti�cial dependen-

cies, but they are too complicated to develop, analyze, implement,

and generalize. �ough COW algorithms are based on fork-join

primitives, they extensively use atomic operations for ensuring

correctness, and as a result, performance guarantees (i.e., parallel

running time and parallel cache complexity) provided by state-of-

the-art schedulers (e.g., the randomized work-stealing scheduler)

for programs with fork-join primitives do not apply. Also, extensive

use of atomic locks may result in high overhead in implementation.

In this paper, we show how to systematically transform standard

cache-oblivious recursive divide-and-conquer algorithms into re-

cursive wavefront algorithms to achieve optimal parallel cache com-

plexity and high parallelism under state-of-the-art schedulers for

fork-join programs. Unlike COW algorithms these new algorithms

do not use atomic operations. Instead, they use closed-form formu-

las to compute the time when each divide-and-conquer function

must be launched in order to achieve high parallelism without los-

ing cache performance. �e resulting implementations are arguably

much simpler than implementations of known COW algorithms.

We present theoretical analyses and experimental performance and

scalability results showing a superiority of these new algorithms

over existing algorithms.

Keywords: wavefront; cache-oblivious; parallel; recursive; divide-

and-conquer; dynamic programming; parallelism
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1 INTRODUCTION

Dynamic programming (DP) is a popular algorithm design tech-

nique to solve optimization problems that exhibit the properties of

overlapping subproblems and optimal substructure. �e process

involves dividing a problem into smaller subproblems, solving them,

storing their results in tables to avoid recomputations, and com-

bining those solutions. DP is used in many real-world application

areas, and extensively in computational biology [6, 22, 31, 52].

For good performance on a modern multicore machine with a

cache hierarchy, algorithms must have good parallelism and should

be able to use the caches e�ciently at the same time. Iterative

wavefront algorithms for solving DP problems have optimal paral-

lelism but o�en su�er due to poor cache performance. On the other

hand, though standard cache-oblivious [24] recursive divide-and-

conquer DP algorithms have optimal serial cache complexity, they

o�en have low parallelism. �e tiled-iterative wavefront algorithms

achieve optimality in cache complexity and achieve high parallelism

but are cache-aware, and hence are not portable and do not adapt

well when available cache space �uctuates during execution in a

multiprogramming environment. Very recently, the cache-oblivious
wavefront (COW) algorithms [46, 47] have been proposed that have

optimal parallelism and optimal serial cache complexity. However,

though those algorithms are based on fork-join primitives, they

extensively use atomic operations for correctness. But, the cur-

rent theory of scheduling nested parallel programs with fork-join

primitives does not hold for such atomic operations. As a result,

no bounds on parallel running time and parallel cache complexity

could be proved for those algorithms. �ose algorithms are also

very di�cult to implement since they require hacking into a parallel

runtime system. Extensive use of atomic locks causes too much

overhead for very large and higher dimensional DPs.

We present a provably e�cient method for scheduling cache-

oblivious recursive divide-and-conquer wavefront algorithms on a

multicore machine which optimizes parallel cache complexity and

achieves high parallelism. Our algorithms are based on fork-join

primitives but do not use atomic operations. As a result, we are

able to analyze their parallel running times and parallel cache com-

plexities easily under the state-of-the-art schedulers for fork-join

based parallel programs. Our algorithms are also much simpler to

implement compared to COW algorithms.

Performance of a parallel programonmulticores. We analyze

the performance of a parallel program run on a shared-memory

multicore machine using the work-span model [19]. �e work of
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a multithreaded program, denoted by T1 (n), where n is the input

parameter, is the total number of CPU operations performed when

run on a single processor
1
. �e span (a.k.a. critical-path length or

depth), denoted by T∞ (n), is the maximum number of operations

performed on any processor when the program is run on an in�nite

number of processors. �e parallel running timeTp (n) of a program

when scheduled by a greedy scheduler [11] on p processors is given

by Tp (n) = O (T1 (n)/p +T∞ (n)). �e parallelism, computed by the

ratio of T1 (n) and T∞ (n), is de�ned as the average amount of work

done per step of the critical path. �e notations and their meanings

are summarized in Table 1.

Symb. Meaning

n Input parameter

n′ Switching point (to non-wavefront)

r Parameter ∈ [1, n]

p Number of processors

M Cache size

B Cache line size

T1 Work or total #computations

T∞ Span or critical-path length

Tp Parallel running time

T1/T∞ Parallelism

Q1 Serial cache complexity

Qp Parallel cache complexity

Sp Extra-space complexity

Table 1: Standard notations

used throughout the paper.

Cache complexity is a

performance metric that

counts the number of

block transfers (or cache

misses or I/O transfers

or page faults) triggered

by a program between

adjacent levels of caches

in a memory hierarchy.

By Qp we denote the

total number of cache

misses on a p-processor

machine. So Q1 is the se-
rial cache complexity. We

say that an algorithm has spatial locality provided each cache block

it brings into a cache contains as much useful data as possible. We

say that it has temporal locality provided it performs as much useful

work as possible on each cache block it brings into a cache before

the block gets evicted from the cache.

Iterative algorithms. Traditionally, DP algorithms are imple-

mented using a series of (nested) loops and they can be parallelized

easily. �ese algorithms o�en have good spatial locality, but no

temporal locality and standard implementations may not have op-

timal parallelism either. For example, an iterative algorithm for

the parenthesis problem [49] (shown in Figure 1 and explained in

Section 2) has T∞ (n) = Θ
(
n2

)
and Q1 (n) = Θ

(
n3

)
.

Iterative algorithms are also implemented as tiled loops, in which

case the entire DP table is blocked or tiled and the tiles are executed

iteratively. For example, for a tiled iterative algorithm for the

parenthesis problem with r × r tile size, where r ∈ [2,n], we have

T∞ (n) = Θ
(
(n/r )2

)
· Θ

(
r2

)
= Θ

(
n2

)
, and Q1 (n, r ) = (n/r )3 ·

O
(
r2/B + r

)
= O

(
n3/(rB) + n3/r2

)
.

Fastest iterative DP implementations have the following wavefront-

like property. Let a single update on a cell x in the DP table needs

to be applied by reading from cells y1,y2, . . . ,ys . When the cells

y1,y2, . . . ,ys are completely updated, then the cell x can immedi-

ately get updated, either partially or fully.

Recursive algorithms. Cache-oblivious parallel recursive divide-

and-conquer DP algorithms can overcome many of the limitations

of their iterative counterparts. While iterative algorithms o�en have

poor or no temporal locality, recursive algorithms have excellent

and o�en optimal temporal locality. One problem with recursive

1
unless speci�ed otherwise, we will use “processor” and “processing core”

synonymously

Par-Loop-Parenthesis(C, n)

(1) for t ← 2 to n − 1 do

(2) parallel for i ← 1 to n − t do
(3) j ← t + i
(4) for k ← i + 1 to j do
(5) C[i, j]← min (C[i, j], C[i, k] +C[k, j] +w (i, k, j ))

Figure 1: Parallel iterative algorithm for solving the parenthesis

problem (a.k.a. the matrix-chain multiplication problem) which

computes an optimal way to parenthesize a sequence of n matrices

so that the cost of multiplying them is minimum.

divide-and-conquer algorithms is that they trade o� parallelism for

cache optimality, and thus may end up with suboptimal parallelism.

For example, a 2-way recursive algorithm (where, each dimen-

sion of the subtask will be half the dimension of its parent task)

for the parenthesis problem has T∞ (n) = Θ
(
nlog

2
3

)
and Q1 (n) =

Θ
(
n3/(B

√
M )

)
, that is, it has optimal serial cache complexity but

suboptimal span [49]. For n-way recursive algorithm, T∞ (n) =

Θ (n logn) and Q1 (n) = O
(
n3

)
. �is time, the span is almost linear

in n but the serial cache complexity is the worst possible. Ideally,

we want to have a balance between cache complexity and span by

choosing r -way recursive algorithm in which case neither the span

nor the parallel cache complexity will be the best possible, however,

will have best practical performance.

Source of suboptimal parallelism in recursive algorithms.

�e suboptimal parallelism in 2-way recursive algorithms results

from arti�cial dependencies among subproblems that are not im-

plied by the underlying DP recurrence [47]. We use the 2-way

recursive divide-and-conquer algorithm for the Longest Common
Subsequence (LCS) problem as an example below.

For the LCS problem, each cell (i , j) in the DP table depends on

a cell to its le� (i , j − 1), a cell above (i − 1, j) and a cell on the

diagonal (i − 1, j − 1). �e 2-way recursive divide-and-conquer

algorithm for the LCS problem splits the DP table X into four equal

quadrants: X11 (top-le�), X12 (top-right), X21 (bo�om-le�), and X22

(bo�om-right). It then recursively computes the quadrants in a way

that respects the cell dependencies among the quadrants: �rst X11,

then X12 and X21 in parallel, and �nally X22. Notice that, the top-

le� quadrants of X12 and X21 i.e., X12,11 and X21,11, respectively,

can only start executing when the execution of the bo�om-right

quadrant of X11 i.e., X11,22 completes. �ese dependencies amomg

subtasks are not implied by the DP recurrence but arise from the

recursive structure of the algorithm. X12,11 (resp. X21,11) can start

executing as soon as X11,12 (resp. X11,21) is done. We call these

dependencies arti�cial dependencies and they appear at several

di�erent granularities. Most o�en, these arti�cial dependencies

asymptotically increase the span, thereby reducing parallelism.

Recursive wavefront algorithms. By removing arti�cial depen-

dencies from the recursive algorithms, it is possible to develop

algorithms that simultaneously achieve parallel cache-optimality,

near-optimal parallelism, and cache-obliviousness. Such algorithms

are called recursive wavefront (or cache-oblivious wavefront) algo-
rithms.

�e recursive wavefront algorithms were introduced in [47].

However, those algorithms (also called COW algorithms) are too com-

plicated to develop, analyze, implement, and generalize. Atomic
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A (X , X , X )

(1) if X is a cell thenAcel l (X , X , X )
(2) else

(3) parallel:A (X11, X11, X11 ), A (X22, X22, X22 )
(4) B (X12, X11, X22 )

B (X , U , V )

(1) if X is a cell thenBcel l (X , U , V )
(2) else

(3) B (X21, U22, V11 )
(4) parallel: C (X11, U12, X21 ), C (X22, X21, V12 )
(5) parallel:B (X11, U11, V11 ), B (X22, U22, V22 )
(6) C (X12, U12, X22 )
(7) C (X12, X11, V12 )
(8) B (X12, U11, V22 )

C (X , U , V )

(1) if X is a cell then Ccel l (X , U , V )
(2) else

(3) parallel: C (X11, U11, V11 ), C (X12, U11, V12 ),
C (X21, U21, V11 ), C (X22, U21, V12 )

(4) parallel: C (X11, U12, V21 ), C (X12, U12, V22 ),
C (X21, U22, V21 ), C (X22, U22, V22 )

Programmer

computes

timing

functions

SA (X , X , X )

(1) return C(xr , xc )

SB (X , U , V )

(1) return C(xr + n − 1, xc )

SC (X , U , V )

(1) m ← (xr + n − 1 + xc )/2; û ← uc + n − 1

(2) if uc > m then return max {C(ur + n − 1, uc ), C(uc , xc ) } + 1

(3) elif û < m then return max {C(ur + n − 1, û ), C(û, xc ) } + 1

(4) else return

(max {C(ur + n − 1,m), C(m, xc ) } + 1).[uc > (xr + xc )/2]

EA (X , X , X )

(1) returnC(xr , xc +n−1)

EB (X , U , V )

(1) returnC(xr , xc +n−1)

EC (X , U , V )

(1) lval ← max {C(ur , uc ), C(uc , xc + n − 1) }
(2) rval ← max {C(ur , uc + n − 1), C(uc + n − 1, xc + n − 1) }
(3) return (max {lval, rval } + 1).[uc > (xr + xc )/2]

C(i, j )

(1) if (j − i ) ≤ 1 then return (j − i ) else return 2 × (j − i ) − 1
Transformation by

scheduler/programmer

Recursive-Wavefront-Parenthesis()

(1) w ← 0

(2) whilew < ∞ dow ←A (G, G, G, w )

A (X , X , X , w )

(1) vi ← ∞ for all i ∈ [1, 3]

(2) if X is an n′ × n′ matrix then

(3) ifw = SA (X , X , X ) thenAchunk (X , X , X )
(4) else

(5) F1. .3 ← {A, A, B}
(6) arд1. .3 ← {(X11, X11, X11 ), (X22, X22, X22 ),

(X12, X11, X22 ) }
(7) parallel: for i ← 1 to 3 do

(8) ifw < SFi (arдi ) then vi ← SFi (arдi )
(9) elifw ≤ EFi (arдi ) then vi ← Fi (arдi , w )

(10) sync

(11) return minvi for all i ∈ [1, 3]

B (X , U , V , w )

(1) vi ← ∞ for all i ∈ [1, 8]

(2) if X is an n′ × n′ matrix then

(3) ifw = SB (X , U , V ) thenBchunk (X , U , V )
(4) else

(5) F1. .8 ← {B, C, C, B, B, C, C, B}
(6) arд1. .8 ← {(X21, U22, V11 ), (X11, U12, X21 ),

(X22, X21, V12 ), (X11, U11, V11 ),
(X22, U22, V22 ), (X12, U12, X22 ),
(X12, X11, V12 ), (X12, U11, V22 ) }

(7) parallel: for i ← 1 to 8 do

(8) ifw < SFi (arдi ) then vi ← SFi (arдi )
(9) elifw ≤ EFi (arдi ) then vi ← Fi (arдi , w )

(10) sync

(11) return minvi for all i ∈ [1, 8]

C (X , U , V , w )

(1) vi ← ∞ for all i ∈ [1, 8]

(2) if X is an n′ × n′ matrix then

(3) ifw = SC (X , U , V ) then Cchunk (X , U , V )
(4) else

(5) F1. .8 ← {C, C, C, C, C, C, C, C}
(6) arд1. .8 ← {(X11, U11, V11 ), (X12, U11, V12 ),

(X21, U21, V11 ), (X22, U21, V12 ),
(X11, U12, V21 ), (X12, U12, V22 ),
(X21, U22, V21 ), (X22, U22, V22 ) }

(7) parallel: for i ← 1 to 8 do

(8) ifw < SFi (arдi ) then vi ← SFi (arдi )
(9) elifw ≤ EFi (arдi ) then vi ← Fi (arдi , w )

(10) sync

(11) return minvi for all i ∈ [1, 8]

Figure 2: TOP: �e programmer derives the timing functions (top-right) from a given standard 2-way recursive divide-and-conquer DP

algorithm for the parenthesis problem (top-le�). A region Z has its top-le� corner at (zr , zc ) and is of size n × n. BOTTOM: A recursive

divide-and-conquer wavefront algorithm is generated for the parenthesis problem. �e programmer derives the algorithm if work-stealing

scheduler (see Section 4.1) is used and the scheduler derives the algorithm if W-SB scheduler (see Section 4.2) is used. �e algorithm makes

use of the timing functions derived by the programmer.

operations were used to identify and launch ready tasks, and imple-

mentations required hacking into Cilk’s runtime system. No bounds

on parallel cache complexities of those algorithms are known.

In this paper, we present a generic method to schedule recur-

sive wavefront algorithms based on timing functions. �ese algo-

rithms have a structure similar to the standard recursive divide-and-

conquer algorithms, but each recursive function call is annotated

with start-time and end-time hints that are passed to the sched-

uler. �e task scheduler will make sure that the algorithms are

executed in a wavefront fashion using the timing functions. Indeed,

the actions the scheduler is expected to take based on the timing

functions is straightforward, and a programmer may choose to

make some straightforward transformations of the code herself and

use a scheduler that does not accept hints. �e transformed code

is still purely based on fork-join parallelism, and the performance

bounds (e.g., parallel running time and parallel cache complexity)

guaranteed by any scheduler supporting fork-join parallelism apply.

�e recursive wavefront algorithm for the parenthesis problem has

T∞ (n) = Θ (n logn) and Q1 (n) = O
(
n3/(B

√
M )

)
. Bounds on Tp

and Qp can be obtained from scheduler guarantees.

Related work. �e tiled iterative algorithms [20, 29, 37, 41, 43, 53]

have been studied extensively as tiling is the traditional way of

implementing dynamic programming and other matrix algorithms.

�ere are several frameworks to automatically produce tiled codes

such as PLuTo [10], Polly [30], and PoCC [38]. However, these

so�ware programs are not designed to generate e�cient paral-

lel tiled code for non-trivial DP recurrences. �e major concerns

with tiled programs are that they are cache-aware and sometimes

processor-aware that sacri�ces portability across machines. An-

other disadvantage of being cache-aware is that the algorithms

are not cache-adaptive [7], i.e., the algorithms do not adapt to

changes in available shared cache/memory space during execution

and hence may run slower when multiple programs run concur-

rently in a shared-memory environment [14, 48]. Several existing

systems such as Bellman’s GAP compiler [28], semi-automatic syn-

thesizer [39], EasyPDP [44], EasyHPS [21], pa�ern-based system

[36], and parallelizing plugins [40] can be used to generate iterative

and tiled loop programs. Parallel task graph execution systems such

as Nabbit [5] and BDDT [50] execute DP tasks through unrolling,

and lack cache e�ciency.

�e classic 2-way recursive divide-and-conquer algorithms hav-

ing optimal serial cache complexity and good (but, not always

optimal) parallelism have been developed, analyzed, and imple-

mented in [16, 17, 49]. Hybrid r -way algorithms are considered

in [16] but they are either cache- or processor-aware and compli-

cated to program. Pochoir [45] is used to generate cache-oblivious

implementations of stencil computations. However, the recursive

algorithms o�en have low parallelism due to arti�cial dependencies

among subtasks. Recently Aga et al. in [4] proposed a speculation

approach to alleviate the concurrency constraints imposed by the
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arti�cial dependencies in standard parallel recursive divide-and-

conquer programs and reported up to a 1.6× speedup over their

baseline on 30 cores.

�e recursive wavefront algorithms were introduced in [47] but

they are complicated to develop, analyze, implement, and general-

ize. �ey make extensive use of atomic instructions, and standard

analysis model of fork-join parallelism does not apply. In this paper,

we try to address these issues.

Our contributions. Our major contributions are as follows:

(1) [Algorithmic.] We present a generic method to develop and

schedule recursive wavefront algorithms based on timing functions.

We present two approaches for scheduling a recursive wavefront

algorithm: (i ) the algorithm passes timing functions and space

usage info to a hint-accepting space-bounded scheduler, and (ii )
the programmer appropriately transforms the algorithm to use the

timing functions, and uses a standard randomized work-stealing

scheduler to run the program.

(2) [Experimental.] We present performance and scalability re-

sults of the presented algorithms on state-of-the-art multicore ma-

chines and show a comparative analysis with standard 2-way recur-

sive divide-and-conquer and the original cache-oblivious wavefront

(COW) algorithms from [47].

2 DERIVING RECURSIVE WAVEFRONT

ALGORITHMS

In this section, we describe how to transform a standard recursive

DP algorithm into a recursive wavefront algorithm. We have shown

very recently that for a wide class of DP problems which includes

the LCS problem, the parenthesis problem and Floyd-Warshall’s

all pair shortest path (APSP) problems among others, standard

2-way recursive DP algorithms can be generated automatically

from simple iterative descriptions of the underlying DP recurrences

[14, 33]. Our transformation [27] involves augmenting all recursive

function calls with timing functions to launch them as early as

possible without violating any dependency constraints implied by

the DP recurrence. �e timing functions are derived analytically

and do not employ locks or atomic instructions.

Our transformation allows the updates to the DP table proceed

in an order close to iterative wavefront, but from within the struc-

ture of a recursive divide-and-conquer algorithm. �e goal is to

reach the higher parallelism of an iterative wavefront algorithm

while retaining the be�er cache performance (i.e., e�ciency and

adaptivity) and portability (i.e., cache- and processor-obliviousness)

of a recursive algorithm [48, 49].

Wavefront Order. Let us �rst de�ne the wavefront order of ap-

plying updates to a DP table. Each update writes to one DP table

cell by reading values from other cells. We say that a cell is fully
updated provided it is never updated in the future. An update

becomes ready when all cells it reads from are fully updated. We as-

sume that only ready updates can be applied and each such update

can only be applied once. A wavefront order of updates proceeds

in discrete timesteps. In each step, all ready updates to distinct

cells are applied in parallel. However, if a cell has multiple ready

updates only one of them is applied, and the rest are retained for

future. A wavefront order does not have any arti�cial dependencies.

Transformation. It is completed in three major steps:

(1) [Construct completion-time function.] A closed-form for-

mula is derived based on the original DP recurrence that gives the

timestep at which each DP cell is fully updated in the wavefront

order. See Section 2.1.

(2) [Construct start- and end-time functions.] Cell comple-

tion times are used to derive closed-form formulas that give the

timesteps at which each recursive function call should start and

end execution in the wavefront order. See Section 2.2.

(3) [Derive the recursive wavefront algorithm.] Each recur-

sive function call in the standard recursive algorithm is augmented

with its start- and end-time functions so that the algorithm can be

used to apply the updates in any given timestep in wavefront order.

We then use a variant of iterative deepening on top of this recursive

algorithm to execute all timesteps e�ciently. See Section 2.3.

We describe our transformation for arbitrary d-dimensional

(d ≥ 1) DP in which each dimension of the DP table is of the

same length and is a power of 2.

Running example. We explain our transformation approach by

applying it on a recursive algorithm for the parenthesis (a.k.a.

matrix-chain multiplication) problem [12], which is de�ned as fol-

lows. LetG[i, j] denote the minimum cost of parenthesizing si · · · sj .
�en the 2D DP table G[0 : n, 0 : n] is �lled up as follows.

G[i, j] =




∞ if 0 ≤ i = j ≤ n,

vj if 0 ≤ i = j − 1 < n,

min

i≤k≤j




G[i, k]

+G[k, j]
+w (i, k, j )




if 0 ≤ i < j − 1 < n;

(1)

where the vj ’s and function w (·, ·, ·) are given. �e recurrence

is evaluated by the recursive algorithm [49] given at the top-le�

corner of Figure 2. Most simple DP examples (including LCS) do

not consider multiple functions, or do not have race conditions,

or do not portray all possible read-write constraints. We use the

parenthesis problem because it is one of the simplest (and well-

known) DP problems which covers most of the issues we would

like to explain here. In the rest of the section, we show how a

recursive wavefront algorithm (shown in Figure 2) can be derived

from the given standard recursive algorithm.

Consider the standard 2-way recursive algorithm for the paren-

thesis problem given at the top-le� corner of Figure 2. It has three

functions that update the DP table. Initially, function A(G,G,G )
is called, where G is the entire DP table. �en the computation

progresses by recursively breaking the table into quadrants and

calling functions A, B and C on these smaller regions of G. At the

base case (i.e., a 1 × 1 region of G), each function updates a cell.

When x is a cell, function A(x ,x ,x ) updates x by reading x itself

which corresponds to the case i = k = j in the recurrence. Similarly,

B(x ,u,v ) updates cell x by reading x itself and two other cells u
and v which correspond to cases i = k , j and i , k = j. Finally,

C(x ,u,v ) updates the cell x by reading the two cells u and v which

corresponds to i , k , j.
�e top part of Figure 3 shows how the standard 2-way recursive

algorithm with 1 × 1 base case updates G[1 : n, 1 : n] when n = 8.

We use Ft in a cell to denote that function F updates the cell at

timestep t , where F ∈ {A,B,C}. Using an unbounded number of

processors the standard recursive algorithm updates the entire table

in 31 timesteps. In contrast, the bo�om part of Figure 3 shows that

an iterative wavefront algorithm will updateG in only 18 timesteps.

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

342



Classic 2-way Recursive Recursive Wavefront (this paper)

Serial Best serial

Work cache complexity Span cache complexity Best span

Problem (T1) (Q1) (T∞) (Q1) (T∞)

Parenthesis problem [16] Θ
(
n3

)
Θ

(
n3/(B

√
M )

)
Θ

(
nlog

2
3

)
Θ

(
n3/(B

√
M )

)
Θ (n logn)

Floyd-Warshall’s APSP 3-D [17] Θ
(
n3

)
Θ

(
n3/B

)
Θ

(
n log

2 n
)

Θ
(
n3/B

)
Θ (n logn)

Floyd-Warshall’s APSP 2-D [17] Θ
(
n3

)
Θ

(
n3/(B

√
M )

)
Θ

(
n log

2 n
)

Θ
(
n3/(B

√
M )

)
Θ (n logn)

LCS / Edit distance [15] Θ
(
n2

)
Θ

(
n2/(BM )

)
Θ

(
nlog

2
3

)
Θ

(
n2/(BM )

)
Θ (n logn)

Gap problem [13] Θ
(
n3

)
Θ

(
n3/(B

√
M )

)
Θ

(
nlog

2
3

)
Θ

(
n3/(B

√
M )

)
Θ (n logn)

3-point stencil Θ
(
n2

)
Θ

(
n2/(BM )

)
Θ

(
nlog

2
3

)
Θ

(
n3/(BM )

)
Θ (n logn)

Protein accordion folding [49] Θ
(
n3

)
Θ

(
n3/(B

√
M )

)
Θ (n logn) Θ

(
n3/(B

√
M )

)
Θ (n logn)

Spoken-word recognition [42] Θ
(
n2

)
Θ

(
n2/(BM )

)
Θ

(
nlog

2
3

)
Θ

(
n2/(BM )

)
Θ (n logn)

Function approximation Θ
(
n3

)
Θ

(
n3/(B

√
M )

)
Θ

(
nlog

2
3

)
Θ

(
n3/(B

√
M )

)
Θ (n logn)

Binomial coe�cient [35] Θ
(
n2

)
Θ

(
n2/(BM )

)
Θ

(
nlog

2
3

)
Θ

(
n2/(BM )

)
Θ (n logn)

Bitonic traveling salesman [19] Θ
(
n2

)
Θ

(
n2/(BM )

)
Θ (n logn) Θ

(
n2/(BM )

)
Θ (n logn)

Table 2: Work (T1), serial cache complexity (Q1), span (T∞), and parallelism (T1/T∞) of classic 2-way recursive and recursive wavefront

algorithms for several DP problems. Here, n = problem size, M = cache size, B = block size, and p = #cores. We assume that the DP table is

too large to �t into the cache, and M = Ω
(
Bd

)
when Θ

(
nd

)
is the size of the DP table. On p cores, the running time is Tp = O (T1/p +T∞). All

algorithms have a parallel cache complexity of Qp = O (Q1 + p (M/B )T∞) w.h.p. when run under the randomized work-stealing scheduler on

a parallel machine with private caches. �e recursive wavefront algorithms have a parallel cache complexity of Qp = O (Q1) when run under

the modi�ed space-bounded scheduler of Section 4.2. For each recursive wavefront algorithmwe have listed the bestQ1 and the bestT∞ it can

achieve though it may not achieve both simultaneously (depends on base case size, i.e., value of n′ chosen). In Section 4 we discuss how a cache-

oblivious recursive wavefront algorithm can match the asymptotic Q1 of the 2-way recursive non-wavefront algorithm while asymptotically

improving over the T∞ of that non-wavefront algorithm (and thus getting closer to the T∞ of the iterative wavefront algorithm).

Our recursive wavefront algorithm (shown at the bo�om of Figure

2) can be viewed as a hybrid between the pure iterative wavefront

algorithm and standard 2-way recursive algorithm (assuming that

the algorithm switches to standard 2-way recursive algorithm when

it reaches a base case of size n′ × n′). Indeed, with a 1 × 1 base

case our recursive wavefront algorithm will perform the updates

in exactly the same order as the highly parallel iterative wavefront

algorithm and terminate in 18 steps, and with an n × n base case it

will reduce to the highly cache-e�cient standard 2-way recursive

algorithm. However, we are more interested in base case sizes

that lie between these two extremes and results in useful tradeo�s

between parallelism and cache performance.

2.1 Constructing completion-time function

�is section de�nes completion-time, and shows how to compute

it in O (1) time for any cell.

De�nition 2.1 (Completion-time). �e completion-time C(x )
for cell x is the timestep in wavefront order at which x is fully

updated. More formally, C(x ) = max t | for all Ft (x , . . .), where

Ft (x , . . .) means that cell x is updated by function F at timestep t .

Figure 3(a–b) show cell completion-times when the standard

2-way recursive algorithm (3(a)) and the iterative wavefront al-

gorithm (3(b)) for solving the parenthesis problem are run on an

8 × 8 DP table. Observe that while all cells are updated in 31 steps

in part 3(a), in part 3(b) they are completed in only 18 timesteps.

Figure 3(c ) shows cell update and completion times under the re-

cursive wavefront algorithm using fractional timesteps. When

k > 0, if multiple updates to a cell x are ready at integer time step

t , this algorithm applies them one at a time at fractional timesteps

t .0, t .1, . . . , t .(k − 1) to avoid race conditions. Observe that the

number of distinct fractional timesteps used is still exactly 18 as in

the case of iterative wavefront algorithm (3(b)). Use of fractional

timesteps makes completion times and update times easier to �nd

which we explain below and in Section 2.2.

�e completion-time function C(x ) will only return the integer

part of the fractional timestep at which x is fully updated. �e

fractional part will be added back by the start-time and end-time

functions of Section 2.2. We also assume that any cell x will be

updated by a function of the form F(x , . . . ,y, . . .) with y = x at

most once. We will call such an update a self-update.
Completion-time of a cell can be computed from the given DP

recurrence as follows: C(x ) = smax (x ) + su (x ) + f laд(x ), where

smax (x ) is the maximum completion time of the cells on which x di-

rectly depends, i.e., smax (x ) = maxF(x, ...,y, ...)∧y,x C(y); su (x ) =
1 if x undergoes self-update, and 0 otherwise; and f laд(x ) = 0 if

an update F(x , . . . ,y, . . .) with C(y) = smax (x ) for some y , x is

a self-update for x , and 1 otherwise.

�e completion-time for any cell (i, j ) in the DP table for the

parenthesis problem can be found as follows:

C(i, j ) =




0 if i = j,

C(i, j − 1) + 1 + 0 if i = j − 1,

C(i, j − 1) + 1 + 1 if i < j − 1;

(2)

because smax (i, j ) = C(i, j−1) = C(i+1, j ); for i ≤ j−1, su (i, j ) = 1

as cell (i, j ) is updated by the self-update function B, and su (i, j ) = 0

otherwise; and for i < j − 1, f laд(i, j ) = 1 as function B does not

read from a cell y , (i, j ) with C(y) = smax (i, j ), and f laд(i, j ) =
0 otherwise. Solving the recurrence (assuming that race will be

avoided by fractional timing as explained in Section 2.2), we get

the following: C(i, j ) = 0 if i = j and C(i, j ) = 2(j − i ) − 1 if i < j.
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(
a)

t
o
p

A0 B1 C3B4 C5C6B7 C14C15C17B18 C14C15C19C20B21 C22C23C24C25C27B28 C22C23C24C25C29C30B31

− A0 B2 C3B4 C14C15B16 C14C15C17B18 C22C23C24C25B26 C22C23C24C25C27B28

− − A0 B1 C9B10 C11C12B13 C14C15C17B18 C14C15C19C20B21

− − − A0 B8 C9B10 C14C15B16 C14C15C17B18

− − − − A0 B1 C3B4 C5C6B7

− − − − − A0 B2 C3B4

− − − − − − A0 B1

− − − − − − − A0

0 1 4 7 18 21 28 31

− 0 2 4 16 18 26 28

− − 0 1 10 13 18 21

− − − 0 8 10 16 18

− − − − 0 1 4 7

− − − − − 0 2 4

− − − − − − 0 1

− − − − − − − 0

(
b)

m
i
d
d
l
e

A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12 C7C10C11C13C14B15 C10C11C13C14C16C17B18

− A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12 C7C10C11C13C14B15

− − A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12

− − − A0 B1 C2B3 C4C5B6 C4C7C8B9

− − − − A0 B1 C2B3 C4C5B6

− − − − − A0 B1 C2B3

− − − − − − A0 B1

− − − − − − − A0

0 1 3 6 9 12 15 18

− 0 1 3 6 9 12 15

− − 0 1 3 6 9 12

− − − 0 1 3 6 9

− − − − 0 1 3 6

− − − − − 0 1 3

− − − − − − 0 1

− − − − − − − 0

(
c)
b
o
t
t
o
m

A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0 C6.0C8.0C8.1C10.0C10.1B11.0 C8.0C8.1C10.0C10.1C12.0C12.1B13.0
− A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0 C6.0C8.0C8.1C10.0C10.1B11.0
− − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0
− − − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0
− − − − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0
− − − − − A0.0 B1.0 C2.0B3.0
− − − − − − A0.0 B1.0
− − − − − − − A0.0

0 1 3 5 7 9 11 13

− 0 1 3 5 7 9 11

− − 0 1 3 5 7 9

− − − 0 1 3 5 7

− − − − 0 1 3 5

− − − − − 0 1 3

− − − − − − 0 1

− − − − − − − 0

Figure 3: Timesteps at which each DP table cell is updated (Ft means function F updates at timestep t ) and the timestep at which each cell

becomes fully updated (on the right) for the parenthesis problem on a DP table of size 8× 8 using (a) top: standard 2-way recursive algorithm,

(b ) middle: iterative wavefront algorithm, and (c ) bottom: recursive wavefront algorithmwith fractional timesteps. Observe that the number

of fractional timesteps in the recursive wavefront algorithm (bottom part) is exactly the same as that in the iterative wavefront algorithm

(middle part). Both recursive algorithms use a 1 × 1 base case. We assume that the number of processors is unbounded.

2.2 Constructing start-time and end-time

functions

In this section, we de�ne start-time and end-time for a recursive

function call, and show how to derive them from completion-times.

De�nition 2.2 (Start-time, end-time). �e start-time (resp. end-

time) of a recursive function call in a recursive wavefront algorithm

is the earliest (resp. latest) timestep in the wavefront order at which

one of the updates to be applied by that function call (either directly

or through a recursive function call) becomes ready.

Let F(X ,Y1, . . . ,Ys ) be a function call that writes to a region X
by reading from regions Y1, . . . ,Ys of the DP table. Its start- and

end-times, denoted by SF (X ,Y1, . . . ,Ys ) and EF (X ,Y1, . . . ,Ys ),
respectively, are computed as follows.

SF (X ,Y1, . . . ,Ys )︸                 ︷︷                 ︸
X ∈{Y1, ...,Ys }

=



(C(X )).0 if X is a cell,

min SF′
(
X ′,Y ′

1
, . . . ,Y ′s

)
otherwise;

SF (X ,Y1, . . . ,Ys )︸                 ︷︷                 ︸
X<{Y1, ...,Ys }

=




(max1≤i≤s {C(Yi )} + 1)

.ra(X ,Y1, . . . ,Ys ) if X is a cell,

min SF′
(
X ′,Y ′

1
, . . . ,Y ′s

)
otherwise;

EF (X ,Y1, . . . ,Ys )︸                 ︷︷                 ︸
X ∈{Y1, ...,Ys }

=



(C(X )).0 if X is a cell,

max EF′
(
X ′,Y ′

1
, . . . ,Y ′s

)
otherwise;

EF (X ,Y1, . . . ,Ys )︸                 ︷︷                 ︸
X<{Y1, ...,Ys }

=




(max1≤i≤s {C(Yi )} + 1)

.ra(X ,Y1, . . . ,Ys ) if X is a cell,

max EF′
(
X ′,Y ′

1
, . . . ,Y ′s

)
otherwise;

where, in the non-cellular case, minimization/maximization is taken

over all functions F′(X ′,Y ′
1
, . . . ,Y ′s ) called by F(X ,Y1, . . . ,Ys ) re-

cursively. Also, ra(X ,Y1, . . . ,Ys ) is the problem-speci�c race avoid-

ance condition used when two functions write to the same region.

�ough we use fractional timesteps for simplicity, the total number

of distinct timesteps remain exactly the same as that in the iterative

wavefront algorithm.

For the parenthesis problem, the start-times for the three func-

tions A,B, and C are computed as below. Let (xr ,xc ), (ur ,uc ), and

(vr ,vc ) denote the positions of the top-le� cells of regions X , U
and V , respectively. �en

SA (X ,X ,X ) =



C(X ).0 if X is a cell,

SA (X11,X11,X11) otherwise;

SB (X ,U ,V ) =



C(X ).0 if X is a cell,

SB (X21,U22,V11) otherwise;

SC (X ,U ,V ) =




(max {C(U ),C(V )} + 1)

.
[
uc >

xr+xc
2

]
if X is a cell,

min




SC (X21,U21,V11) ,

SC (X21,U22,V21)




otherwise;

where [ ] is the Iverson bracket [34].

Both A and B read from and write to X , and hence their start-

times follow directly from the �rst recurrence in De�nition 2.2.

In case of B, X is updated by reading from pair 〈U ,X 〉 and also

from 〈X ,V 〉. Function C follows the second recurrence from the

de�nition. As C writes to the same region twice, there is a race

and to avoid it we use the condition [uc > (xr + xc )/2] derived

manually.

�e end-times can be computed similarly. Solving the recur-

rences for the start-times and end-times, we obtain the timing

functions shown in Figure 2.

2.3 Deriving a recursive wavefront algorithm

In this section, we describe how to use timing functions to derive

a recursive wavefront algorithm from a given standard recursive

divide-and-conquer DP algorithm. We use the parenthesis problem

as an example.

A standard recursive algorithm for the parenthesis problem is

shown at the top-le� corner of Figure 2. We modify it as follows,

and the modi�ed algorithm is shown on the bo�om part of the

same �gure.

First, we modify each function F to include a switching point

n′ ≥ 1, and switch to the original non-wavefront recursive algo-

rithm by calling Fchunk when the size of each input submatrix

drops to n′ × n′ or below.

We augment each function to accept a timestep parameterw . We

remove all serialization among recursive function calls by making

sure that all functions that are called are launched in parallel. We

do not launch a function unless w lies between its start-time and
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end-time which means that a function is not invoked if we know

that it does not have an update to apply at timestep w in wavefront

order. Observe that the function Fchunk at switching does not

accept a timestep parameter, but if we reach it we know that it has

an update to apply at timestep w . However, once we enter that

function we do not stop until we apply all updates that function

can apply at all timesteps ≥ w .

Each function is also modi�ed to return the smallest timestep

above w for which it may have at least one update that is yet to be

applied. It �nds that timestep by checking the start-time of each

function that was not launched because the start-time was larger

than w , and the timestep returned by each recursive function that

was launched and taking the smallest of all of them.

Finally, we add a loop (see Recursive-Wavefront-Parenthesis

in Figure 2) to execute all timesteps of the wavefront using the mod-

i�ed functions. We start with timestep w = 0, and invoke the main

function A(G,G,G,w ) which applies all updates at timestep w and

depending on the value chosen for n′ possibly some updates above

timestep w , and returns the smallest timestep above w for which

there may still be some updates that are yet to be applied. We next

call function A with that new timestep value, and keep iterating in

the same fashion until we are able to exhaust all timesteps.

3 APPLICATIONS

In this section, we present the recursive wavefront algorithms for

LCS, Floyd-Warshall’s APSP, and gap problem [48]. We will only

give the timing functions and not the entire recursive wavefront

algorithm. We give references to the papers that present the stan-

dard (non-wavefront) recursive algorithms from which recursive

wavefront algorithms can easily be derived by plugging in the tim-

ing functions as per Section 2.3.

Longest common subsequence (LCS). �e LCS problem [15, 32]

asks one to �nd the longest of all common subsequences [19] be-

tween two strings. In LCS DP, a cell depends on its three adjacent

cells. Here, we are interested in �nding only the length of the LCS.

We build on the recursive algorithm given in [15] which has

only one function A (i.e., named LCS-Output-Boundary in [15]).

�e timing functions are as follows.

C(i, j ) =




0 if i < 0 | | j < 0 | | i = j = 0,

max
*
,

C(i − 1, j ),C(i, j − 1),

C(i − 1, j − 1)
+
-
+ 1 otherwise.

SA (X ) = EA (X ) = (C(X )).0 if X is a cell,

SA (X ) = SA (X11) if X is not a cell,

EA (X ) = EA (X22) if X is not a cell.

Solving the recurrences, we have C(i, j ) = i+ j , SA (X ) = C(xr ,xc ),
and EA (X ) = C(xr +n−1,xc +n−1), where, (xr ,xc ) is the top-le�

corner of X .

Gap problem. Sequence alignment with general gap penalty

[25, 26, 49, 52] is a generalization of the edit distance problem.

We build on the recursive algorithm given in [49]. �e timing func-

tions are as follows.

C(i, j ) =



0 if i = −1 | | j = −1 | | i = j = 0,

max (C(i − 1, j ),C(i, j − 1)) + 2 otherwise.

SA (X ,X ) =



(C(X )).0 if X is a cell,

SA (X11,X11) otherwise.

SB (X ,U ) =



(C(U ) + 1).0 if X is a cell,

SB (X11,U11) otherwise.

SC (X ,V ) =



(C(V ) + 1).[xc ≥ 1] if X is a cell,

SC (X11,V11) otherwise.

Function B does not have races and hence its ra(X ,U ) = 0. But

when we add function C, there is a race condition with B when

the completion-time of read cell of C is the same as the completion-

time of one of the cells on the le� of the write cell of C. To avoid

clashes with B, we use ra(X ,V ) = [xc ≥ 1]. We can write similar

recurrence for the end-times. Solving the recurrences, we have

C(i, j ) = 2(i + j ),

SF (X ,Y ) = (C(yr ,yc ) + [X , Y ]).ra(X ,Y ),

EF (X ,Y ) = (C(yr + n − 1,yc + n − 1) + [X , Y ]).ra(X ,Y );

where, when F is A (resp. B,C), then Y is X (resp. U ,V ); (yr ,yc ) is

the top-le� corner of regionY ; and ra(X ,Y ) = [xc ≥ 1] for function

C, and ra(X ,Y ) = 0, otherwise.

Floyd-Warshall’s all-pairs shortest path (APSP). We build on

the recursive algorithm for Floyd-Warshall’s APSP [23, 51] given

in [17]. However, that algorithm violates our assumption that cells

can only be updated using values from fully updated cells. �at

violation can be removed by performing the computation in cubic

space instead of quadratic space as explained in [14, 19]. We �nd

the timing functions the cubic space version which remain valid

for the DP using quadratic space.

�e recursive wavefront algorithm can be easily derived using

the start- and end-time functions for the recursive algorithm given

in [17]. �e recursive algorithm must be modi�ed slightly to ac-

count for the third dimension through the variable k . �en, the

completion-time function for an (i, j,k )-cell can be found from the

DP recurrence as:

C(i, j,k ) =




−1 if k = −1,

max
*
,

C(i, j,k − 1),C(i,k,k − 1),

C(k, j,k − 1)) + 1

+
-

otherwise.

From De�nition 2.1, we have smax (i, j,k ) = max(C(i, j,k −
1),C(i,k,k−1),C(k, j,k−1)) and su (i, j,k ) = 0. Similarly, the start-

and end-time can be found as follows. When X is a cell, the start-

and end-times of all functions is C(xr ,xc ,xh ). �e recurrences for

start-times are as follows.

SA (X ) =



C(xr ,xc ,xh ) if X is a cell,

SA (X111) otherwise.

SB (X ,U ) =



C(xr ,xc ,xh ) if X is a cell,

SB (X111,U111) otherwise.

SC (X ,V ) =



C(xr ,xc ,xh ) if X is a cell,

SC (X111,V111) otherwise.

SD (X ,U ,V ) =



C(xr ,xc ,xh ) if X is a cell,

SD (X111,U111,V111) otherwise.
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Similarly, recurrences can be wri�en for the end-times as well.

Solving the recurrences, we have

C(i, j,k ) = 3k + [i , k] + [j , k],

where, [ ] is the Iversion bracket. Let (xr ,xc ,xh ) be the cell with

the smallest coordinates in X . �en for each F ∈ {A,B,C,D},

SF (X , . . .) = C(xr ,xc ,xh )

and EF (X , . . .) = max




C(xr ,xc ,xh + n − 1),
C(xr ,xc + n − 1,xh + n − 1),
C(xr + n − 1,xc ,xh + n − 1),

C(xr + n − 1,xc + n − 1,xh + n − 1)




4 SCHEDULING RECURSIVE WAVEFRONT

ALGORITHMS

In this section, we show how to schedule recursive wavefront algo-

rithms to achieve provably good bounds (optimal or near-optimal)

for both parallelism and cache performance.

Recall that our recursive wavefront algorithm switches to the

original non-wavefront recursive algorithm when the input param-

eter n drops to a value ≤ n′. While both recursive (wavefront and

non-wavefront) algorithms have the same serial work complexity

T1, their spans are di�erent. We use TR
∞ (n

′) to denote the span of

the non-wavefront algorithm for a problem of size n′.

4.1 Using a work-stealing (WS) scheduler

In this section, we analyze the complexity of the hybrid recursive

wavefront algorithms when scheduled using a randomized work-

stealing (WS) scheduler [9].

Theorem 4.1 (WS complexity). Suppose a DP recurrence is
evaluated by the iterative wavefront algorithm in N∞ (n) parallel
steps with an unbounded number of processors, where n is the size
of each dimension of the DP table. When the recursive wavefront
algorithm with switching point n′ ≤ n evaluates the recurrence, we
achieve the following bounds under a randomized work-stealing (WS)
scheduler:

(i ) span, T∞ (n) = O
(
N∞ (n/n

′) ×
(
logn +TR

∞ (n
′)
))
,

(ii ) parallel time, Tp (n) = O (T1 (n)/p +T∞ (n)) (w.h.p. in n),
(iii ) parallel cache complexity,Qp (n) =O (Q1 (n) + p (M/B)T∞ (n))

(w.h.p. in n), and
(iv ) extra space, Sp (n) = O (p logn).

We assume that N∞ (n) and T1 (n) (work) are polynomials of n, and
choose n′ such that T1 (n

′) = Ω (logn).

Proof. Observe that the outer loop (e.g., the loop inside Recursive-

Wavefront-Parenthesis of Figure 2) in the recursive wavefront

algorithm will iterate N∞ (n/n
′) times.

With an unbounded number of processors reaching the switch-

ing point requires O (log (n/n′)) time and the span below that point

is TR
∞ (n

′). �e bound for T∞ (n) follows.

We reach the switching point T1 (n/n
′) times. So the total work

is Θ (T1 (n/n
′) (T1 (n

′) + log (n/n′))). Since we assume T1 (n) to be

a polynomial function of n, we have T1 (n/n
′) = Θ (T1 (n)/T1 (n

′)).
�en the total work remains Θ (T1 (n)) assumingT1 (n

′) = Ω (logn).

Let T
(i )
1

, T
(i )
∞ and Q

(i )
1

be the work, span and serial cache com-

plexity, respectively, of the i-th iteration of the outer loop in the

recursive wavefront algorithm. �en the parallel running time of

that iteration under the WS scheduler isO

(
1 +T

(i )
1

(n)/p +T
(i )
∞ (n)

)
(w.h.p.). We sum up over all i , and obtain the claimed bound for

Tp (n).
�e parallel cache complexity of the i-th iteration of the outer

loop is O

(
Q
(i )
1

(n) + p (M/B)T
(i )
∞ (n)

)
(w.h.p.) under the WS sched-

uler. Summing up over all i gives us the claimed bound for Qp (n).
�e bound on extra space comes from the observation that since

we reduce n by a factor of 2 in each level of recursion the number

of levels of recursion is O (logn). So each processor will require

O (logn) stack space, and since there are p processors the bound

on Sp (n) follows. �
�e following lemma gives a condition under which the recursive

wavefront algorithm will have the same asymptotic serial cache

complexity as the recursive non-wavefront algorithm.

Lemma 4.2 (WS complexity). Suppose the original recursive
non-wavefront algorithm has a serial cache complexity of QR

1
(n) =

O (T1 (n)/f (M,B)), where n is size of each dimension of the DP table,
f is a function of cache sizeM and line size B,T1 (n) is a polynomial of
n, and the size of the DP table is Ω (M ). �en if the recursive wavefront
algorithm with switching point n′ = nα for some α ∈ (0, 1] evaluates
the recurrence, it will achieve a serial cache complexity of Q1 (n) =

Θ
(
QR

1
(n)

)
provided the size of the DP (sub-)table corresponding to

n′ is Ω (M ).
�e proof of the lemma above follows directly from the observa-

tion that the recursive wavefront algorithm will reach the switching

point Θ (T1 (n)/T1 (n
′)) times, and each time will incur QR

1
(n′) =

O (T1 (n
′)/f (M,B)) serial cache misses. �us its total serial cache

complexity will be Θ (T1 (n)/T1 (n
′))×QR

1
(n′) = O (T1 (n)/f (M,B)).

Hence, if the original recursive non-wavefront algorithm has

optimal serial cache complexity, the recursive wavefront algorithm

will also have the same under the conditions given above.

4.2 Using a modi�ed space-bounded (W-SB)

scheduler

In this section, we show how to modify a space-bounded scheduler

[18] so that it can execute a recursive wavefront algorithm cache-

optimally with parallelism higher than that of the corresponding

recursive non-wavefront algorithm.

For each recursive function call, our W-SB scheduler accepts

three hints: start-time, end-time and working set size (i.e., the

total size of all regions in the DP table accessed by the function

call). Given an implementation of a standard recursive algorithm

with each function call annotated with those three hints, the W-SB

can automatically generate a recursive wavefront implementation

(similar to the one at the bo�om of Figure 2). From the given start-

times, the scheduler determines the lowest start-time and executes

the tasks that can be executed at that lowest start-time. Since the

scheduler knows all the cache sizes, as soon as the working set

size of any function executing on a processor under a cache �ts

into that cache, the scheduler anchors the function to that cache

in the sense that all recursive function calls made by that function

and its descendants will only be executed by the processors under

that anchored cache. �is approach of limiting migration of tasks

ensures cache-optimality [8, 18].
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Theorem 4.3 (W-SB complexity). Suppose a DP recurrence is
evaluated by the iterative wavefront algorithm inN∞ (n) parallel steps
with an unbounded number of processors, where n is the size of each
dimension of the DP table. When the recursive wavefront algorithm
with switching point n′ ≤ n evaluates the recurrence, we achieve the
following bounds under the modi�ed space-bounded (W-SB) scheduler:

(i ) span, T∞ (n) = O
(
N∞ (n/n

′) ×
(
logn +TR

∞ (n
′)
))
,

(ii ) parallel cache complexity, Qp (n) = O (Q1 (n)),
(iii ) extra space, Sp (n) = O (p logn).

We assume that N∞ (n) and N1 (n) (work) are polynomials of n, and
choose n′ such that TR

1
(n′) = Ω (logn).

Proof. �e arguments for T∞ (n) and Sp (n) are the same as those

given in the proof of �eorem 4.1. �e parallel cache complexity is

found as follows.

When the working set size of a function call �ts into a cache

M the W-SB scheduler does not allow any recursive function calls

made by that function or its descendants to migrate to other caches

that are not a part of the subtree of caches rooted at M. �is implies

the data is read completely and as much work as possible is done on

this loaded cache data blocks in M before kicking them out of the

cache. Hence, temporal cache locality is fully exploited at M. As

shown in [8, 18] being able to achieve cache-optimality for working

set sizes that are smaller than the cache size by at most a constant

factor guarantees Qp (n) = Θ (Q1 (n)) for our algorithms. �
Cache-optimality is achieved under conditions similar to those

given in Lemma 4.2.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results showing the perfor-

mance of recursive wavefront algorithms for the LCS, Parenthesis

and the 2D FW-APSP problems. We also compare the performance

of those algorithms with the corresponding standard 2-way recur-

sive divide-and-conquer and the original cache-oblivious wavefront

(COW) algorithms [47].

Model E5-2680 E5-4650 E5-2680

Cluster Stampede [3] Stampede [3] Comet [1]

#Cores 2x8 4x8 2x12

Frequency 2.70GHz 2.70GHz 2.50GHz

L1 32K 32K 32K

L2 256K 256K 256K

L3 20480K 20480K 30720K

Cache-line size 64B 64B 64B

Memory 64GB 1TB 64GB

Compiler 15.0.2 15.0.2 15.2.164

OS CentOS 6.6 CentOS 6.6 CentOS 6.6

Table 3: System speci�cations.

We used

C++ with Intel
©

Cilk
™

Plus ex-

tension to im-

plement all

algorithms pre-

sented in this

section. �ere-

fore, all im-

plementations

used the work-stealing scheduler provided by Cilk
™

runtime sys-

tem. All programs were compiled with -O3 -ip -parallel -AVX
-xhost optimization parameters. In order to reduce the overhead

of recursion and to take advantage of vectorization all implementa-

tions switch to an iterative kernel when n is su�ciently small (e.g.,

64 for Parenthesis and Floyd-Warshall’s APSP, and 256 for LCS). To

measure cache performance we used PAPI-5.3[2]. Table 3 lists the

systems on which we ran our experiments.

Projected parallelism. we have used the Intel
©

Cilkview scalabil-

ity analyzer to compute the ideal parallelism and burdened span of

the following implementations: (i ) recursive wavefront algorithm

that does not switch to the 2-way non-wavefront recursive algo-

rithm and instead directly uses an iterative basecase (wave), (ii )
recursive wavefront algorithm that switches to the 2-way recur-

sive divide-and-conquer at some point (wave-hybrid), (iii ) stan-

dard 2-way recursive divide-and-conquer algorithm (CO 2Way). For

wave-hybrid, we have usedn′ = max{256, power of 2 closest to n2/3}.

Figure 5 shows the ideal parallelism reported by Cilkview for

wave-hybrid, wave and CO 2Way algorithms for solving LCS, Paren-

thesis and Floyd-Warshall’s APSP problems. �ese plots show that

recursive wavefront algorithms scale much be�er than standard 2-

way recursive divide-and-conquer algorithms. For example, when

solving the parenthesis problem for a 16k×16k matrix, though

CO 2Way scales up to 23 processors only, wave and wave-hybrid
scale up to 1916 and 823 processors, respectively.

Running time and cache performance. Figure 4 shows perfor-

mance of the following on a 16-core Sandy Bridge machine: (i )
wave, (ii ) wave-hybrid, (iii ) CO 2Way, and (iv ) the original cache-

oblivious wavefront (COW) algorithms with atomic operations [47].

Since we have already shown in [14, 49] that CO 2Way outperforms

parallel iterative and blocked iterative codes for the parenthesis

and Floyd-Warshall’s APSP problems, we have not repeated those

results here.

For wave-hybrid, we have used n′ = max{256, power of 2 clos-

est to n2/3}. Figure 4 clearly shows that wave and wave-hybrid al-

gorithms perform be�er than CO 2Way and the COW algorithms for

all cases. For parenthesis problem, wave is 2.6×, and wave-hybrid
is 2× faster than CO 2Way. Similarly, the number of cache misses of

CO 2Way is slightly higher than that of both wave and wave-hybrid.

For LCS wave is 1.5×, and wave-hybrid is 1.7× faster than CO 2Way
and cache miss trends follow along. For Floyd-Warshall’s APSP,

wave is 18%, and wave-hybrid is 10% faster than CO 2Way. �ere-

fore, even with 16 cores, the impact of improvements in parallelism

and cache-misses is visible on the running time. On the other hand,

though COW algorithms have excellent theoretical parallelism,

their implementations heavily use atomic operations, which may

have impacted their performance negatively for large n, especially

for DP dimension d > 1.

Figures 6 and 7 show performance results on a 24-core Haswell

machine. Values for n′ and size of iterative kernels were deter-

mined in the same way as before. For FW-APSP, wave is 15% and

wave-hybrid is 10% faster than CO 2Way. Although we see improve-

ments in L1 and L2 cache misses, the number of L3 misses were

worse here, probably due to increased parallelism. For LCS problem,

wave is 57%, wave-hybrid is 60% and the original COW algorithm

is 26% faster than the CO 2Way implementation. For parenthesis

problem, wave is 16% and wave-hybrid is 18% faster than CO 2Way,

and we see only improvement in L3 misses.

On a Stampede node with 32-core Sandy Bridge processors, wave
for FW-APSP runs 73% faster and wave-hybrid runs 69% faster than

CO 2Way. On the other hand, for the parenthesis problem, both wave
and wave-hybrid are 2.1× faster than CO 2Way.

To summarize, recursive wavefront algorithms are faster and

more scalable than standard recursive divde and conquer algorithms

for DP problems.
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Figure 4: Runtimes and cache misses in three levels of caches for classic 2-way recursive divide-and-conquer, COW and recur-

sive wavefront algorithms for LCS, Parenthesis and 2D FW-APSP Problems. All programs were run on 16 core machines in

Stampede. All implementations used Cilk Plus’s work-stealing scheduler.

6 CONCLUSION

We have presented a framework for designing recursive wave-

front algorithms for dynamic programs which have excellent cache-

complexity (i.e., temporal locality) and asymptotically more par-

allelism than standard 2-way recursive divide-and-conquer algo-

rithms. �e framework leads to theoretically fastest cache-oblivious

parallel DP algorithms. Some open problems are as follows: (i ) fully

automate the framework, i.e., computation of timing functions and

the race avoidance condition; (ii ) investigate if recursive wavefront

algorithms can achieve span asymptotically lower than Θ (n logn);
and (iii ) extend the approach beyond DP problems.
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Figure 5: Projected scalability of new recursive wavefront algorithms by Cilkview Scalability Analyzer. �e numbers denote

till how many cores the implementation should scale linearly.

Figure 6: Runtimes for classic 2-way recursive divide-and-conquer, COW and recursive wavefront algorithms for LCS, Paren-

thesis and 2D FW-APSP. All programs were run on 24 core machines in Comet. All implementations used cilk plus’s work-

stealing scheduler.

Figure 7: Cache misses in three levels of caches for classic 2-way recursive divide-and-conquer, COW and recursive wavefront

algorithms for Parenthesis and 2D FW-APSP. All programs were run on 24 coremachines in Comet. All implementations used

cilk plus’s work-stealing scheduler.
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