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Abstract. The Viterbi algorithm is used to find the most likely path
through a hidden Markov model given an observed sequence, and has
numerous applications. Due to its importance and high computational
complexity, several algorithmic strategies have been developed to par-
allelize it on different parallel architectures. However, none of the ex-
isting Viterbi decoding algorithms designed for modern computers with
cache hierarchies is simultaneously cache-efficient and cache-oblivious.
Being oblivious of machine resources (e.g., caches and processors) while
also being efficient promotes portability. In this paper, we present an
efficient cache- and processor-oblivious Viterbi algorithm based on rank
convergence. The algorithm builds upon the parallel Viterbi algorithm
of Maleki et al. (PPoPP 2014). We provide empirical analysis of our
algorithm by comparing it with Maleki et al.’s algorithm.
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1 Introduction

The Viterbi algorithm [36, 37] proposed by Andrew J. Viterbi in 1967, is a dy-
namic programming algorithm that finds the most probable sequence of hidden
states, called the “Viterbi path” from a given sequence of observed events in the
context of a hidden Markov model (HMM).

Motivation. The Viterbi algorithm has numerous real-world applications. Al-
though it was originally used for speech recognition in CDMA technology, in
the last 25 years, it has been heavily used in computational biology and bioin-
formatics for finding coding and non-coding regions of an unlabeled string of
DNA nucleotides (i.e., gene finding) [3], prediction of protein-coding regions in
genome sequences modeling families of related DNA or protein sequences and
prediction of secondary structure elements in proteins [24], CpG island [17],
promoter [29] and conserved elements detection [30]. Apart from computational
biology, Viterbi algorithm is used in TDMA system for GSM [15], television sets
[28], satellite and space communication [21], magnetic recording systems [23],
parsing context-free grammars [22], and part-of-speech tagging [16]. Therefore,
improving performance of Viterbi algorithm will likely to have impact in these
areas as well.



When the input data becomes too large to fit into a cache, between two
algorithms that perform the same set of CPU operations, the one that is more
cache-efficient, i.e., causes fewer block transfers (or IO) between adjacent levels
of caches is likely to run faster. Though there have been a lot of efforts and
successes in parallelizing the Viterbi algorithm, there is little work in the realm of
designing cache-efficient Viterbi algorithms that are also cache-oblivious [20], i.e.,
independent of cache parameters such as cache sizes and block sizes. Similarly,
a processor-oblivious [12] algorithm does not use the number of processors in
the algorithmic description. A cache- and processor-oblivious algorithm is more
likely to be portable across machines. To the best of our knowledge, we present
the first provably cache-efficient cache-oblivious parallel Viterbi algorithm.

We use dynamic multithreading model [14] and ideal cache model [20] to mea-
sure parallelism and serial cache complexity, respectively.

Related work. Several efficient cache- and processor-oblivious recursive divide-
and-conquer algorithms for solving dynamic programs (DP) have been developed
[2, 4, 7–11, 13, 31, 33, 34]. But the approach used in those papers assumes that the
set and sequence of DP cell updates to be performed do not depend on the data
values in the DP table which is not true in case of Viterbi DP.

One can use auto-parallelizers to parallelize sequential Viterbi programs.
Fisher and Ghuloum [19] present a method in which loop body instances are
represented in a closed form using function compositions. Reduction is then ap-
plied for parallelization. Chin et al. [6, 5] use second-order generalization and
induction derivation to generate divide-and-conquer parallel programs. None of
these methods exploit parallelism across stages. Also the generated parallel pro-
grams are not cache-efficient.

The parallel Viterbi algorithm [18] used for homology search in HMMER
uses SSE2 instructions and reduces L1 cache misses. Though the phrase “cache-
oblivious” appears in the title of the paper, the presented algorithm is not obliv-
ious of the cache parameters as it uses loop-tiling with the tile size determined
based on the size of the L1 data cache. Also the algorithm works only for three
states, and it is not clear how the method behaves for arbitrarily large number
of states as in the case of a general Viterbi algorithm.

The EasyPDP system [32] parallelizes the Viterbi algorithm and also reduces
cache misses. However, it requires the user to specify loop tile sizes making it
cache-aware. Also the reduction in cache misses is not significant.

The Viterbi algorithm is inherently sequential across stages which constraints
parallelism along the time dimension. A parallel Viterbi algorithm presented in
[26, 27] based on rank convergence is the first to exploit parallelism across stages.
However, this algorithm is processor-aware and not cache-efficient.

Our contributions. Our major contributions are: (1) an efficient cache-oblivious
parallel multi-instance Viterbi algorithm (Section 3), (2) an efficient cache-oblivious
parallel single-instance Viterbi algorithm (Section 5) based on our multi-instance
algorithm (Section 3) and Maleki et al.’s rank convergence algorithm (Section 4),
and (3) experimental results (Section 6) comparing our algorithms with Maleki
et al.’s algorithms on modern multicore platforms.



2 Cache-inefficient Viterbi algorithm

In this section, we formally describe the Viterbi dynamic program (DP), and de-
scribe a simple cache-inefficient Viterbi algorithm based on divide-and-conquer.

Loop-Viterbi(P,A,B)

1. for j ← 2 to t do
2. par for i← 1 to n do
3. for k ← 1 to n do
4. P [i, j]← max (P [i, j],

P [k, j−1]×A[k, i]×B[i, yj ])

Viterbi-D&C(P,A,B)

1. for j ← 2 to t do
2. X ← P [.., j]; U ← P [.., j−1]
3. V ← A; W ← B[.., yj ]
4. Avit(X,U, V,W )

Avit(X,U, V,W )

1. if V is a small matrix then
2. Aloop−vit(X,U, V,W )
3. else
4. par: Avit(X1, U1, V11,W1),

Avit(X2, U1, V12,W2)
5. par: Avit(X1, U2, V21,W1),

Avit(X2, U2, V22,W2)

Fig. 1. Iterative and recursive
Viterbi algorithms.

Formal specification. The Viterbi DP is
described as follows. We are given an ob-
servation space O = {o1, o2, . . . , om}, state
space S = {s1, s2, . . . , sn}, observations Y =
{y1, y2, . . . , yt}, transition matrix A of size
n×n, where A[i, j] is the transition probabil-
ity of transiting from si to sj , emission ma-
trix B of size n×m, where B[i, j] is the prob-
ability of observing oj at si, and initial prob-
ability vector (or initial solution vector) I,
where I[i] is the probability that x1 = si. Let
X = {x1, x2, . . . , xt} be a sequence of hidden
states that generates Y = {y1, y2, . . . , yt}.
Then the matrices P and P ′ of size n × t,
where P [i, j] is the probability of the most
likely path of getting to state si at observa-
tion oj and P ′[i, j] stores the hidden state of
the most likely path (i.e., Viterbi path) are
computed as follows. P [i, j] = I[i] · B[i, y1],
and P ′[i, j] = 0 when j = 1. Otherwise (i.e., when j > 1):

P [i, j] = maxk∈[1,n](P [k, j − 1] ·A[k, i] ·B[i, yj ]),

and P ′[i, j] = argmaxk∈[1,n](P [k, j − 1] ·A[k, i] ·B[i, yj ]),

Cache-inefficient algorithm. An iterative parallel and a recursive divide-and-
conquer-based parallel Viterbi algorithms are given in Figure 1. As per the
Viterbi recurrence, each cell (i, j) of matrix P depends on all cells of P in column
j − 1, all cells of A in column i, and the cell (i, yj) of B. The function Avit fills
jth column of P denoted by X using (j − 1)th column denoted by U using a
divide-and-conquer approach. To compute each column of P , the entire matrix
of A has to be read. Hence the recursive algorithm is cache-inefficient. In both
algorithms, the stages are computed sequentially, however, all cells in each stage
(or timestep) are computed in parallel.

Complexity analysis. The serial cache complexity of the iterative algorithm
is computed as

∑t
j=1

∑n
i=1O (n/B) = O

(
n2t/B

)
, and that of the divide-and-

conquer algorithm is computed as follows. Let QA(n) denote the serial cache
complexity of Avit on a matrix of size n × n. Then QA(n) = O

(
n2/B + n

)
if n2 ≤ γAM , and 4QA (n/2) + O (1), otherwise; where, γA is a suitable con-
stant. Solving, QA(n) = O

(
n2/B + n

)
. Thus, the serial cache complexity of the

recursive algorithm is O
(
n2t/B + nt

)
when n2 is too large to fit in cache.

Both the iterative and recursive algorithms have spatial locality, but they do
not have any temporal locality. Hence, these algorithms are not cache-efficient.



The span (i.e., runtime on a machine with an unbounded number of proces-
sors) of the iterative algorithm is Θ (nt), as there are t time steps and it takes
n time steps to fully update a cell of P . The span of the recursive algorithm
is computed as follows. Let TA(n) denote the span of Avit on a matrix of size
n× n. Then TA(n) = Θ (1) if n = 1, and 2TA (n/2) +Θ (1), otherwise. Solving,
TA(n) = Θ (n), which implies that the span of the recursive algorithm is Θ (nt).

3 Cache-efficient multi-instance Viterbi

In this section, we present a novel cache-efficient cache-oblivious Viterbi algo-
rithm for multiple instances of the problem.

It is easy to see that a standard recursive divide-and-conquer algorithm has
no temporal locality because to compute each column of P (Θ

(
n2
)

work), we

have to scan the entire matrix A (Θ
(
n2
)

space). We can exploit temporal cache
locality by solving multiple instances of the problem simultaneously. The existing
method that uses multiple instances [25] is cache-inefficient.

Viterbi-Multi-Instance-D&C(P1, P2, . . . , Pq, A,B, t)

1. for j ← 2 to t do
2. X ← [P1[.., j], P2[.., j], . . . , Pq [.., j]]
3. U ← [P1[.., j − 1], P2[.., j − 1], . . . , Pq [.., j − 1]]
4. V ← A
5. W ← [B[.., y1j ], B[.., y2j ], . . . , B[.., yqj ]]
6. Avit(X,U, V,W )

Avit(Xn×q, Un×q, Vn×n,Wn×q)

1. if X and V are small matrices then
2. Aloop−vit(X,U, V,W )

3. else if q > n do
4. par: Avit(XL,UL, V,WL), Avit(XR,UR, V,WR)
5. else if q < n do
6. par: Avit(XT ,UT , V11,WT ), Avit(XB,UT , V12,WB)
7. par: Avit(XT ,UB, V21,WT ), Avit(XB,UB, V22,WB)
8. else
9. par: Avit(X11, U11, V11,W11), Avit(X12, U12, V11,W12),

Avit(X21, U11, V12,W21), Avit(X22, U12, V12,W22)
10. par: Avit(X11, U21, V21,W11), Avit(X12, U22, V21,W12),

Avit(X21, U21, V22,W21), Avit(X22, U22, V22,W22)

Fig. 2. Cache-efficient multi-instance Viterbi algorithm.

Two problems that
have the same tran-
sition matrix A and
emission matrix B are
termed two instances of
the same problem. The
spoken word recognition
problem can be con-
sidered as an example
of multi-instance Viterbi
problem. The core idea
of the algorithm comes
from the fact that by
scanning the transition
matrix A only once, a
particular column of ma-
trix P can be computed for n instances of the problem.

Consider Figure 2. In the function Avit (X,U, V,W ), the matrix U is an n×q
matrix obtained by concatenating (j−1)th columns of q matrices P1, P2, . . . , Pq,
where Pi is the most likely path probability matrix of problem instance i. The
algorithm computes X, which is a concatenation of jth columns of the q prob-
lem instances. Each problem instance i has a different observations vector Yi =
{yi1, yi2, . . . , yit}. Matrix W W is a concatenation of B[y1,j ], B[y2,j ], . . . , B[yq,j ].
We use XT , XB , XL, and XR to represent the top half, bottom half, left half, and
right half of X, respectively. Executing the divide-and-conquer algorithm once
computes the second column of all matrices P1 to Pq. Executing the algorithm
again computes the third column of the q matrices. Executing the algorithm t
times, the last column of all problem instances would be filled. Note that for
each time step (or observation step), W needs to be reconstructed.



Complexity analysis. The serial cache complexity of the algorithm in Fig-
ure 2 is computed as follows. Let QA(n, q) denote the serial cache complexity
of Avit on a matrix of size n × q, and let n and q be powers of two. Then
QA(n, q) = O

(
n2/B + n

)
when n2 + nq ≤ γAM ; QA(n, q) = 8QA (n/2, q/2) +

O (1) when n = q; QA(n, q) = 2QA (n, q/2) +O (1) when n < q; and QA(n, q) =
4QA (n/2, q) + O (1) when n > q; where, γA is a suitable constant. Solv-
ing, the cache complexity of the algorithm for t timesteps is t × QA(n, q) =

O
(
n2qt/(B

√
M) + n2qt/M + n(n+ q)t/B + t

)
. As the algorithm exploits tem-

poral locality, it is cache-efficient. The span of the algorithm remains Θ (nt).

4 Viterbi algorithm using rank convergence

We briefly describe and improve Maleki et al.’s Viterbi algorithm [26] below.

Preliminaries. We rewrite the Viterbi recurrence using log-probabilities (i.e.,
logarithms of all probabilities) as follows so that we can replace multiplications
with additions: P [i, j] = I[i] + B[i, y1] if j = 1, and P [i, j] = maxk∈[1,n](P [k, j-
1] +A[k, i] +B[i, yj ]) if j > 1.

We rewrite the recurrence above as s[t − 1] = s[0] � A1 � A2 � · · · � At−1,
where s[j] is the jth solution vector (or column vector P [.., j]) of matrix P , the
n× n matrix Ai is a suitable combination of A and B, and � is a matrix prod-
uct operation defined between two matrices Rn×n and Sn×n as (R � S)[i, j] =
maxk∈[1,n](R[i, k] + S[k, j]).

Viterbi-Rank(s[0..t− 1], A,B)

1. p← #processors

〈 Forward phase 〉
2. par for i← 1 to p do
3. li ← t(i− 1)/p; ri ← ti/p
4. if i > 1 then s[li]← random vector
5. for j ← li to ri − 1 do
6. s[j+1]← Viterbi(s[j], A,B[.., yj+1])

〈 Fix up phase 〉
7. converged← false
8. while !converged do
9. par for i← 2 to p do

10. convi ← false; s← s[li]
11. for j ← li to ri − 1 do
12. s← Viterbi(s, A,B[.., yj+1])
13. if s is parallel to s[j + 1] then
14. convi ← true; break
15. s[j + 1]← s
16. converged← ∧i convi

Fig. 3. Processor-aware parallel Viterbi al-
gorithm using rank convergence as given in
Maleki et al. paper [26].

The rank of a matrix Am×n is
r if r is the smallest number such
that A can be written as a product
of two matrices Cm×r and Rr×n.
Vectors v1 and v2 are parallel pro-
vided they differ by a constant off-
set. For example, 〈1, 2, 3, 4〉 and
〈5, 6, 7, 8〉 are two parallel vectors.

Original algorithm. The algo-
rithm, shown in Figure 3, consists
of two phases: (i) parallel forward
phase, and (ii) fix up phase. In the
forward phase, the t stages are di-
vided into p segments, where p is
the number of processors, each seg-
ment having dt/pe stages (except
possibly the last stage). The stages
in the ith segment are from li to ri.
The initial solution vector of the entire problem is the initial vector of the first
segment and it is known. The initial solution vectors of all other segments are
initialized to non-zero random values. A sequential Viterbi algorithm is run in



all the segments in parallel. A stage i is said to converge if the computed solu-
tion vector s[i] is parallel to the actual solution vector si. A segment i is said to
converge if rank(Ali �Ali+1 � · · · �Aj) is 1 for j ∈ [li, ri − 1].

In the fix up phase a sequential Viterbi algorithm is executed for all segments
simultaneously. The solution vectors computed in different segments (except the
first) might be wrong. But eventually they will become parallel to the actual
solution vectors if rank convergence occurs. If rank convergence occurs at every
segment then the solution vectors at every stage will be parallel to the actual
solution vectors. Otherwise, the fix up phase is run again and again until rank
convergence occurs at some point. In the worst case, which rarely happens in
practice, the fix up phase will have to be executed a total of p−1 times for rank
converngence to happen.

Improved algorithm. The algorithm described above is processor-aware, and
we make it processor-oblivious as follows.

Viterbi-Rank-Improved(s[0..t− 1], A,B)

1. n← 2k; t← 2k+k′ ; c← 28

〈 Forward phase 〉
2. size← c; q ← t/size
3. par for i← 0 to q − 1 do
4. li ← i× size, ri ← li + size− 1
5. if i > 0 then s[li]← random vector
6. for j ← li to ri do
7. s[j + 1]← Viterbi(s[j], A,B[.., yj+1])

〈 Fixup phase 〉
8. u[0..t− 1]← s[0..t− 1]; converged← false
9. for (j ← log c to (log t)-1) & !converged do

10. size← 2j ; q ← t/(2× size)
11. par for i← 0 to q − 1 do
12. li ← (2i+ 1)× size− 1
13. ri ← li + size; convi ← false
14. for j ← li to ri do
15. u[j+1]← Viterbi(u[j], A,B[.., yj+1])
16. if u[j + 1] is parallel to s[j + 1] then
17. convi ← true; break
18. s[j + 1]← u[j + 1]
19. for i← 0 to q − 1 do
20. converged← converged ∧ convi
21. if converged = true then break

Fig. 4. Processor-oblivious parallel Viterbi al-
gorithm using rank convergence.

We chose a suitable segment
size c (say 256) that is feasi-
bly large, then use a parallel for
loop to solve those t/c segments
simultaneously. Unlike Maleki et
al.’s algorithm, we need to make
sure that the segments are non-
overlapping at their boundaries
and then adjust the fixup phase
accordingly as shown in Figure 4.

Here is how the algorithm
works. Let the initial segment size
is c (i.e., c consecutive time steps).
For convenience we chose c = 2i

where i ∈ [log c, log t]. We divide
t time steps into t/c independent
segments each of size c. Similar
to Maleki et. al.’s algorithm, the
first solution vectors of all except
the first segment are initialized to
non-zero valid random probability
values. Then in the forward phase we run serial Viterbi algorithm on all segments
simultaneously. At the end of the forward phase solution vectors till the cth col-
umn (i.e., all columns in the first segment) will have correct log-likelihood values.
Other segments will have values computed from the random values chosen ini-
tially which may or may not be parallel to the expected values.

In the fix up phase, we start fixing from the second segment as in the original
Maleki et al.’s algorithm. However, in each fix up phase, we work on alternative
segments always leaving the first segment of the prior fix up phase. After each
fix up phase, the size of each segment being considered doubles and number of
segments becomes half with respect to the previous phase. At the end of each



fix up phase, we check whether the computed solution vectors are parallel to
those in the forward phase, and if the answer is ‘yes’ for all segments under
consideration, the program terminates. Otherwise, the next fix up phase is run.
In the worst case, the fix up phase is executed λ ∈ [1, log(t/c)] times after which
all results are guaranteed to be correct since by that time the result from the
original input propagates till the end. In the worst case, the program is like a
serial Viterbi algorithm with a constant factor overhead.

Complexity analysis. Let TF1 (n, t), QF1 (n, t), TF∞(n, t), and SF (t) denote the
work, serial cache complexity, span, and the steps for convergence, respectively,
of algorithm F ∈ {O, I}, where O represents the original rank convergence algo-
rithm and I denotes our modified algorithm. Let f(t) be the number of segments
in algorithm O. Note that for Maleki et al.’s original algorithm f(t) = p. Let
the number of times the fix up phase is executed in O and I be λO and λI ,
respectively. Then λO ∈ [1, f(t)] and λI ∈ [1, log (t/c)].

Work. TO1 (n, t) = Θ
(
n2t · λO

)
, and T I1 (n, t) = Θ

(
n2t · λI

)
. In the worst case,

TO1 (n, t) is Θ
(
n2t · f(t)

)
, and T I∞(n, t) is Θ

(
n2t · log t

)
.

Serial cache complexity. As there is no temporal locality,QO1 (n, t) = O
(
TO1 (n, t)/B

)
and QI1(n, t) = O

(
T I1 (n, t)/B

)
, when n2 does not fit into the cache.

Span. TO∞(n, t) = Θ (n(t/f(t)) · λO), as the number of stages in each segment
is Θ (t/f(t)), and the span of executing each stage is Θ (n). In the worst case,
TO∞(n, t) is Θ (nt). T I∞(n, t) is computed as follows. In the ith fix up phase,
the number of stages in each segment is 2i. Hence, the span of executing all

stages for λI iterations in the fix up phase is Θ
(∑(log c)+λI

i=log c 2i
)

= Θ
(
2λI
)
. Then

T I∞(n, t) = Θ
(
n2λI

)
. In the worst case, T I∞(n, t) is Θ (nt).

Steps for convergence. Let the rank of the matrix A1�A2�· · ·�At be k. For the
original algorithm, (SO(t)− 1)× (t/f(t)) < k ≤ SO(t)× (t/f(t)), which implies

SO(t) = dkf(t)/te. Similarly, for the improved algorithm, 2S
I(t)−1+log c < k ≤

2S
I(t)+log c, which implies SI(t) = dk/ce.

5 Cache-efficient Viterbi algorithm

In this section, we present an efficient cache- and processor-oblivious parallel
Viterbi algorithm based on recursive divide-and-conquer, as shown in Figure
5. The algorithm is derived by combining ideas from the cache-efficient multi-
instance Viterbi algorithm (see Section 3) and the improved parallel Viterbi
algorithm based on rank convergence (see Section 4).

Recall that in the multi-instance Viterbi algorithm works on the ith solution
vectors, s[i], of different instances of the problem and generates the (i + 1)th

solution vectors, s[i + 1], of the instances cache-efficiently. To develop a cache-
efficient Viterbi algorithm, in the forward phase, we divide t time steps into t/c
independent segments each of size c as we did in the improved parallel Viterbi
algorithm using rank convergence shown in Figure 4, As before, we chose c = 2i



where i ∈ [log c, log t]. Since each segment is independent, we can assume that
these segments are different instances of the same Viterbi problem. Therefore,
we can use the cache-efficient multi-instance Viterbi algorithm to solve these t/c
instances simultaneoulsy. Again, the first solution vectors of all except the first
segment are initialized to non-zero valid random probability values.

The fix up phase is similar to that of the Viterbi-Rank-Improved algo-
rithm (see Figure 5 and 4), except that now we use cache-efficient Multi instance
Viterbi algorithms to compute the next solution vector of all segments at once
instead of using Viterbi algorithm to compute an entire segment independently.
As before, we start fixing from the second segment since the first segment is
already fixed after the forward phase.

Viterbi-Cache-Efficient(s[0..t− 1], A,B)

1. n← 2k; t← 2k+k′ ; c← 28

〈 Forward phase 〉
2. size← c; q ← t/size
3. par for i← 0 to q − 1 do
4. li ← i× size, ri ← li + size− 1
5. if i > 0 then s[li]← random vector
6. Viterbi-MI(s[l0..r0], s[l1..r1], ..,

s[lq-1..rq-1], A,B, c)

〈 Fixup phase 〉
7. u[0..t−1]← s[0..t−1]; converged← false
8. for (j ← log c to (log t)− 1) do

9. size← 2j , q ← t/(2× size)
10. par for i← 0 to q − 1 do
11. li ← (2i+ 1)× size− 1
12. ri ← li + size; convi ← false
13. Viterbi-MI(u[l0..r0], . . . , u[lq-1..rq-1],

A,B, size+ 1)
14. par for i← 0 to q − 1 do
15. ri ← 2(i+ 1)× size− 1
16. if u[ri] is parallel to s[ri] then
17. convi ← true
18. else s[ri]← u[ri]
19. for i← 0 to q − 1 do
20. converged← converged ∧ convi

Fig. 5. An efficient cache- and processor-
oblivious parallel Viterbi algorithm using
rank convergence. Viterbi-MI refers to
Viterbi-Multi-Instance-D&C of Sec. 3.

In each fix up phase, we work on
alternative segments always leaving
out the first segment of the prior
fix up phase (already fixed by this
time). After each fix up phase, the
size of each segment being consid-
ered doubles and number of seg-
ments halves with respect to the pre-
vious phase. For each step, we use
multi-instance Viterbi algorithm to
compute the (i + 1)st solution vec-
tor from the ith solution vectors for
all segments at once. At the end of
each fix up phase, we check whether
the computed solution vectors are
parallel to those found in the for-
ward phase, and if that is true for all
segments under consideration, the
program terminates. Otherwise, the
next fix up phase is run. In the worse
case, the fix up phase is executed for
λ ∈ [1, log(t/c)] times after which all
results are guaranteed to be correct.

Complexity analysis. Let T1(n, t), Q1(n, t), and T∞(n, t) be the work, serial
cache complexity, and span of the cache-efficient Viterbi algorithm, respectively.
Let λ ∈ [1, log(t/c)] be the number of times the fix up phase is executed.

T1(n, t) = Θ
(
n2t · λ

)
. In the worst case, T1(n, t) = Θ

(
n2t · log t

)
. As in Sec-

tion 4, T∞(n, t) = Θ
(
n2λ

)
. Finally, Q1(n, t) = O

(∑(log c)+λ
i=log c

(
QA

(
n, t/2i

)
· 2i
))

= O
(
n2tλ/(B

√
M + n2tλ/M + (n(n2λ + tλ))/B + 2λ

)
. If n2, t = Ω

(√
M
)

and

convergence happens after λ = O (1) iterations of the fix up phase, Q1(n, t) re-

duces toO
(
n2tλ/(B

√
M) + n2tλ/M

)
which further reduces toO

(
n2tλ/(B

√
M)
)

when the cache is tall (i.e., M = Ω
(
B2
)
).



6 Experimental results

This section presents our implementation details and performance results.
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Fig. 6. Running time and L3 miss of our cache-efficient multi-instance Viterbi algo-
rithm along with the multi-instance iterative Viterbi algorithm.

We used a dual socket 16-core (= 2 × 8-cores) 2 GHz Intel Sandy Bridge
machine to run all experiments presented in the paper. Each core of this machine
was connected to a 32 KB private L1 cache and a 256 KB private L2 cache. All
the cores in a socket shared a 20 MB L3 cache, and the machine had 32 GB RAM
shared by all cores. We used PAPI 5.2 [1] to count the L3 cache misses (event
PAPI L3 TCM) and likwid [35] (i.e., likwid-perfctr) to measure energy and
power consumption of the program. The matrices A,B, and I were initialized to
random probabilities. We used log-probabilities in all implementations and hence
used additions instead of multiplications in the Viterbi recurrence. All matrices
were stored in column-major order. We performed two sets of experiments to
compare our cache-efficient algorithms with the iterative and the fastest known
Viterbi (Maleki et al.’s) algorithms. They are as follows.

Cache-efficient multi-instance Viterbi algorithm. We compared our cache-
efficient multi-instance recursive Viterbi algorithm with the multi-instance iter-
ative Viterbi algorithm. Both algorithms were optimized and parallelized. To
construct matrix Wn×q (we chose q to be n in this case), instead of copying all
the relevant columns of B, only the pointers to the respective columns were used.
Wherever possible, pointer swapping was used to interchange previous solution
vector (or matrix) and current solution vector (or matrix).

The running time and the L3 cache misses for the two algorithms are plotted
in Figure 6. The number of stages n, which is also the number of instances was
varied from 32 to 4096. Note that in the cache-efficient multi-instance Viterbi
algorithm, the number of stages does not need to be the same as the number of
instances. The variable m was fixed to 32 and the number of timesteps t was also
kept the same as n (hence overall complexity is O(n4)). The recursive algorithm
ran slightly faster than the iterative algorithm in most cases when the number
of instances increased. When n was 4096, our recursive algorithm ran around
2.26 times faster than the iterative algorithm.

Cache-efficient Viterbi algorithm. We compared our cache-efficient parallel
Viterbi algorithm with Maleki et al.’s parallel Viterbi algorithm. Both implemen-
tations were optimized and parallelized and the reported statistics are averages



of 4 independent runs. In all our experiments, the number of processors p was
set to 16. The plots of Figure 7 show the graphs of the running time and L3
cache misses for the two algorithms for n = 4096.
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Fig. 7. Running time, L3 miss and en-
ergy/power consumption of our cache-
efficient Viterbi algorithm along with the
existing algorithms.

When n = 4096, we varied t from
212 to 218, and kept m fixed at 32. Our
algorithm ran faster and incurred sig-
nificantly fewer L3 misses than Maleki
et al.’s algorithm throughout. For t =
218, our algorithm ran 33% faster, and
incurred a factor of 6 fewer L3 misses.
Better cache performance led to lower
DRAM energy consumption.

Energy consumption. We ran exper-
iments to analyze the energy con-
sumption (taking average over three
runs) of our cache-efficient recursive
algorithm and Maleki et. al.’s algo-
rithm. Our algorithm consumed rel-
atively less DRAM energy compared
to the other algorithm.

We used the likwid-perfctr tool
to measure CPU, Power Plane 0
(PP0), DRAM energy, and DRAM
power consumption during the execu-
tion of the programs. The energy mea-
surements were end-to-end, i.e., in-
cluded all costs during the entire pro-
gram execution. Note that the DRAM
energy consumption is somewhat re-
lated to the L3 cache miss of a pro-
gram as each L3 cache miss results in
a DRAM access. Similarly, since CPU
energy gives the energy consumed by
the entire package (all cores, on chip caches, registers and their interconnections),
it is related to a program’s running time. PP0 is basically a subset of CPU energy
since it captures energy consumed by only the cores and their private caches.

For n = 2048, t was increased from 211 to 214 while keeping m fixed to 32.
Figure 7 shows that the DRAM energy as well as power consumption of our
algorithm was significantly less because of the reduced L3 cache misses. When
t = 16384, Maleki et al.’s algorithm consumed 60% more DRAM energy and
30% more DRAM power than ours.
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