Midterm Exam II (April 21, 2021, 08:30 am - 09:55 am)
CSE 215: Foundations of Computer Science
State University of New York at Stony Brook, Spring 2021
Instructor: Prof. Pramod Ganapathi
Total points $=45$. Total questions $=5$. Total pages $=2$.
Instructions:

- Please write your full name and SBU student ID on the answer sheet.

Problem 1. [20 points]

Use mathematical induction to prove the following identities.
(a) [5 points] For all integers $n \geq 1$,

$$
1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}
$$

(b) [5 points] For all integers $n \geq 1, n\left(n^{2}+5\right)$ is a multiple of 6 .
(c) [5 points] For all integers $n \geq 0$,

$$
1+\frac{2}{3}+\frac{4}{9}+\cdots+\left(\frac{2}{3}\right)^{n}=3\left[1-\left(\frac{2}{3}\right)^{n+1}\right]
$$

(d) [5 points] Suppose that $c_{1}, c_{2}, c_{3}, \ldots$ is a sequence defined as follows:

$$
\begin{aligned}
& c_{1}=3, c_{2}=-9 \\
& c_{k}=7 c_{k-1}-10 c_{k-2} \quad \text { for all integers } k \geq 3
\end{aligned}
$$

Prove that $c_{n}=4 \cdot 2^{n}-5^{n}$ for all integers $n \geq 1$.

Problem 2. [5 points]

Mention whether the following statements are true or false without giving any reasons. Assume all sets are subsets of a universal set U.
(a) [1 point] $(A \cap B) \cap(A \cap C)=A \cap(B \cup C)$
(b) [1 point] $A=A \cup(A \cap B)$
(c) [1 point] $A \subseteq A \cup B$
(d) [1 point] $A \cap(A \cup B)=A \cap B$
(e) [1 point] $A \subseteq B$ if and only if $A \cup B=B$

Problem 3. [5 points]

Suppose the grading function $f:[0,100] \rightarrow\{A, A-, B+, B, B-, C+, C, C-, D+, D, F\}$ is defined as follows:

Percentage		Grade
$[93,100]$	\longrightarrow	A
$[90,93)$	\longrightarrow	$A-$
$[87,90)$	$\longrightarrow+$	
$[83,87)$	\longrightarrow	B
$[80,83)$	\longrightarrow	$C+$
$[77,80)$	\longrightarrow	$C-$
$[73,77)$	\longrightarrow	$D+$
$[70,73)$	\longrightarrow	D
$[67,70)$	\longrightarrow	

Is this grading function a one-to-one correspondence? Prove or disprove.

Problem 4. [5 points]

The rotate-by-90-degree function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ is defined as follows.

$$
f(x, y)=(y,-x)
$$

(This function is used in image processing for rotating a face or an image by 90 degree in clockwise direction.) Is this function a one-to-one correspondence? Prove or disprove.

Problem 5. [10 points]

Mention whether the following statements are true or false without giving any reasons. Assume that the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are arbitrary functions.
(a) [1 point] $f \circ f=f$.
(b) [1 point] $f \circ g=g \circ f$.
(c) [1 point] f and g are both one-to-one correspondences implies that $f \circ g$ and $g \circ f$ are both one-to-one correspondences.
(d) [1 point] f and g are both onto does not imply that $f \circ g$ and $g \circ f$ are both onto.
(e) [1 point] f and g are both one-to-one implies that $f \circ g$ and $g \circ f$ are both one-to-one.
(f) [1 point] If $f \circ g$ is the identity function, then f and g are one-to-one correspondences.
(g) [1 point] Suppose f^{-1} exists. Then f^{-1} need not be an onto function.
(h) [1 point] The size of the set of all multiples of 6 is less than the size of the set of all multiples of 3 .
(i) [1 point] The size of the set of rational numbers is the same as the size of the set of real numbers in the range $[0,0.0000001]$.
(j) [1 point] The size of the set of real numbers in the range [1, 2] is the same or larger than the size of the set of real numbers in the range $[1,4]$.

